三角函数专题训练一(含答案)
高中数学三角函数专项训练(含答案)
高中数学三角函数专项训练(含答案)一、填空题1.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.2.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.3.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在长方体1111ABCD A B C D -中,13AB =,5AD =,112AA =,过点A 且与直线CD 平行的平面α将长方体分成两部分.现同时将两个球分别放入这两部分几何体内,则在平面α变化的过程中,这两个球的半径之和的最大值为___________.6.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.7.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.8.在ABC 中,sin 2sin B C =,2BC =.则CA CB ⋅的取值范围为___________.(结果用区间表示)9.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.10.在平面直角坐标系xOy 中,已知直线2y x =+与x 轴,y 轴分别交于M ,N 两点,点P 在圆22()2x a y -+=上运动.若MPN ∠恒为锐角,则实数a 的取值范围是________.二、单选题11.已知函数()()2212sin 2,2212,x a x af x x a x a x a π⎧⎡⎤⎛⎫-+<⎪ ⎪⎢⎥=⎝⎭⎨⎣⎦⎪-+++≥⎩,若函数()f x 在[)0,∞+内恰有5个零点,则a 的取值范围是( ) A .75,42⎛⎫ ⎪⎝⎭B .7,24⎛⎫ ⎪⎝⎭C .75,2,342⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .75,22,42⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.函数()()sin 04f x x πωω⎛⎫=+> ⎪⎝⎭在7,44ππ⎛⎫⎪⎝⎭内恰有两个最小值点,则ω的范围是( ) A .13,47⎛⎤⎥⎝⎦B .13,37⎛⎤ ⎥⎝⎦C .4,33⎛⎤ ⎥⎝⎦D .4,43⎛⎤ ⎥⎝⎦13.已知无穷项实数列{}n a 满足: 1a t =, 且 14111n n n a a a +=--, 则( ) A .存在1t >, 使得20111a a = B .存在0t <, 使得20211a a =C .若2211a a =, 则21a a =D .至少有2021个不同的t , 使得20211a a = 14.已知ABC 的内角分别为,,A B C,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .416.如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△ACD ',所成二面角A CD B '--的平面角为α,则( )A .A DB α'∠≤ B .A DB α'∠≥C .A CB α∠'≤D .A CB α'∠≥17.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( ) A 2B .1 C .1- D .218.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-19.已知直线1y x =+上有两点1122(,),(,)A a b B a b ,且12a a >.已知1122,,,a b a b 满足12122||a a b b +22221122a b a b ++||23AB =,则这样的点A 个数为( )A .1B .2C .3D .420.设函数()sin cos f x a x b x ωω=+()0ω>在区间,62ππ⎡⎤⎢⎥⎣⎦上单调,且2236f f f πππ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当12x π=时,()f x 取到最大值4,若将函数()f x 的图象上各点的横坐标伸长为原来的2倍得到函数()g x 的图象,则函数()3y g x x π=+为( ) A .4B .5C .6D .7三、解答题21.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米,为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE .记CBD ∠为θ.()1用θ表示栈道的总长度()f θ,并确定sin θ的取值范围;()2求当θ为何值时,栈道总长度最短.22.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值. 23.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集.24.已知函数()()()()2cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.25.已知函数()cos s co )f x x x x =-. (1)求()f x 的最小正周期及对称中心;(2)若将函数()y f x =的图象向左平移m 个单位所得图象关于y 轴对称,求m 的最小正值.26.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.27.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 28.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.29.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.30.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值【参考答案】一、填空题 1.32253.20π 4.47,912ππ⎧⎫⎨⎬⎩⎭ 5.16538 6.567.32⎝⎭8.8,83⎛⎫ ⎪⎝⎭9. 3 213,32⎡⎢⎣⎦10.71a 或4a二、单选题11.D 12.B 13.D 14.A 15.B 16.B 17.D 18.C 19.D 20.D 三、解答题21.()1()1232sin tan f θπθθθ=-+++,1sin ,13θ⎡⎫∈⎪⎢⎣⎭;()2当3πθ=时,栈道总长度最短.【解析】()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==,130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 则()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,进而确定sin θ的取值范围; ()2根据()12cos 23sin f θθθπθ-=-++求导得()()2cos 2cos 1sin f θθθθ--'=,利用增减性算出()min 533f πθ=+,进而求θ得取值. 【详解】解:()1连CD ,CE ,由切线长定理知:1tan tan CD BE BD θθ===,1sin sin CD BC θθ==, CBE CBD θ∠=∠=,又CD BD ⊥,CE BE ⊥,故2DCE πθ∠=-,则劣弧DE 的长为2πθ-,因此,优弧DE 的长为2πθ+, 又3AC =,故130sin AB AC BC θ=-=-≥,1sin 3θ≥,即01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭, 所以,()1232sin tan f θπθθθ=-+++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,则1sin ,13θ⎡⎫∈⎪⎢⎣⎭; ()2()12cos 23sin f θθθπθ-=-++,0,2πθθ⎡⎫∈⎪⎢⎣⎭,其中01sin 3θ=,00,2πθ⎛⎫∈ ⎪⎝⎭,()()2cos 2cos 1sin f θθθθ--'=故3θ=时,()min 33f θ=+ 所以当3πθ=时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题. 22.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v 、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1=sin2x ﹣1=(sin2x +1),令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.23.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.24.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题. 25.(1)π,1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭;(2)3π 【解析】【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用(1)的关系式,利用整体思想的应用对函数的关系式进行平移变换和对称性的应用求出最小值. 【详解】(1)因为2()cos cos )cos cos f x x x x x x x =-=-1cos 212sin 2262x x x π+⎛⎫=-=-- ⎪⎝⎭, 所以最小正周期为22T ππ==, 由正弦函数的对称中心知26x k ππ-=,解得212k x ππ=+,k Z ∈, 所以对称中心为1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭; (2)()y f x =的图象向左平移m 个单位所得解析式是1sin 2262y x m π⎛⎫=+-- ⎪⎝⎭,因为其图象关于y 轴对称, 所以262m k πππ-=+,k Z ∈,解得23k m ππ=+,k Z ∈, 所以m 的最小正值是3π. 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.26.(1)1,,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫- ⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=, 所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 27.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 28.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】 (1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++⎪⎝⎭.02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x 在7,6ππ⎛⎫ ⎪⎝⎭是单调函数,∴26202ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩, ∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题. 29.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()2222g x g m ==-⨯-=-⇒=故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.30.(1)1,0⎡⎤⎢⎥⎣⎦(2)265- 【解析】 【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值. 【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫-⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦,此时sin t ⎡⎤∈⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立 令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩, 解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-. 【点睛】本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.。
高中数学三角函数专项训练(含答案)
高中数学三角函数专项训练(含答案)一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.已知函数23tan ,,,2332()63233,,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________. 5.在ABC 中,角A 、B 、C 的对边a 、b 、c 为三个连续偶数且2C A =,则b =__________.6.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .7.已知ABC 为等边三角形,点G 是ABC 的重心.过点G 的直线l 与线段AB 交于点D ,与线段AC 交于点E .设AD AB λ=,AE AC μ=,则11λμ+=__________;ADE 与ABC 周长之比的取值范围为__________.8.已知向量a 与b 的夹角为θ,27sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.9.已知空间单位向量1e ,2e ,3e ,4e ,1234123421+=+=+++=e e e e e e e e ,则13⋅e e 的最大值是___________.10.已知函数()2log ,0,0x x f x x x >⎧=⎨-≤⎩,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[]0,x π∈时,()sin .g x x =则函数()()y f x g x =-在区间[]4,4ππ-上零点的个数为__________个.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-12 12.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( ) A .4B .8C .12D .1613.已知双曲线22413y x -=的左右焦点分别为1F ,2F ,点M 是双曲线右支上一点,满足120MF MF →→⋅=,点N 是线段12F F 上一点,满足112F N F F λ→→=.现将12MF F △沿MN 折成直二面角12F MN F --,若使折叠后点1F ,2F 距离最小,则λ=( )A .15B .25C .35D .4514.已知函数()sin sin()f x x x π=+,现给出如下结论:①()f x 是奇函数;②()f x 是周期函数;③()f x 在区间(0,)π上有三个零点;④()f x 的最大值为2.其中所有正确结论的编号为( ) A .①③B .②③C .②④D .①④15.已知F 是椭圆2221(1)x y a a +=>的左焦点,A 是该椭圆的右顶点,过点F 的直线l (不与x 轴重合)与该椭圆相交于点M ,N .记MAN α∠=,设该椭圆的离心率为e ,下列结论正确的是( )A .当01e <<时,2πα<B .当0e <<2πα>C .当12e <<时,23πα>D 1e <<时,34πα> 16.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-17.如图,长方形ABCD 中,AB =1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14B .23C .151- D .51- 18.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1619.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .820.函数()cos(1)x f x e ax x x =+--,当0x >时,()0f x >恒成立,则a 的取值范围为( ) A .()0,∞+B .()1,e -+∞C .(),e -∞D .(),e +∞三、解答题21.在推导很多三角恒等变换公式时,我们可以利用平面向量的有关知识来研究,在一定程度上可以简化推理过程.如我们就可以利用平面向量来推导两角差的余弦公式:cos()cos cos sin sin αβαβαβ-=+ 具体过程如下:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角αβ,.它们的终边与单位圆O 的交点分别为A ,B .则(cos ,sin ),(cos ,sin )OA OB ααββ→→== 由向量数量积的坐标表示,有: cos cos sin sin OA OB αβαβ→→⋅=+设,OA OB →→的夹角为θ,则||||cos cos cos cos sin sin OA OB OA OB θθαβαβ→→→→⋅=⋅==+另一方面,由图3.1—3(1)可知,2k απβθ=++;由图可知,2k απβθ=+-.于是2,k k Z αβπθ-=±∈.所以cos()cos αβθ-=,也有cos()cos cos sin sin αβαβαβ-=+, 所以,对于任意角,αβ有:cos()cos cos sin sin αβαβαβ-=+(()C αβ-)此公式给出了任意角,αβ的正弦、余弦值与其差角αβ-的余弦值之间的关系,称为差角的余弦公式,简记作()C αβ-.有了公式()C αβ-以后,我们只要知道cos ,cos ,sin ,sin αβαβ的值,就可以求得cos()αβ-的值了.阅读以上材料,利用下图单位圆及相关数据(图中M 是AB 的中点),采取类似方法(用其他方法解答正确同等给分)解决下列问题: (1)判断1OC OMOM→→→=是否正确?(不需要证明)(2)证明:sin sin 2sincos22αβαβαβ+-+=(3)利用以上结论求函数()sin 2sin(2)3f x x x π=++的单调区间.22.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.23.将函数()sin 2g x x =3向左平移4π个单位长度,得到函数()y f x =的图象,设函数()()()h x f x g x =+. (1)对函数()h x 的解析式;(2)若对任意,,2παβπ⎡⎤∈⎢⎥⎣⎦,不等式()()a h h b αβ≤-≤恒成立,求b a -的最小值;(3)若26x h t π⎛⎫-= ⎪⎝⎭在[)0,2π内有两个不同的解1x ,2x ,求()12cos x x -的值(用含t 的式子表示).24.