复数加、减运算的平行四边形法则3
复数的加减法运算
例:已知复数 z = x + yi ( x , y ∈ R )满足 | z − ( −1 + 3 i ) |= 1, y (1)求 | z | 的范围 (2)求 的范围 x (1 ) z 对应的点表示以 ( − 1, 3 )为圆心, 为半径的圆 为圆心, 1
| z | 表示该圆上一点与原点 的距离
∴ 整理得:( x − 1 ) 2 + ( y + 1 ) 2 = 2 整理得:
∴ 轨迹是以 (1, − 1)为圆心, 2为半径的圆 为圆心,
复数的减法运算: 复数的减法运算:
如果两个复数 z1 = a + bi , z 2 = c + di (a , b, c , d ∈ R )
则定义: 则定义: z 1 − z 2 = ( a − c ) + ( b − d ) i
∴ Re( x ) = ± 1
且 xy = | x | ⇒ Im( x ) = ± | x | − (Re( x )) = ± 1
2 2 2
∴ x = 1 + i , y = 1 − i或 x = 1 − i , y = 1 + i 或 x = − 1 + i , y = − 1 − i或 x = − 1 − i , y = − 1 + i
5 − 4 a ∈ [1 , 3 ]
5 − 4a
∴| z − 2 |∈ [1, 3 ]
∵ a ∈ [ − 1,1] ⇒
法二: 法二:几何法
∴| z − 2 |∈ [1, 3 ]
( 2,0 )
法三: 法三:利用 | z 1 | − | z 2 |≤ | z 1 ± z 2 |≤ | z 1 | + | z 2 | ∴|| z | − 2 |≤ | z − 2 |≤ | z | + 2 ∴| z − 2 |∈ [1, 3 ]
新版高中数学必修2课件:7.2.1复数的加、减运算及其几何意义
提示:我们规定,复数的减法是加法的逆运算,即把满足(c+ di)+(x+yi)=a+bi的复数x+yi(x,y∈R)叫做复数a+bi(a,b∈R) 减去复数c+di(c,d∈R)的差,记作(a+bi)-(c+di).
根据复数相等的含义,c+x=a,d+y=b, 因此x=a-c,y=b-d, 所以x+yi=(a-c)+(b-d)i, 即(a+bi)-(c+di)=(a-c)+(b-d)i.
解析:z=3+4i-(5-6i)=-2+10i. 答案:A
2.已知i是虚数单位,则复数z=(3+i)+(-3-2i)的虚部是 ()
A.1 Bห้องสมุดไป่ตู้ 2 C.-1 D.-i
解析:z=(3+i)+(-3-2i)=(3-3)+(1-2)i=-i, 故复数z的虚部为-1. 答案:C
3.设z1=x+2i,z2=3-yi(x,y∈R)且z1+z2=5-6i,则z1-z2 =________.
∴平行四边形OZ1ZZ2为正方形,∴|z1-z2|= 2.
方法归纳
1.设出复数z=x+yi(x,y∈R),利用复数相等或模的概念, 可把条件转化为x,y满足的关系式,利用方程思想求解,这是本 章“复数问题实数化”思想的应用.
2.在复平面内,z1,z2对应的点为A、B,z1+z2对应的点为 C,O为坐标原点,则四边形OACB①为平行四边形;②若|z1+z2| =|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB 为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方 形.
(2)如图所示,在复平面内的四个点O,A,B,C恰好为平行四
边形的四个顶点,其中O为原点,A,B,C所对应的复数分别是zA =4+ai,zB=6+8i,zC=a+bi(a,b∈R,i为虚数单位),则zA-zC =________.
复数的运算。
m
n
mn n n z1 z2
(z1 z2 )
例1. ABCD是复平面内的平行四边 形, A、B、C三点对应的复数分别是 1+3i, −i, 2+i, 求点D对应的复数.
3. 复数z满足 z 1 i z 2i , 那么 z在复平面内对应的点所 表示的图形是 什么? 此时 z i 的最小值是多少 ?
6+2i
虚部为2,且z1 z2 是实数,求复数z2 .
5 例3 已知z 是实数,且z 3的实部与虚部互 z 为相反数的虚数z是否存在,若存在,求出虚数z, 若不存在,说明理由.
