一元二次函数根的分布规律探究
人教版高中数学必修一教案:一元二次方程根的分布
一元二次方程根的分布教学设计一、教学分析(一)教学内容分析本节课所讲的内容是高中数学必修一第三章第一节《函数与方程》之后的一个专题内容,是中学数学的重要内容之一。
这段内容与一元二次不等式,二次函数等内容有着紧密的联系。
它是在前面学习了函数与方程,二次方程,二次不等式基础上对函数与方程内容的深化和拓展,通过根的分布的不同情况,充分体现了由简单到复杂、特殊到一般的化归的数学思想。
从而提升学生对数学知识的应用能力。
通过学习一元二次方程根的分布,有助于学生进一步理解二次方程,二次函数,加深函数与方程思想,数形结合思想在数学学习中的应用的认识,同时也为以后数学的学习打下扎实的基础。
(二)教学对象分析高中一年级的学生已经有了一定的观察识图能力及分析判断能力,有利用已有知识解决新问题的愿望。
学生学习了函数与方程,二次方程,二次函数的知识,已经具有用数学知识解决实际问题的能力。
学生抽象逻辑思维很大程度上还属于经验型,需要感性经验的直接支持。
通过学习,抽象逻辑思维逐步成熟,能够用理论作为指导来分析、综合各种事实材料,从而不断扩大自己的知识领域。
(三)教学环境分析由于本节课涉及到根的分布情况较多,对老师的的作图提出了很高的要求。
采用传统的板式教学,根本就无法向学生演示动态过程,很难满足学生的求知欲,达不到教学的最佳效果。
多媒体网络教学,是现代高中数学教学全新的教育技术,使传统的教学方式得到补充。
在计算机的帮助下,利用制作好的几何画板课件,操作演示,感受根的分布的不同情况,加深学生的认识和理解,同时也符合学生认识事物从感性认识到理想认识的认知过程。
(四)教学手段采用多媒体网络教学。
《普通高中数学课程标准》指出:“现代信息技术的广泛应用真正对数学教学、数学学习方面产生深刻的影响,数学课程的设计应重视运用现代信息技术,大力开发并向学生提供更为丰富的学习资源,提倡实现信息技术与课程内容的有机结合。
”本节课涉及到的图象信息较多,利用多媒体网络教学可以实现最大容量地向学生提供图象信息,并让学生整理归纳信息,增强学生的动手能力、思考能力和自主学习能力,也能实现数学课堂中学生的高参与度,从而实现资源、时间、效率的最优化。
二次函数与幂函数的知识点总结与题型归纳
二次函数与幂函数的知识点总结与题型归纳1.二次函数的定义与解析式(1) 二次函数的定义形如:f(x)=ax2+bx+c_(a≠0)的函数叫作二次函数.(2) 二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c_(a≠ 0).②顶点式:f(x)=a(x-m)2+n(a≠ 0).③零点式:f(x)=a(x-x1)(x-x2)_(a≠ 0).2.二次函数的图象和性质3. 幂函数形如y=xα(α∈R)的函数称为幂函数,其中x 是自变量,α是常数.4.幂函数的图象及性质(1) 幂函数的图象比较(2) 幂函数的性质比较1(1) 已知三个点的坐标时,宜用一般式.(2) 已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(3) 已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2. 幂函数的图象(1)在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴,在 (1,+ ∞) 上幂函数中指数越大,函数图象越远离 x 轴.1(2)函数 y =x ,y =x 2,y =x 3,y =x 2,y =x -1 可作为研究和学习幂函数 图象和性质的代表.题型一 求二次函数的解析式例1 已知二次函数 f(x)满足 f(2)=-1,f(-1)=-1,且 f(x)的最大值是8, 试确定此二次函数.思维启迪: 确定二次函数采用待定系数法,有三种形式,可根据条件 灵活运用.解 方法一 设 f(x)=ax 2+bx +c (a ≠0),∴所求二次函数解析式为 f(x)=-4x 2+4x +7.方法二 设 f(x)=a(x -m)2+n ,a ≠ 0.∵f(2)=f(-1),2+ - 1 1 1 ∴抛物线对称轴为 x = 2 = 2.∴m = 2. 又根据题意函数有最大值为 n = 8,12∴y =f(x)=a (x )2 +8.依题意有4a +2b +c =-1, a -b +c =-1, 4ac -b 2 4a =8, a =-4,解之,得 b =4, c =7,∵f(2)=-1,∴a(x 1) +8=-1,解之,得a=- 4.2∴f(x)=-4(x 1)2+8=-4x2+4x+7.2方法三依题意知,f(x)+1=0 的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),a≠0.即f(x)=ax2-ax-2a-1.4a -2a-1 -a2又函数有最大值y max=8,即4a=8,解之,得a=-4或a=0(舍去).∴函数解析式为f(x)=-4x2+4x+7.探究提高二次函数有三种形式的解析式,要根据具体情况选用:如和对称性、最值有关,可选用顶点式;和二次函数的零点有关,可选用零点式;一般式可作为二次函数的最终结果.题型二二次函数的图象与性质例 2 已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2 时,求f(x)的最值;(2)求实数 a 的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3) 当a=1 时,求f(|x|)的单调区间.思维启迪:对于(1)和(2)可根据对称轴与区间的关系直接求解,对于(3),应先将函数化为分段函数,再求单调区间,注意函数定义域的限制作用.解:(1)当a=-2 时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6],∴f(x)在[-4,2]上单调递减,在[2,6]上单调递增,∴f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.(3) 当a=1 时,f(x)=x2+2x+3,∴f(|x|)=x2+2|x|+3,此时定义域为x∈[-6,6],x2+2x+3,x∈0,6]且f(x)=2,x2-2x+3,x∈[-6,0]∴f(|x|)的单调递增区间是(0,6],单调递减区间是[-6,0].探究提高(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解.题型三二次函数的综合应用例 3 若二次函数f(x)=ax2+bx+ c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m 恒成立,求实数m 的取值范围.思维启迪:对于(1),由f(0)=1可得c,利用f(x+1)-f(x)=2x恒成立,可求出a,b,进而确定f(x)的解析式.对于(2),可利用函数思想求得.解(1)由f(0)=1,得c=1.∴f(x)=ax2+bx+1.又f(x+1)-f(x)=2x,∴ a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,2a=2,a=1,即2ax+a+b=2x,∴∴a+b=0,b=- 1.因此,f(x)=x2-x+1.(2)f(x)>2x+m 等价于x2-x+1>2x+m,即x2-3x+1-m>0,要使此不等式在[-1,1]上恒成立,只需使函数g(x)=x2-3x+1-m在[-1,1]上的最小值大于0 即可.∵g(x)=x2-3x+1-m 在[-1,1]上单调递减,∴g(x)min =g(1) =-m-1,由-m-1>0 得,m<-1.因此满足条件的实数m 的取值范围是(-∞,-1).探究提高二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.用函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.题型四幂函数的图象和性质例 4 已知幂函数f(x)=xm2-2m-3 (m∈N*)的图象关于y轴对称,且在(0,+∞ )上是减函数,求满足(a+1)-m3<(3-2a)-m3的 a 的取值范围.思维启迪:由幂函数的性质可得到幂指数m2-2m-3<0,再结合m 是整数,及幂函数是偶函数可得m 的值.解∵函数在(0,+∞)上递减,∴ m2-2m-3<0,解得-1<m<3.∵m∈N*,∴m=1,2.又函数的图象关于y轴对称,∴m2-2m-3是偶数,而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,1∴m=1.而f(x)=x-3在(-∞,0),(0,+∞)上均为减函数,11∴(a+1)-3<(3 -2a)-3等价于a+1>3-2a>0 或0>a+1>3-2a 或 a+1<0<3-2a.2 3 2 3解得a<-1 或3<a<2. 故 a 的取值范围为a|a<-1或3<a<2 .探究提高(1)幂函数解析式一定要设为y=xα(α为常数的形式);(2)可以借助幂函数的图象理解函数的对称性、单调性.方法与技巧1.二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数 形结合来解,一般从 ①开口方向; ②对称轴位置; ③判别式; ④端点 函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时, 一般需借助于二次函数的图 象、性质求解.2. 与二次函数有关的不等式恒成立问题(1)ax 2+ bx + c>0, a ≠ 0 恒成立的充要条件是(2)ax 2+ bx + c<0, a ≠ 0 恒成立的充要条件是3. 幂函数 y =x α(α∈R),其中 α为常数,其本质特征是以幂的底 x 为自变 量,指数 α为常数.失误与防范1. 对于函数 y = ax 2+bx + c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明 a ≠0时,就要讨论 a =0和 a ≠0两种情况. 2. 幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象a>0 b 2-4ac<0a<0最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.。
浙江省2020版高考数学第三章函数的概念与基本初等函数Ⅰ第2节二次函数习题(含解析)
第2节 二次函数考试要求 1.理解二次函数的图象和性质,能用二次函数、方程、不等式之间的关系解决简单问题;2.能解决一元二次方程根的分布问题;3.能解决二次函数的最值问题.知 识 梳 理1.二次函数表达式的三种形式 (1)一般式:y =ax 2+bx +c (a ≠0).(2)顶点式:y =a (x +h )2+k (其中a ≠0,顶点坐标为(-h ,k )).(3)零点式:y =a (x -x 1)(x -x 2)(其中a ≠0,x 1,x 2是二次函数的图象与x 轴的两个交点的横坐标).2.二次函数y =ax 2+bx +c 的图象和性质3.二次函数的最值问题二次函数的最值问题主要有三种类型:“轴定区间定”“轴动区间定”“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f (x )=ax 2+bx +c (a >0),则二次函数f (x )在闭区间[m ,n ]上的最大值、最小值有如下的分布情况:4.一元二次方程根的分布设方程ax2+bx+c=0(a≠0)的不等两根为x1,x2且x1<x2,相应的二次函数为f(x)=ax2+bx+c(a≠0),方程的根即为二次函数图象与x轴的交点,它们的分布情况见下面各表(每种情况对应的均是等价条件)表一:(两根与k的大小比较)表二:(根在区间上的分布)若两根有且仅有一根在(m ,n )内,则需分三种情况讨论:①当Δ=0时,由Δ=0可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去;②当f (m )=0或f (n )=0,方程有一根为m 或n ,可以求出另外一根,从而检验另一根是否在区间(m ,n )内;③当f (m )·f (n )<0时,则两根有且仅有一根在(m ,n )内. [常用结论与易错提醒]不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0. (2)不等式ax2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果二次函数f (x )的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为f (x )=(x -1)2-1.( )(2)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是⎝ ⎛⎭⎪⎫120,+∞.( )(3)二次函数y =ax 2+bx +c (x ∈R )不可能是偶函数.( )(4)二次函数y =ax 2+bx +c (x ∈[a ,b ])的最值一定是4ac -b24a.( )答案 (1)√ (2)√ (3)× (4)×2.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)的值是( ) A.5 B.-5 C.6D.-6解析 由f (1)=f (2)=0知方程x 2+px +q =0的两根分别为1,2,则p =-3,q =2,∴f (x )=x 2-3x +2,∴f (-1)=6.答案 C3.若方程x 2+(m +2)x +m +5=0只有负根,则m 的取值范围是( ) A.[4,+∞) B.(-5,-4] C.[-5,-4]D.(-5,-2)解析 由题意得⎩⎪⎨⎪⎧Δ=(m +2)2-4×(m +5)≥0,x 1+x 2=-(m +2)<0,x 1x 2=m +5>0,解得m ≥4.答案 A4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为( ) A.[0,1] B.[1,2] C.(1,2]D.(1,2)解析 画出函数y =x 2-2x +3的图象(如图),由题意知1≤m ≤2.答案 B5.已知方程x 2+(m -2)x +2m -1=0的较小的实根在0和1之间,则实数m 的取值范围是 .解析 令f (x )=x 2+(m -2)x +2m -1.由题意得 ⎩⎪⎨⎪⎧f (0)>0,f (1)<0,即⎩⎪⎨⎪⎧2m -1>0,1+(m -2)+2m -1<0, 解得12<m <23.