-逆变电路的基本工作原理

合集下载

逆变电路基本工作原理

逆变电路基本工作原理

逆变电路基本工作原理
逆变电路的基本作用是将直流电源转换为交流电源。

闺21给出广—个子相逆变电路;在这个逆变电路小,内六个开关组成了‘个二相桥式电路。

交替打开利关断这六个开关,就uf以在输11端得到相位上各相差120“(电气角)的三相交流电源。

该交流电源的频率开关频率决定,而幅值则等于直流电源的幅值。

为了炊变该交流电源的祁序从而达到改变异步电动机转N的目的,只要故变各个开关打开和关断的顺序即可。

因为这些开关同时义起着改变电流流向的作用,所以它们又被称为换流开关或换流器件。

在图2。

7给出的逆变电路的原理图中,当位于同—桥臂上的两个开关向时处于开通状态时将会出现短路现象,并烧毁换流器件。

所以在实际的变频器逆变电路中还设有各种相应的辅助电路,以保证逆变电路的正常工作和在发生意外情况时对换流器件进行保护。

在巾逆变电路所完成的将直流电源转换为交流电源的过程小,升关器件起着非常重要的作用。

由于机械式开关的开关频率和使用寿命都很有限,在实际的逆变电路中采用半导体器件作为开关器件。

半导体开关器件的种类很多,如晶间管、晶体管、GTo、IGBT等。

而变频器本身也常常根据其逆变电路中使用的半导体开关器件的种类而被称为品闸管西门子变频器体管逆变器等。

逆变电路的基本工作原理

逆变电路的基本工作原理

第5章逆变电路主要容:换流方式,电压型逆变电路,电流型逆变电路,多重逆变电路和多电平逆变电路。

重点:换流方式,电压型逆变电路。

难点:电压型逆变电路,电流型逆变电路。

基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变电路和多电平逆变电路。

逆变概念:逆变——直流电变成交流电,与整流相对应。

本章无源逆变逆变电路的应用:蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

本章仅讲述逆变电路基本容,第6章PWM控制技术和第8章组合变流电路中,有关逆变电路的容会进一步展开1换流方式(1)逆变电路的基本工作原理单相桥式逆变电路为例:S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。

S1、S4闭合,S2、S3断开时,负载电压uo 为正S1;S1、S4断开,S2、S3闭合时,uo为负,把直流电变成了交流电。

改变两组开关切换频率,可改变输出交流电频率。

图5-1 逆变电路及其波形举例电阻负载时,负载电流io 和uo的波形相同,相位也相同。

阻感负载时,io滞后于uo,波形也不同(图5-1b)。

t 1前:S1、S4通,uo和io均为正。

t 1时刻断开S1、S4,合上S2、S3,uo变负,但io不能立刻反向。

i o 从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流——电流从一个支路向另一个支路转移的过程,也称换相。

开通:适当的门极驱动信号就可使其开通。

关断:全控型器件可通过门极关断。

半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。

研究换流方式主要是研究如何使器件关断。

本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。

逆变电路的基本工作原理

逆变电路的基本工作原理

逆变电路的基本工作原理1、S4闭合,S2、S3断开时,负载电压uo为正S1;S1、S4断开,S2、S3闭合时,uo为负,把直流电变成了交流电。

改变两组开关切换频率,可改变输出交流电频率。

图5-1 逆变电路及其波形举例电阻负载时,负载电流io和uo的波形相同,相位也相同。

阻感负载时,io滞后于uo,波形也不同(图5-1b)。

t1前:S1、S4通,uo和io均为正。

t1时刻断开S1、S4,合上S2、S3,uo变负,但io不能立刻反向。

io从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后io才反向并增大(2)换流方式分类换流电流从一个支路向另一个支路转移的过程,也称换相。