函数()()sin tan f x x ω=,其中0ω≠.(1)讨论()f x 的奇偶性;(2)1ω=时,求证:()f x 的最小正周期是π;(3)()1.50,1.57ω∈,当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,求满足条件的ω的个数,说明理由.25.已知ABC ∆的外接圆...,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,sin sin n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.26.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.27.已知函数())23cos sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心28.已知函数()()()24sin sin cos sin cos sin 142x f x x x x x x π⎛⎫=+++-- ⎪⎝⎭.(1)求函数()f x 的最小正周期; (2)若函数()()()12122g x f x af x af x a π⎡⎤⎛⎫=+---- ⎪⎢⎥⎝⎭⎣⎦在,42ππ⎡⎤-⎢⎥⎣⎦的最大值为2,求实数a 的值.29.已知向量33cos ,sin 22a x x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,且0,2x π⎡⎤∈⎢⎥⎣⎦(1)求a ·b 及||a b +;(2)若3()||2f x a b a b =⋅-+,求()f x 的最小值30.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 为ABC 的面积,()222sin SB C a c +=-. (1)证明:2A C =;(2)若2b =,且ABC 为锐角三角形,求S 的取值范围.【参考答案】一、填空题1.982.33 4.47,912ππ⎧⎫⎨⎬⎩⎭ 5.1067. 3 21,32⎡⎢⎣⎦8.259 10.6二、单选题 11.A 12.B 13.C 14.A 15.A 16.C 17.A 18.C 19.D 20.B 三、解答题21.(1)正确;(2)见解析;(3)单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】【分析】 (1) 因为对1||n n →→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,即可判断出正确;(2)在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,表示出OC →,OM →的坐标,由纵坐标对应相等化简即可证得结论; 即sin sin 2sincos22αβαβαβ+-+=(3)由(2)结论化简可得222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭借助正弦型函数的性质即可求得结果. 【详解】(1) 因为对于非零向量1,||n n n →→→是n →方向上的单位向量,又1OC →=且OM →与OC→共线,所以1OC OMOM→→→=正确;(2) 因为M 为AB 的中点,则OM AB ⊥,从而在OAM ∆中, ||||coscos22OM OA βαβα→→--=⋅=,又1OC OMOM→→→=,又cos ,sin 22OC αβαβ→++⎛⎫= ⎪⎝⎭,cos cos sin sin 22OM αβαβ→++⎛⎫=⎪⎝⎭,所以1sin sin sin22cos 2αβαββα++⎛⎫=⎪-⎝⎭, 即sin sin 2sincos22αβαβαβ+-+=(3)因为222233()sin 2sin 22sin cos 23226x x x x f x x x x ππππ⎛⎫⎛⎫++-+ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭=++==+ ⎪ ⎪⎝⎭⎝⎭令222262k x k πππππ-+≤+≤+,解得: 36k x k ππππ-+≤≤+所以()f x 的单调递增区间为,()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦令3222262k x k πππππ+≤+≤+,解得: 263k x k ππππ+≤≤+ 所以()f x 的单调递减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【点睛】本题考查向量在证明三角恒等式中的应用,考查类比推理,考查正弦型函数的单调性,难度较难.22.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.23.(1)()2sin 23h x x π⎛⎫=+ ⎪⎝⎭(2)4;(3)()212cos 12tx x -=-【解析】(1)将()g x⇒2y x =;再向左平移4π个单位长度⇒()24f x x π⎛⎫=+ ⎪⎝⎭,最后代入()h x ,得答案;(2)对()h x 在,2x ππ⎡⎤∈⎢⎥⎣⎦,由内到外求出值域,因为()()a h h b αβ≤-≤恒成立,所以max b m ≥,min a m ≤,整理得答案;(3)表示26x h π⎛⎫- ⎪⎝⎭并化简,由1x ,2x 是2sin x t =在[)0,2π内有两个不同的解,所以12x x π+=或123x x π+=,因需求()12cos x x -,所以分别表示12x x -并代入,利用诱导公式和二倍角公式化简,将式子中22sin x 换成t 得答案. 【详解】(1)将函数()sin 2g x x =得到函数2y x =的图象,再将2y x =的图象向左平移4π个单位长度得到函数()y f x =,所以()224f x x x π⎛⎫=+= ⎪⎝⎭,又()()()h x f x g x =+,所以()sin 222sin 23h x x x x π⎛⎫==+ ⎪⎝⎭;(2)当,2x ππ⎡⎤∈⎢⎥⎣⎦时,472,333x πππ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以sin 21,3x π⎡⎛⎫+∈-⎢ ⎪⎝⎭⎣⎦,所以2sin 22,3x π⎛⎫⎡+∈- ⎪⎣⎝⎭, 令()()m h h αβ=-,因为()()a h h b αβ≤-≤恒成立,所以max 2b m ≥=,min 2a m ≤=-2a -≥所以4b a -≥即b a -的最小值为4;(3)法一:因为2sin 22sin 26263x x h x πππ⎡⎤⎛⎫⎛⎫-=-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以1x ,2x 是2sin x t =在[)0,2π内有两个不同的解, 所以12x x π+=或123x x π+=, 所以1222x x x π-=-或12232x x x π-=-所以()()22212221cos 2sin 12sin 1122t x x x x -=-=-=-;法二:①当t >0时,不妨设12x x <,则有1202x x ππ<<<<,所以1cos x =2cos x = ②当0t <时,不妨设12x x <,则有1232x x πππ<<<<2,所以1cos x 2cos x =③当0=t 时,显然有10x =,2x π=,所以()2121212cos cos cos sin sin 12t x x x x x x -=+=-.【点睛】本题考查了由三角函数图像的伸缩平移变换表示解析式,给定定义域求三角函数值域,不等式恒成立问题,还考查了函数零点问题,充分体现了数学中转化与划归思想,属于难题. 24.(1)奇函数;(2)见解析;(3)ω的个数为198个,见解析. 【解析】(1)根据奇偶函数的定义进行判断即可; (2)根据最小正周期公式进行验证即可;(3)利用函数的图象和不等式的性质可以求出满足条件的ω的个数.【详解】(1)()sin[tan()]sin(tan )sin(tan )()f x x x x f x ωωω-=-=-=-=-,所以函数()f x 是奇函数;(2)()sin[tan()]sin(tan )()f x x x f x ππ+=+==,所以()f x 的最小正周期是π;(3)因为当0x >时,()111122g x x x ⎛⎫=+≥⨯ ⎪⎝⎭,(当且仅当1x =时取等号),所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,只能()sin tan 1x ω=,即tan 22k πωπ=+,因为(1.50, 1.57)ω∈,所以2(tan1.50,tan1.57)2k ππ+∈,因此1.99199.6k <<,2,3,4,,199k =⋯,因此满足条件的ω的个数为198个, 当0x >时,也是一样的,因为两个函数是奇函数都关于原点对称,所以当函数()f x 的图像与()112g x x x ⎛⎫=+ ⎪⎝⎭的图像有交点时,满足条件的ω的个数为198.【点睛】本题考查了函数奇偶性和周期性,考查了三角奇函数的性质,考查了基本不等式的应用,考查了数学运算能力.25.(1) 3C π=. (2) max S =【解析】 【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长. 【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=,∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题. 26.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()22222g x g m ==-⨯-=-⇒=(舍)故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.27.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题. 28.(1) 2T π=;(2)2a =-或6a = 【解析】 【分析】(1)根据二倍角公式进行整理化简可得()2sin f x x =,从而可得最小正周期;(2)将()g x通过换元的方式变为21112y t at a =-+--,1t ≤;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得a 的值. 【详解】(1)()2221cos sin cos sin 12f x x x x x π⎡⎤⎛⎫=-++-- ⎪⎢⎥⎝⎭⎣⎦()222sin sin 12sin 12sin x x x x =++--= ∴最小正周期2T π=(2)()1sin2sin cos 12g x a x a x x a =+---令sin cos x x t -=,则()22sin 21sin cos 1x x x t =--=-22221111122242a a y t at a t at a t a ⎛⎫∴=-+--=-+-=--+- ⎪⎝⎭sin cos 4t x x x π⎛⎫=-=- ⎪⎝⎭由42x ππ-≤≤得244x πππ-≤-≤1t ≤①当2a<a <-当t =max 122y a ⎫=--⎪⎭由1222a ⎫--=⎪⎭,解得()817a ==->-)②当12a≤,即2a -≤时 当2a t =时,2max 142a y a =- 由21242a a -=得2280a a --=,解得2a =-或4a =(舍去) ③当12a>,即2a >时 当1t =时,max 12a y =-,由122a-=,解得6a = 综上,2a =-或6a = 【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围. 29.(1)见解析; (2)178-. 【解析】 【分析】(1)运用向量数量积的坐标表示,求出a ·b ; 运用平面向量的坐标运算公式求出a b +,然后求出模.(2)根据上(1)求出函数()f x 的解析式,配方,利用二次函数的性质求出最小值.【详解】(1)33cos cos sin sin cos22222x xa b x x x ⋅=⋅-⋅=cos a b ⎛+= ⎝ =∵0,2x π⎡⎤∈⎢⎥⎣⎦∴cos 0x ∴2cos a b x +=(2)()cos23cos f x x x =- 223172cos 13cos 2cos 48x x x ⎛⎫=--=-- ⎪⎝⎭∵0,2x π⎡⎤∈⎢⎥⎣⎦∴0cos 1x ∴()min 317cos 48x f x ==-【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式.重点是二次函数求最小值问题.30.(1)见解析;(2)2⎫⎪⎪⎝⎭【解析】 【分析】(1)利用三角形面积公式表示S ,结合余弦定理和正弦定理,建立三角函数等式,证明结论,即可.(2)结合三角形ABC 为锐角三角形,判定tanC 的范围,利用tanC 表示面积,结合S 的单调性,计算范围,即可. 【详解】(1)证明:由()222sin S B C a c +=-,即222sin SA a c =-,22sin sin bc A A a c∴=-,sin 0A ≠,22a c bc ∴-=, 2222cos abc bc A =+-,2222cos a c b bc A ∴-=-, 22cos b bc A bc ∴-=,2cos b c A c ∴-=,sin 2sin cos sin B C A C ∴-=,()sin 2sin cos sin A C C A C ∴+-=,sin cos cos sin sin A C A C C ∴-=, ()sin sin A C C ∴-=,A ,B ,()0,C π∈,2A C ∴=.(2)解:2A C =,3B C π∴=-,sin sin3B C ∴=.sin sin a b A B =且2b =, 2sin2sin3Ca C∴=,()212sin2sin 2sin2sin 2tan2tan 4tan 4sin 32sin 2sin2cos cos2sin tan2tan 3tan tan tan C C C C C C C S ab C C C C C C C C C CC C∴======+++--,ABC 为锐角三角形,20,230,20,2A C B C C ππππ⎧⎛⎫=∈ ⎪⎪⎝⎭⎪⎪⎛⎫∴=-∈⎨ ⎪⎝⎭⎪⎪⎛⎫∈⎪⎪⎝⎭⎩,,64C ππ⎛⎫∴∈ ⎪⎝⎭,tan C ⎫∴∈⎪⎪⎝⎭, 43tan tan S CC=-为增函数, 2S ⎫∴∈⎪⎪⎝⎭.【点睛】考查了正弦定理,考查了余弦定理,考查了三角形面积公式,考查了函数单调性判定,难度偏难.。
三角函数专题强化训练及答案
专题1三角函数基本概念1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角.(2)从终边位置来看,可分为象限角和轴线角.(3)若α与β是终边相同的角,则β可用α表示为{}Z k k S ∈⋅+==,360 αββ(或{}Z k k ∈+=,2παββ).2.象限角3.弧度与角度的互化(1)1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.(2)角α的弧度数:如果半径为r 的圆的圆心角α所对弧的长为l ,那么αr l =,角α的弧度数的绝对值是rl =α(3)角度与弧度的换算①1180rad π︒=② π1801=rad (4)弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为()rad α,半径为r ,又αr l =,则扇形的面积为21122S l r r α=⋅=⋅⋅.4.任意角的三角函数三角函数正弦余弦正切定义设是一个任意角,它的终边与单位圆交于点()y x P ,,那么y 叫做a 的正弦,记作sinαx 叫做a 的余弦,记作cosαxy叫做a 的正切,记作tanα三角函数正弦余弦正切各象限符号Ⅰ正正正Ⅱ正负负Ⅲ负负正Ⅳ负正负各象限符号口诀一全正,二正弦,三正切,四余弦第一象限角的集合⎩⎨⎧⎭⎬⎫∈+<<Z k k k ,222ππαπα第二象限角的集合⎩⎨⎧⎭⎬⎫∈+<<+Z k k k ,222ππαππα第三象限角的集合⎩⎨⎧⎭⎬⎫∈+<<+Z k k k ,2322ππαππα第四象限角的集合⎩⎨⎧⎭⎬⎫∈<<Z k k k ,22-2παππα5.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为()ααsin ,cos ,即()ααsin ,cos P ,其中,sin ,cos MP OM ==αα单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则AT =αtan .我们把有向线段AT MP OM 、、叫做α的余弦线、正弦线、正切线.6.对任意角的理解(1)不少同学往往容易把“小于 90的角”等同于“锐角”,把“ 90~0的角”等同于“第一象限的角”.其实锐角的集合是{}090αα︒<<︒,第一象限角的集合为{}36036090,k k k Z αα⋅︒<<⋅︒+︒∈.(2)终边相同的角不一定相等,相等的角终边一定相同,终边相同的角的同一三角函数值相等.【例1】870-︒的终边在第几象限()A .一B .二C .三D .四A .2π3B .11π6C .5π6D .3π4A .第一象限角B .第二象限角C .第三象限角D .第四象限角【解析】由sin α<0,知α在第三、第四象限或α终边在y 轴的负半轴上,由0tan >α,知α在第一或第三象限,因此α在第三象限.故选C.【例4】若点P 在32π角的终边上,且P 的坐标为),1(y -,则y 等于________.【例5】弧长为π3,圆心角为135的扇形半径为________,面积为________.三角函数线【例6】(1)如果α是第三象限的角,那么a -,2a 的终边落在何处?(2)写出终边在直线x y 3=上的角的集合.【例7】若角β的终边与60︒角的终边相同,则在 360~0范围内,终边与角3的终边相同的角为________.任意角三角函数求法1.三角函数的定义中,当()y x P ,是单位圆上的点时有sin y r α=,cos x r α=,tan yxα=但是若不是单位圆时,如圆的半径为,r 则sin y r α=,cos x r α=,tan yxα=.2.若已知角α的终边上有异于原点的点的坐标()y x A ,,求角α的三角函数值时,则应先求|OA |=r ,然后再利用定义sin y r α=,cos x r α=,tan yxα=求解.3.同角三角函数的关系:平方关系:22sin cos 1αα+=商数关系:αααcos sin tan =.常考模型一已知一三角函数值,求另外两个三角函数值【例8】(1)已知1sin 3α=,求cos α,tan α的值.(2)已知21cos -=α,且α在第三象限,求sin α,tan α的值.(3)已知2tan -=α,且α在第二象限,求sin α,cos α的值.