知识点:高中物理连接体问题,加速度不等型
高中物理常见连接体问题总结知识分享
常见连接体问题(一)“死结”“活结”1.如图甲所示,轻绳AD跨过固定在水平横梁BC右端的定滑轮挂住一个质量为10 kg 的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量也为10 kg 的物体.g取10 m/s2,求(1)细绳AC段的张力FAC与细绳EG的张力FEG之比;(2)轻杆BC对C端的支持力;(3)轻杆HG对G端的支持力.(二)突变问题2。
在动摩擦因数μ=0.2的水平质量为m=1kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g=10m/s2,求:(1)此时轻弹簧的弹力大小(2)小球的加速度大小和方向.(三)力的合成与分解3.如图所示,用一根细线系住重力为、半径为的球,其与倾角为的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是().A.细绳对球的拉力先减小后增大B.细绳对球的拉力先增大后减小C.细绳对球的拉力一直减小D.细绳对球的拉力最小值等于G(四)整体法4.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接。
在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角,则m1所受支持力N和摩擦力f正确的是()A.N=m1g+m2g-FsinθB.N=m1g+m2g-FcosθC.f=FcosθD.f=Fsinθ(五)隔离法5.如图所示,水平放置的木板上面放置木块,木板与木块、木板与地面间的摩擦因数分别为μ1和μ2。
已知木块质量为m,木板的质量为M,用定滑轮连接如图所示,现用力F匀速拉动木块在木板上向右滑行,求力F的大小?6.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,已知人的质量为70 kg,吊板的质量为10 kg,绳及定滑轮的质量,滑轮的摩擦均可不计,取重力加速度g=10 m/s2,当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为()A.a=1 m/s2,FN=260 NB.a=1 m/s2,FN=330 NC.a=3 m/s2,FN=110 ND.a=3 m/s2,FN=50 N7.如图所示,静止在水平面上的三角架的质量为M,它中间用两根质量不计的轻质弹簧连着一质量为m的小球,当小球上下振动,三角架对水平面的压力为零的时刻,小球加速度的方向与大小是()A.向下,mMgB.向上,gC.向下,gD.向下,m gmM)(+(六)综合8. 如图所示,一夹子夹住木块,在力F作用下向上提升,夹子和木块的质量分别为m、M,夹子与木块两侧间的最大静摩擦均为f,若木块不滑动,力F的最大值是()答案1。
专题05 连接体问题、板块模型和传送带问题-2024年高考物理二轮专题综合能(002)
专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。
高中物理专题:连接体
专题:连接体问题题型一、加速度相同的连接体题型二、加速度不同的连接体题型三:临界(极值)类问题题型一、加速度相同的连接体1.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连。
当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a 2。
则有( )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 2答案 B解析 对a 、b 物体及弹簧整体分析,有:a 1=F -m 1+m 2g m 1+m 2=F m 1+m 2-g ,a 2=F m 1+m 2, 可知a 1<a 2,再隔离b 分析,有:F 1-m 2g =m 2a 1,解得:F 1=m 2F m 1+m 2, F 2=m 2a 2=m 2F m 1+m 2, 可知F 1=F 2,再由胡克定律知,x 1=x 2。
所以B 选项正确。
2.(多选)如图所示,光滑的水平地面上有三块木块a 、b 、c ,质量均为m ,a 、c 之间用轻质细绳连接。
现用一水平恒力F 作用在b 上,三者开始一起做匀加速运动,运动过程中把一块橡皮泥粘在某一木块上面。
系统仍加速运动,且始终没有相对滑动。
则在粘上橡皮泥并达到稳定后,下列说法正确的是 ( )A .无论粘在哪块木块上面,系统的加速度一定减小B .若粘在a 木块上面,绳的张力减小,a 、b 间摩擦力不变C .若粘在b 木块上面,绳的张力和a 、b 间摩擦力一定都减小D .若粘在c 木块上面,绳的张力和a 、b 间摩擦力一定都增大答案 ACD解析 无论粘在哪块木块上面,系统质量增大,水平恒力F 不变,对整体由牛顿第二定律得系统的加速度一定减小,选项A 正确;若粘在a 木块上面,对c 有F T c =ma ,a 减小,故绳的张力减小,对b 有F -F f =ma ,故a 、b 间摩擦力增大,选项B 错误;若粘在b 木块上面,对c 有F T c =ma ,对a 、c 整体有F f =2ma ,故绳的张力和a 、b 间摩擦力一定都减小,选项C 正确;若粘在c 木块上面,对b 有F -F f =ma ,则F f =F -ma ,a 减小,F f 增大,对a 有F f -F T c =ma ,则F T c =F f -ma ,F f 增大,a 减小,F T c 增大,选项D 正确。