开通:适当的门极驱动信号就可使其开通。

关断:全控型器件可通过门极关断。

半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。

研究换流方式主要是研究如何使器件关断。

本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。

2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。

可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。

3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。

负载电流相位超前于负载电压的场合,都可实现负载换流。

负载为电容性负载时,负载为同步电动机时,可实现负载换流。

图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。

电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感Ld, id基本没有脉动。

工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。

逆变电路原理图

逆变电路原理图

逆变电路原理图逆变电路是一种将直流电转换为交流电的电路。

它通常由开关管和电感、电容等元件组成,可以实现直流电源向各种负载输出交流电。

逆变电路在各种电子设备中都有广泛的应用,例如逆变电源、UPS电源等。

在本文中,我们将介绍逆变电路的原理图及其工作原理。

逆变电路的原理图通常由输入端、输出端、开关管、电感、电容等元件组成。

其中,输入端接收直流电源,经过开关管的控制,通过电感和电容等元件实现直流电到交流电的转换,最终输出到负载中。

开关管的工作状态由控制电路来控制,它可以周期性地打开和关闭,从而实现对直流电的切割和转换。

电感和电容则起到了滤波和平滑输出波形的作用。

逆变电路的工作原理是基于开关管的工作状态来实现的。

当开关管处于导通状态时,直流电源通过电感储能,同时电容器充电,此时负载得到电源供电。

当开关管处于断开状态时,电感释放能量,电容器放电,此时负载得到的是电感和电容器放电的能量。

通过不断地切换开关管的工作状态,可以实现直流电到交流电的转换。

在逆变电路中,开关管的工作状态由控制电路来控制。

控制电路通常由PWM控制器、驱动电路、反馈电路等组成。

PWM控制器可以根据输入信号的大小和频率来生成相应的脉冲信号,驱动电路则将脉冲信号传递给开关管,控制其导通和断开。

反馈电路则可以监测输出端的电压和电流,将其反馈给PWM控制器,实现对输出波形的调节和稳定。

逆变电路的原理图和工作原理对于电子工程师来说是非常重要的。

通过深入理解逆变电路的原理图和工作原理,可以更好地设计和调试逆变电路,提高电路的效率和稳定性。

同时,对于工程师来说,熟练掌握逆变电路的原理图和工作原理也是必不可少的技能。

总之,逆变电路是一种非常重要的电子电路,在各种电子设备中都有着广泛的应用。

通过深入理解逆变电路的原理图和工作原理,可以更好地应用和设计逆变电路,提高电路的效率和稳定性。

希望本文对您有所帮助,谢谢阅读!。

逆变电源基本原理

逆变电源基本原理

逆变电源基本原理逆变电源是一种将电压转化为不同频率、不同电压或不同波形的电源设备。

其基本原理是通过采取逆变器的技术手段,将直流电源转换为交流电源。

逆变电源的工作原理主要包括以下几个方面:1.整流:首先将交流电源通过整流电路转换为直流电源。

整流电路通常由整流桥组成,整流桥将交流电压的正负半周分别经过二极管整流,然后通过电感滤波电路平滑输出。

2.滤波:经过整流的直流电压仍然存在一定的脉动,需要通过滤波电路进行平滑。

滤波电路一般由电容和电感组成,电容负责对电压进行平滑,电感则负责对电流进行过滤。

3.逆变:经过滤波的直流电压通过逆变器电路进行逆变转换为交流电压。

逆变器电路主要由开关管和控制电路组成。

开关管将直流电压进行开关操作,通过控制开关管的开关时间和频率,产生高频脉宽调制电压信号。

接下来,通过高频变压器将高频脉宽调制电压信号转换为需要的交流电压。

4.输出:通过输出变压器将逆变器电路产生的交流电压进行变压操作,得到需要的输出电压。

同时,通过输出滤波电路对输出电压的波形进行进一步的滤波平滑,减小输出电压的脉动。

逆变电源的控制电路通常由微控制器或专用的控制芯片实现。

控制电路通过对开关管的控制,调整开关操作的频率和占空比,从而实现对输出电压的调节。

逆变电源广泛应用于各个领域,如UPS电源、太阳能逆变器、电动汽车充电器等。

其中,太阳能逆变器是逆变电源应用的一个重要领域。

逆变电源通过将太阳能光伏电池板产生的直流电转换为交流电,能够满足家庭、工业等电力需求。

此外,逆变电源还可以实现电动汽车的充电功能,将家庭用电网交流电转化为适合电动汽车充电的直流电。

总而言之,逆变电源是一种将直流电源转换为交流电源的装置。

通过整流、滤波、逆变和输出等步骤,逆变电源能够将直流电转换为交流电,并通过控制电路调节输出电压、频率和波形。

逆变电源在太阳能逆变器、UPS电源等领域应用广泛。

逆变器工作原理

逆变器工作原理

逆变器工作原理逆变器是一种将直流电转换为交流电的电子设备。

它在许多领域中广泛应用,如太阳能发电系统、风力发电系统、电动车充电系统等。

逆变器的工作原理非常关键,下面将详细介绍逆变器的工作原理及其相关原理。

1. 逆变器的基本原理逆变器的基本原理是通过控制开关管的导通和断开,将直流电转换为交流电。

逆变器主要由输入端、输出端、控制电路和功率电路组成。

输入端接收直流电源,输出端输出交流电。

控制电路负责控制功率电路中的开关管的导通和断开,从而实现电流的正向和反向流动。

2. 逆变器的工作过程逆变器的工作过程可以分为两个阶段:直流到直流(DC-DC)转换和直流到交流(DC-AC)转换。

2.1 直流到直流(DC-DC)转换在这个阶段,逆变器将输入的直流电源进行调整和转换,以便适应后续的直流到交流转换。

这个阶段主要包括三个步骤:输入滤波、变压和输出滤波。

2.1.1 输入滤波逆变器的输入端通常会接收到来自太阳能电池板、风力发机电等直流电源。

直流电源的输出通常存在一些脉动和噪声。

因此,逆变器需要通过输入滤波电路对直流电源进行滤波,以去除这些干扰信号,保证后续电路的正常工作。

2.1.2 变压在输入滤波之后,逆变器会将直流电源的电压进行变压。

变压的目的是将直流电源的电压调整到逆变器工作所需的电压范围,通常是直流电源电压的倍数。

2.1.3 输出滤波经过变压之后,逆变器会对输出电压进行滤波处理,以去除可能存在的高频噪声和脉动。