【例9】已知角α的终边经过点()3,-m P ,且54cos -=α,则m 等于()A .411-B .411C .4-D .4A .22B .22-C .22或22-D .1常考模型二已知正切值,求齐次分式的值齐次分式:分子分母的正余弦次数相同,例如:sin cos sin cos a b c d αααα++或者222222sin cos +sin cos sin cos +sin cos sin cos a b c a b c αααααααααα++⇒+【例11】已知tan 2α=,求:(1)sin cos sin cos αααα+-;(2)222sin 23cos sin ααα+-;(3)2sin sin cos 2ααα++.同步达标训练1.(2015•福建)若135sin -=α,则α为第四象限角,则tan α的值等于()A .512B .512-C .125D .125-2.(2018•北京)在平面直角坐标系中, AB , CD, EF , GH 是圆221x y +=上的四段弧(如图),点P 其中一段上,角α以Ox 为始边,OP 为终边.若tan cos sin ααα<<,则P 所在的圆弧是()A . AB B . CDC . EFD . GH3.(2015•上海)已知点A 的坐标为(43,1),将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为()A 33B 53C .112D .1324.(2014•新课标Ⅰ)若tan 0α>,则()A .sin 0α>B .cos 0α>C .sin 20α>D .sin 20α>5.(2014•大纲)已知角α的终边经过点(4,3)-,则=αcos ()A .45B .35C .35-D .45-6.(2013•大纲)若α为第二象限角,5sin 13α=,则=αcos ()A .1213-B .513-C .513D .12137.(2012•辽宁)已知sin cos 2αα-=(0,)απ∈,则tan α的值是()A .1-B .22C .22D .18.(2011•福建)若(0,2πα∈,且21sin cos 24αα+=,则tan α的值等于()A .22B .33C 2D 39.(2009•辽宁)已知tan 2θ=,则=-+θθθθ22cos 2cos sin sin ()A .43-B .54C .34-D .4510.(2009•陕西)若tan 2α=,则2sin cos sin 2cos αααα-+的值为()A .0B .34C .1D .5411.(2015•四川)已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是.12.(2011•江西)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若(4,)P y 是角θ终边上的一点,且sin 5θ=-,则y =.13.(2011•上海)在ABC ∆中,tan A =,则sin A =.14.(2011•大纲)已知3(,2a ππ∈,tan 2α=,则cos α=.15.(2011•重庆)若3cos 5α=-,且3(,2παπ∈,则tan α=.专题2三角函数诱导公式一六组诱导公式组数一二三四五六角()Z k k ∈+απ2απ+α-απ-2p a -απ+2正弦αsin αsin αsin -αsin -αcos αcos 余弦αcos αcos -αcos αcos -αsin αsin -正切αtan αtan αtan -αtan -对于角()Z k k ∈±"2"απ的三角函数记忆口诀“奇变偶不变,符号看象限”,意思是说()Z k k ∈±απ2的三角函数值等于“当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当α为锐角时,原函数值的符号.【例1】 585sin 的值为()A .22B .22C .D【例2】已知()()sin 2πθπθ+=-,2θ<,则θ等于()A .6π-B .3π-C .6πD .3π【例3】如果()1sin 2A π+=,那么3cos 2A ⎛⎫-⎪⎝⎭的值是________.A .3B .3-C .1D .1-【例6】已知(),0απ∈-,()tan 33πα+=,则cos 2α⎛⎫+⎪⎝⎭的值为()A .10B .10-C .10D .10-A .2B .2C 12D 12【例8】已知sin cos 4(,,,)f x a x b x a b =++++为非零实数,20115f =,则()2012f =()A .3B .5C .1D .不能确定【例9】在ABC ∆中,1cos 3A =,则()sin B C +=________.【例11】已知),0(πθ∈,213cos sin -=+θθ,则θtan 的值为()A .3-或33-B .33-C .3-D .23-同步达标训练1.(2013•广东)已知51sin()25πα+=,=αcos ()A .25-B .15-C .15D .252.(2010•大纲)记cos(80)k -︒=,那么=︒100tan ()A .k B .k-C D .3.(2010•大纲)=︒300cos ()A .2B .12-C .12D .24.(2009•全国卷Ⅰ)sin 585︒的值为()A .22-B C .D 5.(2004•北京)已知sin()0θπ+<,cos()0θπ->,则下列不等关系中必定成立的是()A .sin 0θ<,cos 0θ>B .sin 0θ>,cos 0θ<C .sin 0θ>,cos 0θ>D .sin 0θ<,cos 0θ<6.(2004•贵州)函数2sin()cos()()36y x x x R ππ=--+∈的最小值等于()A .3-B .2-C .D .1-7.(2001•全国)tan 300cot 405︒+︒的值为()A .1+B .1-C .1--D .1-8.(2016•四川)sin 750︒=.9.(2010•大纲)已知a 是第二象限的角,34)2tan(-=+απ,则=αtan .10.(1994•全国)已知)0(51cos sin πααα<<=+,则=αtan .11.(2007•浙江)若1sin cos 5θθ+=,则sin 2θ的值是.12.(2007•浙江)已知1sin cos 5θθ+=,且324ππθ ,则cos 2θ的值是.专题3三角函数图像与性质正弦函数x y sin =与()ϕω+=x A y sin 的图像性质关系类比于研究sin y x =的性质,只需将()sin y A x ωϕ=+中的x ωϕ+看成y =sin x 中的x ,但在求()sin y A x ωϕ=+的单调区间时,要特别注意A 和ω的符号,通过诱导公式先将ω化为正数.研究函数()cos y A x ωϕ=+,()n y Ata x ωϕ=+的性质的方法与其类似,也是类比、转化.【例1】函数2sin 36y x p=+,x R Î的最小正周期是()A .3p B .23p C.32p D .π【例2】函数()tan36f x =+的最小正周期为()A .π3B .π6C .3p D .23p xy sin =()ϕω+=x A y sin 周期π2ωπ2定义域RR 最大值1,22ππ+=k x 取得A ,当ωϕππ-+=22k x 取得最小值-1,当232ππ+=k x 取得-A ,当ωϕππ-+=232k x 取得单调增区间⎥⎦⎤⎢⎣⎡+-22,22ππππk k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--ωϕππωϕππ22,22k k 单调减区间⎥⎦⎤⎢⎣⎡++232,22ππππk k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+ωϕππωϕππ232,22k k 对称轴2ππ+=k x ωϕππ-+=2k x 对称中心()0,πk ⎪⎭⎫⎝⎛-0,ωϕπk【例3】已知函数sin 4y A x πω⎛⎫=+ ⎪⎝⎭(0>ω)的最小正周期为π,则函数)(x f 的图象()A .关于直线4x p=对称B .关于直线8x p=对称C .关于点)0,4(π对称D .关于点)0,8(π对称【例4】设函数()()sin f x A x ωϕ=+(0≠A ,0>ω,22ϕ-<<)的图象关于直线23x =对称,它的最小正周期为π,则()A .)(x f 的图象过点10,2B .)(x f 在2,123p p上是减函数C .)(x f 的一个对称中心是5,012p D .)(x f 的一个对称中心是,06p【例5】函数2sin 26y x ⎛⎫=+⎪⎝⎭在,22ππ⎡⎤-⎢⎣⎦上对称轴的条数为()【例6】函数2sin(3)4y x =-的图象中两条相邻对称轴之间的距离是.【例7】同时具有性质:①最小正周期是π;②图象关于直线3x p =对称;③在,63ππ⎡⎤-⎢⎣⎦上是增函数的一个函数是()A .sin 26x y p=+B .cos 23y x p =+C .sin 26y x p =-D .cos 26x y p =-【例8】函数sin 26y x =-+的单调递增区间是()A .()2,263k k k Z p pp p -++ÎB .()52,236k k k Z p pp p ++ÎC .(),63k k k Z p p p p -++ÎD .()5,36k k k Z p p p p ++Î【例10】已知函数sin()y A x ωϕ=+在同一周期内,当9x π=时,取得最大值2,当49x π=时,取得最小值2-,则该函数的解析式是()A .12sin(36y x π=-B .1sin(3)26y x π=+C .1sin(3)26y x π=-D .1sin(3)26y x π=-+【例11】若函数,求()2sin(2)6f x x π=+在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【例12】若函数()2sin()3f x x πω=+,且()2f a =-,()0f b =,βα-的最小值是2,则)(x f 的单调递增区间是()A .()5,1212k k k Z p pp p -++ÎB .(),36k k k Z p pp p -++ÎC .()22,233k kk Z p pp p -++ÎD .()52,266k k k Z p pp p -++Î【例13】(1)若函数()3cos()f x wx θ=+对任意的,()()66x R f x f x 有∈+=-,则()6f π等于()A .3-B .0C .3D .3±(2)若m x x f ++=)cos(2)(ϕω,对任意实数t 都有)(4(t f t f -=+π,且(18f p =-,则实数m 的值为()A .1±B .3±C .3-或1D .1-或3【例14】函数()()sin f x A x ωϕ=+(),0ωϕω>是常数,.若()f x 在区间1,13-上具有单调性,且2(0)(1)3f f f ⎛⎫==- ⎪⎝⎭,则下列有关()f x 的每题正确的有(请填上所有正确命题的序号).①()f x 的最小周期为2;②13x =是()f x 的对称轴;③()f x 在51,3上具有单调性;④56y f x =+为奇函数.1.−−−−−−−−−−→−+=−−−−−→−=倍横坐标缩短到原来的图象左移ωϕϕ1)sin(sin x y x y )sin(ϕω+=x y )sin(ϕω+=−−−−−−−−−−→−x A y A 倍纵坐标伸长为原来的2.−−−−−→−=−−−−−−−−−−→−=ωϕωω图象左移倍横坐标缩短到原来的)sin(sin 1x y x y )sin(ϕω+=x y )sin(ϕω+=−−−−−−−−−−→−x A y A 倍纵坐标伸长为原来的关键:把握先移后缩和先缩后移的区别。
三角函数题型汇总(附答案)
三角函数训练题(1)一、选择题(本大题共10小题,每小题3分,共30分)1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件D.既非充分又非必要条件2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( )A.M NB.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23B.23C.21D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin29.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34 B.-34或-43 C.-43 D.34或-43 10.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-二、填空题(本大题共4小题,每小题4分,共16分)11.tan300°+cot765°的值是_______.12.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.13.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______.14.若θ满足cos θ>-21,则角θ的取值集合是______.三、解答题(本题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?16.(本小题满分10分)设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x , 求sin α与tan α的值.17.(本小题满分12分)已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαπαπαπαππα-⋅+⋅--⋅-⋅--的值.18.(本小题满分12分)已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值.19.(本小题满分12分) 已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β),且0<α<π,0<β<π,求α和β的值.三角函数训练题(2)参考答案:1.解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B .答案:B2.解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B 3.解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N .答案:A4.解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5.解析:∵r=a a a 5)4()3(22-=+-.α为第四象限. ∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6.解析:∵cos(π+α)=- 21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B 7.答案:D8.解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9.分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10.分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可.解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α.即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A11.解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3.答案:1-312.分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α.∴cos 2α=101.故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52.解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα 答案:5213.分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆.解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:23 14.分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z }15.解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .16.解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3. 故cos α=-46,sin α=410,ta n α=-315. 17.解:∵sin α是方程5x 2-7x -6=0的根. ∴sin α=-53或sin α=2(舍).故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα.18.分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0.∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557. 评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.19.分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ② 由①2+②2得sin 2α+3cos 2α=2. 即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练题(2)一、选择题(本大题共10小题,每小题3分,共30分) 1.cos24°cos36°-cos66°cos54°的值等于( ) A.0 B.21 C.23 D.-21 2.在△ABC 中,如果sin A =2sin C cos B .那么这个三角形是( )A.锐角三角形B.直角三角形C.等腰三角形D.等边三角形 3.︒-︒80sin 310sin 1的值是( ) A.1 B.2 C.4 D.41 4.tan20°+4sin20°的值是( )A.1B.2C.3D.336+ 5.tan θ和tan(4π-θ)是方程x 2+px +q =0的两根,则p 、q 之间的关系是( )A.p +q +1=0B.p -q -1=0C.p +q -1=0D.p -q +1=06.设sin x +sin y =22,则cos x +cos y 的取值范围是( ) A.[0,214] B.(- 214,0] C.[-214,214] D.[-21,27]7.M =sin α²tan 2α+cos α,N =tan 8(tan 8ππ+2),则M 与N 的关系是( )A.M >NB.M =NC.M <ND.大小与α有关8.已知sin α+sin β=3 (cos β-cos α),α,β∈(0,2π),那么sin3α+sin3β的值是( )A.1B.23C.21D.09.已知tan α、tan β是方程x 2+33x +4=0的两个根,且α、β∈(-2,2ππ),则α+β的值是( )A.3π B.