答案 ⎝ ⎛⎭⎪⎫12,23 6.若函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上是减函数,则实数a 的取值范围是 ,且函数f (x )恒过点 .解析 二次函数f (x )图象的对称轴是x =1-a ,由题意知1-a ≥3,∴a ≤-2.由函数的解析式易得,函数f (x )恒过定点(0,2). 答案 (-∞,-2] (0,2)考点一 二次函数的解析式 【例1】 求下列函数的解析式:(1)(一题多解)已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8;(2)已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ). 解 (1)法一(利用一般式解题): 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7. 法二(利用顶点式解题): 设f (x )=a (x -m )2+n (a ≠0). ∵f (2)=f (-1),∴二次函数图象的对称轴为x =2+(-1)2=12,∴m =12.又根据题意函数有最大值8,∴n =8.∴y =f (x )=a ⎝ ⎛⎭⎪⎫x -122+8. ∵f (2)=-1,∴a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,∴f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三(利用零点式解题):由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1)(a ≠0), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8,解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7. (2)∵f (2-x )=f (2+x )对x ∈R 恒成立, ∴f (x )的对称轴为x =2.又∵f (x )的图象在x 轴上截得的线段长为2, ∴f (x )=0的两根为1和3.设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0), 又∵f (x )的图象过点(4,3),∴3a =3,∴a =1. ∴所求f (x )的解析式为f (x )=(x -1)(x -3), 即f (x )=x 2-4x +3.规律方法 用待定系数法求二次函数的解析式,关键是灵活选取二次函数解析式的形式,选法如下:【训练1】 若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )= .解析 由f (x )是偶函数知f (x )的图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],∴2a 2=4,故f (x )=-2x 2+4.答案 -2x 2+4考点二 二次函数的图象与性质【例2】 已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =-1时,求f (|x |)的单调区间.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增, ∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15, 故f (x )的最大值是35.(2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4, 故a 的取值范围是(-∞,-6]∪[4,+∞).(3)由-4≤|x |≤6,得-6≤x ≤6,当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0, 其图象如图所示,∴f (|x |)在[-6,6]上的单调区间有[-6,-1),[-1,0),[0,1),[1,6]. 规律方法 解决二次函数图象与性质问题时要注意:(1)抛物线的开口、对称轴位置、定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论; (2)要注意数形结合思想的应用.【训练2】 (1)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )(2)若函数f (x )=ax 2+2x +3在区间[-4,6]上是单调递增函数,则实数a 的取值范围是W.解析 (1)由A ,C ,D 知,f (0)=c <0,从而由abc >0,所以ab <0,所以对称轴x =-b2a >0,知A ,C 错误,D 满足要求;由B 知f (0)=c >0, 所以ab >0,所以对称轴x =-b2a<0,B 错误.(2)由题意可知f ′(x )=2ax +2≥0在[-4,6]上恒成立, 所以⎩⎪⎨⎪⎧f ′(-4)=-8a +2≥0,f ′(6)=12a +2≥0,所以-16≤a ≤14.答案 (1)D (2)⎣⎢⎡⎦⎥⎤-16,14考点三 二次函数的最值【例3-1】 已知函数f (x )=ax 2+2ax +1在区间[-1,2]上有最大值4,求实数a 的值. 解 f (x )=a (x +1)2+1-a .(1)当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;(2)当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得a =38; (3)当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3.综上可知,a 的值为38或-3.【例3-2】 将例3-1改为:求函数f (x )=x 2+2ax +1在区间[-1,2]上的最大值. 解 f (x )=(x +a )2+1-a 2,∴f (x )的图象是开口向上的抛物线,对称轴为x =-a , (1)当-a <12,即a >-12时,f (x )max =f (2)=4a +5;(2)当-a ≥12,即a ≤-12时,f (x )max =f (-1)=2-2a .综上,f (x )max=⎩⎪⎨⎪⎧4a +5,a >-12,2-2a ,a ≤-12.规律方法 研究二次函数的性质,可以结合图象进行;对于含参数的二次函数问题,要明确参数对图象的影响,进行分类讨论.【训练3】 设函数f (x )=x 2-2x +2,x ∈[t ,t +1],t ∈R ,求函数f (x )的最小值. 解 f (x )=x 2-2x +2=(x -1)2+1,x ∈[t ,t +1],t ∈R ,函数图象的对称轴为x =1. 当t +1<1,即t <0时,函数图象如图(1)所示,函数f (x )在区间[t ,t +1]上为减函数, 所以最小值为f (t +1)=t 2+1;当t ≤1≤t +1,即0≤t ≤1时,函数图象如图(2)所示,在对称轴x =1处取得最小值,最小值为f (1)=1;当t >1时,函数图象如图(3)所示,函数f (x )在区间[t ,t +1]上为增函数, 所以最小值为f (t )=t 2-2t +2.综上可知,f (x )min =⎩⎪⎨⎪⎧t 2+1,t <0,1,0≤t ≤1,t 2-2t +2,t >1.考点四 一元二次方程根的分布 多维探究角度1 两根在同一区间【例4-1】 若二次函数y =-x 2+mx -1的图象与两端点为A (0,3),B (3,0)的线段AB 有两个不同的交点,求实数m 的取值范围. 解 线段AB 的方程为x 3+y3=1(x ∈[0,3]), 即y =3-x (x ∈[0,3]),由题意得方程组:⎩⎪⎨⎪⎧y =3-x ,y =-x 2+mx -1, 消去y 得x 2-(m +1)x +4=0,①由题意可得,方程①在x ∈[0,3]内有两个不同的实根,令f (x )=x 2-(m +1)x +4,则⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0≤m +12≤3,f (0)=4≥0,f (3)=10-3m ≥0,解得⎩⎪⎨⎪⎧m <-5或m >3,-1≤m ≤5,m ≤103,所以3<m ≤103.故实数m 的取值范围是⎝⎛⎦⎥⎤3,103.角度2 两根在不同区间【例4-2】 求实数m 的取值范围,使关于x 的方程x 2+2(m -1)x +2m +6=0. (1)一根大于1,另一根小于1; (2)两根α,β满足0<a <1<β<4; (3)至少有一个正根.解 令f (x )=x 2+2(m -1)x +2m +6, (1)由题意得f (1)=4m +5<0,解得m <-54.即实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-54. (2)⎩⎪⎨⎪⎧f (0)=2m +6>0,f (1)=4m +5<0,f (4)=10m +14>0,解得⎩⎪⎨⎪⎧m >-3,m <-54,m >-75,所以-75<m <-54.故实数m 的取值范围是⎝ ⎛⎭⎪⎫-75,-54.(3)当方程有两个正根时,⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)>0,f (0)=2m +6>0,-2(m -1)>0, 解得-3<m <-1.当方程有一个正根一个负根时,f (0)=2m +6<0,解得m <-3. 当方程有一个根为零时,f (0)=2m +6=0,解得m =-3, 此时f (x )=x 2-8x ,另一根为8,满足题意. 综上可得,实数m 的取值范围是(-∞,-1). 角度3 在区间(m ,n )内有且只有一个实根【例4-3】 已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围. 解 依题意,得(1)⎩⎪⎨⎪⎧m >0,Δ=(-2)2-4m >0,无解.f (0)<0, (2)⎩⎪⎨⎪⎧m <0,Δ=(-2)2-4m >0,解得m <0.f (0)>0,(3)⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0. 解得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点. 综上所述,m 的取值范围是(-∞,0]∪{1}.规律方法 利用二次函数图象解决方程根的分布的一般步骤: (1)设出对应的二次函数;(2)利用二次函数的图象和性质列出等价不等式(组); (3)解不等式(组)求得参数的范围.【训练4】 (1)已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.(2)若关于x 的方程x 2+2(m -1)x +2m +6=0有且只有一根在区间(0,3)内,求实数m 的取值范围.解 (1)令f (x )=(m +2)x 2-(2m +4)x +(3m +3).由题意可知(m +2)·f (1)<0, 即(m +2)(2m +1)<0,所以-2<m <-12.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-2,-12. (2)令f (x )=x 2+2(m -1)x +2m +6,①⎩⎪⎨⎪⎧Δ=4(m -1)2-4(2m +6)=0,0<-(m -1)<3, 解得⎩⎪⎨⎪⎧m =-1或m =5,-2<m <1,所以m =-1.②f (0)·f (3)=(2m +6)(8m +9)<0, 解得-3<m <-98.③f (0)=2m +6=0,即m =-3时,f (x )=x 2-8x ,另一根为8∉(0,3),所以舍去; ④f (3)=8m +9=0,即m =-98时,f (x )=x 2-174x +154,另一根为54∈(0,3),满足条件.综上可得,-3<m ≤-98或m =-1.所以实数m 的取值范围是⎝⎛⎦⎥⎤-3,-98∪{-1}.基础巩固题组一、选择题1.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A.a >0,4a +b =0 B.a <0,4a +b =0 C.a >0,2a +b =0D.a <0,2a +b =0解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b2a =2,所以4a +b =0.答案 A2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(-∞,0]B.[2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]解析 f (x )的对称轴为x =1,由f (x )在[0,1]上递减知a >0,且f (x )在[1,2]上递增,f (0)=f (2),∵f (m )≤f (0),结合对称性,∴0≤m ≤2. 答案 D3.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A.-1 B.1 C.2D.-2解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 B4.已知函数f (x )=x 2-2ax +b (a ,b ∈R ),记f (x )在[a -b ,a +b ]上的最大值为M ,最小值为m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 无关,且与b 无关 C.与a 有关,但与b 无关D.与a 无关,但与b 有关解析 函数f (x )=x 2-2ax +b =(x -a )2-a 2+b ,所以f (x )的对称轴为x =a 且开口向上,因为区间[a -b ,a +b ]也关于x =a 对称,所以m =f (a )=b -a 2,M =f (a -b )=f (a +b )=b 2-a 2+b ,所以M -m =b 2,故选D. 答案 D5.(2019·嘉兴检测)若f (x )=x 2+bx +c 在(m -1,m +1)内有两个不同的零点,则f (m -1)和f (m +1)( ) A.都大于1 B.都小于1 C.至少有一个大于1D.