输出滤波电路通常由电感和电容组成,能够平滑输出电压,提供稳定的直流电源。

2.2 直流到交流(DC-AC)转换在直流到直流转换之后,逆变器将直流电源转换为交流电。

这个阶段主要包括两个步骤:逆变和输出滤波。

2.2.1 逆变逆变是逆变器的核心过程,它通过控制开关管的导通和断开,将直流电源转换为交流电。

逆变器通常采用全桥逆变电路,由四个开关管组成。

通过控制开关管的导通和断开,可以实现交流电的正向和反向流动,从而产生所需的交流电信号。

逆变器工作原理

逆变器工作原理

逆变器工作原理引言概述:逆变器是一种将直流电能转换为交流电能的电子设备,广泛应用于太阳能发电、风能发电、电动车辆等领域。

了解逆变器的工作原理对于电力工程师和电子爱好者来说至关重要。

本文将详细介绍逆变器的工作原理,包括其基本原理、构成要素和工作过程。

一、逆变器的基本原理1.1 电源与负载间的转换逆变器的基本原理是将直流电源转换为交流电源。

直流电源通常由电池、太阳能电池板等提供,而交流电源是我们家庭和工业中常用的电源。

逆变器通过将直流电源经过一系列电子元件的处理,将其转换为交流电源,以供给负载使用。

1.2 逆变器的拓扑结构逆变器的拓扑结构通常采用多种形式,如单相桥式、三相桥式、多电平等。

其中,单相桥式逆变器是最常见的一种。

它由四个开关管和四个二极管组成,通过开关管的开关动作来实现对直流电源的控制,从而产生交流电源。

1.3 逆变器的控制策略逆变器的控制策略是指通过控制开关管的开关动作来实现对输出电压和频率的控制。

常见的控制策略有脉宽调制(PWM)控制和谐波控制。

脉宽调制控制通过调节开关管的开关频率和占空比来控制输出电压的大小和波形的形状。

谐波控制则是通过控制开关管的开关时间来实现对输出电压的控制。

二、逆变器的构成要素2.1 开关管开关管是逆变器中最关键的元件之一,它负责控制直流电源的开关动作。

常见的开关管有晶体管和功率场效应管。

晶体管具有高开关速度和较低的导通压降,适合用于低功率逆变器。

功率场效应管则具有较低的导通电阻和较高的开关速度,适合用于高功率逆变器。

2.2 控制电路逆变器的控制电路负责对开关管的开关动作进行控制。

它通常由微处理器、控制芯片和传感器组成。

微处理器负责接收输入信号并进行相应的计算,控制芯片则负责产生控制信号,传感器则用于监测逆变器的工作状态。

2.3 滤波电路逆变器输出的交流电压中常常含有较高的谐波成分,为了减小谐波成分对负载的影响,逆变器通常需要配备滤波电路。

滤波电路可以通过电感和电容来实现对谐波的滤除,从而得到较为纯净的交流电源。

逆变器工作原理

逆变器工作原理

逆变器工作原理逆变器是一种将直流电转换成交流电的电力转换装置。

它在可再生能源系统、电池储能系统、电动汽车和UPS等领域中得到广泛应用。

逆变器的工作原理是通过使用电子器件将直流电源转换为交流电源。

一、逆变器的基本原理逆变器的基本原理是利用电子器件(如晶体管、IGBT等)将直流电源转换为交流电源。

逆变器的输入端连接直流电源,输出端连接负载。

逆变器通过控制电子器件的开关状态,将直流电源转换为交流电源,输出给负载。

逆变器的工作过程可以分为两个阶段:开关器件的导通和开关器件的断开。

二、逆变器的工作过程1. 开关器件的导通阶段:在这个阶段,逆变器的输入端直流电源通过控制电路,使得开关器件导通。

导通的开关器件会将直流电源的电能传输到输出端,形成正半周的交流电信号。

在这个过程中,开关器件的导通时间和导通频率决定了输出交流电的频率和幅值。

2. 开关器件的断开阶段:在这个阶段,逆变器的输入端直流电源通过控制电路,使得开关器件断开。

断开的开关器件会阻断直流电源的电能传输,输出端的电压降为0。

在这个过程中,开关器件的断开时间和断开频率决定了输出交流电的频率和幅值。

三、逆变器的控制方式逆变器的控制方式有两种:脉宽调制(PWM)和谐波消除调制(HCC)。

1. 脉宽调制(PWM):脉宽调制是逆变器常用的控制方式。

它通过改变开关器件导通和断开的时间比例,来控制输出交流电的频率和幅值。

脉宽调制可以使得逆变器的输出电压具有较高的质量和稳定性。

2. 谐波消除调制(HCC):谐波消除调制是一种高级的控制方式,它可以有效地消除逆变器输出电压中的谐波成份。

谐波消除调制通过改变开关器件的导通和断开时间,使得输出电压的谐波成份尽可能接近于0。

这样可以提高逆变器的功率质量,减少对负载的干扰。

四、逆变器的应用逆变器在可再生能源系统中的应用越来越广泛。

例如,太阳能光伏发电系统中的逆变器可以将太阳能电池板产生的直流电转换为交流电,供给家庭和工业用电。

电力电子技术-第4章逆变电路讲解

电力电子技术-第4章逆变电路讲解
(4)直流侧电感起到缓冲无功能量的作用。
4.3.1 单相电流型逆变电路
(1)电路结构
①用④阻载② 载来③ 联 确4并抗电个采 电限应C谐联,压桥和用 压制称振谐谐波臂L负 (晶之式振波形、,载 呈闸为逆回在接R每换 容管容变构路负近桥相性开性电成对载正臂方)通小路并基上弦晶式。时失(联波产波闸,的谐但谐呈生。管要d负最振高的i各/求载d终电阻压t串负)负路抗降联载载,,很一电仍故对小个流略此谐,电略显电波因抗超容路呈此器前性称低负L于T,为,负并准
4.2.1 单相电压型逆变电路
1、 半桥逆变电路 •(1)电路图
+
Ud 2
Ud
Ud 2
-
V1 io R L
u o V 2
a)
VD 1
VD 2
*导电方式:
V1,V2信号互补,
各导通180゜。
•半桥逆变电路有两个桥臂, 每个桥臂有一个可控器件和一 个反并联二极管组成。 •在直流侧接有两个相互串联 的足够大的电容,两个电容的 联结点是直流电源的中点。 •负载联结在直流电源中点和 两个桥臂联结点之间。
能否不改变直 流电压,直接进行 调制呢?为此提出 了导电方式二:
移相导电方式。
*导电方式二:移相调压 调节输出电压脉冲的宽度
采用移相方式调节逆变电路的输出电压
• 各IGBT栅极信号为180°正偏, 180°反偏,且V1和V2栅极信号互补, V3和V4栅极信号互补; • V3的基极信号不是比V1落后180°,
而是只落后q ( 0< q <180°);
• 也就是:V3、V4的栅极信号分别比
V2、V1的前移180°-q 。
工作过程
•t1时刻以前V1,V4通,u0=ud, io 从 0 增加; •t1时刻V4断,V1,VD3续流,u0=0,io 下降; • t2时刻V1也关断,io 还未下降到0,于是VD2,VD3续流,u0=-ud。 •直到io过0变负,V2,V3通,u0=-ud, io从0负增加; •t3时刻V3断,V2,VD4续流,u0=0,io 负减小; • t4时刻V2也关断,io 还未减小到0,于是VD1,VD4续流,u0=ud。