-32πC. 3π或-32πD.- 3π或32π10.(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是( ) A.16 B.8 C.4 D.2二、填空题(本大题共4小题,每小题4分,共16分)11.已知tan x =34(π<x <2π).则cos(2x -3π)cos(3π-x )-sin(2x -3π)sin(3π-x )=______.12.sin(θ+75°)+cos(θ+45°)-3cos(θ+15°)的值等于______.13.log 4cos5π+log 4cos 52π的值等于______.14.已知tan(α+β)=52,tan(β-41)4=π,则sin(α+4π)²sin(4π-α)的值为___.三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)求值:212cos 412csc )312tan 3(2-︒︒-︒.16.(本小题满分10分) 已知cot β=βαsin sin ,5=sin(α+β),求cot(α+β)的值.17.(本小题满分12分)已知tan2θ=-22,x <2θ<2π,求)4sin(21sin 2cos 22πθθθ+--的值.18.(本小题满分12分)是否存在锐角α和β,使得(1)α+β=32π;(2)tan 2αtan β=2-3同时成立?若存在,则求出α和β的值;若不存在,说明理由.19.(本小题满分12分)已知△ABC 的三内角A 、B 、C 成等差数列,且BC A cos 2cos 1cos 1-=+,求cos 2CA -的值.三角函数训练题(2)参考答案:1.解析:原式=cos24°cos36°-sin24°sin36°=cos(24°+36°)=cos60°=21.答案:B2.解析:∵A +B +C =π,∴A =π-(B +C ).由已知可得:sin(B +C )=2sin C cos B ⇒sin B cos C +cos B sin C =2sin C cos B ⇒sin B cos C -cos B sin C =0⇒sin(B -C )=0. ∴B =C ,故△ABC 为等腰三角形. 答案:C3.解析:原式=︒︒-︒=︒-︒20sin 2110sin 310cos 10cos 310sin 1420sin 70cos 420sin )1060cos(420sin )10sin 2310cos 21(4=︒︒=︒︒+︒=︒︒-︒=.答案:C4.分析:运用三角变形的通法:化弦法、异角化同角.解析:原式=︒︒︒+︒=︒+︒︒20cos 20cos 20sin 420sin 20sin 420cos 20sin.320cos )20sin 20cos 3(20sin 20cos )2060sin(220sin 20cos 40sin 220sin =︒︒-︒+︒=︒︒-︒+︒=︒︒+︒=答案:C5.解析:由根与系数关系得tan θ+tan(4π-θ)=-p ,tan θ²tan(4π-θ)=q .又4π=θ+(4π-θ) ∴tan4π=tan [θ+( tan-θ)]=qp--1 故p -q +1=0. 答案:D6.解析:设cos x +cos y =t ,又sin x +sin y =22. 两式平方相加得2+2cos(x -y )=t 2+21 即cos(x -y )=4322-t ,由于|cos(x -y )|≤1.故-1≤4322-t ≤1⇒t 2≤21427-⇒≤t ≤214.答案:C7.解析:12s i n212s in 2)2si n 21(2co s 2s i n 22cos2s i n 222=-+=-+⋅=αααααααM .14cos14sin 24cos 124cos 14sin 24cos18cos 4sin8sin )28cos 8sin(8cos8sin22=++-=++-=+=+=πππππππππππππN∴M =N . 答案:B8.分析:先从已知式中求出α与β的关系,然后代入求值. 解析:由已知得:sin α+3cos α=3cos β-sin β.即cos(α-6π)=cos(β+6π) 又α-6π∈(-6π,3π),β+6π∈(6π,32π)故α-6π=β+6π⇒α=β+3π,∴sin3α+sin3β=sin(3β+π)+sin3β=0. 答案:D 9.解析:由韦达定理得:tan α+tan β=-33,tan αtan β=4 ∴tan(α+β)=3tan tan 1tan tan =-+βαβα.又∵α、β∈(-2,2ππ),且tan α+tan β<0,tan αtan β>0. ∴tan α<0,tan β<0.故α、β∈(-2π,0)从而α+β∈(-π,0),∴α+β=-32π.答案:B 10.分析:本题中所涉及的角均为非特殊角,但两角之和为45°特殊角,为此,将因式重组来求.解析:∵tan45°=tan(21°+24°)=︒︒-︒+︒24tan 21tan 124tan 21tan∴1-tan21°tan24°=tan21°+tan24° 即1+tan21°+tan24°+tan21°tan24°=2 即(1+tan21°)(1+tan24°)=2.(同理,由tan45°+tan(22°+23°)可得 (1+tan22°)(1+tan23°)=2.故(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)=4. 答案:C11.解析:原式=cos [(2x -3π)+(3π-x )]=cos x .∵tan x =34>0且π<x <2π,∴π<x <23π.故cos x <0,从而得cos x =-52.答案:-5312.分析:观察所给角易得θ+75°=(θ+15°)+60°,θ+45°=(θ+15°)+30°.考查两角和的正弦余弦公式及换元法的运用.解析:令θ+15°=α,则原式=sin(α+60°)+cos(α+30°)-3cos α=21sin α+23cos α+23cos α-21sin α-3cos α=0.答案:013.解析:∵5sin252cos 5cos 5sin252cos 5cos ππππππ=415sin454sin 5sin 252cos 52sin ===πππππ ∴原式=log 4141log )52cos 5(cos 4-==ππ答案:-114.解析:∵tan(α+4π)=tan [(α+β)-(β-4π)=223,∴原式=sin(α+4π)cos(α+4π)=)4(sin )4(cos )4cos()4sin(22παπαπαπα+++++49366)4(tan 1)4tan(2=+++=παπα. 答案:4936615.分析:本题中函数种类较多,在变换过程中,常用“切割化弦”的基本方法,考查公式的灵活运用.解:原式=)112cos 2(24sin 12cos 312sin 3)112cos 2(212sin 1)312cos 12sin 3(22-︒⋅︒︒-︒=-︒︒⋅-︒︒ ︒⋅︒︒-︒=24cos 24sin )12cos 2312sin 21(323448sin 21)6012sin(32-=︒︒-︒=16.分析:条件式中出现α、β及α+β角,要得到所求三角式的α+β角,显然就需对角α进行变换.即α=(α+β)-β.解:∵βαsin sin =sin(α+β). ∴sin [(α+β)-β]=sin β²sin(α+β).即sin(α+β)cos β-cos(α+β)sin β=sin βsin(α+β). ∴sin(α+β)cos β=sin β[sin(α+β)+cos(α+β)] ∴)sin()cos()sin(sin cos βαβαβαββ++++=即cot β=1+cot(α+β) ∴cot(α+β)=cot β-1=5-1.评注:三角变换的基本原则是化异为同,可以从角及函数名称、式子结构等方面分析思考,逐步实行由异向同的转化.17.分析:求三角函数的值,一般先要进行化简,至于化成哪一种函数,可由已知条件来确定.本题中由已知可求得tan θ的值,所以应将所求的式子化成正切函数式.解:原式=)4sin(2)4sin(2)4sin(2sin cos θπθππθθθ+-=+- ∵2)4()4(πθπθπ=++-∴原式=θθθπθπθπtan 1tan 1)4tan()4cos()4sin(+-=-=--.由已知tan2θ=-22得22tan 1tan 22-=-θθ解得tan θ=-22或tan θ=2. ∴π<2θ<2π,∴2π<θ<π,故tan θ=-22.故原式=223221221+=-+. 评注:以上所给解法,似乎有点复杂,但对于提高学生的三角变换能力大有好处.本题也可将所求式化成θθθθsin cos sin cos +-,注意到此时分子、分母均是关于si n θ、cos θ的齐次式.通过同时除以cos θ,即可化成θθtan 1tan 1+-.18.分析:这是一道探索性问题的题目,要求根据(1)、(2)联解,若能求出锐角α和β,则说明存在,否则,不存在.由于条件(2)涉及到2α与β的正切,所以需将条件(1)变成2α+β=3π,然后取正切,再与(2)联立求解.解:由(1)得:2α+β=3π,∴3tan 2tan 1tan 2tan)2tan(=-+=+βαβαβα将(2)代入上式得tan 2α+tan β=3-3. 因此,tan2α与tan β是一元二次方程x 2-(3-3)x +2-3=0的两根,解之得x 1=1,x 2=2-3.若tan2α=1,由于0<2α<4π.所以这样的α不存在; 故只能是tan 2α=2-3,tan β=1.由于α、β均为锐角,所以α=6π,β=4π故存在锐角α=6π,β=4π使(1)、(2)同时成立.19.解法一:依题意得B =3π,设A =3π+α,C =3π-α,则2CA -=α.同时有:3cos2)3cos(1)3cos(1παπαπ-=-++即22sin 3cos 2sin 3cos 2-=++-αααα023cos 2cos 242sin 3cos cos 2222=-+⇒-=-⇒ααααα ∴cos α=22或cos α=-423 (舍去)即cos222=-C A . 解法二:依题意得C C A C C A C A B -=--=-=+=32,232,32,3ππππ,不妨设cos(C -3π)=x .由已知得CC C C CC CA cos )32cos(cos )32cos(cos 1)32cos(1cos 1cos 1-+-=+-=+πππ∵cos(π32-C )+cos C=cos 32πcos C +sin 32πsin C +cos C=21cos C +23sin C =cos(3π-C ). cos(32π-C )cos C =cos 32πcos 2C+sin 32πsin C cos C)3(cos 43]1)3(cos 2[2141)232cos(21412sin 43)2cos 1(4122C C C C C -+-=--+-=-+-=++-=πππ∴22432-=+-x x 即0232242=-+x x∴x =22或x =-423 (舍去).故222cos=-C A . 解法三:依题意得B =3π,由已知得22cos 1cos 1-=+C A即cos A +cos C =-22cos A cos C利用积化和差及和差化积公式,并注意到A +C =32π,可得2cos22cos 2-=-+CA C A [cos(A +C )+cos(A -C )] 即22cos 22222cos2+--=-CA C A . 即0232cos 22cos 242=--+-CA C A ∴222cos=-C A 或4232cos -=-C A (舍去). 故222cos=-C A . 评注:解法三运用了和差化积及积化和差公式,这组公式虽不要求记忆,但在给出公式的情况下会运用.(3)1.在半经为2米的圆中,120°的圆心角所对的弧长为_____(34π)米。
专题01 30°、45°、60°的三角函数值(专项培优训练)学生版
专题01 30°、45°、60°的三角函数值(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.56题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023秋•香坊区校级月考)在Rt△ABC中,∠C=90°,.则cos A的值为( )A.B.C.D.2.(2分)(2022秋•海淀区校级期末)已知0°<θ<45°,则下列各式中正确的是( )A.cosθ<B.tanθ>1C.sinθ>cosθD.sinθ<tanθ3.(2分)(2022秋•松原期末)的值等于( )A.1B.C.3D.4.(2分)(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.5.(2分)(2023•西湖区模拟)如图,在△ABC中,∠C=90°,定义:斜边与∠A的对边的比叫做∠A的余割,用“csc A”表示.如设该直角三角形的三边分别为a,b,c,则,那么下列说法正确的是( )A.csc B•sin A=1B.C.csc A•cos B=1D.csc2A+csc2B=16.(2分)(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.7.(2分)(2022秋•蚌埠月考)若锐角A满足sin A=cos35°,则∠A的度数是( )A.65°B.55°C.45°D.35°8.(2分)(2020秋•文登区期末)若sinα>cosα,则锐角α的取值范围是( )A.0°<α<45°B.30°<α<45°C.45°<α<60°D.45°<α<90°9.(2分)(2021秋•碑林区校级月考)在△ABC中,sin A=cos(90°﹣C)=,则△ABC的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.不确定10.(2分)(2022秋•汝州市期末)在△ABC中,∠C=90°,tan A=2,则cos A的值为( )A.B.C.D.2评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,tan A=3,则sin B = .12.(2分)(2023•南岗区校级开学)已知α为锐角,tanα=3,则sinα的值为 .13.(2分)(2023•夹江县模拟)2sin45°= .14.(2分)(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B的值为 .15.(2分)(2023•怀宁县一模)若∠A是锐角,且tan A=2sin A,则∠A= .16.(2分)(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C = .17.(2分)(2022秋•嘉峪关校级期末)在△ABC中,,则△ABC的形状是 .18.(2分)(2022秋•黄浦区校级期中)已知0°<α<90°,如果,那么tanα= .19.(2分)(2022秋•西岗区校级月考)在Rt△ABC中,∠ACB=90°,若sin B=,则tan A = .20.(2分)(2021•佛冈县校级模拟)在△ABC中,|cos A﹣|+(1﹣tan B)2=0,则∠C的度数是 .评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•张店区期中)计算:(1)2sin30°﹣sin45°•cos45°;(2)(﹣1)2023+2sin45°﹣cos30°+sin60°+tan260°.22.(6分)(2023•封丘县模拟)计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.23.(8分)(2022秋•定远县期末)计算:(1)cos30°sin45°+sin30°cos45°;(2).24.(8分)(2022秋•红旗区校级期末)计算:(1)()﹣1+sin45°﹣(π+1)0+tan60°(2)sin230°+cos230°﹣tan245°25.(8分)(2022秋•甘井子区校级期末)如图,在△ABC中,BC=4,∠A=90°,.(1)求AB;(2)求tan C.26.(8分)(2021秋•泗县期末)计算:(1)解方程:4x2+1=4x;(2)sin260°+cos260°﹣tan45°.27.(8分)(2022秋•管城区校级月考)计算或解方程:(1)sin60°•cos60°﹣tan30°•tan60°+sin245°+cos245°;(3)(2x﹣5)2=9(x+2)2.28.(8分)(2023•建邺区校级二模)规定:sin(﹣x)=﹣sin x,cos(﹣x)=cos x,sin(x+y)=sin x•cos y+cos x•sin y.据此(1)判断下列等式成立的是 (填序号).①cos(﹣60°)=﹣;②sin2x=2sin x•cos x;③sin(x﹣y)=sin x•cos y﹣cos x•sin y.(2)利用上面的规定求①sin75° ②sin15°.。
三角函数的应用专项训练
三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。
三角函数的图像与性质专项训练(解析版)
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
高考文科数学解答题专题训练(一)三角函数