巧用整体法,处理加速度不等的连接体问题
巧用整体法,处理加速度不等的连接体问题作者:李彦波来源:《中学生数理化·教与学》2014年第10期当我们所研究的系统内部各物体之间的相互作用比较复杂,而系统内的物体与外界的相互作用比较简单时,可以整体揭示事物的本质和变化规律,而不必追究系统内各物体的相互作用和每个运动阶段的细节,把系统当做一个整体进行研究,从而避开中间量的烦琐计算,从而巧妙简捷地解决问题.只关心过程的始、末状态(不关心过程的细节)时,可以把具有不同特点的几个物理过程组合成一个过程进行研究,这种把多个物体或多个过程作为一个整体进行研究的思维方法叫做整体法.在解决问题过程中,整体法往往被用于连接体问题的处理.所谓连接体,就是指两个或两个以上相互作用的物体组成的具有相同加速度的整体.所以,中学阶段涉及连接体问题时,要求连接体内的各个物体必须具有相同的加速度或加速度大小相等,才可以用整体法处理,而对于加速度不同的物体,只能老老实实地用隔离法去解决.其实,这种认识是错误的,加速度不同的物体,不仅可以看成整体,并用整体法处理,而且用整体法处理的话,会带来意想不到的效果.本文通过分析高三复习过程中探讨对加速度不等的连接体使用整体法处理的典型例题,以拓展解题思路,达到事半功倍的功效.一、知识规律对于一个物体而言,牛顿运动定律指出,物体所受的合外力等于其质量与加速度的乘积,即∑iFi=ma.对于一个具有共同运动加速度的连接体所构成的系统而言,牛顿运动定律指出,系统所受的合外力等于系统的总质量与加速度的乘积,即∑iFi=∑imia.对于一个加速度不等的连接体所构成的系统而言,牛顿运动定律指出,系统所受的合外力等于系统内各个物体所受合外力之和,即∑iFi=∑imiai.采用正交分解法,其两个分量的方程形式为∑iFix=∑imiaix和∑iFiy=∑imiaiy.二、典型例题三、典型训练总之,在加速度不等的系统中应用整体法解题优势明显.其实,不管是定性分析,还是定量求解,整体法较隔离法更能全面把握问题的关键,凸显运动和力的关系,能够有效地提高解题速度,使学生更深入地理解牛顿运动定律.在解题时应该清醒地认识到,此方法在带来简捷思路的同时,也可能增大出错风险.应用整体法解题的关键是,对整体的受力分析与系统各部分的正确全面的运动分析,尤其要注重加速度的分析,一定要理解其解题思想,方能得心应手.高中化学中有机化合物知识教学初探银川市第二中学勉利高中化学教学以发展学生的智力,培养学生的综合素质为目的,高中化学课程标准对元素化合物内容没有具体要求.元素化合物的核心转化为元素,以元素化合物的应用问题为重点.元素周期律的位置变化导致元素化合物知识体系的变化.在有机化合物知识的教学中,如何构建元素化合物知识体系?下面结合自己的教学实践谈点认识和体会.一、有机化学知识的重要地位化学是自然科学的重要组成部分,有机化学是化学科学重要组成部分,要培养学生和科学思想和方法、科学态度和价值观,学习有机化学知识是科学素质教育的重要途径.有机化学是生命科学、材料科学、环境科学、药物科学等学科的基础,与社会生产生活联系密切,为人类创造了巨大的价值.有机化学在现代社会中占有重要的地位.有机化学的飞速发展,对人类生活有着重要的意义,高中学生掌握必需的有机化学知识,是时代赋予他们的艰巨任务.有机化学选取了有机化学最基础的内容,主要是有机化合物的组成、结构、性质、反应,有机化学知识包括有机化合物的结构,有机化合物的性质两部分,结构部分包括有机物的分类体系及相关概念,几种典型有机物的结构,同系物、官能团、同分异构体和烃基等;有机化合物性质包括官能团性质和有机反应类型.由小分子到高分子有机物、由单官能团到多官能团衍生物,编排次序都是从个别推广到一般,教科书体系合乎学生的认知规律和学生心理发展特点.有机化学的迅速发展,有机物种类越来越多,有机化学教学对提高学生素质具有特殊的作用,有助于培养学生辩证唯物主义观点和科学的思维能力.在有机化学教学中,研究性学习和教学互动策略的运用,可以培养学生的探究能力和创新意识,建构科学知识观,提高学生的科学素养.二、从变式教学的角度,培养学生的创新能力在中学有机化学教学中,要培养学生的创新能力,要在把握有机化学中创新成分的不同类型的基础上,进行探究性教学实践活动.有机化学知识包括有机物组成、结构、性质及其合成,有机物共性及其变化规律,有机物整体的知识和有机物程序性的知识.通过对个别有机物知识的学习,总结归纳得到规律,从个别有机物概括出普遍属性.从有机化学的理论学习中,渗透辩证法思想和哲学思想,如质量互交思想、定性和定量思想、普遍联系、科学的发展观等.有机化学上的创新分为三类:新的有机物知识创新,理论方面的创新,研究有机物的工具和技术的创新.设计变式教学探究活动,可以培养学生的创新意识和创新能力.例如,学习有机物组成结构的确定,以CH4为例,让学生了解有机物的研究过程,理解科学知识的形成;以乙烯、乙炔、乙醇、乙酸为例,巩固理解官能团思想;以苯酚、葡萄糖等为例,让学生运用官能团预测有机物的性质,掌握有机物的学习技巧,促进知识和能力的共同发展.