电力电子技术-第4章逆变电路

电力电子技术-第4章逆变电路

ON
VD
14
VD
VD b)
VD
固定180°移相方波控制方式
思考2:在导电方式一下工作,如果要改变输出电 压的有效值(即幅值),应该采取什么样的方式? ★只能靠改变输入直 流电压的大小来改变 输出电压的有效值。 能否不改变直流电 压,直接进行调制 呢?为此提出了导 电方式二:
移相导电方式。
课程回顾
uo S 4
图5-1 i 从电源负极流出,经 S S3流回正极,负载电 2、负载和 o t1时刻断开 St 、 S ,合上 S 、 S , u 变负,但 u 1 1前: 4 S1、S4通, 2 3 o 和i o o 均为正 io不能立刻 电流从一条支路转移到另一条支路称为换流。 感能量向电源反馈, io逐渐减小,t2时刻降为零,之后io 反向
负载提供能量。
VD V
2 2
• VD 1 或 VD 2 通时, i o 和 u o 反
a) uo Um O -Um io O t3 t4 t1 t 2 t5 t6 V1 V2 V1 V2 VD 1 VD 2 VD 1 VD 2 b)
向,负载电感中贮藏的能量
向直流侧反馈。
t
• 输出电压 uo 为矩形波,幅
• 全桥逆变电路
*导电方式一: V1,V4同时通断;
uo Um O
V2,V3同时通断;
V1,V4与V2,V3信号 互补,各导电180 ゜。
-Um
io O t3 t1 t 2 V 14 VD
14
t
t4 t5 t6 V 23
23
t
V2
23
ON
V 14
14
VD
VD b)
VD
思考:在导电方式一下工作,如果要改变输出电压

逆变器的工作原理和控制技术-全解

逆变器的工作原理和控制技术-全解

uCN
sin t 2400
设计
uUN'
uVN'
Ud 2
k
k sin
sint t 1200
Ud 2
uWN'
k sin t 2400
关键: uUN’、 uVN’、 uWN’
的幅值小于Ud/2
三次谐波注入法
uUN'
uVN'
uWN'
Ud 2
1.15sint 0.19sin 3t
负载相电压
uUN uUN' uNN'
uVN
uVN'
uNN'
uWN
uWN'
uNN
'
负载中点电压
uNN '
uUN'
uVN' 3
uWN'
负载三相对称时有uUN+uVN+uWN=0
4.4 三相逆变电路结构和工作原理
开关动作与输出电压关系
电压基准点:
以电源中点N’为0电平基准点。
根据电路结构
➢ VD1或VD2通时,io和uo反向,电感中 贮能向直流侧反馈;
➢ VD1、VD2称为反馈二极管,它又起着 使负载电流连续的作用,又称续流二 极管。
u
a)
o
Um
O
t
-Um
io
O
t3 t1 t2
ቤተ መጻሕፍቲ ባይዱ
t4
t5 t6
t
ON V1 V 2 V1 V2
VD1 VD2 VD1 VD2 b)
4.2 单相逆变电路结构和工作原理
叠加三次 谐波
ur3
t