-1-2i
-2-i
课堂练习
1 1 已知z是虚数,且z 是实数, z z 1 求证 纯虚数. z 1
a -i 2 已知z (a 0, a R), 复数ω z(z i) 1- i 3 的虚部减虚部减去它的得的差是 , 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
复数的四则运算
1.复数加减法的运算法则:
复数 z1=a+bi, z2=c+di,(a,b,c,d是实数)
z1+z2=(a+c)+(b+d)i;
z1-z2=(a-c)+(b-d)i.
即:两个复数相加(减)就是实部与实部,虚部与虚部 分别相加(减).
ห้องสมุดไป่ตู้
复数的四则运算
2.复数乘法的运算法则:
( a + bi )( c + di ) = ( ac – bd ) + ( bc + ad )i. 注:复数的乘法满足交换律、结合律以及乘法 对加法的分配律
《复数的四则运算》专题精讲课件
+ = .
解得 = −, = ± .所以 = − ± ,
即方程 + + = 的根为 = − ± .
=
.③
= −.
典型例题
高中数学
GAOZHONGSHUXUE
典例6 在复数范围内解方程: + + = .
思路 本题考查复数四则运算的应用,在复数范围内解方程,复数范围内,利用实系数一
元二次方程 + + = ≠ 求解方法.
(1)求根公式法
①当 ⩾ 时, =
于的周期性要记熟,即 + + + + + + = ∈ ∗ .另外记住以下结果,
可提高运算速度:① +
由于
=
−
+
= , −
= −.②
−
+
=
+
−,
−
= −,所以 = − + − + − = −.
虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如 +
+ = − + , +
= +
= + + + =
− + − .
解析
−
=
−
−
2.复数加、减法的几何意义
如图所示,设复数 = + , = + ∈ 对应的向量分别为
, ,四边形 为平行四边形,则与 + 对应的向量是,与
复数极坐标形式加减运算规则
复数极坐标形式加减运算规则1. 复数的入门知识说到复数,很多人可能会皱眉,觉得这东西就像是高深莫测的黑暗料理。
但是,放心吧,今天我们不搞复杂的公式,只聊聊复数的极坐标形式,轻松加减就行。
想象一下,你在逛超市,看到一个新奇的商品,心里想着:“哎呀,这东西我得试试!”复数也是如此,稍微用点心,就能让你领略到它的魅力。
复数其实就是一个由实部和虚部组成的数,比如说 ( z = a + bi )。
在这里,( a ) 是实部,( b ) 是虚部,而 ( i ) 则是那神秘的虚数单位,等于 (sqrt{1)。
不过,当我们把复数用极坐标的形式表达出来时,情况就有趣了:复数可以表示成 ( z = r(cos theta + i sin theta) ),其中 ( r ) 是模长,代表到原点的距离,而 ( theta ) 是角度,代表方向。
听起来是不是有点像在讲导航系统?没错,复数也有它的“方向感”呢!2. 复数的加法2.1 极坐标加法的概念说到加法,大家都知道这是一件简单的事。
但在复数的世界里,加法就像是调味品,得看你怎么用。
在极坐标形式下,如果我们要把两个复数相加,首先得找到它们的“模长”和“角度”。
比如说,有两个复数 ( z_1 = r_1(cos theta_1 + i sin theta_1) ) 和 ( z_2 =r_2(cos theta_2 + i sin theta_2) )。
这俩家伙就像是不同的乐器,要合作出一首动听的曲子。
2.2 加法的公式那么,加法怎么做呢?简单来说,我们需要把它们的模长和角度结合起来。
可以使用“矢量加法”这个概念,把这两个复数看作是在平面上的两个向量,然后用平行四边形法则来找出它们的和。
这就好比你和朋友在公园里一起散步,你向东走,朋友向北走,最后你们的目标就会是两个人的结合点。
其实在数学上,我们通过将两个复数的角度和模长进行转换,最后得到一个新的复数。
3. 复数的减法3.1 极坐标减法的技巧接下来,我们聊聊减法。
第十五课复数的加减运算及其几何意义
(a-c) +(b-d) =1. ② 由①②得 2ac+2bd=1.