至少有一个小于1解析 设函数f (x )=x 2+bx +c 的两个零点为x 1,x 2,则f (x )=(x -x 1)(x -x 2),因为函数f (x )=x 2+bx +c 的两个零点在(m -1,m +1)内,所以f (m -1)>0,f (m +1)>0,又因为f (m-1)f (m +1)=(m -1-x 1)(m -1-x 2)·(m +1-x 1)(m +1-x 2)=[-(m -1-x 1)(m +1-x 1)]·[-(m -1-x 2)(m +1-x 2)]<[-(m -1-x 1)+(m +1-x 1)]24·[-(m -1-x 2)+(m +1-x 2)]24=1,所以f (m-1)和f (m +1)至少有一个小于1,故选D. 答案 D6.若函数f (x )=x 2+kx +m 在[a ,b ]上的值域为[n ,n +1],则b -a ( ) A.既有最大值,也有最小值 B.有最大值但无最小值 C.无最大值但有最小值D.既无最大值,也无最小值解析 取k =m =n =0,f (x )=x 2,由图象可知,显然b -a 不存在最小值.∵f (a )=a 2+ka +m ,f (b )=b 2+kb +m ,f ⎝ ⎛⎭⎪⎫a +b 2=⎝ ⎛⎭⎪⎫a +b 22+k ⎝ ⎛⎭⎪⎫a +b 2+m ,∴(b -a )22=f (a )+f (b )-2f ⎝ ⎛⎭⎪⎫a +b 2≤n +1+n +1-2n =2,∴b -a ≤2,当b =2-k 2,a =-2+k2时,b -a 取得最大值为2,故选B. 答案 B7.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b24,当x =-b 2时,f (x )min =-b 24.又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件. 答案 A8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a 对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集不可能是( ) A.{1,2} B.{1,4} C.{1,2,3,4}D.{1,4,16,64}解析 ∵f (x )=ax 2+bx +c (a ≠0)的对称轴为x =-b2a .设方程m [f (x )]2+nf (x )+p =0的解为f 1(x ),f 2(x ),则必有f 1(x )=y 1=ax 2+bx +c ,f 2(x )=y 2=ax 2+bx +c ,那么从图象上看y =y 1,y =y 2是平行x 轴的两条直线,它们与f (x )有交点, 由对称性,方程y 1=ax 2+bx +c =0的两个解x 1,x 2应关于对称轴x =-b2a 对称,即x 1+x 2=-ba ,同理方程y 2=ax 2+bx +c =0的两个解x 3,x 4也关于对称轴x =-b2a对称, 即x 3+x 4=-b a,在C 中,可以找到对称轴直线x =2.5,也就是1,4为一个方程的根,2,3为一个方程的根,而在D 中,找不到这样的组合使得对称轴一致,也就是说无论怎样分组,都没办法使得其中两个的和等于另外两个的和,故答案D 不可能. 答案 D9.(2019·衢州二中二模)已知函数f (x )=x 2+ax +b (a ,b ∈R ),若存在非零实数t ,使得f (t )+f ⎝ ⎛⎭⎪⎫1t =-2成立,则a 2+4b 2的最小值为( )A.165B.145C.16D.4 解析 由f (t )+f ⎝ ⎛⎭⎪⎫1t =-2知,存在实数t ≠0,使⎝ ⎛⎭⎪⎫t +1t 2+a ⎝ ⎛⎭⎪⎫t +1t +2b =0成立,又a 2+4b 2的几何意义为坐标原点与点(a ,2b )的距离的平方,记2b =m ,u =t +1t,则u 2≥4.故⎝ ⎛⎭⎪⎫t +1t 2+a ⎝⎛⎭⎪⎫t +1t +2b =0,即ua +m +u 2=0,其表示动点(a ,m )的轨迹,设为直线l ,则原点与点(a ,m )的距离的最小值为原点到直线l 的距离,故a 2+4b 2≥⎝ ⎛⎭⎪⎫u 2u 2+12=⎝⎛⎭⎪⎫u 2+1-1u 2+12≥165,故选A. 答案 A 二、填空题10.已知b ,c ∈R ,函数y =x 2+2bx +c 在区间(1,5)上有两个不同的零点,则f (1)+f (5)的取值范围是 .解析 设f (x )的两个零点为x 1,x 2,不妨设1<x 1<x 2<5,则f (1)>f (x 1)=0,f (5)>f (x 2)=0,所以f (1)+f (5)>0.另一方面f (x )=(x -x 1)·(x -x 2),所以f (1)+f (5)=(1-x 1)·(1-x 2)+(5-x 1)(5-x 2)=2x 1x 2-6(x 1+x 2)+26<2x 1x 2-12x 1x 2+26=2(x 1x 2-3)2+8<2(25-3)2+8=16,所以f (1)+f (5)的取值范围是(0,16).答案 (0,16)11.已知f (x )=⎩⎪⎨⎪⎧x 2(x ≥t ),x (x <t ),若存在实数t ,使函数y =f (x )-a 有两个零点,则t 的取值范围是 .解析 由题意知函数f (x )在定义域上不单调,如图,当t =0或t ≥1时,f (x )在R 上均单调递增,当t <0时,在(-∞,t )上f (x )单调递增,且f (x )<0,在(t ,0)上f (x )单调递减,且f (x )>0,在(0,+∞)上f (x )单调递增,且f (x )>0.故要使得函数y =f (x )-a 有两个零点,则t 的取值范围为(-∞,0)∪(0,1).答案 (-∞,0)∪(0,1)12.(2019·诸暨统考)已知a ,b 都是正数,a 2b +ab 2+ab +a +b =3,则2ab +a +b 的最小值等于 .解析 设2ab +a +b =t ,则t >0,且3=ab (a +b )+ab +a +b =ab (t -2ab )+t -ab ,故关于ab 的二次方程2(ab )2+(1-t )ab +3-t =0的解为正数,所以⎩⎪⎨⎪⎧Δ=(1-t )2-8(3-t )≥0,t -12>0,3-t 2>0,解得42-3≤t <3,即2ab +a +b 的最小值等于42-3.答案 42-313.已知f (x +1)=x 2-5x +4. (1)f (x )的解析式为 ;(2)当x ∈[0,5]时,f (x )的最大值和最小值分别是 . 解析 (1)f (x +1)=x 2-5x +4,令x +1=t ,则x =t -1, ∴f (t )=(t -1)2-5(t -1)+4=t 2-7t +10,∴f (x )=x 2-7x +10.(2)∵f (x )=x 2-7x +10,其图象开口向上,对称轴为x =72,72∈[0,5],∴f (x )min =f ⎝ ⎛⎭⎪⎫72=-94, 又f (0)=10,f (5)=0.∴f (x )的最大值为10,最小值为-94.答案 (1)x 2-7x +10 (2)10,-9414.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是 .若函数f (x )恰有2个零点,则λ的取值范围是 .解析 若λ=2,则当x ≥2时,令x -4<0,得2≤x <4;当x <2时,令x 2-4x +3<0,得1<x <2.综上可知1<x <4,所以不等式f (x )<0的解集为(1,4).令x -4=0,解得x =4;令x 2-4x +3=0,解得x =1或x =3.因为函数f (x )恰有2个零点,结合函数的图象(图略)可知1<λ≤3或λ>4.答案 (1,4) (1,3]∪(4,+∞)能力提升题组15.(2019·杭州质检)设函数f (x )=x 2+ax +b (a ,b ∈R ),记M 为函数y =|f (x )|在[-1,1]上的最大值,N 为|a |+|b |的最大值( ) A.若M =13,则N =3B.若M =12,则N =3C.若M =2,则N =3D.若M =3,则N =3解析 由题意得|f (1)|=|1+a +b |≤M ⇒|a +b |≤M +1,|f (-1)|=|1-a +b |≤M ⇒|a -b |≤M +1.|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0,则易知N ≤M +1,则选项A ,B 不符合题意;当a =2,b =-1时,M =2,N =3,则选项C 符合题意;当a =2,b =-2时,M =3,N =4,则选项D不符合题意,故选C. 答案 C16.(2019·丽水测试)已知函数f (x )=x 2+ax +b ,集合A ={x |f (x )≤0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪f (f (x ))≤54,若A =B ≠∅,则实数a 的取值范围是( )A.[5,5]B.[-1,5]C.[5,3]D.[-1,3]解析 设集合B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n },其中m ,n 为方程f (x )=54的两个根,因为A =B ≠∅,所以n =0且m ≤f (x )min ,Δ=a 2-4b ≥0,于是f (n )=f (0)=b =54,则由a 2-4b =a 2-5≥0得a ≤-5或a ≥5,令t =f (x )≤0,则由f (f (x ))≤54得f (t )≤54,即t 2+at +54≤54,解得-a ≤t ≤0,所以B =⎩⎨⎧⎭⎬⎫x |f (f (x ))≤54={x |m ≤f (x )≤n }={x |-a ≤f (x )≤0},解得m =-a ,所以-a ≤f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=⎝ ⎛⎭⎪⎫-a 22+a ·⎝ ⎛⎭⎪⎫-a 2+54,解得-1≤a ≤5.综上所述,实数a 的取值范围为[5,5],故选A. 答案 A17.已知二次函数f (x )=ax 2+bx (|b |≤2|a |),定义f 1(x )=max{f (t )|-1≤t ≤x ≤1},f 2(x )=min{f (t )|-1≤t ≤x ≤1},其中max{a ,b }表示a ,b 中的较大者,min{a ,b }表示a ,b 中的较小者,下列命题正确的是( ) A.若f 1(-1)=f 1(1),则f (-1)>f (1) B.若f 2(-1)=f 2(1),则f (-1)>f (1) C.若f 2(1)=f 1(-1),则f 1(-1)<f 1(1) D.若f 2(1)=f 1(-1),则f 2(-1)>f 2(1)解析 对于A ,若f 1(-1)=f 1(1),则f (-1)为f (x )在[-1,1]上的最大值,∴f (-1)>f (1)或f (-1)=f (1),故A 错误;对于B ,若f 2(-1)=f 2(1),则f (-1)为f (x )在[-1,1]上的最小值,∴f (-1)<f (1)或f (-1)=f (1),故B 错误;对于C ,若f 2(1)=f 1(-1),则f (-1)为f (x )在[-1,1]上的最小值,而f 1(-1)=f (-1),f 1(1)表示f (x )在[-1,1]上的最大值,∴f 1(-1)<f 1(1),故C 正确;对于D ,若f 2(1)=f 1(-1),由新定义可得f 1(-1)=f 2(-1),则f 2(1)=f 2(-1),故D 错误,综上所述,故选C. 答案 C18.(2019·绍兴适应性考试)已知a >0,函数f (x )=|x 2+|x -a |-3|在[-1,1]上的最大值是2,则a = .解析 由题意知f (0)≤2,即有||a |-3|≤2,又∵a >0,∴||a |-3|≤2⇒|a -3|≤2⇒1≤a≤5.又∵x ∈[-1,1],∴f (x )=|x 2-x -3+a |≤2,设t =x 2-x -3,则t ∈⎣⎢⎡⎦⎥⎤-134,-1,则原问题等价于t ∈⎣⎢⎡⎦⎥⎤-134,-1时,|t +a |=|t -(-a )|的最大值为2,∴a =3或a =54. 答案 3或5419.已知方程x 2+bx +c =0在(0,2)上有两个不同的解,则c 2+2(b +2)c 的取值范围是 .解析 设方程x 2+bx +c =0在(0,2)上的两个根为α,β,α≠β,则f (x )=x 2+bx +c =(x -α)(x -β),0<α<2且0<β<2,所以c 2+2(b +2)c =f (0)·f (2)=αβ(2-α)(2-β)≤⎣⎢⎡⎦⎥⎤α+(2-α)22⎣⎢⎡⎦⎥⎤β+(2-β)22=1,又0<α<2且0<β<2,所以αβ(2-α)(2-β)>0,所以c 2+2(b +2)c 的取值范围是(0,1]. 答案 (0,1]20.已知函数f (x )=ax +3+|2x 2+(4-a )x -1|的最小值为2,则a = .解析 令g (x )=2x 2+(4-a )x -1=0,Δ=(4-a )2+8>0,则g (x )=0有两个不相等的实数根,不妨设为x 1,x 2(x 1<x 2),则x 1=a -4-(4-a )2+84,x 2=a -4+(4-a )2+84,当x ∈[x 1,x 2]时,f (x )=ax +3-[2x 2+(4-a )x -1]=-2x 2+(2a -4)x +4,当x ∈(-∞,x 1)∪(x 2,+∞)时,f (x )=ax +3+[2x 2+(4-a )x -1]=2(x +1)2≥0,因为f (x )的最小值为2,则f (x )min =min{f (x 1),f (x 2)},即ax 1+3=2或ax 2+3=2,解得a =12.答案 12。
高中数学 第三章 不等式 3.2.2 一元二次不等式的应用学案(含解析)北师大版必修5-北师大版高二