逆变器工作原理

逆变器工作原理

逆变器工作原理逆变器是一种将直流电转换为交流电的电力转换设备。

它在可再生能源发电系统、电动车辆和UPS(不间断电源)等领域得到广泛应用。

本文将详细介绍逆变器的工作原理。

一、逆变器的基本原理逆变器的基本原理是利用电子器件对直流电进行逆变,产生交流电。

逆变器通常由直流输入端、输出端和控制电路组成。

其工作流程如下:1. 直流输入:逆变器的直流输入端接收来自电池、太阳能电池板或者其他直流电源的电能。

直流电源经过滤波电路进行滤波处理,去除掉直流电中的脉动和噪声。

2. 逆变过程:滤波后的直流电进入逆变器的控制电路。

控制电路根据设定的参数,如输出电压、频率等,控制功率开关器件的开关状态。

逆变器中常用的功率开关器件有晶体管和功率MOSFET。

3. 输出交流电:通过控制功率开关器件的开关状态,逆变器将直流电转换为交流电。

交流电经过输出滤波电路后,去除掉交流电中的谐波和噪声,得到纯净的交流电输出。

二、逆变器的工作模式逆变器根据输入直流电的类型和输出交流电的特性,可以分为两种工作模式:单相逆变器和三相逆变器。

1. 单相逆变器:单相逆变器适合于家庭和小型商业应用。

它的输入直流电为单相直流电,输出交流电为单相交流电。

单相逆变器通常采用全桥逆变器拓扑结构,具有较高的效率和可靠性。

2. 三相逆变器:三相逆变器适合于大型商业和工业应用。

它的输入直流电为三相直流电,输出交流电为三相交流电。

三相逆变器通常采用多电平逆变器拓扑结构,能够提供更高的功率质量和效率。

三、逆变器的控制策略逆变器的控制策略对其性能和稳定性至关重要。

常见的逆变器控制策略有以下几种:1. 脉宽调制(PWM):脉宽调制是一种常用的逆变器控制策略。

通过改变逆变器输出电压的脉冲宽度,控制输出交流电的幅值和频率。

脉宽调制可以提供较高的输出质量和效率。

2. 多电平控制:多电平控制是一种高性能的逆变器控制策略。

通过在逆变器输出端采用多级电压波形,减小输出电压的谐波含量,提高输出电压的质量。

第5章 逆变电路

第5章  逆变电路
然后通过反并联二极管使其 加上反向电压。
也叫电流换流。
图5-3直接耦合式 强迫换流原理图
图5-4 电感耦合式 强迫换流原理图
5.1.2 换流方式分类
换流方式总结:
器件换流——适用于全控型器件。 其余三种方式——针对晶闸管。 器件换流和强迫换流——属于自换流。 电网换流和负载换流——属于外部换流。 当电流不是从一个支路向另一个支路转移,而 是在支路内部终止流通而变为零,则称为熄灭。
5.2.1 单相电压型逆变电路
阻感负载时,还可采用 移相得方式来调节输出 电压-移相调压。
V3的基极信号比V1落后θ (0<θ <180 °)。V3、 V4的栅极信号分别比V2、
V1的前移180°-θ 。输出
电压是正负各为θ的脉冲。
改变θ就可调节输出电压。
uG1
a)
O
t
u G2
O
t
u G3
θ
O
t
电流型逆变电路中,采用半控型器件的电路仍应用较多。 换流方式有负载换流、强迫换流。
5.3 电流型逆变电路
5.3.1 单相电流型逆变电路 5.3.2 三相电流型逆变电路
5.3.1 单相电流型逆变电路
1) 电路原理
由四个桥臂构成,每个 桥臂的晶闸管各串联一 个电抗器,用来限制晶 闸管开通时的di/dt。
负载中点和电源中点间电压
uNN'
1 3
(uUN'
uVN'
uWN'
)
1 3
(uUN
uVN
uWN )
(5-6)
负载三相对称时有uUN+uVN+uWN=0,于是
1 uNN' 3 (uUN' uVN' uWN' )

逆变电路的基本工作原理

逆变电路的基本工作原理

第5章逆变电路主要内容:换流方式,电压型逆变电路,电流型逆变电路,多重逆变电路与多电平逆变电路。

重点:换流方式,电压型逆变电路。

难点:电压型逆变电路,电流型逆变电路。

基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变电路与多电平逆变电路。

逆变概念:逆变-—直流电变成交流电,与整流相对应、本章无源逆变逆变电路得应用:蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置得核心部分都就是逆变电路。

本章仅讲述逆变电路基本内容,第6章PWM控制技术与第8章组合变流电路中,有关逆变电路得内容会进一步展开1换流方式(1)逆变电路得基本工作原理单相桥式逆变电路为例:S1~S4就是桥式电路得4个臂,由电力电子器件及辅助电路组成。

S1、S4闭合,S2、S3断开时,负载电压uo为正S1;S1、S4断开,S2、S3闭合时,u o为负,把直流电变成了交流电、改变两组开关切换频率,可改变输出交流电频率、图5—1 逆变电路及其波形举例电阻负载时,负载电流i o与uo得波形相同,相位也相同。

阻感负载时,io滞后于u o,波形也不同(图5—1b)。

t1前:S1、S4通,u o与io均为正。

t1时刻断开S1、S4,合上S2、S3,u o变负,但io不能立刻反向。

io从电源负极流出,经S2、负载与S3流回正极,负载电感能量向电源反馈,io逐渐减小,t2时刻降为零,之后i o才反向并增大(2)换流方式分类换流—-电流从一个支路向另一个支路转移得过程,也称换相。

开通:适当得门极驱动信号就可使其开通。

关断:全控型器件可通过门极关断。

半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。

研究换流方式主要就是研究如何使器件关断。

本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件得自关断能力进行换流(Device Commutation)、2、电网换流由电网提供换流电压称为电网换流(Linemutation)。

第5章-逆变电路

第5章-逆变电路
(2)当S1、S4闭合,S2、S3断开时,负载电压uo为正。 (3)当S1、S4断开,S2、S3闭合时,负载电压uo为负。
当变化两组开关切换频率,就可变化输出交流电频
率相也;位不若也同接相。电同阻;负若载阻时感,负负载载时电,i流o相io和位u滞o旳后波于形uo相,同波,形
如图所示,设t1前S1、S4通,则uo和io均为正。 若在t1时刻断开S1、S4,合上S2、S3,则uo旳极性变负,但io 不能立即反向且仍维持原方向;
交直交变频电路由交直变换(整流)和直交变换两部分构成, 后一部分就是逆变。
3. 应用
多种直流电源,如蓄电池、干电池、太阳能电池等在向交流 负载供电时就需要逆变电路。
交流电机调速用变频器、不间断电源、感应加热电源等电力 电子装置旳关键部分都是逆变电路。
2024/9/22
5.1 换流方式
5.1.1 逆变电路旳基本工作原理 5.1.2 换流方式分类
优点:电路简朴,使用器件少。
缺陷电:容输器出串交联流,电须压控幅制值两仅者为电压Ud均/2衡,。且直流侧需要两个
应用: 常用于几kW下列旳小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电路 旳组合。
2024/9/22
5.2.1 单相电压型逆变电路
2. 全桥逆变电路
共四个桥臂,可看成两个 半桥电路组合而成。 两对桥臂交替导通180°。 输出电压和电流波形与半 桥电路形状相同,但幅值 高出一倍。 变化输出交流电压旳有效 值只能经过变化直流电压 Ud来实现。
2024/9/22
5.1.2 换流方式分类
4. 逼迫换流 举例:
设置附加旳换流电路,给欲关断旳晶闸管逼迫施加 反向电压或反向电流旳换流方式称为逼迫换流 (forced commutation), 这一般是利用附加电容上储存 旳能量来实现,故也称为电容换流。