2 2
∴|z1+z2|= a+c +b+d = a +c +b +d +2ac+2bd= 3.
2 2 2 2 2 2
小结(略)
一、选择题 1.若复数 z 满足 z+i-3=3-i,则 z=( A.0 B.2i C.6 D.6-2i )
→ =-OA →, → 对应的复数为-(3+2i), 解: ①AO 则AO 即-3-2i. → = OA → -OC → ,所以 CA → 对应的复数为 (3 ②CA +2i)-(-2+4i)=5-2i. → =OA → + AB → =OA → + OC → ,所以OB → 对应 ③ OB 的复数为(3+2i)+(-2+4i)=1+6i,即 B 点对 应的复数为 1+6i.
二、填空题 3.已知|z|=3,且 z+3i 是纯虚数,则 z=________.
解:设 z=a+bi(a,b∈R),∵|z|=3,∴a +b =9.
2 2
又 w=z+3i=a+bi+3i=a+(b+3)i 为纯虚数,
a=0, ∴ b+3≠0 a=0, ,即 b≠-3,
又 a +b =9,∴a=0,b=3.∴z=3i.
3.对复数加减法几何意义的理解:它包含两个方面:一方面是利
用几何意义可以把几何图形的变换转化为复数运算去处理, 另一方
面对于一些复数的运算也可以给予几何解释, 使复数作为工具运用 于几何之中.
题型一、复数代数形式的加减运算
例 1:计算:(1)(1+2i)+(3-4i)-(5+6i); (2)5i-[(3+4i)-(-1+3i)]; (3)(a+bi)-(2a-3bi)-3i(a,b∈R).
解:∵z+i-3=3-i
高中数学第三章3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义讲义新人教A版选修2_2
3.2.1 复数代数形式的加、减运算及其几何意义1.复数的加法与减法 (1)复数的加减法运算法则(a +b i)±(c +d i)=□01(a ±c )+(b ±d )i. (2)复数加法的运算律复数的加法满足□02交换律、□03结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=□04z 2+z 1;(z 1+z 2)+z 3=□05z 1+(z 2+z 3). 2.复数加、减法的几何意义 (1)复数加法的几何意义若复数z 1,z 2对应的向量OZ 1→,OZ 2→不共线,则复数z 1+z 2是以OZ 1→,OZ 2→为邻边的平行四边形的对角线OZ →所对应的复数.(2)复数减法的几何意义复数z 1-z 2是连接向量OZ 1→,OZ 2→的□06终点,并指向被减向量的向量Z 2Z 1→所对应的复数. (3)复平面内的两点间距离公式:d =□07|z 1-z 2|. 其中z 1,z 2是复平面内的两点Z 1和Z 2所对应的复数,d 为Z 1和Z 2间的距离.1.两点间的距离公式结合模的知识可得复平面上两点间的距离公式,设z 1=x 1+y 1i ,z 2=x 2+y 2i ,则|Z 2Z 1→|=|z 1-z 2|=|(x 1+y 1i)-(x 2+y 2i)|=|(x 1-x 2)+(y 1-y 2)i|=x 1-x 22+y 1-y 22.2.复数模的两个重要性质(1)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|; (2)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2.1.判一判(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( )(2)复数与复数相加减后结果只能是实数.( )(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案 (1)× (2)× (3)× 2.做一做(1)计算:(3+5i)+(3-4i)=________. (2)(5-6i)+(-2-2i)-(3+3i)=________.(3)已知向量OZ 1→对应的复数为2-3i ,向量OZ 2→对应的复数为3-4i ,则向量Z 1Z 2→对应的复数为________.答案 (1)6+i (2)-11i (3)1-i探究1 复数的加减运算例1 计算:(1)(3-5i)+(-4-i)-(3+4i); (2)(-7i +5)-(9-8i)+(3-2i).[解] (1)原式=(3-4-3)+(-5-1-4)i =-4-10i. (2)原式=(5-9+3)+(-7+8-2)i =-1-i. 