三、鼓励学生自主学习,培养学生的自学能力《中共中央国务院关于深化教育改革,全面推进素质教育的决定》提出,要重视培养学生收集处理信息的能力,获取知识的能力,分析和解决问题的能力.这就要求教师在教学中要重视学生自学能力的培养.高中学生自学能力还不够完善.自学能力是指学生独立地获取、探索和运用知识的能力,是多种能力组合而成的有机整体,是一种综合性的认识能力.需要观察、记忆、想象、思维等多种心理机能参与.阅读是自学的开始,反复阅读信息,然后进行比较和分析、整理和归纳、抽象和概括等思维加工,加深理解,最后构建知识框架.自学能力也是一种信息加工能力,自学过程中学生独立自主地掌握和运用知识.有机化学教学中要努力培养学生的自学能力,使学生掌握有机化学的基础知识,找到规律,形成自己的知识结构.例如,在讲“有机化学概论”时,渗透怎样学习有机化学的问题.可以进行分步骤完成,第一步,教师拟订学习参考提纲,第二步,学生预习内容,教师提出学习的基本要求,第三步,学生自学,第四步,组织讨论,提出探究性问题,小结本课内容.逐渐完成“由老师指导学”向“学生独立学”的过渡.信息技术的渗透可以使自主学习更深入.自主学习可以通过探究式学习和合作学习来完成,是一种开放性的教学活动:根据教学目标的需要,自由地选择学习方法,掌握知识和形成技能.把信息技术融入自主学习,可以增强探求问题的意识,学生自己检索知识,制作课件,对化学学科产生浓厚的学习兴趣.例如,在讲“单糖”时,探究了果糖为什么能够发生银镜,通过网络查询了解到单糖除了链状结构,还存在环状结构.同时还了解到葡萄糖被高碘酸氧化的知识以及葡萄糖与果糖的鉴别方法等,这些知识是因为信息技术的引入而获得的.信息技术渗透到化学教学中,有利于沟通教师和学生之间的关系,建立起合作学习的和谐学习氛围.教师和学生互相协作,广泛交流,共同探讨问题,建立起良好的师生关系,增强了学生的协调能力和组织能力,培养了学生的问题意识和质疑精神,提高分析判断能力,使学生形成严谨的科学态度,拓展了学生的知识面,提高了他们综合运用知识和解决问题的能力.四、运用实验探究教学,提高学生的动手能力实验是进行科学探究的一种重要途径,化学学科的特征是以实验为基础的.普通高中化学课程标准(实验)指出,通过以化学实验为主的多种探究活动,是学生体验科学探究的过程,激发学生学习化学的兴趣,强化科学探究的意识,促进学习方式的转变,培养学生的创新精神和实践能力.在实验探究活动中,学生主观能动性被调动起来,亲自动手、动脑进行实验,发散式思维得以训练,培养了他们的实践能力和创新精神.从理论上重视实验在化学教学中的作用.实验是提供学生感性认识的直观手段,激发学生学习化学的兴趣,是学生学习化学知识形成技能的方法,培养学生对化学问题的解决能力,帮助他们形成科学世界观.化学实验由教师的演示实验逐步向学生实验转化.在教师的指导下,学生亲自进行实验探究活动,学生学习的积极性、主动性和创造性被激发出来.电化教具的引入,为实验在化学教学的顺利进行提供了物质保障.高中化学教学中的实验探究活动,能够改变学生的学习方式,在学生的主动参与中,发展学生的实验能力,如收集和处理信息,提出和解决问题,让学生养成主动探究的心理意识.在实验探究式教学中,鼓励学生主动参与实验探究活动.以中学化学教材中的实验为基础,建构化学学科知识体系,很适合有机化合物知识的教学.化学是以实验为基础的学科,在有机物知识教学中,重视实验,充分发挥实验的作用,学生能力的培养不能脱离开化学基础知识和基本技能的教学,化学实验能够激发学生的学习兴趣.在有机化合物知识教学中培养学生的实验能力和观察能力,也需要通过化学实验来完成.例如,在讲“乙酸和乙醇的酯化反应”时,通过实验,让学生思考乙酸和乙醇中浓硫酸的加入顺序,观察蒸汽通过导管导入饱和碳酸钠溶液的位置等问题,启发学生积极思考,勇于质疑,学生在有趣的实验中掌握知识、发展能力.总之,有机化合物知识是高中化学学科体系的重要组成部分,学生在学习这方面知识时,不仅要掌握基础知识和基本技能,还要加强知识在生产生活的运用,通过用途来分析有机化合物的性质,发挥了学生学习的主动性,把探究活动融入教学过程,实现知识与技能,过程和方法,情感态度和价值观三维目标.。
在高中物理中用整体法处理加速度不等的连接体问题(最新整理)
在高中物理中用整体法处理加速度不等的连接体问题新疆和静高级中学 李彦波【摘要】整体法与隔离法是解决连接体问题的两种重要方法,其中,利用整体法思路清晰,步骤简洁,本文重点分析其在加速度不等系统中应用的思路和注意要点,以期引导学生能在较复杂情景中灵活自如地运用整体法。
【关键词】整体法 加速度不等系统整体法是物理解题过程中的一种重要方法,是指对物理问题中的整个系统或整个过程进行分析、研究的方法。
在力学中,就是把几个物体视为一个整体作为研究对象,受力分析时,只分析这一整体对象之外的物体对整体的作用力,不考虑整体内部之间的相互作用力。
这样就可以把物理问题化繁为简,变难为易。
在学生解决问题的过程中,整体法往往被用于连接体问题的处理。
所谓连接体,就是指两个或两个以上相互作用的物体组成的具有相同加速度的整体。
所以, 中学阶段涉及连接体问题时,要求连接体内的各个物体必须具有相同的加速度或加速度大小相等,才可以用整体法处理;,而对于加速度不同的物体只能老老实实用隔离法来做。
其实这种认识是错误的,加速度不同的物体不仅可以看成整体并用整体法来处理,而且用整体法来处理的话会带来意想不到的效果。