2.2 一元二次不等式的应用知识点一 简单的分式不等式的解法[填一填][答一答]1.请写出分式不等式ax +b cx +d ≥0,ax +bcx +d≤0的同解不等式.提示:⎩⎪⎨⎪⎧(ax +b )(cx +d )≥0,cx +d ≠0,⎩⎪⎨⎪⎧(ax +b )(cx +d )≤0,cx +d ≠0.知识点二用穿针引线法解简单的一元高次不等式f(x)>0的步骤[填一填](1)将f(x)最高次项的系数化为正数;(2)将f(x)分解为若干个一次因式的积或二次不可分因式之积;(3)将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过);(4)根据曲线显现出的f(x)值的符号变化规律,写出不等式的解集.[答一答]2.“穿针引线法”解不等式所用的数学思想是什么?提示:数形结合的思想方法.解一般分式不等式的方法解分式不等式的关键是先把不等式的右边化为零,再通分把它化成f(x)g(x)>0(或≥0或<0或≤0)的形式,最后通过符号的运算法则,把它转化成整式不等式求解,其中:f(x) g(x)>0⇔f(x)·g(x)>0,f(x)g(x)>0⇔⎩⎪⎨⎪⎧f(x)>0g(x)>0或⎩⎪⎨⎪⎧f(x)<0g(x)<0,f(x) g(x)≥0⇔⎩⎪⎨⎪⎧f(x)·g(x)≥0g(x)≠0⇔f(x)g(x)>0或f(x)=0,f(x) g(x)≥0⇔⎩⎪⎨⎪⎧f(x)≥0g(x)>0或⎩⎪⎨⎪⎧f(x)≤0g(x)<0.一般地,解分式不等式的过程,体现了分式不等式与整式不等式之间的转化,这种转化必须保证不等式前后的等价性.类型一 根的分布问题【例1】 已知关于x 的方程8x 2-(m -1)x +m -7=0有两实根. (1)如果两实根都大于1,求实数m 的取值范围; (2)如果两实根都在区间(1,3)内,求实数m 的取值范围; (3)如果一个根大于2,另一个根小于2,求实数m 的取值范围.【思路探究】 本题属于一元二次方程根的分布问题,一元二次方程的根就是相应的二次函数的零点,即二次函数与x 轴交点的横坐标.根据方程根的分布情况可知二次函数图像的大致情况,从而转化成不等式(组)的形式,求解即可.【解】 (1)方法一:设函数f (x )=8x 2-(m -1)x +m -7,作其草图,如右图. 若两实根均大于1,则⎩⎨⎧Δ=[-(m -1)]2-32(m -7)≥0,f (1)=2>0,m -116>1,即⎩⎨⎧m ≥25或m ≤9,m ∈R ,m >17.所以m ≥25.方法二:设方程的两根为x 1,x 2,则x 1+x 2=m -18,x 1x 2=m -78,因为两根均大于1,所以x 1-1>0,x 2-1>0,故有⎩⎪⎨⎪⎧Δ=[-(m -1)]2-32(m -7)≥0,(x 1-1)+(x 2-1)>0,(x 1-1)(x 2-1)>0,即⎩⎪⎨⎪⎧[-(m -1)]2-32(m -7)≥0,m -18-2>0,m -78-m -18+1>0.解得⎩⎪⎨⎪⎧m ≥25或m ≤9,m >17,m ∈R .所以m ≥25.(2)设函数f (x )=8x 2-(m -1)x +m -7.若方程的两根x 1,x 2∈(1,3),则⎩⎪⎨⎪⎧Δ≥0,f (1)>0,f (3)>0,1<m -116<3,即⎩⎪⎨⎪⎧m ≥25或m ≤9,m ∈R ,m <34,17<m <49.所以25≤m <34.(3)若一根大于2,另一根小于2,则f (2)<0, 即27-m <0,解得m >27.规律方法 一元二次方程根的分布问题的处理方法1.若可转化为根的不等关系,则可直接运用根与系数的关系求解. 2.借助相应的二次函数图像,运用数形结合的思想求解,步骤如下: (1)根据题意画出符合条件的二次函数图像,标清交点所在区间; (2)运用判别式、对称轴及区间端点处的函数值的符号来确定图像的位置;(3)解不等式组,即得变量的取值范围.已知关于x 的方程x 2+(m -3)x +m =0.(1)若方程的一个根大于2、一个根小于2,求实数m 的取值范围; (2)若方程的两个根都在(0,2)内,求实数m 的取值范围.解:(1)令f (x )=x 2+(m -3)x +m ,因为关于x 的方程x 2+(m -3)x +m =0的一个根大于2、一个根小于2,所以f (2)=4+(m -3)·2+m <0,解得m <23.(2)若关于x 的方程x 2+(m -3)x +m =0的两个根都在(0,2)内,则⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,0<3-m2<2,f (0)=m >0,f (2)=3m -2>0,解得23<m ≤1.类型二 高次不等式的解法【例2】 解下列不等式. (1)x 3-2x 2+3<0; (2)(x +1)(1-x )(x -2)>0; (3)x (x -1)2(x +1)3(x +2)≥0.【思路探究】 通过因式分解,把高次不等式化为一元一次不等式或一元二次不等式的积问题,然后再依据相关性质解答.【解】 (1)原不等式可化为(x +1)(x 2-3x +3)<0,而对任意实数x ,恒有x 2-3x +3>0(∵Δ=(-3)2-12<0).∴原不等式等价于x +1<0, ∴原不等式的解集为{x |x <-1}.(2)原不等式等价于(x -1)(x -2)(x +1)<0,令y =(x -1)(x -2)(x +1),当y =0时,各因式的根分别为1,2,-1,如图所示.可得不等式的解集为{x|x<-1或1<x<2}.(3)∵方程x(x-1)2(x+1)3(x+2)=0的根依次为0,1,-1,-2,其中1为双重根,-1为三重根(即1为偶次根,-1为奇次根),如图所示,由“穿针引线法”可得不等式的解集为{x|-2≤x≤-1或x≥0}.规律方法解高次不等式用穿针引线法简捷明了,使用此法时一定要注意:①所标出的区间是否是所求解的范围,可取特值检验,以防不慎造成失误;②是否有多余的点,多余的点应去掉;③总结规律,“遇奇次方根一穿而过,遇偶次方根只穿,但不过”.解不等式(x+4)(x+5)2(2-x)3<0.解:原不等式等价于(x+4)(x+5)2(x-2)3>0.在数轴上标出-5,-4,2表示的点,如图所示,由图可知原不等式的解集为{x|x<-5或-5<x<-4或x>2}.类型三分式不等式的解法【例3】解不等式x2-4x+13x2-7x+2<1.【思路探究】解分式不等式一般首先要化为f(x)g(x)>0(或<0)的标准形式,再等价转化为整式不等式或化为一次因式积的形式来用“穿针引线法”,借助于数轴得解.【解】 解法一:原不等式可化为2x 2-3x +13x 2-7x +2>0⇔(2x 2-3x +1)(3x 2-7x +2)>0⇔⎩⎪⎨⎪⎧ 2x 2-3x +1>0,3x 2-7x +2>0或⎩⎪⎨⎪⎧2x 2-3x +1<0,3x 2-7x +2<0.解得原不等式的解集为{x |x <13或12<x <1或x >2}.解法二:原不等式移项,并因式分解得(2x -1)(x -1)(3x -1)(x -2)>0⇔(2x -1)(x -1)(3x -1)(x -2)>0,在数轴上标出(2x -1)(x -1)(3x -1)(x -2)=0的根,并画出示意图,如图所示.可得原不等式的解集为{x |x <13或12<x <1或x >2}.规律方法 解分式不等式的思路方法是等价转化为整式不等式,本题的两种解法在等价变形中主要运用了符号法则,故在求解分式不等式时,首先应将一边化为零,再行解决.解不等式x 2-6x +512+4x -x 2<0.解:原不等式化为(x -1)(x -5)(x +2)(x -6)>0.画数轴,找因式根,分区间,定符号. 在各个区间内,(x -1)(x -5)(x +2)(x -6)的符号如下:∴原不等式解集是{x |x <-2或1<x <5或x >6}.类型四 一元二次不等式的应用【例4】 当a 为何值时,不等式(a 2-1)x 2-(a -1)x -1<0的解是全体实数.【思路探究】 利用函数与不等式之间的关系,问题可转化为函数y =(a 2-1)x 2-(a -1)x -1的图像恒在x 轴下方.【解】 ①当a 2-1≠0,即a ≠±1时,原不等式的解集为R 的条件是⎩⎪⎨⎪⎧a 2-1<0,Δ=[-(a -1)]2+4(a 2-1)<0, 解得-35<a <1.②当a 2-1=0,即a =±1时,若a =1,则原不等式为-1<0,恒成立. 若a =-1,则原不等式为2x -1<0, 即x <12,不符合题目要求,舍去.综上所述,当-35<a ≤1时,原不等式的解为全体实数.规律方法 此类问题主要考查二次函数与二次不等式之间关系的应用,可以借助二次函数图像的开口方向以及与x 轴的交点情况解决,一般地有如下结论:(1)不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c >0;当a ≠0时,⎩⎨⎧a >0Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b=0,c <0;当a ≠0时,⎩⎨⎧a <0Δ<0.类似地,还有f (x )≤a 恒成立⇔[f (x )]max ≤a .f (x )≥a 恒成立⇔[f (x )]min ≥a .(2)讨论形如ax 2+bx +c >0的不等式恒成立问题必须对a =0或a ≠0分类讨论,否则会造成漏解,切记!已知关于x 的一元二次不等式ax 2+ax +a -1<0的解集为R ,求a 的取值范围. 解:关于x 的一元二次不等式ax 2+ax +a -1<0的解集为R ,所以有⎩⎨⎧a <0a 2-4a (a -1)<0,即⎩⎪⎨⎪⎧a <0a >43或a <0,所以a <0.【例5】 有纯农药液一桶,倒出8 L 后用水补满,然后又倒出4 L 后再用水补满,此时桶中农药液的浓度不超过28%,则桶的容积最大为多少?【思路探究】 如果桶的容积为x L ,那么第一次倒出8 L 纯农药液,桶内还有(x -8) L 纯农药液,用水补满后,桶中农药液的浓度为x -8x ×100%.第二次又倒出4 L 农药液,则倒出的纯农药液为4(x -8)x L ,此时桶内有纯农药液⎣⎡⎦⎤(x -8)-4(x -8)x L.【解】 设桶的容积为x L. 依题意,得(x -8)-4(x -8)x≤28%·x .∵x >0,∴原不等式可化简为9x 2-150x +400≤0, 即(3x -10)(3x -40)≤0,∴103≤x ≤403,又x >8,∴8<x ≤403,∴桶的最大容积为403L.规律方法 对于一元二次不等式的实际应用问题,先要读懂题意,找出与实际问题对应的数学模型,转化为数学问题解决.同时,必须注意其定义域要有实际意义.某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,如图,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解:设花卉带宽度为x m,则草坪的长为(800-2x) m,宽为(600-2x) m,根据题意,得(800-2x)(600-2x)≥12×800×600,整理,得x2-700x+60 000≥0,解得x≥600(舍去)或x≤100,由题意知x>0,所以0<x≤100.即当花卉带的宽度在(0,100]内取值时,草坪的面积不小于总面积的一半.——易错警示系列——解不等式时同解变形出错解不等式的关键是利用不等式的性质进行同解变形,需要注意两个方面:一是注意不等式中所含式子有意义的条件,如解分式不等式、无理不等式、对数不等式时应该注意分母不为零、开偶次方根时被开方数非负、对数的真数大于零,这是转化为整式不等式的过程中进行同解变形容易忽视的问题;二是在解一次不等式的过程中要准确利用不等式的性质进行同解变形,主要是系数化为1的过程中,不等式两边要同时乘以或同时除以同一个数,要注意该数的符号对不等式符号的影响,如果是正数,不等号的方向不变,如果是负数,不等号的方向要改变.【例6】解不等式3x-5x2+2x-3≥2.【错解】 原不等式化为3x -5≥2(x 2+2x -3),∴2x 2+x -1≤0,∴-1≤x ≤12. 【错解分析】 错用不等式性质,直接将不等式化为3x -5≥2(x 2+2x -3),没有等价转化导致错误.【正解】 原不等式化为3x -5x 2+2x -3-2≥0, 即-2x 2-x +1x 2+2x -3≥0. 整理得(2x -1)(x +1)(x -1)(x +3)≤0, 不等式等价于⎩⎪⎨⎪⎧(2x -1)(x +1)(x -1)(x +3)≤0,(x -1)(x +3)≠0, 解得-3<x ≤-1或12≤x <1. 所以原不等式的解集为{x |-3<x ≤-1或12≤x <1}.不等式x +5(x -1)2≥2的解集是{x |-12≤x ≤3,且x ≠1}.一、选择题1.不等式x x -1<2的解集是( D ) A .{x |x >1}B .{x |x <2}C .{x |1<x <2}D .{x |x <1或x >2}解析:原不等式可化为x x -1-2<0,即x -2x -1>0,等价于(x -1)(x -2)>0,∴x >2或x <1. 2.不等式1x +1(x -1)(x -2)2(x -3)<0的解集是( B ) A .(-1,1)∪(2,3)B .(-∞,-1)∪(1,2)∪(2,3)C .(-∞,-1)∪(1,3)D .R解析:利用“穿针引线法”,如图所示.∴不等式的解集是(-∞,-1)∪(1,2)∪(2,3).二、填空题3.方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,则实数m 的取值范围是-12<m <1. 解析:因为方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,所以判别式大于零,同时两根之积小于零, 所以⎩⎪⎨⎪⎧ 2m +1≠0,4m 2-4(2m +1)(m -1)>0,m -12m +1<0,解得-12<m <1. 4.不等式2-x x +4>0的解集是(-4,2). 解析:不等式2-x x +4>0等价于(x -2)(x +4)<0, ∴-4<x <2.5.不等式(x -1)(x +2)(x +3)<0的解集是{x |x <-3或-2<x <1}.解析:画出数轴,如图,其解集为{x |x <-3或-2<x <1}.。
2.3 二次函数与一元二次方程、不等式(全部)
【对点练习】❶ 若关于 x 的不等式 ax2+(a-2)x-2≤0 恒成立,求实数 a 的取值范围.
题型二 一元二次方程根的分布 例 2 已知方程 8x2-(m-1)x+m-7=0 有两实根,如果两实根都大于 1,求实数 m 的取值范围.
[归纳提升] 方程 ax2+bx+c=0(a≠0)的根的分布情况如下,其中 x1,x2 为该方程两根:
【对点练习】❶ 不等式 6x2+x-2≤0 的解集为
.
题型二 三个“二次”的关系 例 2 已知不等式 ax2-bx+2<0 的解集为{x|1<x<2},求 a,b 的值.
[归纳提升] 给出了一元二次不等式的解集,则可知 a 的符号和 ax2+bx+c=0 的两实根,由根与系数的关系
可知 a,b,c 之间的关系.
)
1-4x
|-1≤x≤1
A. x 3 4
|-1≤x<1
B. x 3 4
|x>1或 x≤-1
C. x 4
3
|x≥1或 x≤-1
D. x 4
3
x-1 3.已知 0<a<1,关于 x 的不等式(x-a) a >0 的解集为( )
|x<a 或 x>1
A. x
a
B.{x|x>a}
|x<1或 x>a
C. x a
课堂检测 1.求下列不等式的解集:
(1)(x+2)(x-3)>0;(2)3x2-7x≤10;(3)-x2+4x-4<0;(4)x2-x+1<0;(5)-2x2+x≤-3;(6)x2-3x+4>0. 4
2.当自变量 x 在什么范围取值时,下列函数的值等于 0?大于 0?小于 0?