拓展提升复数代数形式的加减法运算,其运算法则是对它们的实部和虚部分别进行加减运算.在运算过程中应注意把握每一个复数的实部和虚部.这种运算类似于初中的合并同类项.【跟踪训练1】 计算:(1)(1+2i)+(-2+i)+(-2-i)+(1-2i); (2)(i 2+i)+|i|+(1+i).解 (1)原式=(-1+3i)+(-2-i)+(1-2i) =(-3+2i)+(1-2i)=-2. (2)原式=(-1+i)+0+12+(1+i) =-1+i +1+(1+i)=1+2i. 探究2 复数加减运算的几何意义例2 已知ABCD 是复平面内的平行四边形,且A ,B ,C 三点对应的复数分别是1+3i ,-i,2+i ,求点D 对应的复数.[解] 解法一:设D 点对应复数为x +y i(x ,y ∈R ),则D (x ,y ). 又由已知A (1,3),B (0,-1),C (2,1),∴AC 中点为⎝ ⎛⎭⎪⎫32,2,BD 中点为⎝ ⎛⎭⎪⎫x 2,y -12.∵平行四边形对角线互相平分, ∴⎩⎪⎨⎪⎧32=x 2,2=y -12,∴⎩⎪⎨⎪⎧x =3,y =5.即点D 对应的复数为3+5i.解法二:设D 点对应的复数为x +y i(x ,y ∈R ).则AD →对应的复数为(x +y i)-(1+3i)=(x -1)+(y -3)i , 又BC →对应的复数为(2+i)-(-i)=2+2i. 由已知AD →=BC →,∴(x -1)+(y -3)i =2+2i ,∴⎩⎪⎨⎪⎧x -1=2,y -3=2,∴⎩⎪⎨⎪⎧x =3,y =5,即点D 对应的复数为3+5i.[条件探究] 若一个平行四边形的三个顶点对应的复数分别为1+3i ,-i,2+i ,求第四个顶点对应的复数.[解] 设1+3i ,-i,2+i 对应A ,B ,C 三点,D 为第四个顶点,则①当ABCD 是平行四边形时,D 点对应的复数是3+5i.②当ABDC 是平行四边形时,D 点对应的复数为1-3i.③当ADBC 是平行四边形时,D 点对应复数为-1+i.拓展提升(1)根据复数的两种几何意义可知:复数的加减运算可以转化为点的坐标运算或向量运算.(2)复数的加减运算用向量进行时,同样满足平行四边形法则和三角形法则. (3)复数及其加减运算的几何意义为数形结合思想在复数中的应用提供了可能. 【跟踪训练2】 已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,求:(1)点C ,D 对应的复数; (2)平行四边形ABCD 的面积.解 (1)因为向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i , 所以向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,所以点C 对应的复数为(2+i)+(2-3i)=4-2i. 因为AD →=BC →,所以向量AD →对应的复数为3-i ,即AD →=(3,-1), 设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),所以⎩⎪⎨⎪⎧x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧x =5,y =0.所以点D 对应的复数为5. (2)因为BA →·BC →=|BA →||BC →|cos B ,所以cos B =BA →·BC →|BA →||BC →|=3-25×10=152=210.所以sin B =752=7210,所以S =|BA →||BC →|sin B =5×10×7210=7.所以平行四边形ABCD 的面积为7. 探究3 复数加减运算的几何意义的应用 例3 已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|.[解]解法一:设z1=a+b i,z2=c+d i(a,b,c,d∈R),∵|z1|=|z2|=|z1-z2|=1,∴a2+b2=c2+d2=1,①(a-c)2+(b-d)2=1.②由①②得2ac+2bd=1.∴|z1+z2|=a+c2+b+d2=a2+c2+b2+d2+2ac+2bd= 3.解法二:设O为坐标原点,z1,z2,z1+z2对应的点分别为A,B,C.∵|z1|=|z2|=|z1-z2|=1,∴△OAB是边长为1的正三角形,∴四边形OACB是一个内角为60°,边长为1的菱形,且|z1+z2|是菱形的较长的对角线OC的长,∴|z1+z2|=|OC|=|OA|2+|AC|2-2|OA||AC|cos120°= 3.