大题专项练(一)三角函数A组基础通关1.已知在△ABC中,角A,B,C的对边分别是a,b,c,且c cos B+(b-2a)cos C=0.(1)求角C的大小;(2)若c=2,求△ABC的面积S的最大值.因为c cos B+(b-2a)cos C=0,所以sin C cos B+(sin B-2sin A)cos C=0,所以sin C cos B+sin B cos C=2sin A cos C,所以sin(B+C)=2sin A cos C.又因为A+B+C=π,所以sin A=2sin A cos C.又因为A∈(0,π),所以sin A≠0,所以cos C=12.又C∈(0,π),所以C=π3.(2)由(1)知,C=π3,所以c2=a2+b2-2ab cos C=a2+b2-ab.又c=2,所以4=a2+b2-ab.又a2+b2≥2ab,当且仅当a=b时等号成立,所以ab≤4.所以△ABC面积的最大值(S△ABC)max=(12absinC)max=12×4×sinπ3=√3.2.如图,在梯形ABCD中,∠A=∠D=90°,M为AD上一点,AM=2MD=2,∠BMC=60°.(1)若∠AMB=60°,求BC ;(2)设∠DCM=θ,若MB=4MC ,求tan θ.由∠BMC=60°,∠AMB=60°,得∠CMD=60°.在Rt △ABM 中,MB=2AM=4;在Rt △CDM 中,MC=2MD=2.在△MBC 中,由余弦定理,得BC 2=BM 2+MC 2-2BM ·MC ·cos ∠BMC=12,BC=2√3. (2)因为∠DCM=θ,所以∠ABM=60°-θ,0°<θ<60°.在Rt △MCD 中,MC=1; 在Rt △MAB 中,MB=2sin (60°-θ),由MB=4MC ,得2sin(60°-θ)=sin θ, 所以√3cos θ-sin θ=sin θ, 即2sin θ=√3cos θ,整理可得tan θ=√32.3.已知向量m =(2a cos x ,sin x ),n =(cos x ,b cos x ),函数f (x )=m ·n -√32,函数f (x )在y 轴上的截距为√32,与y轴最近的最高点的坐标是(π12,1). (1)求函数f (x )的解析式;(2)将函数f (x )的图象向左平移φ(φ>0)个单位,再将图象上各点的纵坐标不变,横坐标伸长到原来的2倍,得到函数y=sin x 的图象,求φ的最小值.f (x )=m ·n -√32=2a cos 2x+b sin x cos x-√32,由f (0)=2a-√32=√32,得a=√32,此时,f (x )=√3cos 2x+bsin 2x ,由f (x )≤√34+b24=1,得b=1或b=-1,当b=1时,f (x )=sin (2x +π3),经检验(π12,1)为最高点;当b=-1时,f (x )=sin (2x +2π3),经检验(π12,1)不是最高点.故函数的解析式为f (x )=sin (2x +π3).(2)函数f (x )的图象向左平移φ个单位后得到函数y=sin 2x+2φ+π3的图象,横坐标伸长到原来的2倍后得到函数y=sin x+2φ+π3的图象,所以2φ+π3=2k π(k ∈Z ),φ=-π6+k π(k ∈Z ),因为φ>0,所以φ的最小值为5π6.4.函数f (x )=A sin (ωx +π6)(A>0,ω>0)的最大值为2,它的最小正周期为2π.(1)求函数f (x )的解析式;(2)若g (x )=cos x ·f (x ),求g (x )在区间[-π6,π4]上的最大值和最小值.由已知f (x )最小正周期为2π,所以2πω=2π,解得ω=1. 因为f (x )的最大值为2,所以A=2,所以f (x )的解析式为f (x )=2sin (x +π6).(2)因为f (x )=2sin (x +π6)=2sin x cos π6+2cos x sin π6=√3sin x+cos x ,所以g (x )=cos x ·f (x )=√3sin x cos x+cos 2x=√32sin 2x+1+cos2x2=sin (2x +π6)+12.因为-π6≤x ≤π4,所以-π6≤2x+π6≤2π3,于是,当2x+π6=π2,即x=π6时,g (x )取得最大值32;当2x+π6=-π6,即x=-π6时,g (x )取得最小值0. 5.已知函数f (x )=sin(ωx+φ)(ω>0,0<φ<π)的一系列对应值如表:(1)求f (x )的解析式;(2)若在△ABC 中,AC=2,BC=3,f (A )=-12(A 为锐角),求△ABC 的面积.由题中表格给出的信息可知,函数f (x )的周期为T=3π4−(-π4)=π,所以ω=2ππ=2.注意到sin(2×0+φ)=1,也即φ=π2+2k π(k ∈Z ), 由0<φ<π,所以φ=π.所以函数的解析式为f (x )=sin (2x +π2)=cos 2x.(2)∵f (A )=cos 2A=-12,且A 为锐角,∴A=π3.在△ABC 中,由正弦定理得,BC sinA=ACsinB, ∴sin B=AC ·sinABC=2×√323=√33,∵BC>AC ,∴B<A=π3,∴cos B=√63,∴sin C=sin(A+B )=sin A cos B+cos A sin B=√3×√6+1×√3=3√2+√3, ∴S △ABC =12·AC ·BC ·sin C=12×2×3×3√2+√36=3√2+√32. 6.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,C=π4,b=4,△ABC 的面积为6. (1)求c 的值; (2)求cos(B-C )的值.已知C=π4,b=4,因为S △ABC =1ab sin C ,即6=12×4a ×√22,解得a=3√2,由余弦定理,得c 2=b 2+a 2-2ab cos C=10,解得c=√10.(2)由(1)得cos B=a 2+c 2-b22ac=√55,由于B 是三角形的内角,得sin B=√1-cos 2B =2√55,所以cos(B-C )=cos B cos C+sin B sin C=√55×√22+2√55×√22=3√1010.B 组 能力提升7.如图,在凸四边形ABCD 中,C ,D 为定点,CD=√3,A ,B 为动点,满足AB=BC=DA=1.(1)写出cos C 与cos A 的关系式;(2)设△BCD 和△ABD 的面积分别为S 和T ,求S 2+T 2的最大值.在△BCD 中,由余弦定理,得BD 2=BC 2+CD 2-2·BC ·CD cos C=4-2√3cos C ,在△ABD 中,BD 2=2-2cos A ,所以4-2√3cos C=2-2cos A ,即cos A=√3cos C-1.(2)S=12·BC ·CD ·sin C=√3·sinC2,T=12AB ·AD sin A=12sin A ,所以S 2+T 2=34sin 2C+14sin 2A=34(1-cos 2C )+14(1-cos 2A )=-32cos 2C+√32cos C+34=-32(cosC -√36)2+78.由题意易知,C ∈(30°,90°),所以cos C ∈(0,√32),当cos C=√36时,S 2+T 2有最大值78.8.某城市在进行规划时,准备设计一个圆形的开放式公园.为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD 作为绿化区域,其余作为市民活动区域.其中△ABD 区域种植花木后出售,△BCD 区域种植草皮后出售,已知草皮每平方米售价为a 元,花木每平方米的售价是草皮每平方米售价的三倍.若BC=6 km,AD=CD=4 km .(1)若BD=2√7 km,求绿化区域的面积;(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.在△BCD 中,BD=2√7,BC=6,CD=4,由余弦定理,得cos ∠BCD=BC 2+CD 2-BD 22BC ·CD=62+42-(2√7)22×6×4=12.因为∠BCD ∈(0°,180°),所以∠BCD=60°, 又因为A ,B ,C ,D 四点共圆, 所以∠BAD=120°.在△ABD 中,由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD , 将AD=4,BD=2√7代入化简,得AB 2+4AB-12=0, 解得AB=2(AB=-6舍去).所以S 四边形ABCD =S △ABD +S △BCD =12×2×4sin 120°+12×4×6sin 60°=8√3(km 2), 即绿化空间的面积为8√3 km 2.(2)在△BCD 、△ABD 中分别利用余弦定理得 BD 2=62+42-2×6×4cos θ, ① BD 2=AB 2+42-2×4AB cos(π-θ),②联立①②消去BD ,得AB 2+8AB cos θ+48cos θ-36=0, 得(AB+6)(AB+8cos θ-6)=0, 解得AB=6-8cos θ(AB=-6舍去).因为AB>0,所以6-8cos θ>0,即cos θ<34.S △ABD =12AB ·AD sin(π-θ)=12(6-8cos θ)×4sin θ=12sin θ-16sin θcos θ,S △BCD =12BC ·CD sinθ=12×6×4sin θ=12sin θ.因为草皮每平方米售价为a 元,则花木每平方米售价为3a 元,设销售金额为y 百万元. y=f (θ)=3a (12sin θ-16sin θcos θ)+12a sin θ=48a (sin θ-sin θcos θ),f'(θ)=48a (cos θ-cos 2θ+sin 2θ)=48a (-2cos 2θ+cos θ+1)=-48a (2cos θ+1)(cos θ-1),令f'(θ)>0,解得-12<cos θ<1,又cos θ<34,不妨设cos θ0=34,则函数f (θ)在(θ0,2π3)上为增函数; 令f'(θ)<0,解得cos θ<-12,则函数f (θ)在(2π3,π)上为减函数,所以当θ=2π3时,f (θ)max =36√3a.答:(1)绿化区域的面积为8√3 km 2;(2)当θ=2π3时,园林公司的销售金额最大,最大为36√3a 百万元.。
高中数学三角函数专项训练(含答案)
高中数学三角函数专项训练(含答案)一、填空题1.如图,在棱长均为23的正四面体ABCD 中,M 为AC 中点,E 为AB 中点,P 是DM 上的动点,Q 是平面ECD 上的动点,则AP PQ +的最小值是______.2.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.3.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 的面积为3,则三角形ABC 的周长最小值为___________4.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.5.三棱锥P ABC -中,PA ⊥平面ABC ,直线PB 与平面ABC 所成角的大小为30,23AB =60ACB ∠=︒,则三棱锥P ABC -的外接球的表面积为________.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()y f x =的图象向右平移4π个单位,得到()y g x =的图象,则下列有关()f x 与()g x 的描述正确的有___________(填序号).①()2sin 23g x x π⎛⎫=- ⎪⎝⎭;②方程()()360,2f x g x x π⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭所有根的和为712π; ③函数()y f x =与函数()y g x =图象关于724x π=对称. 7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=->><<的部分图像如图所示,设函数()266g x f x f x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()g x 的值域为___________.9.已知向量a 与b 的夹角为θ,27sin θ=||4a b -=,向量,c a c b --的夹角为2π,||23c a -=,则a c ⋅的最大值是___________.10.函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 2B 7C 7D .3412.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )13.已知函数()|sin |(0)f x x ωω=>在区间,53ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数ω的取值范围为( ) A .5,32⎡⎤⎢⎥⎣⎦B .30,2⎛⎤ ⎥⎝⎦C .8,33⎡⎤⎢⎥⎣⎦D .50,4⎛⎤ ⎥⎝⎦14.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π15.已知函数2()log f x x =,函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()2()g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[0,4]π上的零点个数为( )A .5B .6C .7D .816.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,且有()0f ()()1g x f x =-的图象在()0,2π内有5个不同的零点,则ω的取值范围为( )A .5571,2424⎛⎤⎥⎝⎦B .5571,2424⎛⎫ ⎪⎝⎭C .4755,2424⎛⎫ ⎪⎝⎭D .4755,2424⎛⎤ ⎥⎝⎦17.已知函数()()sin f x x ωφ=+π0,02ωφ⎛⎫><< ⎪⎝⎭在π5π,88⎛⎫ ⎪⎝⎭上单调,且π3π088f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则π2f ⎛⎫⎪⎝⎭的值为( )A B .1 C .1- D .18.设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π=2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9]D .(7,9]19.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]5520.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()()23cos 2g x x =+.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A .55-B .55C .255-D .255三、解答题21.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在520,2x ⎡⎤∈⎢⎥⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.22.将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再将所得的图象向右平移3π个单位长度后得到函数()f x 的图象. (1)写出函数()f x 的解析式;(2)若,36x ππ⎡⎤∈-⎢⎥⎣⎦时,22()2()()1g x f x mf x m =-+-,求()g x 的最小值min ()g x .23.已知函数 f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1,a ∈R . (1)写出函数 f (x )的最小正周期(不必写出过程); (2)求函数 f (x )的最大值;(3)当a =1时,若函数 f (x )在区间(0,k π)(k ∈N*)上恰有2015个零点,求k 的值.24.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形.(1)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若sin(2)3sin A C C +=,求角B 的大小; (2)求BCD ∆面积的最大值.25.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.26.如图,某景区内有一半圆形花圃,其直径AB 为6,O 是圆心,且OC ⊥AB .在OC 上有一座观赏亭Q ,其中∠AQC =23π,.计划在BC 上再建一座观赏亭P ,记∠POB =θ(0)2πθ<<.(1)当θ=3π时,求∠OPQ 的大小; (2)当∠OPQ 越大时,游客在观赏亭P 处的观赏效果越佳,求游客在观赏亭P 处的观赏效果最佳时,角θ的正弦值.27.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.28.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 29.已知函数 2()sin 2cos 1f x x m x =--- [0,]2x π∈()1若()f x 的最小值为 - 3,求m 的值; ()2当2m =时,若对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立,求实数a 的取值范围.30.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.【参考答案】一、填空题12.983.641 5.20π6.①③7.80π 8.9[,4]4-9.25 10.-7二、单选题 11.C 12.D 13.A 14.A 15.A 16.A 17.D 18.D 19.B 20.D 三、解答题21.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为4π⎛ ⎝⎭,5,4π⎛ ⎝⎭,94π⎛ ⎝⎭,13,4π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=;52553244T T =⋅<,∴两图象不可能四个交点; 由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.22.(1)2()2sin 233f x x π⎛⎫=-+⎪⎝⎭;(2)22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩ 【解析】(1)根据函数图象的变换规律即可求得()f x的解析式;(2)令()t f x =可求得则()[1,3f x ∈+,设22()21M t t mt m =-+-,[1,3t ∈,通过定区间讨论对称轴4mt =的三种情况()M t 的单调性,进而可确定最小值的情况. 【详解】(1)将函数2sin 3y x =+的图象上所有点的横坐标缩短到原来的12倍,可得2sin 23y x =+得图象,再向右平移3π个单位长度得2()2sin 232sin 2333f x x x ππ⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭.(2)∵,36x ππ⎡⎤∈-⎢⎥⎣⎦,242,333x πππ⎡⎤-∈--⎢⎥⎣⎦,则()[1,3f x ∈+, 令()t f x =,则设22()21M t t mt m =-+-,[1,3t ∈+, ①当14m≤,即4m ≤时,函数()M t在[1,3上单调递增, ∴22min ()(1)211M t M m m m m ==-+-=-+;②当134m<<412m <<+ 函数()M t 在1,4m ⎛⎫ ⎪⎝⎭上单调递减,在,34m ⎛ ⎝上单调递增,∴2min 7()148m M t M m ⎛⎫==- ⎪⎝⎭;③当34m≥+12m ≥+()M t在[1,3+上单调递减,∴2min ()(3(323M t M m m ==-++∴综上有22min21,47()1,4128(32312m m m g x m m m m m ⎧-+≤⎪⎪=-<<+⎨⎪⎪-++≥+⎩. 【点睛】本题考查三角函数图象的变换,考查二次函数在三角函数中的应用,考查定区间动轴的最值取值情况,难度较难.23.(1)最小正周期为π.(2)见解析(3)k =1008. 【解析】(1)由题意结合周期函数的定义直接求解即可;(2)令t ,t ∈[1,则当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()2f x t at t μ==-,当,2x π⎛⎤∈π ⎥⎝⎦时,()()22f x v t t at ==+-,易知()()t v t μ≤,分类比较()1v、v的大小即可得解;(3)转化条件得当且仅当sin2x =0时,f (x )=0,则x ∈(0,π]时,f (x )有且仅有两个零点,结合函数的周期即可得解. 【详解】(1)函数 f (x )的最小正周期为π. (2)∵f (x )=a (|sin x |+|cos x |)﹣sin2x ﹣1 =sin2x ﹣1=(sin2x +1), 令t =t ∈[1],当0,2x π⎡⎤∈⎢⎥⎣⎦时,()()(21f x t at t t μ==-≤≤,当,2x π⎛⎤∈π ⎥⎝⎦时,()()(221f x v t t at t ==+-≤≤,∵()()()2222220t v t at t t at t μ-=--+-=-+≤即()()t v t μ≤.