2024年吉林省吉林市中考数学试题及答案
2024年吉林省吉林市中考数学试题及答案数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2B.1C.0D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯B.92.0410⨯C.820.410⨯D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=-B.()220x -=C.()221x -=D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为.8.因式分解:a 2﹣3a=.9.不等式组2030x x ->⎧⎨-<⎩的解集为.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是.11.正六边形的每个内角等于°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC 的值为.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.Y中,点O是AB的中点,连接CO并延长,交DA的延长线于点E,求17.如图,在ABCD证:AE BC=.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A,B,C,D,E,,只用无刻O均在格点上.图①中已画出四边形ABCD,图②中已画出以OE为半径的O度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.21.中华人民共和国20192023-年全国居民人均可支配收入及其增长速度情况如图所示.根据以上信息回答下列问题:(1)20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多少元?(2)直接写出20192023-年全国居民人均可支配收入的中位数.(3)下列判断合理的是______(填序号).①20192023-年全国居民人均可支配收入里逐年上升趋势.②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x,凳面的y,记录如下:宽度为mmx16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.1/281.D【分析】本题主要考查了有理数的乘法计算,根据有理数的乘法计算法则,分别计算出3-与四个选项中的数的乘积即可得到答案.【详解】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D.2.B【分析】本题主要考查了科学记数法,科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:92040000000 2.0410⨯=故选B.3.A【分析】本题主要考查了简单几何体的三视图,根据三视图的定义找到葫芦的三视图即可得到答案.【详解】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A.4.B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键.分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B、()220x -=,解得:122x x ==,故本选项符合题意;C、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D、()222x -=,2x -=,解得1222x x ==故选:B.5.C【分析】本题主要考查了坐标与图形变化—旋转,矩形的性质等等,先根据题意得到42OA OC ==,,再由矩形的性质可得290AB OC ABC ===︒,∠,由旋转的性质可得42OA OA A B AB '''====,,90OA B ''∠=︒,据此可得答案.【详解】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C.6.C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C.7.0(答案不唯一)【分析】本题主要考查了根据分式的值的情况求参数,根据题意可得10x +>,则1x >-,据此可得答案.【详解】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.a(a﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a(a﹣3).故答案为a(a﹣3).9.23x <<##32x >>【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.120【详解】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.12【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到45OAD ∠=︒,AD BC =,再证明EF AD ∥,进而可证明OEF OAD △∽△,由相似三角形的性质可得12EF OE AD OA ==,即12EF BC =.【详解】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.()22220.5x x +=+【分析】本题考查了勾股定理的实际应用,正确理解题意,运用勾股定理建立方程是解题的关键.设AC 的长度为x 尺,则0.5AB AB x '==+,在Rt AB C '△中,由勾股定理即可建立方程.【详解】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.11π【分析】本题考查了扇形面积公式,熟练掌握扇形面积公式是解题的关键.利用阴影部分面积等于大扇形减去小扇形面积,结合扇形面积公式即可求解.【详解】解:由题意得:()224010111360S ππ-==阴影,故答案为:11π.15.22a ,6【分析】本题考查了整式的化简求值,平方差公式,先利用平方差公式化简,再进行合并同类项,最后代入求值即可.【详解】解:原式2211a a =-++22a =,当a =原式22=⨯6=.16.13【分析】本题考查了用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.画出树状图,可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,再由概率公式求解即可.【详解】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出OAE OBC OCB E ==∠∠,∠∠,再由线段中点的定义得到OA OB =,据此可证明()AAS AOE BOC △≌△,进而可证明AE BC =.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.白色琴键52个,黑色琴键36个【分析】本题考查了列一元一次方程解应用题,正确理解题意是解题的关键.设黑色琴键x 个,则白色琴键()16x +个,可得方程()1688x x ++=,再解方程即可.【详解】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴白色琴键:361652+=(个),答:白色琴键52个,黑色琴键36个.19.(1)见解析(2)见解析【分析】本题主要考查了正方形的性质与判定,矩形的性质与判定,切线的判定,画对称轴等等:(1)如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;(2)如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求.【详解】(1)解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;(2)解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.(1)36I R=(2)12A 【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当3R =Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为()0U I U R=≠,把()94,代入()0U I U R=≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;(2)解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.(1)8485元(2)35128元(3)①【分析】本题主要考查了频数分布直方图,频数分布折线图,中位数:(1)用2023年的全国居民人均可支配收入减去2019年全国居民人均可支配收入即可得到答案;(2)根据中位数的定义求解即可;(3)根据统计图的数据即可得到答案.【详解】(1)解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.(2)解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;(3)解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.218.3m【分析】本题考查了解直角三角形的应用,正确理解题意和添加辅助线是解题的关键.先解Rt GAD 得到873tan DG AG DG EAD===∠,再解Rt GAC △,tan 8730.75654.75CG AG EAC =⋅∠=⨯=,即可求解CD .【详解】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DG AG DG EAD===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .23.(1)在同一条直线上,函数解析式为:533y x =+(2)36mm【分析】本题考查了一次函数的实际应用,待定系数法求函数解析式,已知函数值求自变量,熟练掌握知识点,正确理解题意是解题的关键.(1)用待定系数法求解即可;(2)将213y =代入函数解析式,解方程即可.【详解】(1),解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;(2)解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【分析】(1)根据三角形的面积公式计算即可;(2)根据菱形的面积公式计算即可;(3)结合图形有,EFG EHG EFGH S S S =+ 四边形,即可得()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,问题随之得解;(4)先证明MNK △是直角三角形,由作图可知:MKN MPQ ∠=∠,即可证明KM PQ ⊥,再结合(3)的结论直接计算即可.【详解】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.【点睛】本题考查了等腰三角形的性质,菱形的性质,作一个角等于已知角的尺规作图,勾股定理的逆定理等知识,难度不大,掌握作一个角等于已知角的尺规作图方法,是解答本题的关键.25.(1)等腰三角形,AQ t=(2)32t =(3))2223,04232421,242S t t S t t S t t ⎧=<≤⎪⎪⎪⎪=-+<<⎨⎪⎪=-≤<⎪⎪⎩【分析】(1)过点Q 作QH AD ⊥于点H ,根据“平行线+角平分线”即可得到QA QP =,由QH AP ⊥,得到122HA AP t ==,解Rt AHQ △得到AQ t =;(2)由PQE V 为等边三角形得到QE QP =,而QA QP =,则QE QA =,故223AE AQ t ===,解得32t =;(3)当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G,122PG AP t ==,则2124S QE PG t =⋅=,此时302t <≤;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC,此时)tan 23CF CE E t =⋅∠=-,因此()212322FCE S CE CF t =⋅=-,故可得2PQE FCE S S S t =-=+△△322t <<;当点P 在DB 上,重合部分为PQC △,此时PD =-)1PC CD PD t =+-,解直角三角形得31tan 3PC QC PC t PQC ===-∠,故()213122S QC PC t =⋅=-,此时24t ≤<,再综上即可求解.【详解】(1)解:过点Q 作QH AD ⊥于点H ,由题意得:3AP t=∵90C ∠=︒,30B ∠=︒,∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=︒,∵PQ AB ∥,∴30APQ BAD ∠=∠=︒,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ⊥,∴1322HA AP t ==,∴在Rt AHQ △中,cos AHAQ t PAQ ==∠;(2)解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;(3)解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,∵30PAQ ∠=︒,∴122PG AP t ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴2124S QE PG t =⋅=,由(2)知当点E 与点C 重合时,32t =,∴23042S t t ⎛⎫=<≤ ⎪⎝⎭;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E ∠=︒,而23CE AE AC t =-=-,∴)tan 23CF CE E t =⋅∠=-,∴())()211232323222FCE S CE CF t t t =⋅=-⨯-=- ,∴()22223424PQE FCE S S S t t t t =---=-+当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠,∴2t =,∴23242S t ⎫=-+-<⎪⎭;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC ∠=︒90DCA ∠=︒,由上知DC =∴AD =∴此时PD -,∴)1PC CD PD t =+-,∵PQE V 是等边三角形,∴60PQE ∠=︒,∴1tan 3PC QC PC t PQC ===-∠,∴()21122S QC PC t =⋅=-,∵30B BAD ∠=∠=︒,∴DA DB ==∴当点P 与点BAD DB =+=解得:4t =,∴)()2124S t t -≤<,综上所述:)2223,0233,221,24S t S t t S t t ⎧=<≤⎪⎪⎪⎪=+<<⎨⎪⎪=-≤<⎪⎪⎩.【点睛】本题考查了直角三角形的性质,解直角三角形的相关计算,等腰三角形的判定与性质,等边三角形的性质,平行线的性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.26.(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【分析】本题考查了二次函数与一次函数的图像与性质,待定系数法求函数解析式,一元二次方程的解,正确理解题意,利用数形结合的思想是解决本题的额关键.(1)先确定输入x 值的范围,确定好之后将x ,y 的值代入所给的y 关于x 的函数解析式种解方程或方程组即可;(2)Ⅰ:可知一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+,当0x >时,223y x x =-+,对称为直线1x =,开口向上,故1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,故0x ≤时,y 随着x 的增大而增大;Ⅱ:问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,考虑两个临界状态,当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,因此当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,11y =,故当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,因此当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即方程230ax bx t ++-=无解;Ⅲ:可求点P 、Q 关于直线12x =对称,当1x =,2y =最小值,当0x =时,3y =最大值,当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,故①当12m >,由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,则12m ≤≤;②当12m <,由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,则10m -≤≤,综上:10m -≤≤或12m ≤≤.【详解】(1)解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;(2)解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。