拓展提升掌握以下常用结论:在复平面内,z1,z2对应的点为A,B,z1+z2对应的点为C,O为坐标原点,则四边形OACB:①为平行四边形;②若|z1+z2|=|z1-z2|,则四边形OACB为矩形;③若|z1|=|z2|,则四边形OACB为菱形;④若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.【跟踪训练3】若复数z满足|z+i|+|z-i|=2,求|z+i+1|的最小值.解解法一:设复数-i,i,-(1+i)在复平面内对应的点分别为Z1,Z2,Z3.如图,因为|z+i|+|z-i|=2,|Z1Z2|=2,所以复数z对应的点Z的集合为线段Z1Z2.问题转化为:动点Z在线段Z1Z2上移动,求|ZZ3|的最小值,由图可知|Z1Z3|为最小值且最小值为1.解法二:设z=x+y i(x,y∈R).因为|z+i|+|z-i|=2,所以x2+y+12+x2+y-12=2,又x2+y+12=2-x2+y-12≥0,所以0≤1-y=x2+y-12≤2,即(1-y)2=x2+(y-1)2,且0≤1-y≤2.所以x=0且-1≤y≤1,则z=y i(-1≤y≤1).所以|z+i+1|=|1+(y+1)i|=12+y+12≥1,等号在y=-1即z=-i时成立.所以|z+i+1|的最小值为1.1.复数的加法规定:实部与实部相加,虚部与虚部相加,两个复数的和仍是一个复数,这一法则可以推广到多个复数相加.2.因为复数可以用向量来表示,所以复数加法的几何意义就是向量加法的平行四边形法则.3.复数的减法可根据复数的相反数,转化为复数的加法来运算.1.复数z 1=3+i ,z 2=1-i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A解析 ∵z 1-z 2=(3+i)-(1-i)=2+2i , ∴z 1-z 2在复平面内对应的点位于第一象限. 2.已知|z |=3,且z +3i 是纯虚数,则z 等于( ) A .-3i B .3i C .±3i D.4i 答案 B解析 设z =x +y i(x ,y ∈R ),由z +3i =x +(y +3)i 为纯虚数,得x =0,且y ≠-3,又|z |=x 2+y 2=|y |=3,∴y =3.故选B.3.非零复数z 1,z 2分别对应复平面内的向量O A →,O B →,若|z 1+z 2|=|z 1-z 2|,则( ) A .O A →=O B → B .|O A →|=|O B →| C .O A →⊥O B →D .O A →,O B →共线答案 C解析 如图,由向量的加法及减法法则可知,O C →=O A →+O B →,B A →=O A →-O B →.由复数加法及减法的几何意义可知,|z 1+z 2|对应O C →的模,|z 1-z 2|对应B A →的模.又|z 1+z 2|=|z 1-z 2|,所以四边形OACB 是矩形,则O A →⊥O B →.4.复数z 满足z -(1-i)=2i ,则z 等于( )A .1+iB .-1-iC .-1+iD .1-i答案 A解析 z =2i +(1-i)=1+i.故选A.5.如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应复数0,3+2i ,-2+4i.求:(1)向量AO →对应的复数; (2)向量CA →对应的复数; (3)向量OB →对应的复数.解 (1)因为AO →=-OA →,所以向量AO →对应的复数为-3-2i.(2)因为CA →=OA →-OC →,所以向量CA →对应的复数为(3+2i)-(-2+4i)=5-2i. (3)因为OB →=OA →+OC →,所以向量OB →对应的复数为(3+2i)+(-2+4i)=1+6i.。
复数的四则运算 高一数学(北师大版2019必修第二册)
ac bd (bc ad )i ac bd bc ad
c2 d2
c2 d2 c2 d2 i
分母实数化
例 11.计算(1 2i) (3 4 i)
解: (1 2i) (3 4i)
复数加减法的运算法则:
(1)运算法则:设复数z1=a+bi,z2=c+di,
那么:z1+z2=(a+c)+(b+d)i;
(1)
z1-z2=(a-c)+(b-d)i.
即: 两个复数相加(减)就是实部与实部,
虚部与虚部分别相加(减).
例1.计算(5 6i) (2 i) (3 4i)
解:
例2.设Z=a+bi(a,bϵR),求 Z Z 与 Z - Z
a(b c) ab ac
那么复数应怎样进行加、减、乘运算呢?你认为应
怎样定义复数的加、减、乘运算呢?运算律仍成立吗?