∴()()(){}max max max 1,f x v t v v ==,∵()11v a =-,v,∴当1a ≤-()f x 最大值为1a -;当1a >-()f x .(3)当a =1时,f (x )sin 21x -,若f (x )=0sin 21x =+即22sin 22sin 2sin x x x =+,∴当且仅当sin2x =0时,f (x )=0,∴x ∈(0,π]时,f (x )有且仅有两个零点分别为2π,π, ∴2015=2×1007+1, ∴k =1008. 【点睛】本题考查了三角函数的综合问题,考查了分类讨论思想和转化化归思想,属于难题.24.(1)23B π=;(21. 【解析】 【分析】(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角B 的大小;(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理及正弦定理用,αβ表示出CD .再根据三角形面积公式表示出∆BCD S ,即可结合正弦函数的图像与性质求得最大值. 【详解】 (1)由题意可得:sin2cos cos2sin 3sin A C A C C +=∴()22sin cos cos 12sin sin 3sin A A C A C C +-=整理得sin (cos cos sin sin )sin A A C A C C -= ∴sin cos()sin A A C C += ∴sin cos sin A B C -= ∴sin 1cos sin 2C c B A a =-=-=- 又(0,)B π∈ ∴23B π=(2)在ABC ∆中,设,ABC ACB αβ∠=∠=,由余弦定理得:22212212cos 54cos AC αα=+-⨯⨯=-, ∵ACD ∆为正三角形,∴2254cos CD C A α=-=, 在ABC ∆中,由正弦定理得:1sin sin ACβα=, ∴sin sin AC βα=, ∴sin sin CD βα=,∵()222222(cos )1sin sin 54cos sin CD CD CD ββααα=-=-=--2(2cos )α=-,∵BAC β<∠,∴β为锐角,cos 2cos CD βα=-, 12sin sin 233BCD S CD CD ππββ∆⎛⎫⎛⎫=⨯⨯⨯+=+ ⎪ ⎪⎝⎭⎝⎭1cos sin 2CD ββ=+,1cos )sin sin 23πααα⎛⎫=-+=- ⎪⎝⎭, ∵(0,)απ∈∴当56πα=时,()max 1BCD S ∆=. 【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题. 25.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=,022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.26.(1)6π.(2)sin θ=. 【解析】(1)设∠OPQ =α,在△POQ 中,用正弦定理sin sin OQ OPOPQ OQP=∠∠可得含α,θ的关系式,将其展开化简并整理后得tanαθ=3π代入得答案;(2)令f (θ)f (θ)的最大值,即此时的sin θ,由(1)可知tan α.【详解】(1)设∠OPQ =α,在△POQ 中,用正弦定理可得含α,θ的关系式. 因为∠AQC =23π,所以∠AQO =3π.又OA =OB =3,所以OQ在△OPQ 中,OQ OP =3,∠POQ =2π-θ,设∠OPQ =α,则∠PQO =2π-α+θ.由正弦定理,得3sin 2παθ⎛⎫-+ ⎪⎝⎭=cos (α-θ).展开并整理,得tanαθ∈0,2π⎛⎫⎪⎝⎭.此时当θ=3π时,tanα因为α∈(0,π),所以α=6π. 故当θ=3π时,∠OPQ =6π.(2)设f (θ)θ∈0,2π⎛⎫ ⎪⎝⎭.则f′(θ)令f′(θ)=0,得sinθθ0满足sinθ则cosθ=,即()fθ===列表如下:2由(1)可知tanα=f(θ)>0,则0,2πα⎛⎫∈ ⎪⎝⎭,tanα单调递增则当tanαα也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sinθ【点睛】本题考查三角函数和解三角形的实际应用,应优先建模,将实际问题转化为熟悉的数学问题,进而由正弦定理构建对应关系,还考查了利用导数求函数的最值,属于难题. 27.(1)π6θ=(2)当π12θ=,CH CP+【解析】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=,计算得到2sin sin1AC CPθθ+=-++,计算最值得到答案.(2)计算sin cosCHθθ=⋅,得到πsin23CH CPθ⎛⎫+=+⎪⎝⎭.【详解】(1)设ABC PCBθ∠=∠=,则在直角ΔABC中,sinACθ=,cosBCθ=.在直角ΔPBC中,2cos cos cos cosPC BCθθθθ=⋅=⋅=,sin sin cos sin cosPB BCθθθθθ=⋅=⋅=.22sin cos sin1sinAC CPθθθθ+=+=+-2sin sin1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅. 在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 28.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案.【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力. 29.(1)1m =;(2)13[,)8a ∈+∞【解析】 【分析】(1)将函数化为2()cos 2cos 2f x x m x =--,设cos [0,1]t x =∈,将函数转化为二次函数,利用二次函数在给定的闭区间上的最值问题的解法求解.(2) 对任意 12,[0,]2x x π∈ 都有()()12124f x f x a -≤-恒成立, 等价于12max1()()24f x f x a -≤-,然后求出函数()f x 的最值即可解决.【详解】(1)2()cos 2cos 2f x x m x =--,[0,]2x π∈令 cos [0,1]t x =∈, 设222()22()2g t t mt t m m =--=---, ①0m <,则min g(0)2()3g t ==-≠-,②01m ≤≤,则2min )3(2t m g =--=-,∴1m =± ∴1m =③1m ,则min g(1)21()3g m t ==--=-,∴1m =.(舍) 综上所述:1m =.(2)对任意12,[0,]2x x π∈都有()()12124f x f x a -≤-恒成立,等价于12max1()()24f x f x a -≤-,2m=,∴2g()(2)6t t=--,[0,1]t∈max()g(0)2f x==-,min()g(1)5f x==-12max()(25)()3f x f x=---=-∴1234a-≥,∴138a≥,综上所述:13[,)8a∈+∞.【点睛】本题考查三角函数中的二次“型”的最值问题,和双参恒成立问题,属于中档题. 30.(1)2a=,2b=-或2a=-,4b=函数()g x在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x在,82ππ⎡⎤⎢⎥⎣⎦上单调递减.【解析】【分析】(1)先求得sin242xπ⎡⎤⎛⎫+∈-⎢⎥⎪⎝⎭⎣⎦,再讨论0a>和0a<的情况,进而求解即可;(2)由(1)()2sin224f x xπ⎛⎫=-++⎪⎝⎭则()2sin224g x xπ⎛⎫=++⎪⎝⎭进而判断单调性即可【详解】解:(1)当0,2xπ⎡⎤∈⎢⎥⎣⎦时,52,444xπππ⎡⎤+∈⎢⎥⎣⎦,所以sin24xπ⎡⎤⎛⎫+∈⎢⎥⎪⎝⎭⎣⎦,①当0a>时,由题意可得12a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩即22a ba b⎧++=⎪⎨⎪+=⎩解得2a=,2b=-;②当0a<时,由题意可得21a a ba a b⎧⎛⨯++=⎪⎨⎝⎭⎪⨯++=⎩,即22a ba b⎧++=⎪⎨⎪+=⎩,解得2a=-,4b=(2)由(1)当0a<时,2a=-,4b=所以()2sin224f x xπ⎛⎫=-++⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力。
(浙江)高考三角函数解答题专项训练含答案
三角函数【1】1、 已知函数x x x f cos sin )(-=,R x ∈.(1)求函数)(x f 的最小正周期;(2)若函数)(x f 在0x x =处取得最大值,求)3()2()(000x f x f x f ++ 的值.解:(1))4sin(2cos sin )(π-=-=x x x x f ,()f x ∴的最小正周期为2π(2)依题意,4320ππ+=k x (Z k ∈),由周期性,)3()2()(000x f x f x f ++12)49cos 49(sin )23cos 23(sin )43cos 43(sin-=-+-+-=ππππππ 2、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1) 由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin30°cos45°+cos30°sin45°=2+64. 故a =b ×sinA sinB =2+62=1+3,c =b ×sinC sinB =2×sin60°sin45°= 6.3、设ABC ∆的内角,,A B C 所对的边长分别为,,,a b c且()2cos cos b A C =(1) 求角A 的大小。
(2) 若角6B π=,BC 边上的中线AM ,求ABC ∆的面积。
解:1)6π=A (7)2)3=S (7)4、如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=,3cos 5ADC ∠=.(Ⅰ)求sin ABD ∠的值; (Ⅱ)求ABD ∆的面积.解:(I )由3cos 5ADC ∠=,得24sin 1cos 5ADC ADC ∠=-∠=……………2分又5sin 13BAD ∠=,则212cos 1sin 13BAD BAD ∠=-∠=…………4分故()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠412353351351365=⨯-⨯=……………………7分(Ⅱ)在△ABD 中,由正弦定理知,sin sin BD ADBAD ABD =∠∠,则533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠……………………………………11分故ABD ∆的面积为1sin 3302S AD BD ADB =⋅∠=……………………14分5、设函数0)R,(x )4 x sin((x) f >∈+=ωπω的部分图象如右图所示。
三角函数练习题(含答案)
三角函数练习题及答案(一)选择题一、在直角三角形中,各边都扩大2倍,那么锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确信1二、在Rt △ABC 中,∠C=900,BC=4,sinA=44,那么AC=( ) A 、3 B 、4 C 、5 D 、63、假设∠A 是锐角,且sinA=44,那么( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、假设cosA=44,那么A A A A tan 2sin 4tan sin 3+-=( ) A 、44 B 、 44 C 、 44 D 、0 五、在△ABC 中,∠A :∠B :∠C=1:1:2,那么a :b :c=( )A 、1:1:2B 、1:1:√4C 、1:1:√4D 、1:1:√44六、在Rt △ABC 中,∠C=900,那么以下式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么以下各式中,正确的选项是( )A .sinB= 23B .cosB= 23C .tanB= 23D .tanB=32 8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A.(,12) B .(-,12) C .(-,-12) D .(-12,-32)9.每周一学校都要举行庄重的升国旗仪式,让咱们感受到了国旗的神圣.某同窗站在离旗杆12米远的地址,当国旗升起到旗杆顶时,他测得视线的仰角为30°,假设这位同窗的目高1.6米,那么旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同窗从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,现在王英同窗离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m1一、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,那么该高楼的高度大约为( )A.82米B.163米C.52米D.70米1二、一艘轮船由海平面上A 地动身向南偏西40º的方向行驶40海里抵达B 地,再由B 地向北偏西10º的方向行驶40海里抵达C 地,那么A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)填空题1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,那么sinB=_____.2.在△ABC 中,假设BC=2,AB=7,AC=3,那么cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,那么∠BAC 的度数是______.4.如图,若是△APB 绕点B 按逆时针方向旋转30°后取得△A 'P 'B ,且BP=2,那么PP '的长为________. (不取近似值. 以下数据供解题利用:sin15°=,cos15°=624 )5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时动工,假设干天后,公路准确接通,那么乙地所修公路的走向是南偏西___________度.6.如图,机械人从A点,沿着西南方向,行了个42单位,抵达B 点后观看到原点O在它的南偏东60°的方向上,那么原先A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.90,BC=13,AB=12,那么tan B 8.在直角三角形ABC中,∠A=0___________.9.依照图中所给的数据,求得避雷针CD的长约为_______m(结果精准的到0.01m).(可用计算器求,也可用以下参考数据求:sin43°≈,sin40°≈,cos43°≈,cos40°≈,tan43°≈,tan40°≈)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,那么大树的高约为________米.(保留两个有效数字,2≈,3≈)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
三角函数专题训练习题
专题训练1————弧度制及扇形相关计算1. 圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则( )A.扇形的面积不变B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍2. 若扇形的圆心角α=-216°弧长l =7π,则半径为r=_____________3. 在半径为π30的圆中,圆心角为周角的32的角所对圆弧的长为 ________ .4、半径为2,圆心角为1的扇形面积为_____________5.已知扇形的周长是6cm ,该扇形的圆心角是1弧度,求该扇形的面积。
6 直径为20cm 的圆中,求下列各圆心角所对的弧长 ⑴34π⑵ 1657.蒸汽机飞轮的直径为1.2m ,以300周/分的速度作逆时针旋转,求:(1)飞轮每1秒转过的弧度数; (2)轮周上一点每1秒所转过的弧长.8(1)已知扇形的周长为20cm ,面积为9cm 2,求扇形的圆心角的弧度数为____________(2)已知扇形的圆心角为75°,半径为15cm,求扇形的面积____________ 9将下列各角化为2(02,)k k Z πααπ+≤<∈的形式,并判断其所在象限。
⑴π319⑵ 315-10.如果扇形的周长为60cm ,那么当半径和圆心角各为多少时,扇形面积最大?并求最大值。
专题训练2————任意角的三角函数 1、已知角α的终边过点P (-1,2), cos α的值为 ( )A .-55B .- 5C .552D .252、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B.cos α C.tan α D.cot α3、若角α终边上有一点P (0,-3),则下列函数值不存在的是 ( )A .sin αB .cos αC .tan αD .cot α4、tan2580°的值等于( )A .-33B .-3C .33 D .3 5、已知sin α=54,且α是第二象限角,那么tan α的值为 ( ) A .34- B .43- C .43 D .346、已知点P (ααcos ,tan )在第三象限,则角α在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 7.使lg (cos θ·tan θ)有意义的角θ是( ) A .第一象限角 B .第一或第二象限角 C .第二象限角D .第一、二象限角或终边在y 轴上8、角α的终边上有一点P (m ,5),且)0(,13cos ≠=m mα,则sin α+cos α=______.9.设角α终边在直线y=3x 上,则sin α= cos α= cot α=9.(1)sin 49πtan 37π_________10、求43π角的正弦、余弦和正切值.11.已知角β的终边过点P (x ,-3)(x >0).且cos β=2x,求sin β、cos β、tan β的值.12、已知角α终边经过下列各点,求α的三个三角函数值.(1) (-8,-6) (2)(3,-1)13.(1)已知角α的终边经过点P(4, 3),求2sin α+cos α的值;(2)已知角α的终边经过点P(4a,-3a)(a ≠0),求2sin α+cos α的值;专题训练3————任意角的三角函数1、),0(,54cos παα∈=,则αan t 的值等于( )A .34B .43C .34±D . 43±2、13tan ,sin 22πααπα=∈=且(,),则( )A.B.C.D.3、已知sin αcos α = 18 ,则cos α-sin α的值等于 ( )A .±34B .±23C .23D .-234、若2c o s sin =+θθ,则=θθcos si n ( )A . 32B . 32-C . 21D . 31- 5、如果角θ满足2cos sin =+θθ,那么θtan 的值是 ( )A .1-B .2-C .1D .26、若2cos sin 2cos sin =-+αααα,则=αtan ( )A .1B . - 1C .43D .34-7.若tan α=1,则ααααcos sin cos 3sin 2++的值是( )A.21B.23C.25D.27 8、若θθcos ,sin 是方程0242=++m mx x 的两根,则m 的值为( ) A .51+ B.51- C.51± D .51-- 9.2cos 2sin 22αα+=______________.10613sin π=_______0495sin =_________32cos π=_________)300cos(0-=_____ 11、若15tan =α,则=αcos 12、若3t a n =α,则αααα3333cos 2sin cos 2sin -+=13、已知2cos sin cos sin =-+αααα,则ααc o s si n 的值为 . 三、解答题1、:已知51sin =α,求ααtan ,cos 的值.2已知22c o ss i n =+αα,求αα22c o s 1s i n 1+的值.3.化简:)3tan()cos()tan()2sin(x x x x --+-ππππ4.已知41tan =x ,求xx xx sin 3cos 2sin 5cos +-的值。