逆变电路的基本工作基本原理

逆变电路的基本工作基本原理

逆变电路的基本工作基本原理
逆变电路是一种将直流电转换为交流电的电路。

其基本原理是利用开关器件(如晶体管、功率MOS管等)控制电源电压的
通断,使得直流电源的电压在开关控制下周期性地改变极性,从而形成交流电压输出。

具体工作原理如下:
1. 当控制信号为高电平时,开关器件导通,电源正极接通输出负电压,负载电流经过电流限制电感流入负载;
2. 当控制信号为低电平时,开关器件截断,电源与负载之间断开连接;
3. 由于电流限制电感的自感作用,负载电流无法突变,因此电流会继续在电流限制电感和负载之间流动,形成一个闭合回路,自感电动势驱动此回路中的电流继续流动;
4. 自感电动势的方向与电流的方向相反,使得负载电流逆向流动,造成负载电压的极性发生变化,从而形成交流电压输出。

通过控制开关器件的导通和截断,可以调节逆变电路的开关频率、占空比等参数,从而实现不同频率、不同幅值的交流电输出。

逆变电路广泛应用于交流电源不可用或需要转换为不同电压和频率的场合,如UPS电源、电动车充电器等。

逆变电路的基本工作原理

逆变电路的基本工作原理

第5章逆变电路主要内容:换流方式,电压流型逆变电路。

基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置1(1)逆变电路的基本工作原理单相桥式逆变电路为例:S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。

S、S闭合,S、S断开、1S为图5-1 逆变电路及其波形举例电阻负载时,负载电流i o和u o的波形相同,相位也相同。

阻感负载时,i滞后于u,波tt2、Si o从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,i o逐渐减小,t2时刻降为零,之后i o才反向并增大就可使其开通。

关断:全控型器件可通过门极关断。

半控型器件晶闸管,必须利为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device。

能力,也不需要为换流附加元件。

3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。

图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容改变,负载电流基本呈矩形波。

负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,u o波形接近正弦。

t、2t、1 VT4换到VT3、VT2。

t1必须在u o过零前并留有足够裕量,才能使换流顺利完成。

也称为电容换流。

直接耦合式强迫换流——由换流电路内电容提供换流电压。

VT通态时,先给电容C过换流电路内电容和电感耦合提供换流电压或换流电流。

两种电感耦合式强迫换流:图5-4a中晶闸管在LC振荡第一个半周期内关断。

其关断的换流也叫电压换流(图5-3)。

先使晶闸管电流减为零,然后通过反并联二极管使其加反压的换流叫电流换流(图5-4)。

电网换流和负载换流——属于外部换流。

逆变电路的工作原理

逆变电路的工作原理

逆变电路的工作原理逆变电路是一种将直流电转换为交流电的电路,其工作原理主要基于功率半导体器件的开关控制。

逆变电路在电力变换、电机驱动、太阳能发电等领域有着广泛的应用。

下面我们将详细介绍逆变电路的工作原理。

首先,逆变电路通常由功率半导体器件(如晶闸管、场效应管等)和控制电路组成。

在逆变电路中,功率半导体器件起到开关的作用,通过不同的开关组合可以实现对直流电的逆变,输出交流电。

其次,逆变电路的工作原理是通过控制功率半导体器件的导通和关断来实现对直流电的逆变。

当控制电路给出相应的触发信号时,功率半导体器件导通,直流电源输出到负载上;当控制电路给出另一种触发信号时,功率半导体器件关断,负载上不再有输出。

通过这种方式,可以实现对直流电的逆变,输出交流电。

另外,逆变电路的工作原理还涉及到逆变电路的拓扑结构。

常见的逆变电路拓扑结构有单相桥式逆变电路、三相桥式逆变电路等。

不同的拓扑结构对应不同的应用场景,可以实现不同的功率输出和控制方式。

此外,逆变电路的工作原理还包括对输出波形的控制。

在实际应用中,往往需要对逆变电路输出的交流电波形进行控制,以满足不同的负载要求。

通过控制功率半导体器件的触发角度和脉宽,可以实现对输出波形的调节,满足不同的应用需求。

总的来说,逆变电路的工作原理是基于功率半导体器件的开关控制,通过控制功率半导体器件的导通和关断来实现对直流电的逆变,输出交流电。

不同的逆变电路拓扑结构和输出波形控制方式可以满足不同的应用需求,具有广泛的应用前景。

以上就是逆变电路的工作原理的详细介绍,希望对您有所帮助。

如果您对逆变电路的工作原理还有其他疑问,欢迎随时与我们联系。

逆变器的基本电路

逆变器的基本电路

逆变器的基本电路
逆变器的基本电路是一种电力电子器件,主要用于将直流电转换为交
流电。

它的基本结构由两个半桥逆变器构成,其中每个半桥逆变器由
四个开关元件和一个电感组成。

逆变器的工作原理是通过控制开关元
件的导通和断开,将直流电源的电平变化转化为交流电输出。

在逆变器的电路图中,每个逆变器由两个开关管和两个二极管组成。

其中,开关管和二极管分别连接在直流电源和输出负载之间,它们的
导通和断开状态由控制电路控制。

当电路中开关管1和开关管4两个
管子导通时,交流输出电压为正极性;当开关管2和开关管3导通时,输出电压为负极性。

如此交替逆变输出,即可获得高质量的交流输出
电压。

同时,逆变器的电感在工作过程中起着很重要的作用。

电感负责控制
电路中电流的变化速度,从而保证逆变器稳定输出。

因此,在设计逆
变器时,需要根据负载和直流电压的特性选择合适的电感,并采用合
适的设计技巧以提高电路的效率和稳定性。

总之,逆变器的基本电路和工作原理是以半桥逆变器为基础的。

通过
精细的控制和电路设计,我们可以获得稳定、高质量的交流输出电压,从而推动各类电力设备的发展和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章逆变电路主要内容:换流方式,电压型逆变电路,电流型逆变电路,多重逆变电路和多电平逆变电路。