注意到 i2 1,虚数单位 i 可以和实数进行运 算且运算律仍成立,所以复数的加、减、乘运算我 们已经是自然而然地在进行着,只要把这些零散的 操作整理成法则即可了!
知识新授:
证明:设z1=a1+b1i,z2=a2+b2i,a1,b1,a2,b2∈R, 则z1+z2=(a1+b1i)+(a2+b2i)
=(a1+a2)+(b1+b2)i, z2+z1=(a2+b2i)+(a1+b1i)
=(a2+a1)+(b2+b1)i, ∵a1+a2=a2+a1,b1+b2=b2+b1, ∴z1+z2=z2+z1.
例9:求一元二次方程ax2+bx+c=0(a,b,cϵR
7.2.1复数的加、减及其几何意义课件(人教版)
【变式训练3】 如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小
值是(
)
A.1
B.
C.2
D.
解析:设复数-i,i,-1-i在复平面内对应的点分别为Z1,Z2,Z3,
因为|z+i|+|z-i|=2,|Z1Z2|=2,
所以点Z的集合为线段Z1Z2.
问题转化为,动点Z在线段Z1Z2上移动,
-3-2i,那么向量 对应的复数是
;
(2)设复数 z1 =1-i,z2 =2+2i 对应的点分别为 Z 1,Z2 ,则|Z 1 Z2 |
=
.
探究一 复数的加、减运算
【例1】 计算:
(1)(3-5i)+(-4-i)-(3+4i);
(2)(-7i+5)-(9-8i)+(3-2i).
复数代数情势的加、减法运算技能
0,3+2i,-2+4i.求:
(1)
表示的复数;
(2)对角线 表示的复数;
(3)对角线
表示的复数.
解:(1)因为
=-
(2)因为 =
,所以
表示的复数为-3-2i.
− ,
所以对角线 表示的复数为(3+2i)-(-2+4i)=5-2i.
(3)因为对角线
所以对角线
=
+ ,
表示的复数为(3+2i)+(-2+4i)=1+6i.
∴平行四边形 OZ1ZZ2 为正方形.
∴|z1-z2|=|
|=|
|=
.
,
,
.
1.解决复数问题时,设出复数的代数情势z=x+yi(x,y∈R),利用
复数的四则运算
a + bi 记做(a + bi ) ÷ (c + di )或 . c + di
(a + bi) ÷ (c + di) = a + bi ac + bd bc − ad = 2 + 2 i 2 2 c + di c + d c +d
例ห้องสมุดไป่ตู้、计算
1− i (1) 1+ i
13 + 9i (2) 2 (2 + i)
是____________. ____________. 解析:设z=x+yi(x、y∈R),则x2+y2+2x=3表示圆. 答案:以点(-1,0)为圆心,2为半径的圆
【练习】 练习】 1、在复数范围内解方程 、 (1) x2+4=0 (2) z2=2i
2、在复数范围内分解因式 、 (1) x2 + 4 (2) x4 - y4
Cz2-z1 B
z1+z2
2 、 | z 1+ z 2| = | z 1- z 2| 平行四边形OABC OABC是 平行四边形OABC是 矩形
o
z1 A
3、 |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 平行四边形OABC是 正方形 OABC
三、复数的乘法
o
x
A,说明下列各式所表示的几何意义 例1:已知复数z对应点A,说明下列各式所表示的几何意义. 1:已知复数z对应点A,说明下列各式所表示的几何意义. 已知复数
(1)|z- (1)|z-(1+2i)| (2)|z+(1+2i)| (3)|z- (3)|z-1| (4)|z+2i|
复数加、减运算的平行四边形法则3
z 3 z z1 z 2 z 3
4 i (5 2i ) 1 3i
z1 z 2
练习1
计算下列各式,并作出复向量图
1. (2 3i) (1 4i) 2. (4 i ) (5 i ) 3. (3 2i ) (6 4i ) 4 (3 2i ) (6 4i )
并作出复向量运算图。 若z 3 5 2i 解:作出复向量运算图
求:
z1 z 2 , z1 z 2
求:z z1 z 2 z 3
y
z1 z2 (3 2i) (1 3i)
2
z
o
Z
(3 1) (2 3)i 4 i
z1 z2
x
Z
1
z1 z2 (3 2i) (1 3i) (3 1) (2 3)i 2 5i
y
z1 z 2
o
Z1
z1 z 2
Z2
z1 z 2 (a1 a2 ) (b1 b2 )i
复数和、差
z1 z 2 , z1 z 2
所对应
x
的复向量也可以通过对
用平行四边形法则得到。
oz1 , oz2 使
例题1 已知: z1 3 2i z 2 1 3i
2
z1 z2 a b
图形表示
o
z1 3 i z 2 2 4i z1 z 2 (3 2) (1 4)i 5 3i z1 z 2 (3 2) (1 4)i 1 5i
Z
3
a a b
Z
x
1
z1 z 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考
用图示法验证
z1 z 2 z1 ( z 2 )
z1 z 2
y
z
o
1
Z
2
z
x
2
小结
复数加、减运算的平行四边形法则; 数形结合方法;
作业
P130 1.(1)、(2) 、(4) 2.