一元二次函数根的分布规律探究
一元二次函数根的分布规律探究发表时间:2013-01-21T09:26:17.043Z 来源:《新校园》学习版2012年第9期供稿作者:常庆[导读] 分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
常庆(安徽师范大学,安徽芜湖241000)引例:方程x2-2ax+4=0 的两根均大于1,求实数的取值范围。
分析:此种解法思路简单,但是求解过程计算量太大。
此例属于一元二次函数根的实根分布问题。
一元二次函数根的实根分布问题是初高中数学衔接的一个重要问题,也是高考的一个热点问题。
一元二次方程根的分布也是二次函数中的重要内容,也是历来学生难以掌握的地方。
这部分知识在初中数学中虽有所涉及,但远远不够系统和完整。
而且解题方法多局限于应用判别式法和根与系数的关系。
本文通过“数形结合、函数与方程”浅显易懂的简析。
分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
设方程ax2+bx+c=0(a>0)的不等两根为x1,x2 且x1<x2,相应的二次函数为f(x)=ax2+bx+c,方程的根即为二次函数图像与轴的交点.情况一:两根分布在同一区间情况二:两根分布在不同区间对表二的根的分布表中一些特殊情况作说明:(1)有且仅有一根在(m,n)内有以下特殊情况:1.若f(m)=0或f(n)=0,则此时f(m)·f(n)<0 不成立,但对于这种情况知道了方程有一根为m 或n,可以求出另外一根,然后可以根据另一根在区间(m,n)内,从而可以求出参数的值.求出参数值后需检验是否满足题意。
若不满足题意,则舍去所得参数值。
2.方程有且只有一根,且这个根在区间(m,n)内,只要满足驻=0,此时由驻=0 可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 练习:已知二次方程x2+(m-3)x=0,根据下列条件求m 的范围.。
九年级数学一元二次方程根与系数关系
九年级数学一 元二次方程根 与系数关系
单击此处添加副标题
目 录 CONTENTS
01 目 一元二次方程的应用
03 引言 单击此处添加正文
05 一元二次方程的系数 单击此处添加正文
02
录
总结与展望
CONTENCT
04 一元二次方程的根 单击此处添加正文
06 一元二次方程根与系数的关系 单击此处添加正文
根的判别式
当 Δ < 0 时,方程 没有实数根,而是 有两个共轭复数根。
当 Δ > 0 时,方程有两个不相等的实数根。
一元二次方程的根的判别式为 Δ = b^2 - 4ac。
当 Δ = 0 时,方程有两个相等的实数根,也称为 重根。
根的性质
根的和等于系数之比的相反数,即 x1 + x2 = -b/a。
在物理问题中的应用
运动学问题
利用一元二次方程求解物体运动过 程中的位移、速度、加速度等物理 量。
力学问题
通过一元二次方程求解物体受力分 析中的支持力、摩擦力等。
能量问题
利用一元二次方程求解物体在能量 转化过程中的动能、势能等。
在经济问题中的应用
80%
利润问题
通过一元二次方程求解企业在经营过程中的 最大利润、最小成本等。
0 一元二次方程根与系数的 关系 单击此处添加文本具体内容,简明扼要的阐
4 述您的观点,以便观者准确的理解您传达的 思想。
根的和与系数的关系
根的和等于方程系数之比的相反数,即两根之和等于一次项系数除以二次项 系数的相反数。 若方程的两根之和为零,则一次项系数也为零。 对于一元二次方程 $ax^2 + bx + c = 0$($a neq 0$),设其两个根为 $x_1$ 和 $x_2$,则有 $x_1 + x_2 = -frac{b}{a}$。
《函数的零点与方程的解》教案
《第四章指数函数与对数函数》《4.5.1函数的零点与方程的解》教案【教材分析】本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。
【教学目标与核心素养】课程目标1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.【教学重难点】【教学反思】重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。
【教学过程】一、情景引入《三国志·魏书》记载:“邓哀王冲字仓舒,少聪察歧嶷,生五六岁,智意所及,有若成人之智.时孙权曾致巨象,太祖(曹操)欲知其斤重,访之群下,咸莫能出其理.冲曰:‘置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.’太祖大悦,即施行焉.”这就是千古传诵、妇孺皆知的曹冲称象的故事.抛除物理中的浮力原理,这其中就应用了转化化归的思想.那么,在函数和方程中是否也有类似的转化呢?二、新知导学1.函数y=ax2+bx+c(a≠0)的图象与x轴的交点和相应方程ax2+bx+c =0(a≠0)的根的关系(1)定义:对于函数y=f(x),我们把使__f(x)=0__成立的实数x叫做函数y=f(x)的零点.(2)几何意义:函数y=f(x)的图象与x轴的交点的__横坐标__就是函数y =f(x)的零点.(3)结论:方程f(x)=0有__实数根__⇔函数y=f(x)的图象与x轴有__交点__⇔函数y=f(x)有__零点__.3.函数零点的判定定理(1)方程法:判断方程f(x)=0是否有实数解.(2)图象法:判断函数y=f(x)的图象与x轴是否有交点.(3)定理法:利用零点的判定定理来判断.三、课前自测1.函数f(x)=4x-6的零点是( C )A.23B.(32,0) C.32D.-32[解析] 令4x-6=0,得x=3 2,∴函数f(x)=4x-6的零点是3 2 .2.函数f(x)=x-2+log2x,则f(x)的零点所在区间为( B )A.(0,1) B.(1,2) C.(2,3) D.(3,4)[解析] f(1)=-1+log21=-1,f(2)=log22=1,∴f(1)·f(2)<0,故选B.3.若函数f(x)=x2+2x+a没有零点,则实数a的取值范围是( B )A.a<1 B.a>1C.a≤1D.a≥1[解析] 函数f(x)=x2+2x+a没有零点,即方程x2+2x+a=0没有实数根,所以Δ=4-4a<0,得a>1.4.二次函数y=ax2+bx+c中,a·c<0,则函数有__2__个零点.[解析] 令ax2+bx+c=0,Δ=b2-4ac,∵a·c<0,∴b2-4ac>0,∴方程ax2+bx+c=0有两个不相等实根,∴二次函数y=ax2+bx+c(a·c<0)有2个零点.5.求下列函数的零点.(1)f(x)=x2-5x-6;(2)f(x)=x3-7x+6;(3)f(x)=(12)x-4;(4)f(x)=ln x-1.[解析] (1)令x2-5x-6=0,得(x-6)(x+1)=0,∴x1=-1,x2=6,∴函数f(x)的零点为-1,6.(2)令x3-7x+6=0,得x3-x-6x+6=0,∴x(x+1)(x-1)-6(x-1)=0,∴(x-1)(x2+x-6)=0,∴(x-1)(x+3)(x-2)=0,∴x1=-3,x2=1,x3=2.∴函数f(x)的零点为-3,1,2.(3)令(12)x-4=0,得(12)x=4,∴x=-2.∴函数f(x)的零点为-2.(4)令ln x-1=0,得ln x=1,∴x=e.∴函数f(x)的零点为e.四、课堂互动探究命题方向1 ⇨求函数的零点典例1 判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x+3x;(2)f(x)=x2+2x+4;(3)f(x)=2x-3;(4)f(x)=1-log3x.[思路分析] 分别令各个解析式等于0,根据方程是否有根来确定函数的零点.[解析] (1)令x+3x=0,解得x=-3,所以函数f(x)=x+3x的零点是-3.(2)令x2+2x+4=0,由于Δ=22-4×4=-12<0,所以方程x2+2x+4=0无解,所以函数f(x)=x2+2x+4不存在零点.(3)令2x-3=0,解得x=log23,所以函数f(x)=2x-3的零点是log23.(4)令1-log3x=0,解得x=3,所以函数f(x)=1-log3x的零点是3.『规律方法』 1.正确理解函数的零点:(1)函数的零点是一个实数,当自变量取该值时,其函数值等于零.(2)根据函数零点定义可知,函数f(x)的零点就是f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.即函数y=f(x)的零点⇔方程f(x)=0的实根⇔函数y=f(x)的图象与x 轴交点的横坐标.2.函数零点的求法:(1)代数法:求方程f (x )=0的实数根.(2)几何法:与函数y =f (x )的图象联系起来,图象与x 轴的交点的横坐标即为函数的零点.〔跟踪练习1〕 (1)求下列函数的零点:①f (x )=x 2-2x -3零点为__3,-1__; ②g (x )=lg x +2零点为__1100__. (2)已知-1和4是函数f (x )=ax 2+bx -4的零点,则f (1)=__-6__. [解析] (1)①f (x )=(x -3)·(x +1),令f (x )=0,得x 1=-1,x 2=3,∴f (x )的零点为3和-1,②由lg x +2=0得,lg x =-2,∴x =1100. 故g (x )的零点为1100. (2)由条件知⎩⎨⎧f-1=0f4=0,∴⎩⎨⎧a -b -4=016a +4b -4=0,∴⎩⎨⎧a =1b =-3,∴f (1)=a +b -4=-6.命题方向2 ⇨判断零点所在的区间典例2 函数f (x )=ln x +x 3-9的零点所在的区间为( C ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)[思路分析] 根据函数零点的存在性原理判断函数零点所在的区间. [解析] f (1)=1-9=-8<0,f (2)=ln2+8-9=ln2-1<0,f (3)=ln3+27-9=ln3+18>0,∴f (2)·f (3)<0,∴函数f (x )的零点所在的区间为(2,3). 『规律方法』 判断函数零点所在区间的方法:一般而言判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.〔跟踪练习2〕函数f(x)=e x+x-2的零点所在的一个区间是( C )A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)[解析] f(-2)=e-2-2-2=e-2-4=1e2-4<0,f(-1)=e-1-1-2=1e-3<0,f(0)=e0-2=1-2<0,f(1)=e-1>0,∴f(0)·f(1)<0,∴函数f(x)的零点所在的一个区间为(0,1).命题方向3 ⇨函数零点个数的判断典例3 函数f(x)=(x-2)(x-5)-1有两个零点x1,x2,且x1<x2,则( C ) A.x1<2,2<x2<5 B.x1>2且x2>5C.x1<2,x2>5 D.2<x1<5,x2>5[思路分析] f(x)的图象是由g(x)=(x-2)(x-5)的图象向下平移1个单位得到的,由g(x)的零点可判断x1,x2的取值范围.[解析] 作出函数g(x)=(x-2)(x-5)的图象如图,将y=g(x)的图象向下平移1个单位即得y=f(x)的图象,由图象易知x1<2,x2>5,故选C.『规律方法』判断函数零点个数的主要方法:(1)利用方程根,转化为解方程,有几个根就有几个零点.(2)画出函数y=f(x)的图象,判定它与x轴的交点个数,从而判定零点的个数.(3)结合单调性,利用f(a)·f(b)<0,可判定y=f(x)在(a,b)上零点的个数.(4)转化成两个函数图象的交点问题.〔跟踪练习3〕判断函数f(x)=x-3+ln x的零点的个数.[解析] 解法一:在同一平面直角坐标系中画出函数y=ln x,y=-x+3的图象,如图所示.由图可知函数y=ln x,y=-x+3的图象只有一个交点,即函数f(x)=x-3+ln x只有一个零点.解法二:因为f(3)=ln3>0,f(2)=-1+ln2=ln 2e<0,所以f(3)·f(2)<0,说明函数f(x)=x-3+ln x在区间(2,3)内有零点.又f(x)=x-3+ln x在(0,+∞)内是增函数,所以原函数只有一个零点.判断零点个数时出现逻辑错误典例4 求函数f(x)=x2-5x+6在[1,4]上的零点个数.[错解] 错解一:由题意,得f(1)=2>0,f(4)=2>0,因此函数f(x)=x2-5x+6在[1,4]上没有零点,即零点个数是0.错解二:∵f(1)=2>0,f(2.5)=-0.25<0,∴函数在(1,2.5)内有一个零点;又∵f(4)=2>0,f(2.5)=-0.25<0,∴函数在(2.5,4)内有一个零点,∴函数在[1,4]上有两个零点.[错因分析] 对于错解一,是错误地类比零点存在定理,f(a)·f(b)>0时,(a,b)中的零点情况是不确定的,而错解二出现了逻辑错误,当f(a)·f(b)<0时,(a,b)中存在零点,但个数不确定.[正解1] 令f (x )=0,即x 2-5x +6=0, ∴x 1=2,x 2=3, ∴函数的零点是2,3.∴函数在[1,4]上的零点的个数是2.[正解2] ∵f (1)=2>0,f (2.5)=-0.25<0,f (4)=2>0, ∴f (x )在(1,2.5)和(2.5,4)内都有零点.又易知f (x )在(-∞,2.5)和(2.5,+∞)上都是单调函数. ∴f (x )在(1,2.5)和(2.5,4)内都只有一个零点. ∴f (x )在[1,4]上有两个零点.