本文通过高三复习过程中,探讨对加速度不等的连接体的典型例题的整体法处理,期望读者能够站在整体法的高度来分析此类问题,以拓展解题思路,起到事半功倍的功效。
对于一个物体而言,牛顿运动定律指出:物体所受的合外力等于其质量与加速度的乘积,即① ma Fi i =∑对于一个具有共同运动加速度的连接体所构成的系统而言,牛顿运动定律指出:系统所受的合外力等于系统的总质量与加速度的乘积,即② a m F iii i ∑∑=对于一个加速度不等的连接体所构成的系统而言,牛顿运动定律指出:系统所受的合外力等于系统内各个物体所受合外力之和,即③,采用正交分解法,其 ii i ii a m F ∑∑=两个分量的方程形式为和ix i i i ix a m F ∑∑=iyi i i iy a m F ∑∑=动力学知识解题的能力,下面通过较复杂情景中的应用与隔离法作一比较。
专题17 动力学中的连接体问题、临界极值问题-2025版高三物理一轮复习多维度导学与分层专练
2025届高三物理一轮复习多维度导学与分层专练专题17动力学中的连接体问题、临界极值问题导练目标导练内容目标1加速度相同的连接体问题目标2加速度不同的连接体问题目标3动力学中的临界极值问题【知识导学与典例导练】一、动力学中的连接体问题1.处理连接体问题的方法(1)整体法的选取原则及解题步骤①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。
②运用整体法解题的基本步骤:(2)隔离法的选取原则及解题步骤①当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。
②运用隔离法解题的基本步骤:第一步:明确研究对象或过程、状态。
第二步:将某个研究对象或某段运动过程、某个状态从系统或全过程中隔离出来。
第三步:画出某状态下的受力图或运动过程示意图。
第四步:选用适当的物理规律列方程求解。
2.加速度相同的连接体问题常见模型条件交叉内力公式模型一地面光滑,m 1和m 2具有共同加速度整体:()a m m F 211+=(F 1为m 1所受到的外力)隔离m 2:m 2和m 1之间绳的拉力T (内力)大小:21212F T m a m m m ==+(注:分子是m 2与作用在m 1上的外力F 1交叉相乘)模型二地面光滑,m 1和m 2具有共同加速度整体:()a m m F 212+=(F 2为m 2所受到的外力)隔离m 1:m 2和m 1之间绳的拉力T (内力)大小:12112F T m a m m m ==+(注:分子是m 1与作用在m 2上的外力F 2交叉相乘)模型三地面光滑,m 1和m 2具有共同加速度整体:()am m F F 2121+=-(F 2为m 2所受到的外力,F 1为m 1所受到的外力)隔离m 1:m 2和m 1之间绳的拉力T (内力)大小:11F T m a-=21122111Fm FmT F m am m+=-=+(注:分子是m2与作用在m1上的外力F1交叉相乘“加上”m1与作用在m2上的外力F2交叉相乘)模型四地面光滑,m1和m2具有共同加速度整体:()ammFF2121+=+隔离m1:内力T:11F T m a-=22111112-Fm FmT F m am m=-=+(注:分子是m2与作用在m1上的外力F1交叉相乘“减去”m1与作用在m2上的外力F2交叉相乘)模型五地面不光滑,m1和m2具有共同加速度类似于模型三:对m1把(F1-f1)的合力记作F1’;对m2把(F2+f2)的合力记作F2’,则有:整体:()ammFF2121+=-’’隔离m1:12211112F mT m FF m am m+=-=+’’’(注:F1’和F2’分别为两个物体除内力以外的各自所受所有外力的合力,等同于模型三中的F1和F2,公式形式相同)模型六地面不光滑,m1和m2具有共同加速度类似于模型三:水平外力分别是m1受到的F1和m2受到的摩擦力f2,此种情况的水平内力为物体间的摩擦力F f。
高中物理 必修一 专题 连接体问题
3.整体法与隔离法的选择 (1)整体法的研究对象少、受力少、方程少,所以连接体问题优先采用整体法。 (2)涉及物体间相互作用的内力时,必须采用隔离法。 (3)若连接体内各物体具有相同的加速度且需要求解物体间的相互作用力,就 可以先用整体法求出加速度,再用隔离法分析其中一个物体的受力,即“先 整体求加速度,后隔离求内力”。 (4)若已知某个物体的受力情况,可先隔离该物体求出加速度,再以整体为研 究对象求解外力。
第四章 牛顿运动定律
专题 连接体问题
[学习目标] 1.会用整体法与隔离法分析连接体问题。 2.掌握动力学临界问题的分析方法,掌握几种典型临界问题的临界条件。
提升1 连接体问题
1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连 接体。例如,几个物体叠放在一起,或并排挤放在一起,或用绳子、弹簧、 细杆等连在一起。如:
F-(mA+mB)gsin θ-μ(mA+mB)gcos θ
=(mA+mB)a3
以B为研究对象 T3-mBgsin θ-μmBgcos θ=mBa3
答案 (1) mB F (2) mB F
联立解得 (3) mB
T3=mAm+BmBF。 F
mA+mB
mA+mB
mA+mB
【训练1】 (多选)如图所示,用水平力F推放在光滑水平面上的物体Ⅰ、Ⅱ、 Ⅲ,使其一起做匀加速直线运动,若Ⅰ对Ⅱ的弹力为6 N,Ⅱ对Ⅲ的弹力为
