(完整版)(考研高数)基本初等函数图像与性质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(高数)基本初等函数图像与性质
1.函数的五个要素:自变量,因变量,定义域,值域,对应法则
2.函数的四种特性:有界限,单调性,奇偶性,周期性
3.每个函数的图像很重要
一、幂函数 a x =y (a 为常数)
最常见的几个幂函数的定义域及图形
1.当a 为正整数时,函数的定义域为区间(,)x ∈-∞+∞,他们的图形都经过原点,并当a>1时在原点处与x 轴相切。且a 为奇数时,图形关于原点对称;a 为偶数时图形关于y 轴对称;
2.当a 为负整数时。函数的定义域为除去x =0的所有实数。
3.当a 为正有理数m n 时,n 为偶数时函数的定义域为(0,)+∞,n 为奇数时函数的定义域为(,)-∞+∞。函数的图形均经过原点和(1,1);
如果m n >图形于x 轴相切,如果m n <,图形于y 轴相切,且m 为偶数时,还跟y 轴对
称;m,n均为奇数时,跟原点对称。
4.当a为负有理数时,n为偶数时,函数的定义域为大于零的一切实数;n为奇数时,定义域为去除x=0以外的一切实数。
二、指数函数
x
a
y=(a是常数且01
a a
>≠
,),)
,
(+∞
-∞
∈
x