z 3 z z1 z 2 z 3
4 i (5 2i ) 1 3i
z1 z 2
练习1
计算下列各式,并作出复向量图
1. (2 3i) (1 4i) 2. (4 i ) (5 i ) 3. (3 2i ) (6 4i ) 4 (3 2i ) (6 4i )
y
z1 z 2
o
Z1
z1 z 2
Z2
z1 z 2 (a1 a2 ) (b1 b2 )i
复数和、差
z1 z 2 , z1 z 2
所对应
x
的复向量也可以通过对
用平行四边形法则得到。
oz1 , oz2 使
例题1 已知: z1 3 2i z 2 1 3i
引入新课
a (3 ,1) b (2,4) a b (3+2,-1+4)=(5,3) a b (3-2,-1-4)=(1,-5)
y
b
Z
2
z1 z2 a b
图形表示
o
z1 3 i z 2 2 4i z1 z 2 (3 2) (1 4)i 5 3i z1 z 2 (3 2) (1 4)i 1 5i
复数加、减运算的平行四边形 法则
复习:
1.复数加、减运算的代数法则
若z1 a1 b1i
z2 a2 b2i
?
则z1 z 2 (a1 a 2 ) (b1 b2 )i
z1 z2 (a1 a2 ) (b1 b2 )i
两个复数相加、减等于实部和虚部分别相加、减
练习2
1.计算并作复向量图
(-1+3i)+(2-i)-(-2+3i)
2.用图示法验证复数加法的交换律和结合律
z1 z 2 z 2 z1
( z1 z 2 ) z 3 z1 ( z 2 z 3 )
例题2
已知 z1 1, z 2 1, z1 z 2
Z
3
a a b
Z
x
1
z1 z 2
新课:复数加、减运算的平行四边形法则
复数z1 a1 b1i
z2 a2 b2i
复向量oz1 (a1 , b1 )oz2 (a 2 , b2 )
oz1 oz2 (a1 a 2 , b1 b2 )
z1 z 2 (a1 a 2 ) (b1 b2 )i
解:记
3 , 求 z1 z 2 的值
z z1 z,如图,根据复数加减运算的平行四边形法则,在 2
等腰 OZ 1 Z 2 中
2 Z1OZ 2 3
1 OZ 1 Z 3
Z2
Z
z1 z 2
从而 oz 1, 即 z1 z 2 1
z1 z 2
o
Z1
思考题
并作出复向量运算图。 若z 3 5 2i 解:作出复向量运算图
求:
z1 z 2 , z1 z 2
求:z z1 z 2 z 3
y
z1 z2 (3 2i) (1 3i)
2
z
o
Z
(3 1) (2 3)i 4 i
z1 z2
x
Z
1
z1 z2 (3 2i) (1 3i) (3 1) (2 3)i 2 5i
2.复数与复向量的关系
复数z a bi与复向量oz (a, b)一一对应。
y
b
Z(a ,b)
o
a x
3.向量加、减运算法则
a ( x1 , y )
1
b ( x2, y )
2
a b ( x1
x y
2,
1
y)
2
b
ab
b
ab
a
加法运算法则
a
减法运算法则