4 N,Ⅱ的质量是1 kg,则( AC)
A.Ⅲ物体的质量为2 kg B.Ⅲ物体的质量为4 kg C.Ⅲ物体的加速度为2 m/s2 D.Ⅲ物体的加速度为1 m/s2 解析 对Ⅱ受力分析,由牛顿第二定律可得F12-F32=m2a,代入数据解得a =2 m/s2,即整体的加速度为2 m/s2,选项C正确,D错误;对Ⅲ受力分析, 由牛顿第二定律可得F23=m3a,代入数据解得m3=2 kg,故A正确,B错误。
高中物理连接体问题
专题:连接体问题一、考情链接:“连接体”问题一直是高中物理学习的一大难题,也是高考考察的重点内容。
二、知识对接:对接点一、牛顿运动定律牛顿第一定律(惯性定律):任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态。
注意:各种状态的受力分析是解决连接体问题的前提。
牛顿第二定律:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
注意:①物体受力及加速度一定要一一对应,即相应的力除以相应的质量得到相应的加速度,切不可张冠李戴!②分析运动过程时要区分对地位移和相对位移。
》牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
注意:不要忽视牛顿第三定律的应用,尤其是在求“小球对轨道压力”时经常用到牛顿第三定律,且均在评分标准中占1-2分,一定不要忘记。
对接点二、功能关系与能量守恒(什么力做功改变什么能)1、合力做功量度了物体的动能变化W合=ΔE K2、重力做功量度了物体的重力势能的变化:W G=ΔE PG3、弹簧的弹力做功量度了弹性势能的变化:W弹=ΔE P弹4、除重力和弹簧的弹力以外的其他力做功量度了系统的机械能的变化:W其他=ΔE机5、系统内相互作用的摩擦力做功:A、系统内的一对静摩擦力做功:一对静摩擦力对系统做功的代数和为零,其作用是在系统内各物体间传递机械能。
)B、系统内的一对滑动摩擦力做功:其作用是使系统部分机械能转化为系统的内能,Q= fs相对。
6、电场力做功量度了电势能的变化:W E=ΔE PE7、安培力做功量度了电能的变化:安培力做正功,电能转化为其他形式能;克服安培力做功,其他形式能转化为电能。
三、规律方法突破突破点一、整体法与隔离法的运用①解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际出发,灵活选取研究对象,恰当使用隔离法和整体法。
②在选用整体法和隔离法时,要根据所求的力进行选择,若所求为外力,则应用整体法;若所求为内力,则用隔离法。
用牛顿第二定律解决加速度不同连接体问题
用牛顿第二定律解决加速度不同连接体问题青海省西宁市湟中县李家山中学 霍成军 邮编 811607牛顿第二定律不仅能解决加速度相同的连接体,而且能解决加速度不同连接体问题,这是表达式可写为F=m 1a 1+m 2a 2+…+m n a n ①其中,F 是系统所受的合外力,m 1、m 2、…、m n 是组成系统的每一个物体的质量,a 1、a 2、…、a n 是组成系统的每一个物体相对于同一参考系的加速度。
因为①式是矢量式。
所以,F 与a 1、a 2、…、a n 要共线,如F 与某一(或几个)加速度不共线时,将这些加速度在F 方向上分解。
此时牛顿第二定律表达式又写为F x =m 1a 1x +m 2a 2x +…+m n a nx②F y =m 1a 1y +m 2a 2y +…+m n a ny例1:如图,在倾角为θ的固定光滑斜面上,有一用绳子拴着长木板,木板上站着一个人,已知木板的质量是人的质量的2倍。
当绳子剪断是,人立即沿着板向上跑,以保持其相对位置不变。
则此时木板沿斜面下滑的加速度为( )A. θsin 2gB. gsin θC.θsin 23gD.2gsin θ分析:当绳子剪断是,把人和木板看作系统(以m 表示人的质量),受重力和斜面对木板的支持力,合外力的大小为3mgsin θ方向沿斜面向下。
人与斜面保持其相对位置不变,所以,人的加速度为零。
根据①有3mgsin θ=2mg a ,θsin 23g a =,所以选C 。
θb a M 例2:如图,一质量为M 的楔形木块放在水平桌面上,它的顶角为900,两底角为α和β;a 、b 为两个斜面上质量均为m 的小木块。
已知所有接触面都是光滑的。
先发现a 、b 沿斜面下滑,而楔形木块静止不动,这是楔形木块对水平桌面的压力等于( )A.Mg+mgB. Mg+2mgC. Mg+mg(sin α+sin β)D. Mg+mg(cos α+cos β)分析:采用隔离法求得a 、b 两物体的加速度大小分别为gsin α、gsin β,方向沿斜面向下。
牛顿第二定律的连接体问题
牛顿第二定律的连接体问题:连接体问题是一种常见的物理问题,通常涉及到两个或多个物体之间的相互作用和相互影响。
在牛顿第二定律的连接体问题中,我们通常考虑两个或多个物体之间的力和加速度之间的关系。
解决连接体问题的一般步骤如下:
确定研究对象:首先需要确定我们要研究的物体,通常可以选择一个或多个物体作为研究对象。
隔离物体:将选定的研究对象从系统中隔离出来,不考虑其他物体对它的作用力。
分析受力情况:对隔离出来的物体进行受力分析,找出所有的力和加速度之间的关系。
建立方程:根据牛顿第二定律,建立力和加速度之间的方程,求解出加速度。