重点:换流方式,电压型逆变电路。

难点:电压型逆变电路,电流型逆变电路。

基本要求:掌握换流方式,掌握电压型逆变电路,理解电流型逆变电路,了解多重逆变电路和多电平逆变电路。

逆变概念:逆变——直流电变成交流电,与整流相对应。

本章无源逆变逆变电路的应用:蓄电池、干电池、太阳能电池等直流电源向交流负载供电时,需要逆变电路。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

本章仅讲述逆变电路基本内容,第6章PWM控制技术和第8章组合变流电路中,有关逆变电路的内容会进一步展开1换流方式(1)逆变电路的基本工作原理单相桥式逆变电路为例:S1~S4是桥式电路的4个臂,由电力电子器件及辅助电路组成。

S1、S4闭合,S2、S3断开时,负载电压u o为正S1;S1、S4断开,S2、S3闭合时,u o为负,把直流电变成了交流电。

改变两组开关切换频率,可改变输出交流电频率。

图5-1 逆变电路及其波形举例电阻负载时,负载电流i o和u o的波形相同,相位也相同。

阻感负载时,i o滞后于u o,波形也不同(图5-1b)。

t1前:S1、S4通,u o和i o均为正。

t1时刻断开S1、S4,合上S2、S3,u o变负,但i o不能立刻反向。

i o从电源负极流出,经S2、负载和S3流回正极,负载电感能量向电源反馈,i o逐渐减小,t2时刻降为零,之后i o才反向并增大(2)换流方式分类换流——电流从一个支路向另一个支路转移的过程,也称换相。

开通:适当的门极驱动信号就可使其开通。

关断:全控型器件可通过门极关断。

半控型器件晶闸管,必须利用外部条件才能关断,一般在晶闸管电流过零后施加一定时间反压,才能关断。

研究换流方式主要是研究如何使器件关断。

本章换流及换流方式问题最为全面集中,因此在本章讲述1、器件换流利用全控型器件的自关断能力进行换流(Device Commutation)。

2、电网换流由电网提供换流电压称为电网换流(Line Commutation)。

可控整流电路、交流调压电路和采用相控方式的交交变频电路,不需器件具有门极可关断能力,也不需要为换流附加元件。

3、负载换流由负载提供换流电压称为负载换流(Load Commutation)。

负载电流相位超前于负载电压的场合,都可实现负载换流。

负载为电容性负载时,负载为同步电动机时,可实现负载换流。

图5-2 负载换流电路及其工作波形基本的负载换流逆变电路:采用晶闸管,负载:电阻电感串联后再和电容并联,工作在接近并联谐振状态而略呈容性。

电容为改善负载功率因数使其略呈容性而接入,直流侧串入大电感L d,i d基本没有脉动。

工作过程:4个臂的切换仅使电流路径改变,负载电流基本呈矩形波。

负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,对谐波阻抗很小,u o波形接近正弦。

t1前:VT1、VT4通,VT2、VT3断,u o、i o均为正,VT2、VT3电压即为u ot1时:触发VT2、VT3使其开通,u o加到VT4、VT1上使其承受反压而关断,电流从VT1、VT4换到VT3、VT2。

t1必须在u o过零前并留有足够裕量,才能使换流顺利完成。

4、强迫换流设置附加的换流电路,给欲关断的晶闸管强迫施加反向电压或反向电流的换流方式称为强迫换流(Forced Commutation)。

通常利用附加电容上储存的能量来实现,也称为电容换流。

直接耦合式强迫换流——由换流电路内电容提供换流电压。

VT通态时,先给电容C充电。

合上S就可使晶闸管被施加反压而关断。

图5-3 直接耦合式强迫换流原理图电感耦合式强迫换流——通过换流电路内电容和电感耦合提供换流电压或换流电流。

两种电感耦合式强迫换流:图5-4a中晶闸管在LC振荡第一个半周期内关断。

图5-4b中晶闸管在LC振荡第二个半周期内关断。

图5-4 电感耦合式强迫换流原理图给晶闸管加上反向电压而使其关断的换流也叫电压换流(图5-3)。

先使晶闸管电流减为零,然后通过反并联二极管使其加反压的换流叫电流换流(图5-4)。

器件换流——适用于全控型器件。

其余三种方式——针对晶闸管。

器件换流和强迫换流——属于自换流。

电网换流和负载换流——属于外部换流。

当电流不是从一个支路向另一个支路转移,而是在支路内部终止流通而变为零,则称为熄灭。

2电压型逆变电路逆变电路按其直流电源性质不同分为两种:电压型逆变电路或电压源型逆变电路,电流型逆变电路或电流源型逆变电路。

图5-1电路的具体实现。

图5-5 电压型逆变电路举例(全桥逆变电路)电压型逆变电路的特点(1) 直流侧为电压源或并联大电容,直流侧电压基本无脉动(2) 输出电压为矩形波,输出电流因负载阻抗不同而不同(3) 阻感负载时需提供无功。

为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管(1)单相电压型逆变电路1、半桥逆变电路电路结构:见图5-6。

工作原理:V1和V2栅极信号各半周正偏、半周反偏,互补。

u o为矩形波,幅值为Um=Ud/2,i o 波形随负载而异,感性负载时,图5-6b,V1或V2通时,i o和u o同方向,直流侧向负载提供能量,VD1或VD2通时,i o和u o反向,电感中贮能向直流侧反馈,VD1、VD2称为反馈二极管,还使i o连续,又称续流二极管。