[警示] 当函数y =f (x )的图象在闭区间[a ,b ]上是一条连续不断的曲线,(1)不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.(2)满足f (a )·f (b )<0时,f (x )在(a ,b )内必有零点,但不一定只有一个零点.学科核心素养1.一元二次方程根的分布问题典例5 已知函数f (x )=x 2+2mx +3m +4. (1)若f (x )有且只有一个零点,求实数m 的值;(2)若f (x )有两个零点,且均比-1大,求m 的取值范围.[思路分析] (1)f (x )有且只有一个零点,即方程x 2+2mx +3m +4=0有两个相等实数根;(2)f (x )有两个零点,且均比-1大,即方程x 2+2mx +3m +4=0在(-1,+∞)上有两个实数根.[解析] (1)由题意可知方程x 2+2mx +3m +4=0有两个相等实数根, ∴Δ=4m 2-4(3m +4)=0, 即m 2-3m -4=0, ∴m =-1或m =4.(2)由题意得⎩⎨⎧Δ=4m 2-43m +4>0-m >-1f -1=1+m +4>0,解得-5<m <-1.∴实数m 的取值范围是(-5,-1).『规律方法』 1.解决一元二次方程根的分布问题,要利用数形结合,结合判别式、对称轴、区间端点的函数值的正负等情况进行求解.2.二次函数零点的分布问题二次函数零点的分布一般为下面两个方面的问题: (1)一个区间内只有一个根;(2)一个区间内有两个根.由于我们在初中学过方程根的情况,有时可以根据判别式及根与系数的关系判断,但在多数情况下,还要结合图象,从对称轴、判别式、区间端点的函数值等方面去探究.具体解法如下表:设二次函数y =ax 2+bx +c (a >0)对应的方程的根为x 1、x 2.⎩⎨⎧fm >0f n <0fp >0⎩⎪⎨⎪⎧Δ>0m <-b 2a <n f m >0f n >0⎩⎪⎨⎪⎧Δ>0-b 2a >m f m >0或f (m )·f (n )<0或Δ=0且-b2a∈(m ,n ) 或⎩⎨⎧f m =0m <-b 2a <m +n2另外,x 1,x 2∈(0,+∞),即两正根,也可通过满足条件⎩⎪⎨⎪⎧b 2-4ac ≥0-b a>0c a >0来解决;x 1,x 2∈(-∞,0),即两负根,也可通过满足条件⎩⎪⎨⎪⎧b 2-4ac ≥0-b a<0c a >0来解决;x 1,x 2一正一负也可通过满足⎩⎨⎧b 2-4ac >0ca <0来解决.2.数形结合思想典例6 若函数f (x )=|x 2-2x |-a 没有零点,求实数a 的取值范围. [解析] 由题意令g (x )=|x 2-2x |,函数g (x )=|x 2-2x |的图象如图.函数f (x )没有零点,即直线y =a 与函数g (x )=|x 2-2x |的图象没有交点,观察图象可知,此时a <0.故a 的取值范围为(-∞,0).五、课堂达标练习1.下列函数的图象中没有零点的是( D )[解析] 从图中观察知,只有D中函数图象与x轴没有交点,故选D.2.函数f(x)=x-1x的零点是( C )A.(1,0) B.0 C.1 D.0和1[解析] 令x-1x=0,解得x=1,则函数f(x)的零点是1.3.函数f(x)=2x+x的零点所在的一个区间是( C ) A.(1,2) B.(0,1) C.(-1,0) D.(-2,-1) [解析] f(1)=2+1=3>0,f(2)=4+2=6>0,f(0)=20=1>0,f(-1)=12-1=-12<0,∴f(-1)·f(0)<0,故选C.4.设函数f(x)在区间[a,b]上是单调函数,且f(a)·f(b)<0,则方程f(x)=0在闭区间[a,b]内有__1__个根.[解析] 由f(a)·f(b)<0知f(x)=0在[a,b]上至少有一个实数根,又f(x)在[a,b]上为单调函数,从而可知必有唯一实数根.5.函数f(x)=x2-ax-b的两个零点是2和3,求函数g(x)=bx2-ax-1的零点.[解析] 由题意知方程x2-ax-b=0的两个根是2和3,∴a=5,b=-6,∴g(x)=-6x2-5x-1,由-6x2-5x-1=0,解得x1=-12,x2=-13.∴函数g(x)的零点是-12,-13.《4.5.1函数的零点与方程的解》同步练习一、选择题1.函数y=x2+6x+8的零点是( B )A.2,4 B.-2,-4C.1,2 D.不存在[解析] 令x2+6x+8=0,∴(x+2)(x+4)=0,∴x=-4或x=-2,故选B.2.对于函数f(x)=x2+mx+n,若f(a)>0,f(b)>0,则函数f(x)在区间(a,b)内( C )A.一定有零点B.一定没有零点C.可能有两个零点D.至多有一个零点[解析] 由二次函数的图象可知f(x)在区间(a,b)内的零点个数为1,0或2,故选C.3.已知函数f(x)的图象是连续不断的,有如下的x,f(x)对应值表:A.1个B.2个C.3个D.4个[解析] ∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·(5)<0,f(6)·f(7)<0,∴函数f(x)存在零点的区间有4个.4.对于函数f(x),若f(-1)·f(3)<0,则( D )A.方程f(x)=0一定有实数解B.方程f(x)=0一定无实数解C.方程f(x)=0一定有两实根D.方程f(x)=0可能无实数解[解析] ∵函数f(x)的图象在(-1,3)上未必连续,故尽管f(-1)·f(3)<0,但方程f(x)=0在(-1,3)上不一定有实数解.5.函数f(x)=x+1x的零点的个数为( A )A.0 B.1 C.2 D.3 [解析] 函数f(x)的定义域为{x|x≠0},当x>0时,f(x)>0;当x<0时,f(x)<0,但此函数在定义域内的图象不连续,所以函数没有零点,故选A.6.函数f(x)=ln x+12x-2有零点的一个区间是( C )A.(0,1) B.(1,2) C.(2,3) D.(3,4)[解析] f(1)=12-2=-32<0,f(2)=ln2+1-2=ln2-1<0,f(3)=ln3+32-2=ln3-12>0.∴f(2)·f(3)<0,故选C.二、填空题7.若一次函数f(x)=x+b的零点是2,那么函数g(x)=bx2+x的零点是__0,12__.[解析] ∵f (x )=x +b 的零点是2, ∴2+b =0,∴b =-2,∴g (x )=-2x 2+x ,令g (x )=0,得x =0或x =12.8.函数f (x )=⎩⎨⎧2x 2-x -1x ≤03x-4x >0的零点的个数为__2__.[解析] 当x ≤0时,令2x 2-x -1=0,解得x =-12(x =1舍去);当x >0时,令3x-4=0,解得x =log 34,所以函数f (x )=⎩⎨⎧2x 2-x -1x ≤03x-4x >0有2个零点.三、解答题9.求下列函数的零点. (1)y =-x 2-x +20; (2)y =x 3+8;(3)y =(x 2-2)(x 2-3x +2);(4)y =x 2+4x -12x -2.[解析] (1)令y =0,有-x 2-x +20=0, 解得x 1=-5,x 2=4,故所求函数的零点为-5,4. (2)y =x 3+8=(x +2)(x 2-2x +4). 令(x +2)(x 2-2x +4)=0,解得x =-2,故所求函数的零点为-2. (3)令(x 2-2)(x 2-3x +2)=0,解得x 1=-2,x 2=2,x 3=1,x 4=2, 故所求函数的零点为-2,2,1,2.(4)y =x 2+4x -12x -2=x +6x -2x -2.令x +6x -2x -2=0,解得x =-6,故所求函数的零点为-6.10.若函数f (x )=ax 2-x -1有且仅有一个负零点,求实数a 的取值范围. [解析] 当a =0时,f (x )=-x -1, 令f (x )=0得x =-1符合题意. 当a >0时,此函数图象开口向上,又f (0)=-1<0,结合二次函数图象知成立. 当a <0时,此函数图象开口向下, 又f (0)=-1<0,从而有⎩⎨⎧Δ=1+4a =0--12a <0,即a =-14,综上可知实数a 的取值范围为a =-14或a ≥0.11.已知二次函数y =(m +2)x 2-(2m +4)x +(3m +3)有两个零点,一个大于1,一个小于1,求实数m 的取值范围.[解析] 设f (x )=(m +2)x 2-(2m +4)x +(3m +3),如图,有两种情况.第一种情况,⎩⎨⎧m +2>0f 1<0,解得-2<m <-12.第二种情况,⎩⎨⎧m +2<0f 1>0,此不等式组无解.综上,m 的取值范围是-2<m <-12.。
根与系数的关系说课稿
根与系数的关系说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“根与系数的关系”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“根与系数的关系”是一元二次方程中的重要内容,它不仅是对一元二次方程解法的深化和拓展,也是后续学习二次函数等知识的基础。
本节课在教材中起着承上启下的作用,通过对根与系数关系的探究和应用,能够培养学生的观察、分析、归纳和推理能力。
在教材的编排上,先通过具体的一元二次方程引导学生计算两根之和与两根之积,然后归纳出一般形式下的根与系数的关系,最后通过例题和练习让学生巩固所学知识。
这种由特殊到一般、由浅入深的编排方式,符合学生的认知规律,有助于学生更好地理解和掌握新知识。
二、学情分析学生在之前已经学习了一元二次方程的解法,对一元二次方程有了一定的认识和理解。
但对于根与系数的关系,学生可能会感到比较抽象,需要通过具体的例子和探究活动来帮助他们理解。
此外,学生在数学学习中已经具备了一定的观察、分析和归纳能力,但在逻辑推理和数学语言表达方面还需要进一步的培养和提高。
三、教学目标1、知识与技能目标(1)理解并掌握一元二次方程根与系数的关系。
(2)能够运用根与系数的关系解决相关的数学问题。
2、过程与方法目标(1)通过观察、计算、猜想、验证等活动,培养学生的观察能力、分析能力和归纳能力。
(2)经历探究根与系数关系的过程,体会由特殊到一般、由具体到抽象的数学思维方法。
3、情感态度与价值观目标(1)通过自主探究和合作交流,培养学生的团队合作精神和创新意识。
(2)让学生在数学学习中体验成功的喜悦,增强学习数学的自信心。
四、教学重难点1、教学重点一元二次方程根与系数的关系及其应用。
2、教学难点根与系数关系的推导和应用。
五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探究,激发学生的学习兴趣和主动性。
二次函数图象和性质知识点总结
二次函数的图象和性质知识点总结一、知识点回顾1. 二次函数解析式的几种形式:①一般式:(a、b、c为常数,a≠0)②顶点式:(a、h、k为常数,a≠0),其中(h,k)为顶点坐标。
③交点式:,其中是抛物线与x轴交点的横坐标,即一元二次方程的两个根,且a≠0,(也叫两根式)。
2. 二次函数的图象①二次函数的图象是对称轴平行于(包括重合)y轴的抛物线,几个不同的二次函数,如果a相同,那么抛物线的开口方向,开口大小(即形状)完全相同,只是位置不同。
②任意抛物线可以由抛物线经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。
③在画的图象时,可以先配方成的形式,然后将的图象上(下)左(右)平移得到所求图象,即平移法;也可用描点法:也是将配成的形式,这样可以确定开口方向,对称轴及顶点坐标。
然后取图象与y轴的交点(0,c),及此点关于对称轴对称的点(2h,c);如果图象与x轴有两个交点,就直接取这两个点(x1,0),(x2,0)就行了;如果图象与x轴只有一个交点或无交点,那应该在对称轴两侧取对称点,(这两点不是与y轴交点及其对称点),一般画图象找5个点。
(1)抛物线开口向(1)抛物线开口向(1)抛物线(1)抛物线4. 求抛物线的顶点、对称轴和最值的方法①配方法:将解析式化为的形式,顶点坐标为(h,k),对称轴为直线,若a>0,y有最小值,当x=h时,;若a<0,y有最大值,当x=h时,。
②公式法:直接利用顶点坐标公式(),求其顶点;对称轴是直线,若若,y有最大值,当5. 抛物线与x轴交点情况:对于抛物线①当时,抛物线与x轴有两个交点,反之也成立。
②当时,抛物线与x轴有一个交点,反之也成立,此交点即为顶点。
③当时,抛物线与x轴无交点,反之也成立。
二、考点归纳考点一求二次函数的解析式例1.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试求f(x)。
九年级数学上册《一元二次方程根与系数的关系》教案、教学设计
1.分组讨论:将学生分成若干小组,针对讲授新知部分的内容,进行讨论。讨论主题包括:判别式的应用、一元二次方程根与系数的关系等。
2.讨论要求:小组成员要积极参与,发表自己的观点,倾听他人的意见,共同探讨问题。每个小组选出一个代表,汇报本组讨论成果。
3.教师指导:在学生讨论过程中,教师巡回指导,关注学生的讨论进展,及时解答学生的疑问,引导他们深入探讨问题。
(五)总结归纳
1.学生自主总结:让学生回顾本节课所学内容,总结一元二次方程根与系数的关系及其应用,归纳解题方法。
2.教师点评:教师对学生的总结进行点评,强调重点知识点,指出易错点,提醒学生注意。
3.课堂小结:对本节课的教学内容进行梳理,形成知识结构,为学生后续学习奠定基础。
五、作业布置
为了巩固学生对一元二次方程根与系数关系的理解,提高他们运用数学知识解决实际问题的能力,特布置以下作业:
7.关注学生个体差异,针对不同学生的学习需求,给予个性化的指导。对学习困难的学生,要进行耐心辅导,帮助他们克服困难;对优秀生,要适当提高要求,激发他们的潜能。
8.定期组织课堂小结,让学生在总结中回顾所学知识,形成系统的知识结构。同时,鼓励学生提出问题,培养他们的批判性思维。
四、教学内容与过程
(一)导入新课
2.作业难度分层,满足不同学生的学习需求;
3.作业形式多样,注重培养学生的实践能力和团队合作精神;
4.教师及时批改作业,给予学生反馈,指导学生改进学习方法。
2.学会运用根与系数的关系解决实际问题,提高数学应用能力;
3.培养学生的逻辑思维能力和解决问题的策略。
(二)教学难点
1.判别式的推导及其与根的关系的理解;
2.在实际问题中,如何构建一元二次方程模型,并运用根与系数的关系进行求解;
3.1.2一元二次方程根的分布
2
x2
12
练习: 1、若方x程 2 (k3)xk 0 的两根都小 1, 于求k的取 x1 x2 0
-1
值范围?
2、若7方 x2程 k13xk2k20的两 根分0 别 , 1和 在 1, 2内, k的 求取值范
1 0
2 13
练习:
1.已知关于x的方程 a 2 2 x a 1 x a 1 0
解少解题 有:分 一若析 个m:在=原函0,点数则的f(xf右()x=侧)m=x-,23+就x(m+是1-3,表)显x+明然1关的满于图足x象的要与方求x程轴. m的x交2+点(m至-
3)x+1若=0m至≠少0,有有一两个种正根情,况可:借助根与系数的关系来解。
( 1 ) 原 点 的 两 侧 各 有 一 个 , 则 x 1 x 2 m 1 0 得 m 0
-
b 2a
>k
f(k)<0.
△=b2-4ac≥0
f(k)>0.
m< -
b 2a
<n
ห้องสมุดไป่ตู้
7.方程 f(x)=0 的两实根都在区间(m, n)内
△=b2-4ac≥0 f(m)>0
f(n)>0.
3
注 :涉及方程 f(x)=ax2+bx+c=0(a≠0)的实根 分布问题, 一般从四个方面考虑:
① f(x) 图象的开口方向; ②方程 f(x)=0的判别式; ③ f(x) 图象的对称轴与区间的关系; ④区间端点处函数值的符号.
1
x 1 x 2 2
反例x1: 3,x2
1 2
7
例题:已x知 2(方 k3程 )xk0 求满足下列 k的 条范 件围 的?