考虑连接体之间的相互作用:连接体之间通常会有相互作用力,需要考虑这些力对各自物体的影响。
解方程求出答案:解方程求出物体的加速度和其他物理量,得到问题的答案。
探讨用整体法处理加速度不等的连接体问题
探讨用整体法处理加速度不等的连接体问题(214031 无锡市第一中学 沈志斌)中学阶段涉及连接体问题时,要求连接体内的各个物体必须具有相同的加速度或加速度大小相等,才可以用整体法处理;对于加速度不相同的连接体一般用隔离法处理,这时往往比较复杂。
事实上在理论上稍作补充,我们就可以用整体法来处理加速度不等的连接体问题。
本文通过高三复习过程中,探讨对加速度不等的连接体的典型例题的整体法处理,期望读者能够站在整体法的高度来分析此类问题,以拓展解题思路,起到事半功倍的功效。
一. 理论准备对于一个物体而言,牛顿运动定律指出:物体所受的合外力等于其质量与加速度的乘积,即 ma Fi i =∑① 对于一个具有共同运动加速度的连接体所构成的系统而言,牛顿运动定律指出:系统所受的合外力等于系统的总质量与加速度的乘积,即 a m F iii i ∑∑=② 对于一个加速度不等的连接体所构成的系统而言,牛顿运动定律指出:系统所受的合外力等于系统内各个物体所受合外力之和,即 ii i i i a m F ∑∑=③,采用正交分解法,其两个分量的方程形式为ix i i i ix a m F ∑∑=和iy ii i iy a m F ∑∑= 二.应用示范 例1 如图所示,木块A 与B 用一轻质弹簧相连,竖直放在木板上,三者静置于地面,它们的质量之比是1:2:3,设所有接触面都光滑,当沿水平面方向迅速抽出木板C 的瞬时,A和B 的加速度大小分别为____=A a ,____=B a 。
(1993上海)分析 考虑到弹簧在瞬间(0→∆t ),其长度不可能发生新的变化,因A 物体原来所受合力为零(平衡),此瞬间仍然保持平衡,所以0=A a ;采用整体法,受力分析如图2所示,根据iy i i i iy a m F∑∑=得 B A ma ma mg 23+=,可得g a B 5.1=。
例2 总质量为M 的气球由于故障在高空以匀速v 下降,为了阻止继续下降,在0=t 时刻,从热气球中释放了一个质量为m 的沙袋,不计空气阻力,问:经过多少时间气球停止下降?气球停止下降时,沙袋的速度为多大?(1996上海)分析 如图3所示,气球(含沙袋)匀速下降,则浮力等于整体的重力,即 Mg F =① 释放沙袋后,气球(含沙袋)整体受力不变,整体受的合外力仍等于零。
连接体问题专题详细讲解
连接体问题一、连接体与隔离体两个或两个以上物体相连接组成的物体系统,称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体。
二、外力和内力如果以物体系为研究对象,受到系统之外的作用力,这些力是系统受到的外力,而系统内各物体间的相互作用力为内力。
应用牛顿第二定律列方程不考虑内力。
如果把物体隔离出来作为研究对象,则这些内力将转换为隔离体的外力。
三、连接体问题的分析方法1.整体法连接体中的各物体如果加速度相同,求加速度时可以把连接体作为一个整体。
运用牛顿第二定律列方程求解。
2.隔离法如果要求连接体间的相互作用力,必须隔离其中一个物体,对该物体应用牛顿第二定律求解,此法称为隔离法。
3.整体法与隔离法是相对统一,相辅相成的。
本来单用隔离法就可以解决的连接体问题,但如果这两种方法交叉使用,则处理问题就更加方便。
如当系统中各物体有相同的加速度,求系统中某两物体间的相互作用力时,往往是先用整体法法求出加速度,再用隔离法法求物体受力。
简单连接体问题的分析方法1.连接体:两个(或两个以上)有相互作用的物体组成的具有相同大小加速度的整体。
2.“整体法”:把整个系统作为一个研究对象来分析(即当做一个质点来考虑)。
注意:此方法适用于系统中各部分物体的加速度大小方向相同情况。
3.“隔离法”:把系统中各个部分(或某一部分)隔离作为一个单独的研究对象来分析。
注意:此方法对于系统中各部分物体的加速度大小、方向相同或不相同情况均适用。
4.“整体法”和“隔离法”的选择求各部分加速度相同的连结体的加速度或合外力时,优选考虑“整体法”;如果还要求物体之间的作用力,再用“隔离法”,且一定是从要求作用力的那个作用面将物体进行隔离;如果连结体中各部分加速度不同,一般都是选用“隔离法”。
5.若题中给出的物体运动状态(或过程)有多个,应对不同状态(或过程)用“整体法”或“隔离法”进行受力分析,再列方程求解。
针对训练1.如图用轻质杆连接的物体AB沿斜面下滑,试分析在下列条件下,杆受到的力是拉力还是压力。
高考物理总复习 第三单元 牛顿运动定律 第2讲 连接体问题(含解析)
第2讲连接体问题1 连接体的定义及分类(1)两个或两个以上的物体,以某种方式连接在一起运动,这样的物体系统就是连接体。
(2)根据两物体之间相互连接的媒介不同,常见的连接体可以分为三大类。
①绳(杆)连接:两个物体通过轻绳或轻杆的作用连接在一起;②弹簧连接:两个物体通过弹簧的作用连接在一起;③接触连接:两个物体通过接触面的弹力或摩擦力的作用连接在一起。
(3)连接体的运动特点①轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等的。
②轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而杆上各点的线速度与转动半径成正比。
③轻弹簧——在弹簧发生形变的过程中,两端连接体的速率不一定相等;在弹簧形变最大时,两端连接体的速率相等。
【易错警示】(1)“轻”——质量和重力均不计。
(2)在任何情况下,绳中张力的大小相等,绳、杆和弹簧两端受到的弹力大小也相等。
1.1(2018衡水中学高三10月考试)如图所示,质量为m0、倾角为θ的斜面体静止在水平地面上,一质量为m 的小物块放在斜面上,轻推一下小物块后,它沿斜面向下匀速运动。
若给小物块持续施加沿斜面向下的恒力F,斜面体始终静止,重力加速度大小为g。
施加恒力F后,下列说法正确的是()。
A.小物块沿斜面向下运动的加速度为B.斜面体对地面的压力大小等于(m+m0)g+F sin θC.地面对斜面体的摩擦力方向水平向左D.斜面体对小物块的作用力的大小和方向都变化【答案】A1.2(2019福建福州三十四中检测)如图所示,材料相同的P、Q两物块通过轻绳相连,并在拉力F作用下沿斜面向上运动,轻绳与拉力F的方向均平行于斜面。
当拉力F一定时,Q受到绳的拉力()。
A.与斜面倾角θ有关B.与动摩擦因数有关C.与系统运动状态有关D.仅与两物块质量有关【答案】D2 连接体的平衡(1)关于研究对象的选取①单个物体:将物体受到的各个力的作用点全部画到物体的几何中心上。
连接体问题——高考物理热点模型(解析版)
连接体问题模型概述1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法.2.常见类型①物物叠放连接体:两物体通过弹力、摩擦力作用,具有相同的速度和加速度②轻绳连接体:轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.③轻杆连接体:轻杆平动时,连接体具有相同的平动速度和加速度.④弹簧连接体:在弹簧发生形变的过程中,两端连接体的速度、加速度不一定相等;在弹簧形变最大时,两端连接体的速度、加速度相等.3.方法:整体法与隔离法,正确选取研究对象是解题的关键.①整体法:若连接体内各物体具有相同的加速度,且不需要求系统内各物体之间的作用力,则可以把它们看作一个整体,根据牛顿第二定律,已知合外力则可求出加速度,已知加速度则可求出合外力.②隔离法:若连接体内各物体的加速度不相同,则需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③若连接体内各物体具有相同的加速度,且需要求物体之间的作用力,则可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力,即“先整体求加速度,后隔离求内力”.4.力的“分配”地面光滑两物块在力F 作用下一起运动,系统的加速度与每个物块的加速度相同,若外力F 作用于m 1上,则m 1和m 2的相互作用力F 弹=m 2m 1+m 2F ,若作用于m 2上,则F 弹=m 1m 1+m 2F 。
此“分配”与有无摩擦无关(若有摩擦,两物体与接触面间的动摩擦因数必须相同),与两物体间有无连接物、何种连接物(轻绳、轻杆、轻弹簧)无关,而且无论物体系统处于平面、斜面还是竖直方向,此“分配”都成立。
5.关联速度连接体轻绳在伸直状态下,两端的连接体沿绳方向的速度大小总是相等。
下面三图中A 、B 两物体速度和加速度大小相等,方向不同。
关联速度连接体做加速运动时,由于加速度的方向不同,一般分别选取研究对象,对两物体分别列牛顿第二定律方程,用隔离法求解加速度及相互作用力。
高中物理连接体问题
牛顿第二定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上得物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起得系统 二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间得内力 使用原则三、连接体题型:1【例1】A 、B 平力N F A 6=推A ,用水平力N F B 3=拉B ,A 、B 间得作用力有多大? 【练1】如图所示,质量为M 得斜面A 置于粗糙水平地面上,动摩擦因数为μ,物体B 与斜面间无摩擦。
在水平向左得推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。
已知斜面得倾角为θ,物体B 得质量为m ,则它们得加速度a 及推力F 得大小为( )A 、 )sin ()(,sin θμθ++==g m M F g aB 、 θθcos )(,cos g m M F g a +==C 、 )tan ()(,tan θμθ++==g m M F g aD 、 g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 得物体2滑定滑轮连接质量为1m 得物体,与物体1A 、 车厢得加速度为θsin gB 、 绳对物体1得拉力为θcos 1g mC 、 底板对物体2得支持力为g m m )(12-D 、 物体2所受底板得摩擦力为θtan 2g m2、连接体整体内部各部分有不同得加速度:【例2有一个环,箱与杆得总质量为M ,环得质量为m A BF AF BBθAF加速度大小为a时(a<g),则箱对地面得压力为()A 、 Mg + mg B、 Mg—ma C、 Mg + ma D、 Mg + mg – ma【练3】如图所示,一只质量为m得小猴抓住用绳吊在天花板上得一根质量为M得竖直杆。