高中数学三角函数专项训练(含答案)
高中数学三角函数专项训练(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.赵爽是我国古代数学家,大约在公元222年,他为《周髀算经》一书作序时,介绍了"勾股圆方图",亦称"赵爽弦图"(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成).类比"赵爽弦图",可构造如图所示的图形,它是由3个全等的三角形与中间一个小等边三角形拼成的一个较大的等边三角形,设 ,AD AB AC λμ=+若4AD AF =,则λ-μ的值为___________3.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.4.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠=则四面体ABCD 体积的最大值为___________.5.平行六面体1111ABCD A B C D -的各棱长均相等,1160BAD DAA A AB ∠=∠=∠=,直线1AC ⋂平面1A BD E =,则异面直线1D E 与AD 所成角的余弦值为_________.6.在直角坐标系中,ABC 的顶点()cos ,sin A αα,()cos ,sin B ββ,432C ⎝,且ABC 的重心G 的坐标为232⎝,()cos αβ-=__________. 7.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,32b =7sin BAD ∠=,2cos 4BAC ∠=,则AD =__________.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知正四棱柱1111ABCD A B C D -中,2AB =,1AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.10.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( )A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭13.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( )A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ= 14.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦15.如图,设1F ,2F 是双曲线()22210xy a a -=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足1e <<为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( ) A 13B .2 C 31 D .317.已知函数()3sin()(0,||)f x x ωϕωϕπ=+><,(4)(2)6f f =-,且()f x 在[2,4]上单调.设函数()()1g x f x =-,且()g x 的定义域为[5,8]-,则()g x 的所有零点之和等于( ) A .0B .4C .12D .1618.设点()11,P x y 在椭圆22182x y +=上,点()22,Q x y 在直线280x y +-=上,则2121x x y y -+-的最小值是( )A .21B 3C .31D .219.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16320.设函数()3xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.22.已知函数()cos f x x x =,()sin g x x =,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)求证:()()f x g x ≤;(2)若()ax g x bx <<在0,2π⎛⎫⎪⎝⎭上恒成立,求a 的最大值与b 的最小值.23.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.24.已知函数()()()()223cos +2cos 02f x x x x πϕϕϕϕ⎛⎫=+++<< ⎪⎝⎭.(1)求()f x 的最小正周期;(2)若13f π⎛⎫= ⎪⎝⎭,求当()2f x =时自变量x 的取值集合.25.已知函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合.(1)求ω和ϕ的值;(2)若函数()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求函数()h x 的单调递减区间及图象的对称轴方程.26.已知函数22cos 3sin 2f xxx a 的最小值为0.(1)求a 的值及函数()y f x =图象的对称中心;(2)若关于x 的方程()0f x m -=在区间70,6π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根1x ,2x ,3x ,求m的取值范围及()123tan 2x x x ++的值.27.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 28.已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足sin()n n b a =,集合*{|,}n S x x b n ==∈N .(1)若10a =,23d π=,求集合S ; (2)若12a π=,求d 使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,n T n b b +=,T 是不超过5的正整数,求T 的所有可能值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S .29.已知函数21()sin 24f x x x =+(1)求()f x 的最小正周期T 和[0,]π上的单调增区间:(2)若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,求实数m 的取值范围.30.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,已知sin tan 1cos BC B=-.(Ⅰ)求证:ABC ∆为等腰三角形;(Ⅱ)若ABC ∆是钝角三角形,且面积为24a ,求2b ac的值.【参考答案】一、填空题1.3π 2.4734 5.566.237.48.742ω<<或91322ω<≤.910.80π 二、单选题 11.A 12.C 13.C 14.A 15.B 16.C 17.C 18.D 19.A 20.C 三、解答题21.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点A ABC ∆为等边三角形,所以三角形边长为2,所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭,将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =.(Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.22.(1)答案见解析;(2)a 最大值为2π,b 的最小值为1. 【解析】 【分析】(1)构建函数()cos sin h x x x x =-,通过导数研究函数()h x 在0,2π⎡⎤⎢⎥⎣⎦单调性并计算最值,可得结果.(2)构造函数()sin M x x cx =-,通过分类讨论的方法,0c ≤,1c ≥和01c <<,利用导数判断函数()M x 的单调性,并计算最值比较,可得结果. 【详解】(1)由()()()cos sin h x f x g x x x x =-=- 所以()'cos sin cos sin h x x x x x x x =--=-. 又0,2x π⎡⎤∈⎢⎥⎣⎦,()'sin 0h x x x =-≤,所以()h x 在区间上0,2π⎡⎤⎢⎥⎣⎦单调递减.从而()()00h x h ≤=,()()f x g x ≤. (2)当0x >时,“()ax g x <”等价于“sin 0x ax ->” “()g x bx <”等价于“sin 0x bx -<”.令()sin M x x cx =-,则()'cos M x x c =-,当0c ≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意0,2x π⎛⎫∈ ⎪⎝⎭,()'cos 0M x x c =-<,所以()M x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减.从而()()00M x M <=对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()'cos 0M x x c =-=.()M x 与()'M x 在区间0,2π⎛⎫⎪⎝⎭上的情况如下:因为M x 在区间00,x 上是增函数, 所以()()000M x M >=.进一步,“()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立”当且仅当1022M c ππ⎛⎫=-≥ ⎪⎝⎭,即20c π<≤,综上所述: 当且仅当2c π≤时,()0M x >对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立; 当且仅当1c ≥时,()0M x <对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立.所以,若()ax g x bx <<对任意0,2x π⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1. 【点睛】本题考查导数的综合应用,关键在于构建函数,化繁为简,同时掌握分类讨论的思想,考验分析问题的能力以及计算能力,属中档题.23.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.24.(1)π;(2)12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭【解析】 【分析】(1)由辅助角公式可得()f x 2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,再求周期即可;(2)由13f π⎛⎫= ⎪⎝⎭求出12πϕ=,再解方程2sin 2123x π⎛⎫++= ⎪⎝⎭即可.【详解】解:(1)()()()()2cos 2cos f x x x x ϕϕϕ=++++()()2cos21x x ϕϕ=++++2sin 2216x πϕ⎛⎫=+++ ⎪⎝⎭,则()f x 的最小正周期为2T ππω==.(2)因为13f π⎛⎫= ⎪⎝⎭,所以2sin 221136ππϕ⎛⎫⨯+++= ⎪⎝⎭,即()526k k Z πϕπ+=∈, 解得()5212k k Z ππϕ=-∈. 因为02πϕ<<,所以12πϕ=.因为()2f x =,所以2sin 2123x π⎛⎫++= ⎪⎝⎭,即1sin 232x π⎛⎫+= ⎪⎝⎭,则2236x k πππ+=+或()52236x k k Z πππ+=+∈, 解得12x k ππ=-+或()4x k k Z ππ=+∈.故当()2f x =时,自变量x 的取值集合为12x x k ππ⎧=-+⎨⎩或()4x k k Z ππ⎫=+∈⎬⎭.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题. 25.(1)2ω=,3πϕ=;(2)减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,对称轴方程为()212k x k Z ππ=+∈ 【解析】 【分析】(1)先根据平移后周期不变求得2ω=,再根据三角函数的平移方法求得3πϕ=即可.(2)根据(1)中()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭代入可得()h x ,利用辅助角公式求得()23h x x π⎛⎫=+ ⎪⎝⎭,再代入调递减区间及图象的对称轴方程求解即可.【详解】(1)因为函数()()sin 06f x x πωω⎛⎫=-> ⎪⎝⎭的图象向左平移2π个单位长度后与函数()()cos 22g x x πϕϕ⎛⎫=+< ⎪⎝⎭图象重合,所以2ω=.5sin 2sin 2cos 222663f x x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 所以()cos 2cos 23x x πϕ⎛⎫+=+ ⎪⎝⎭,因为2πϕ<,所以3πϕ=.(2)由(1)()sin 26f x x π⎛⎫=- ⎪⎝⎭,()cos 23g x x π⎛⎫=+ ⎪⎝⎭,所以()88h x f x g x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,sin 2cos 2212123x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()3222232k x k k Z πππππ+≤+≤+∈,解得()71212k x k k Z ππππ+≤≤+∈ 所以函数的单调递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 令()232x k k Z πππ+=+∈,可得图象的对称轴方程为()212k x k Z ππ=+∈. 【点睛】本题主要考查了三角函数的平移运用以及辅助角公式.同时也考查了根据三角函数的解析式求解单调区间以及对称轴等方法.属于中档题.26.(1)1,,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈;(2)[)3,4, 【解析】(1)由题得()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭,求出a 的值即得函数()y f x =图象的对称中心;(2)作出函数()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象,求出123523x x x π++=即得解.【详解】(1)()cos 2212sin 216x x a x a f x π⎛⎫=++=+++ ⎪⎝⎭,由已知可得()2110a ⨯-++=,∴1a =,()2sin 226f x x π⎛⎫=++ ⎪⎝⎭,令26x k ππ+=可得()y f x =图象的对称中心为,2212k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)()y f x =在70,6x π⎡⎤∈⎢⎥⎣⎦上的大致图象如图所示,由图可得[)3,4m ∈,所以123x x π+=,2343x x π+=,所以123523x x x π++=,所以()1235tan 2tan33x x x π++==-.【点睛】本题主要考查三角恒等变换和三角函数的图象和性质,考查三角函数图象的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.27.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))222n n -+【解析】 【分析】(1)由向量数量积的坐标运算可得()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)22442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 64a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 24b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 2322sin 23f x a b x x x π⎛⎫=⋅=-=+⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈.(2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=-⎪ ⎪⎝⎭⎝⎭, 所以()()222222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,)2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+.【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.28.(1)⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭;(2)23π或π;(3)3T =或4,3T =时,23n a n π=,S ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭;4T =时,2n a n π=,{}0,1,1S =-【解析】 【分析】(1)根据等差数列的通项公式写出n a ,进而求出n b ,再根据周期性求解;(2)由集合S 的元素个数,分析数列{}n b 的周期,进而可求得答案;(3)分别令1T =,2,3,4,5进行验证,判断T 的可能取值,并写出与之相应的一个等差数列{}n a 的通项公式及集合S 【详解】(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =, 集合{}*|,n S x x b n N ==∈. ∴当120,3a d π==,所以集合{S =0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=, ②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意. 