图5-6 单相半桥电压型逆变电路及其工作波形优点:简单,使用器件少缺点:交流电压幅值U d/2,直流侧需两电容器串联,要控制两者电压均衡,用于几k W 以下的小功率逆变电源。

单相全桥、三相桥式都可看成若干个半桥逆变电路的组合。

2、全桥逆变电路电路结构及工作情况:图5-5,两个半桥电路的组合。

1和4一对,2和3另一对,成对桥臂同时导通,交替各导通180°。

u o波形同图5-6b。

半桥电路的u o,幅值高出一倍U m=U d。

i o波形和图5-6b中的i o相同,幅值增加一倍,单相逆变电路中应用最多的。

输出电压定量分析u o成傅里叶级数(5-1)基波幅值(5-2)基波有效值(5-3)u o为正负各180º时,要改变输出电压有效值只能改变U d来实现。

移相调压方式(图5-7)。

可采用移相方式调节逆变电路的输出电压,称为移相调压。

各栅极信号为180º正偏,180º反偏,且V1和V2互补,V3和V4互补关系不变。

V3的基极信号只比V1落后q ( 0<q <180º),V3、V4的栅极信号分别比V2、V1的前移180º-q,u o成为正负各为q 的脉冲,改变q 即可调节输出电压有效值。

图5-7 单相全桥逆变电路的移相调压方式3、带中心抽头变压器的逆变电路交替驱动两个IGBT,经变压器耦合给负载加上矩形波交流电压。

两个二极管的作用也是提供无功能量的反馈通道,U d和负载相同,变压器匝比为1:1:1时,u o和i o波形及幅值与全桥逆变电路完全相同。

图5-8 带中心抽头变压器的逆变电路与全桥电路的比较,比全桥电路少用一半开关器件,器件承受的电压为2U d,比全桥电路高一倍。

必须有一个变压器。

(2)三相电压型逆变电路三个单相逆变电路可组合成一个三相逆变电路。

应用最广的是三相桥式逆变电路可看成由三个半桥逆变电路组成。

180°导电方式:每桥臂导电180º,同一相上下两臂交替导电,各相开始导电的角度差120º,任一瞬间有三个桥臂同时导通,每次换流都是在同一相上下两臂之间进行,也称为纵向换流。

图5-9 三相电压型桥式逆变电路波形分析:图5-10 电压型三相桥式逆变电路的工作波形负载各相到电源中点N´的电压:U相,1通,u UN´=U d/2,4通,u UN´=-U d/2。

负载线电压(5-4)负载相电压(5-5) 负载中点和电源中点间电压(5-6)负载三相对称时有u UN+u VN+u WN=0,于是(5-7)利用式(5-5)和(5-7)可绘出u UN、u VN、u WN波形。

负载已知时,可由u UN波形求出i U波形,一相上下两桥臂间的换流过程和半桥电路相似,桥臂1、3、5的电流相加可得直流侧电流i d的波形,i d每60°脉动一次,直流电压基本无脉动,因此逆变器从直流侧向交流侧传送的功率是脉动的,电压型逆变电路的一个特点。

定量分析:a、输出线电压u UV展开成傅里叶级数(5-8) 式中,,k为自然数输出线电压有效值(5-9) 基波幅值(5-10)基波有效值(5-11)b、负载相电压u UN展开成傅里叶级数得:(5-12) 式中,,k为自然数负载相电压有效值(5-13)基波幅值(5-14)基波有效值(5-15) 防止同一相上下两桥臂开关器件直通,采取“先断后通”的方法。

3 电流型逆变电路直流电源为电流源的逆变电路——电流型逆变电路。

一般在直流侧串联大电感,电流脉动很小,可近似看成直流电流源。

实例之一:图5-11电流型三相桥式逆变电路。

交流侧电容用于吸收换流时负载电感中存贮的能量。

图5-11 电流型三相桥式逆变电路电流型逆变电路主要特点:(1) 直流侧串大电感,相当于电流源。

(2) 交流输出电流为矩形波,输出电压波形和相位因负载不同而不同。

(3) 直流侧电感起缓冲无功能量的作用,不必给开关器件反并联二极管。

电流型逆变电路中,采用半控型器件的电路仍应用较多。

换流方式有负载换流、强迫换流。

(1)单相电流型逆变电路图5-12 单相桥式电流型(并联谐振式)逆变电路4桥臂,每桥臂晶闸管各串一个电抗器L T限制晶闸管开通时的di/dt。

1、4和2、3以1000~2500Hz的中频轮流导通,可得到中频交流电。

采用负载换相方式,要求负载电流超前于电压。

负载一般是电磁感应线圈,加热线圈内的钢料,RL串联为其等效电路。

因功率因数很低,故并联C。

C和L、R构成并联谐振电路,故此电路称为并联谐振式逆变电路。

输出电流波形接近矩形波,含基波和各奇次谐波,且谐波幅值远小于基波。

因基波频率接近负载电路谐振频率,故负载对基波呈高阻抗,对谐波呈低阻抗,谐波在负载上产生的压降很小,因此负载电压波形接近正弦波。

工作波形分析:一周期内,两个稳定导通阶段和两个换流阶段。

t1-t2:VT1和VT4稳定导通阶段,io=I d,t2时刻前在C上建立了左正右负的电压。

t2-t4:t2时触发VT2和VT3开通,进入换流阶段。

L T使VT1、VT4不能立刻关断,电流有一个减小过程。

VT2、VT3电流有一个增大过程。

4个晶闸管全部导通,负载电压经两个并联的放电回路同时放电。

t2时刻后,LT1、VT1、VT3、LT3到C;另一个经LT2、VT2、VT4、LT4到C。

相关文档
最新文档