当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面得高度不变。
则杆下降得加速度为()A、g B、gMmC、gMmM+D、gMmM-【练4】如图所示,在托盘测力计得托盘内固定一个倾角为30个重4 N得物体放在斜面上,让它自由滑下,那么测力计因4 N得读数就是()A、4 NB、23 NC、0 ND、3 N【练5】如图所示,A、B得质量分别为m A=0、2kg,m B=0、4kg,盘C得质量m C=0、6kg,现悬挂于天花板O处,处于静止状态。
不同加速度的连接体问题
不同加速度的连接体问题具有不同加速度的连接体问题⼀、两物体加速度⼤⼩相同⽅法点拨:对于此类问题⼀般采取隔离分析,分别在两个⽅向上进⾏受⼒分析,然后再根据⽜顿第⼆定律求解。
例1 ?如图所⽰,长为L、内壁光滑的直管与⽔平地⾯成30°⾓固定放置。
将⼀质量为m的⼩球固定在管底,⽤⼀轻质光滑细线将⼩球与质量为M=km的⼩物块相连,⼩物块悬挂于管⼝。
现将⼩球释放,⼀段时间后,⼩物块落地静⽌不动,⼩球继续向上运动,通过管⼝的转向装置后做平抛运动,⼩球在转向过程中速率不变。
⑴求⼩物块下落过程中的加速度⼤⼩;⑵求⼩球从管⼝抛出时的速度⼤⼩;⑶试证明⼩球平抛运动的⽔平位移总⼩于 2⼆、两物体加速度⼤⼩不同1 ?两物体加速度⼤⼩有关系⽅法点拨:此类问题中两物体加速度⼤⼩虽然不同,但是由于约束关系使得它们之间有⼀定的关系,这种关系⼀般从位移关系出发来找加速度的⼤⼩关系,然后分别在两个⽅向上进⾏受⼒分析,最后根据⽜顿第⼆定律求解。
例2.如图所⽰,质量均为m的物块A和B通过滑轮相连,A放在倾⾓为a= 37°的固定斜⾯上,不计滑轮质量及⼀切摩擦,则与A相连绳中的张⼒为多⼤?例3.如图所⽰,质量为m A的尖劈A ⼀⾯靠在竖直光滑墙上,另⼀⾯和质量为m B的光滑物块B接触,B可沿光滑⽔平⾯滑动,求A、B的加速度a A和a B的⼤⼩及A对B的压⼒。
(提⽰:a B=a A tan aAB2 .加速度⼤⼩之间⽆关系⽅法点拨:对于这类问题,⼀般采取隔离分析的⽅法来解决。
例4.如图,在光滑⽔平⾯上有⼀质量为m i的⾜够长的⽊板,其上叠放⼀质量为m2的⽊块。
假定⽊块和⽊板之间的最⼤静摩擦⼒和滑动摩擦⼒相等。
现给⽊块施加⼀随时间t增⼤的⽔平⼒F=kt( k是常数),⽊板和⽊块加速度的⼤⼩分别为a i和a2,下列反映a i和a2变化的图线中正确的是()例5.三个质量、形状相同的斜⾯体放在粗糙的⽔平地⾯上,另有三个质量相同的⼩物体从斜⾯顶端沿斜⾯滑下,由于⼩物体与斜⾯间的摩擦⼒不同,第⼀个物体匀加速下滑,第⼆个物体匀速下滑,第三个物体以初速度v o匀减速下滑,如图所⽰,三个斜⾯均保持不动,则下滑过程中斜⾯对地⾯压⼒()A . F i=F2=F3B . F i>F2>F3C . F iD . F i=F2>F3勺加速下灣啣速下淋匀减速下滑*附:质点系⽜顿第⼆定律质点系⽜顿第⼆定律在⾼中阶段不作要求,但应⽤于解答此类问题很⽅便,尤其对系统中各物体加速度不同的问题(如例4中的三个物体有着不同的加速度)应⽤起来简单明了。
2025高考物理力学知识点剖析
2025高考物理力学知识点剖析高中物理中的力学部分一直是高考的重点和难点,对于 2025 年高考的同学来说,深入理解和掌握力学知识点至关重要。
本文将对高考物理力学的重要知识点进行详细剖析,帮助同学们更好地应对高考。
一、牛顿运动定律牛顿第一定律指出,一切物体总保持匀速直线运动状态或静止状态,直到外力迫使它改变运动状态为止。
这一定律揭示了物体具有惯性,惯性的大小只与物体的质量有关。
牛顿第二定律是力学中的核心定律,其表达式为 F = ma,即物体所受的合力等于物体的质量与加速度的乘积。
这个定律明确了力、质量和加速度之间的定量关系。
在应用时,要注意合力的求解以及加速度与力和质量的对应关系。
牛顿第三定律表明,两个物体之间的作用力和反作用力总是大小相等、方向相反,且作用在同一条直线上。
作用力与反作用力同时产生、同时消失,性质相同。
在解题时,常常需要综合运用这三个定律。
例如,对于一个物体在粗糙水平面上受到水平拉力的问题,首先根据牛顿第二定律求出加速度,再考虑摩擦力和拉力的关系。
同时,要注意牛顿第三定律在分析物体之间相互作用时的应用。
二、功和能功是能量转化的量度。
力对物体做功的公式为 W =Fs cosθ,其中θ是力与位移方向的夹角。
正功表示动力做功,负功表示阻力做功。
动能定理指出,合外力对物体所做的功等于物体动能的变化。
即 W 合=ΔEk。
通过动能定理,可以方便地求解物体在复杂运动过程中的速度变化等问题。
势能包括重力势能、弹性势能等。
重力势能与物体的质量、高度有关,表达式为 Ep = mgh。
弹性势能与弹簧的形变量有关。
机械能守恒定律是指在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
在解决实际问题时,要明确研究对象和过程,判断是否满足机械能守恒的条件。
例如,一个物体自由下落的过程中,机械能守恒,可以通过势能的减少量等于动能的增加量来求解速度等物理量。
三、动量动量的定义为 p = mv,冲量的定义为 I = Ft。