与之相应的一个等差数列{}n a 的通项公式为23n a n π=,此时33,,022S ⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭. ②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{0S =,1,1}-. 与之相应的一个等差数列{}n a 的通项公式为2n a n π=,此时{}0,1,1S =-【点睛】本题考查等差数列的通项公式、集合元素的性质以及三角函数的周期性,是一道综合题. 29.(1) T=π,单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦(2) ∅ 【解析】 【分析】(1)化简函数得到1()sin 223f x x π⎛⎫=- ⎪⎝⎭,再计算周期和单调区间.(2)分情况n 的不同奇偶性讨论,根据函数的最值得到答案. 【详解】解:(1)函数21()sin 24f x x x =11cos 2sin 242x x +=11sin 22sin 2423x x x π⎛⎫==- ⎪⎝⎭ 故()f x 的最小正周期22T ππ==. 由题意可知:222232k x k πππππ-+≤-≤+,k Z ∈解得:51212k x k ππππ-+≤≤+,k Z ∈ 因为[0,]x π∈,所以()g x 的单调增区间为50,12π⎡⎤⎢⎥⎣⎦,11,12ππ⎡⎤⎢⎥⎣⎦ (2)由(1)得1()sin 223f x x π⎛⎫=- ⎪⎝⎭∵,34x ππ⎡⎤∈-⎢⎥⎣⎦∴2,36x πππ⎡⎤-∈-⎢⎥⎣⎦,∴1sin 21,32x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,12()1,2f x ⎡⎤∈-⎢⎥⎣⎦若2()(1)0n f x m +-⋅>对任意的,34x ππ⎡⎤∈-⎢⎥⎣⎦和*n N ∈恒成立,则2()(1)n f x m +-⋅的最小值大于零. 当n 为偶数时,10m -+>,所以,1m 当n 为奇数时,10m -->,所以,1m <- 综上所述,m 的范围为∅. 【点睛】本题考查了三角函数化简,周期,单调性,恒成立问题,综合性强,意在考查学生的计算能力和综合应用能力.30.(Ⅰ)证明见解析;(Ⅱ)2 【解析】 【分析】(Ⅰ)将正切化弦,结合两角和差正弦公式可求得()sin sin C B C =+,根据三角形内角和可整理为sin sin C A =,则由正弦定理可得到结论;(Ⅱ)利用三角形面积公式可求得1sin 2B =;根据三角形为钝角三角形且(Ⅰ)中的c a =,可知B 为钝角,求得cos B ;利用余弦定理可构造方程求得,a b 之间关系,从而得到所求结果. 【详解】 (Ⅰ)由sin tan 1cos B C B =-得:sin sin cos 1cos C BC B=-则:()sin sin cos cos sin sin C B C B C B C =+=+A B C π++= ()()sin sin sin B C A A π∴+=-= sin sin C A ∴=由正弦定理可知:c a =ABC ∆∴为等腰三角形(Ⅱ)由题意得:2211sin sin 224a S ac B a B ===,解得:1sin 2B =ABC ∆为钝角三角形,且a c = B ∴为钝角 cos B ∴=由余弦定理得:(2222222cos 22b a c ac B a a =+-==+2222b b ac a ∴==【点睛】本题考查三角形形状的求解、利用余弦定理、三角形面积公式求解三角形边之间的关系问题,涉及到两角和差正弦公式、三角形内角和、诱导公式、同角三角函数值的求解等知识.。
三角函数基础训练题及答案
三角函数基础训练题姓名 分数一、选择题1 .函数()213f x x π⎛⎫=-+ ⎪⎝⎭的最小正周期是 ( )A .B .1C .πD .2π2 .在△ABC 中,三个内角之比为A :B :C =1:2:3,那么相对应的三边之比a :b :c 等于 ( )A .2B .1:2:3C .D .3:2:13 .函数)652cos(π-=x y 的最小正周期是 ( )A .2π B .πC .π2D .π44 .21()sin ()2f x x x =-∈R ,则()f x 的最小正周期为( )A .π2的奇函数 B .π的奇函数 C .2π的偶函数D .π的偶函数5 .cos330=( )A12B 12-C2D 2-6 .sin15cos75cos15sin105+等于 ( )A 0B12C2D 17 .已知(,0)2x π∈-,4cos 5x =,则tan x 的值为 ( )A .34B .34-C .43D .43-8 .“w=2”是“函数)sin(ϕω+=x y 的最小正周期为π”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既不充分也不必要条件9 .化简53sin 12π-的结果是 ( )A .53cosπB .53cosπ- C .53cosπ± D .52cosπ 10.函数x x x f cos sin )(-=的最小正周期是:( )A .2π B .π C .π2 D .π311.函数y=2cos 2x+1(x ∈R )的最小正周期为( )A .2π B .π C .π2 D .π4 12.如果函数y =sin(ωx)cos(ωx)(ω>0)的最小正周期是4π,那么常数ω为 ( )A .4B .2C .21D .4113.已知角的终边经过点(-3,4),则tan α= ( )A .43B .-43 C .34 D .-3414.若α是第一象限角,则下面各角中第四象限的角是( )A .α-︒90B .α+︒90C .α-︒360D .α+︒18015.已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( )A .231+-B .231+- C .231- D .231+ 16.在ABC ∆中,53cos =A ,则A tan 等于 ( )A .34-B .43- C .43D .3417.如果135sin =α,),2(ππα∈,那么tan α等于 ( )A .125-B .125C .512-D .51218.的是 ( )A . 2sin15cos15B . 22cos 15sin 15-C . 22sin 151-D . 22sin 15cos 15+19.ABC ∆中,“A ∠为锐角”是“0sin >A ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件20.函数y=sin(2x+25π)的图象一条对称轴方程是 ( )A .x=2π-B .x=4π-C .x=8π D .x=45π 21.tan4π= ( )A .1B .-1C .22 D .-22 22.函数⎪⎭⎫ ⎝⎛+=2sin πx y是( )A .周期为π2的偶函数B . 周期为π2的奇函数C . 周期为π的偶函数D . 周期为π的奇函数23.︒105cos 的值为 ( )A .462- B .462+ C .462- D .262- 24.化简αα2sin 22cos +得( )A .0B .1C .α2sinD .α2cos25.若α是第二象限的角,且2sin 3α=,则=αcos ( )A .13B .13-C D .26.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( )A .34-B .43- C .43 D .3427.已知1cos sin ,54sin >-=θθθ,则θ2sin =( )A .2524-B .2512-C .54- D .252428.在△ABC 中, ,,A B C ∠∠∠所对的边分别为,,a b c ,若8,60,75a B C =∠=︒∠=︒,则b 等于( )A .B .C .D .32329.若α是三角形的内角,且21sin =α,则α等于 ( )A .30B .30或150C .60D . 120或6030.已知α是锐角,则2α是 ( )A,第一象限角 B, 第二象限角 C,小于0180的正角 D,不大于直角的正角二、填空题31.函数y=2sinxcosx-1,x R ∈的值域是 32.函数x x y2sin 2cos 22-=的最小正周期是__________________.33.函数2sin 2y x =的最小正周期是34.sin 210=_____ _____ 35.)6cos()(πω-=x x f 最小正周期为5π,其中0>ω,则=ω 36.tan 3α=,4tan 3β=,则tan()αβ-等于 . 37.函数())(cos 22sin 32R x x x x f ∈-=的最小正周期为_____________.38.若2cos sin cos sin =+-αααα,则=αtan __________.39.已知B A ,是圆O 上两点,2=∠AOB 弧度,2=OA ,则劣弧AB 长度是_____ 40.在△ABC 中,已知7,5,3a b c ===,则A=____________;三、解答题41.已知tan2α=2,求(I )tan()4πα+的值; (II )6sin cos 3sin 2cos αααα+-的值.42.求函数21cos cos 12y x x x =+的最大值参考答案一、选择题 1. C 2. A 3. B 4. D 5. C 6. D 7. B 8. A 9. B 10. C 11. B 12. D 13. D 14. C 15. B 16. D17.参考答案:A考查内容:同角三角函数的基本关系式:22sin cos 1x x +=,同角三角函数的基本关系式:sin tan cos xx x= 认知层次:b 难易程度:中 18. B19. A A ∠为锐角时0sin >A ;0sin >A 时,A ∠不一定为锐角. 20. A 21. A 22. A 23. A 24. B 25. D 26. B 27. A 28. C 29. B 30. C 二、填空题 31. []2,0-.32.2π; 33. 2π34. 12-35. 1036.31; 37. π 38. 3- 39. 4 40. 0120 三、解答题41.解:(I )∵ tan2α=2, ∴ 22tan2242tan 1431tan 2ααα⨯===---; 所以tan tan tan 14tan()41tan 1tan tan 4παπααπαα+++==-- =41134713-+=-+;(II )由(I), tan α=-34, 所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()17363()23-+=--.42.解:2115cos cos 1sin(2)2264y x x x x π=+=++ min 157244y =+=。
三角函数大题训练(含答案)
高一数学 三角函数大题训练1.已知函数1()2sin(),.36f x x x R π=-∈(1)求5()4f π的值;(2)设106,0,,(3),(32),22135f a f ππαββπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值.1、解:(1)515()2sin()4346f πππ=⨯- 2sin 24π=-=; (2)10132sin 32sin ,132326f πππααα⎛⎫⎛⎫⎛⎫=+=⨯+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q 61(32)2sin (32)2sin 2cos ,5362f ππβπβπββ⎛⎫⎛⎫=+=⨯+-=+= ⎪ ⎪⎝⎭⎝⎭ 53sin ,cos ,135αβ∴== 22512cos 1sin 1,1313αα⎛⎫∴=-=-= ⎪⎝⎭2234sin 1cos 1,55ββ⎛⎫=-=-= ⎪⎝⎭故3125456cos()cos cos sin sin .51313565αβαβαβ+=+=⨯-⨯=2.已知函数()tan(2),4f x x π=+(Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4πα⎛⎫∈ ⎪⎝⎭,若()2cos 2,2f αα=求α的大小. 2、(I )解:由2,42x k k Z πππ+≠+∈, 得,82k x k Z ππ≠+∈. 所以()f x 的定义域为{|,}82k x R x k Z ππ∈≠+∈ ()f x 的最小正周期为.2π(II )解:由()2cos 2,2a f a = 得tan()2cos 2,4a a π+=22sin()42(cos sin ),cos()4a a a a ππ+=-+ 整理得sin cos 2(cos sin )(cos sin ).cos sin a a a a a a a a +=+-- 因为(0,)4a π∈,所以sin cos 0.a a +≠因此211(cos sin ),sin 2.22a a a -==即 由(0,)4a π∈,得2(0,)2a π∈. 所以2,.612a a ππ==即3.已知77(0)cos 2,sin()2299ππαβπβαβ∈∈=-+=,,(,),. (Ⅰ)求βcos 的值; (Ⅱ)求αsin 的值.3、解:(Ⅰ) ∵cos 22cos 12ββ+= =912)97(1=-+ 又∵(,)2πβπ∈ ∴cos β=31- (Ⅱ)由(Ⅰ)知:sin β=322)31(1cos 122=--=-β由(0,)2πα∈、(,)2πβπ∈ 得 βα+∈(23,2ππ) cos (βα+)=-924)97(1)(sin 122-=--=+-βαsin α=sin(βα+-β)=sin(βα+)cos β-cos(βα+)sin β =97×-()31-)924(-×322=314.已知函数()23sin cos sin()2424x x f x x πππ⎛⎫⎛⎫=++-+⎪ ⎪⎝⎭⎝⎭。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班别::学号:成绩:
一、单选题(每小题4分,共24分)
1. 的值为( )
A. B. C. D.
2.若 ,且 为第四象限角,则 的值等于( )
A. B. C. D.
3.已知 ,则 ( )
A. B. C. D.
4.△ABC中,sinA=sinB是∠A=∠B的( )
A.充分不必要条件B.必要不充分条件
15.如图,一辆汽车在一条水平的公路上向正西行驶,到处测得公路北侧一山顶在西偏北(即)的方向上;行驶后到达处,测得此山顶在西偏北(即)的方向上,且仰角为.则此山的高度=
A.mB.m
C.mD.m
二、填空题(每小题4分,共16分)
16.函数的最小正周期为_____________.
17.已知 ,则 =__________.
(1)求函数 的周期和单调递增区间;
(2)当 时,求函数 的最大值.
参考答案
1.C【解析】由题意可得:
.
2.D【解析】 为第四象限角,
解得
3.B【解析】
4.C【解析】∵∠A=∠B ∵
反之,由正弦定理知 = =2R,∵sinA=sinB,∴a=b,∴A=B.
∴sinA=sห้องสมุดไป่ตู้nB是∠A=∠B的充要条件
5.A【解析】 中,∵ ,故三个角分别为 ,
结合选项可得函数图象的一条对称轴为
9.C【解析】所得函数的解析式为
10.D【解析】由函数图象可知: ,
∴ ∴ ∵ ∴
∵函数图象经过 ∴ ∵ ∴
11.B【解析】 ∴由正弦定理 得:
由余弦定理得: ,即 ,
解得 或 (经检验不合题意,舍去),则 .
12.B【解析】因为根据余弦定理
, 故三角形是等边三角形
A. B. C. D.
9.将函数 的图象向左平移 个单位,所得的图象对应的函数解析式是( )
A. B.
C. D.
10.函数 ( , , )的部分图象如图所示,则 的值分别为( )
A.2,0B.2,
C.2, D.2,
11. 的角 的对边分别为 ,若 , , ,则 ()
A.1或2B.2C. D.1
12.在 中, , ,则这个三角形是( )
13.C【解析】由三角形正弦定理 可知 无解,所以三角形无解.
14.D【解析】函数f(x)=sin(x+ ),
A. 函数f(x)的周期为:T=2π,正确。
B. 当x= 时,f( )=−1,正确。
C. 当x∈[ ]时,x+ ∈[ , ],故函数单调递减,正确。
D函数f(x)向左平移 个单位后函数的关系式转化为:f(x)=sin(x+ ),函数的图象不关于原点对称,故错误。
15.A【解析】
设此山高h(m),则BC=h,
在△ABC中,∠BAC=30∘,∠CBA=105∘,∠BCA=45∘,AB=600.
根据正弦定理得=,解得h= (m)
16.【解析】由正切函数的周期公式得:
17. 【解析】 =
18. 【解析】由正弦定理可得:
,得 解得
19. 【解析】∵ ,
∴由正弦定理可得
18.已知在 中,角 、 、 的对边分别为 、 、 ,若 , , ,则角 为________.
19.在 中,已知三个角为 、 、 、满足 ,求最小角的余弦值__________.
三、解答题(每小题12分,共60分)
20.在 中,角 的对边分别为 ,且 .
(Ⅰ)求 ;
(Ⅱ)若 ,求 .
21.设函数 .
C.充要条件D.既不充分也不必要条件
5.已知 中, ,则 ()
A. B. C. D.
6.下列四个函数中,以 为最小正周期,且在区间 上为减函数的是( )
A. B. C. D.
7.已知 , ,则 的值是( )
A. B. C. D.
8.将函数 的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移 个单位,所得函数图象的一条对称轴是( )
则
6.D【解析】 选项,函数在 上单调递减,在 上单调递增,故排除;
选项,函数在 上单调递增,故排除; 选项,函数的周期是 ,故排除;
7.A【解析】 , ,
,即 ,故
8.D【解析】将函数 的图象上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数的解析式为: ,
再向左平移 个单位得到函数为
令 ,解得 故函数的对称轴为
∴a为三角形的最小边,∴A为三角形的最小角,
设
∴由余弦定理可得
20.解:(Ⅰ)由 及正弦定理,得 .
在 中, .
.
(Ⅱ)由 及正弦定理,得 ,①
由余弦定理 得, ,
即 ,②
由①②,解得 .
21.解:(1)因为 .
, ,
函数 的单调递增区间为: ;
(2) , ,
,
的最大值是3.
考点:1.三角恒等变换公式;2.正弦型函数图像及性质.
A.边长都不相等的三角形B.等边三角形C.等腰三角形D.直角三角形
13.在 中,角 所对的边分边为 ,已知 ,则此三角形的解的情况是( )
A.有一解B.有两解C.无解D.有解但解的个数不确定
14.已知函数 ,则下列说法不正确的是()
A. 的一个周期为 B. 的图象关于 对称
C. 在 上单调递减D. 向左平移 个单位长度后图象关于原点对称