华东师大版数学九年级上册22.2.5一元二次方程的根与系数关系教学设计
作业要求:
1.学生需独立完成作业,鼓励在解题过程中进行适当的标注和解释,以展示清晰的解题思路。
2.对于实践应用题,学生需要说明数学模型建立的依据,以及如何运用根与系数关系解决问题。
3.提交作业时,要求书写规范,步骤清晰,以便于教师批改和反馈。
2.创设问题情境,激发学生的探究欲望,引导学生通过小组合作和讨论来发现韦达定理。
-设计一系列层次分明的问题,由浅入深地引导学生自主探究,增强学生的发现能力。
3.使用具体的例题,将理论知识与实际问题相结合,帮助学生建立数学模型,解决实际问题。
-选择与学生生活相关的实际问题,如物体抛射运动、利润最大化等,让学生体会数学的实用价值。
二、学情分析
在教授华东师大版数学九年级上册22.2.5一元二次方程的根与系数关系之前,需对学生的学习情况进行分析。九年级学生已具备一定的代数基础,理解并掌握了一元二次方程的基本概念和解法。然而,对于根与系数之间关系的理解,可能还处于表面层次,需要教师引导深入探究。学生在解决实际问题时,可能会对如何运用根与系数关系感到困惑。因此,教学过程中应关注以下几点:
(二)过程与方法
在教学过程中,学生将通过以下过程与方法来达到学习目标:
1.通过分析具体的一元二次方程的例子,引导学生观察、思考并发现根与系数之间的关系,培养观察问题和逻辑推理的能力。
-通过图形直观(如抛物线与x轴的交点)帮助学生形象理解根与系数的关系。
2.采用合作学习的方式,让学生在小组内讨论根的判别式的应用,培养学生团队协作解决问题的能力。
五、作业布置
为了巩固学生对一元二次方程的根与系数关系的理解,以及锻炼他们解决实际问题的能力,我设计了以下作业:
九年级数学上册《估计一元二次方程的根》教案、教学设计
3.介绍估计一元二次方程根的步骤:
a.确定方程的系数a、b、c;
b.计算判别式,判断根的性质;
c.运用估计方法,确定根的范围;
d.根据需要,利用求根公式或其他方法求解具体的根。
(三)学生小组讨论
1.教师给出几个具有实际背景的一元二次方程,要求学生分组讨论,运用估计方法确定根的范围。
4.掌握利用因式分解、配方法求解一元二次方程,并能熟练运用到实际解题中。
(二)过程与方法
1.通过小组讨论、师生互动等方式,引导学生自主探究一元二次方程的根的求解方法,提高学生的合作能力和问题解决能力。
2.通过具体例题的分析与讲解,让学生掌握求解一元二次方程的步骤,培养学生的逻辑思维能力和运算能力。
3.引导学生运用估计方法,对一元二次方程的根进行快速判断,提高学生的观察力和直觉思维能力。
3.设计一道综合性的拓展题,要求学生结合本节课所学内容,解决一个稍微复杂的一元二次方程问题。此题目的目的是培养学生的逻辑思维能力和创新意识。
4.请学生总结估计一元二次方程根的方法和步骤,以书面形式提交。这有助于学生梳理所学知识,形成系统的知识体系。
5.鼓励学生在家中寻找一个与一元二次方程相关的实际问题,尝试将其转化为数学模型,并运用所学方法求解。下节课与同学分享自己的发现和收获。
在本章节的学习中,学生需要运用已学的知识,如一元二次方程的求解方法、判别式的应用等,结合估计方法,提高对一元二次方程根的判断和求解能力。因此,教师应关注学生的个体差异,针对不同水平的学生进行有针对性的指导,使他们在掌握知识的同时,提高解决问题的能力。
同时,九年级的学生正处于青春期,个性鲜明,思维活跃。在教学过程中,教师应关注学生的心理特点,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣,引导学生主动参与课堂,发挥学生的主观能动性。通过师生互动、生生互动,培养学生的合作精神和团队意识,提高学生的综合素质。
用函数观点看一元二次方程讲解
用函数观点看一元二次方程撰稿:庄永春责编:张晓新一、目标认知学习目标1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实根和没有实根.3.能够利用二次函数的图象求一元二次方程的近似根.重点1.体会方程与函数之间的联系.2.能够利用二次函数的图象求一元二次方程的近似根.难点1.探索方程与函数之间关系的过程.2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.二、知识要点梳理知识点一、二次函数与一元二次方程的关系1.函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解要点诠释:二次函数图象与x轴的交点的个数由的值来确定.2.函数与直线的公共点情况方程的根的情况.函数与直线的公共点情况方程的根的情况.知识点二、利用二次函数图象求一元二次方程的近似解用图象法解一元二次方程的步骤:1.作二次函数的图象,由图象确定交点个数,即方程解的个数2.由二次函数图象与的交点位置,确定交点的横坐标的取值范围;3.利用计算器计算方程的近似根.三、规律方法指导求一元二次方程的近似解的方法(图象法):(1)直接作出函数的图象,则图象与x轴交点的横坐标就是方程的根:(2)先将方程变为再在同一坐标系中画出抛物线和直线图象交点的横坐标就是方程的根;(3)将方程化为,移项后得,设和,在同一坐标系中画出抛物线和直线的图象,图象交点的横坐标即为方程的根。
一元二次不等式教案中职数学
一元二次不等式教案中职数学教学内容三维目标一、科学知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能够熟练地将分式不等式转变为整式不等式(组),正确地谋出来分式不等式的边值问题;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.可以利用一元二次不等式,对取值的与一元二次不等式有关的问题,尝试用一元二次不等式数学分析与二次函数的有关科学知识解题.二、过程与方法1.使用探究法,按照思索、交流、实验、观测、分析得出结论的方法展开启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,唤起学生的自学积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.加强学生应用领域转变的数学思想和分类探讨的数学思想.教学重点1.从实际问题中抽象化出来一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体内容的问题情景,体会至现实世界存有大量的不等量关系,并且研究了为不等式或不等式组在则表示实际问题中的左右关系。
总结下等比数列的性质。
生:略师:某同学必须把自己的计算机互连因特网,现有两种isp公司可以供选择,公司a每小时收费1.5元(严重不足1小时按1小时排序),公司b的收费原则就是第1小时内(不含恰好1小时,萨兰勒班县)收费1.7元,第2小时内收费1.6元以后每小时增加0.1元(若用户一次玩游戏时间少于17小时,按17小时排序)那么,一次玩游戏在多少时间以内能确保挑选公司a的玩游戏费用大于等同于挑选公司b所需费用。
学生自己讨论点题,板书课题新课学习只有一个未知数,并且未知数的最低次数就是2的不等式。
2.三个“二次”之间的关系及一元二次不等式的解法师在前面我们已经自学过一元二次左右的数学分析,辨认出一元二次方程及对应的二次函数存有关系,那么同学们课本关上至p77填表格。
根的分布教案
一元二次方程根的分布汤丽娅一、教材及学情分析二次函数是重要的初等函数类型,一元二次方程是初中阶段学习的一个重要内容,含参的一元二次方程根的分布实际上是综合应用一元二次方程根与系数的关系、二次函数的基本性质、分类讨论思想、数形结合思想等思想方法来解决的一类专题性内容,是基于人教版九年级二次函数与人教版A版高中教材必修1第二章函数的基本性质的一节专题教学或研究性学习。
本节教学结合解一元二次方程及根与系数的关系、二次函数的性质、函数的基本性质,是初等函数思想方法,特别是数形结合思想应用的典型。
虽然教材并没有单独成节,但教材中却处处渗透着这一内容。
一元二次方程根的分布问题是二次函数性质的集中体现,是对函数的基本思想方法的巩固和提升,是难得的好素材。
本节教学内容是在学生初中已初步探讨学习了正比例函数、反比例函数、一次函数等简单函数,高中探讨了集合工具和函数的基本性质(单调性、奇偶性等)的基础上重新回到一元二次方程根的问题上,学生既能提升对函数、方程等知识的认识,又能提升对分类讨论、数形结合、转化等数学思想的认识,提高解决问题的能力,巩固、完善学生的函数知识、方法体系。
二、教学目标1、知识与能力目标:加深对一元二次方程、二次函数的认识;利用函数知识、方法重新审视一元二次方程更本质的规律;会熟练利用二次函数的图象性质解决一元二次方程根的分布问题。
2、过程与方法目标:经历观察、归纳、概括等数学活动过程,获得一元二次方程根的分布与系数的重新夺得关系的条件限制(不等式组);通过运算获得具体、简洁的数量关系;通过创造性思维提出新的问题并尝试通过合作、交流解决所提出的新问题;并会运用规律解决综合问题,并对此进行反思、推广。
3、情感态度与价值观目标:体会二次函数乃至函数知识、思想的丰富多彩;能积极参与数学学习活动,体验数学学习充满着的探索性和创造性,锻炼克服困难的意志,建立自信;培养对知识的科学态度和辩证唯物主义观点。
三、重难点分析重点:一元二次方程根的分布的函数解法难点:利用换元法将不熟悉的方程转化为一元二次方程四、教法与教具设计教法:采用高中数学“问题解决”教学方法:创设问题情境——发现问题——探索问题——解决问题——发现问题——探索(新)问题——……;采用多媒体演示,提高效率;师生互动,活跃课堂气氛。
初中数学优秀教案7篇
初中数学优秀教案7篇初中数学优秀教案篇1教材分析:一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。
教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1x2得出一元二次方程根与系数的关系,以及以数x1x2为根的一元二次方程的求方程模型。
然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观形象的,他们所注意的多是事物外部的直接的具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:1知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2能力目标:通过韦达定理的教学过程,使学生经历观察实验猜想证明等数学活动过程,发展推理能力,能有条理地清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:1重点:一元二次方程根与系数的关系。
2难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,abc的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,ac异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。
一元二次不等式及其解法
0
7 2
x
即f ( x) 2 x 7 0解集为 ______; 3) 当x ___ < 时,y 0 即2 x 7 0解集为 ______.
7 x x 2 -7源自7 2利用图像解一元一次不等式
1.求出方程
2 x 7 0的根为
y
7 2
2.画出函数 f ( x) 2x 7 的图像; 3.写出 2x 7 0 的解集为 2x 7 0 的解集为
2
课堂小结
1、解一元二次不等式的一般步骤:
(1)将一元二次不等式化为标准式,二次项系数化 为正数
(2)计算△判断方程是否有根;或观察能否因式分解 (3)如果有根,解出相对应的一元二次方程的根; (4)根据一元二次方程的根,结合图像(或口诀), 写出不等式的解集。 概括为:一化正→二算Δ→三求根→四结合图像写解集
1 已知ax 2 x c 0的解集为x 1 x 3 2 , 2
求a、c的值,并解不等式 cx 2 x a 0.
2
变式1:不等式
求不等式ax bx c 0的解集 x 2 x 3 ,
2
ax bx c 0 的解集为
2
例3:解不等式x (1 a) x a 0
1 2
b x x 2a
R
ax 2 bx c 0 x x1 x x 2 (a 0)的解集
(1) 2 x
2
3x 2
2
(2) 3x
6x 2 .
(3)4 x
2
4x 1 0
x (4)
2
2x 3 0 .
例 2:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次函数根的分布规律探究
发表时间:2013-01-21T09:26:17.043Z 来源:《新校园》学习版2012年第9期供稿作者:常庆
[导读] 分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
常庆(安徽师范大学,安徽芜湖241000)
引例:方程x2-2ax+4=0 的两根均大于1,求实数的取值范围。
分析:此种解法思路简单,但是求解过程计算量太大。
此例属于一元二次函数根的实根分布问题。
一元二次函数根的实根分布问题是初高中数学衔接的一个重要问题,也是高考的一个热点问题。
一元二次方程根的分布也是二次函数中的重要内容,也是历来学生难以掌握的地方。
这部分知识在初中数学中虽有所涉及,但远远不够系统和完整。
而且解题方法多局限于应用判别式法和根与系数的关系。
本文通过
“数形结合、函数与方程”浅显易懂的简析。
分两根分布在同一区间与两根分布在不同区间两种情况系统地介绍一元二次方程实根分布的充要条件及其运用,有助于学生掌握其精髓。
设方程ax2+bx+c=0(a>0)的不等两根为x1,x2 且x1<x2,相应的二次函数为f(x)=ax2+bx+c,方程的根即为二次函数图像与轴的交点.
情况一:两根分布在同一区间
情况二:两根分布在不同区间
对表二的根的分布表中一些特殊情况作说明:
(1)有且仅有一根在(m,n)内有以下特殊情况:1.若f(m)=0或f(n)=0,则此时f(m)·f(n)<0 不成立,但对于这种情况知道了方程有一根为m 或n,可以求出另外一根,然后可以根据另一根在区间(m,n)内,从而可以求出参数的值.求出参数值后需检验是否满足题意。
若不满足
题意,则舍去所得参数值。
2.方程有且只有一根,且这个根在区间(m,n)内,只要满足驻=0,此时由驻=0 可以求出参数的值,然后再将参数的值代入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数. 练习:已知二次方程x2+(m-3)x=0,根据下列条件求m 的范围.。