初中七年级数学绝对值练习题110题

合集下载

初中年级数学初中七年级绝对值练习题练习题

初中年级数学初中七年级绝对值练习题练习题

《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x =-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x 和y 互为相反数,则必有x+y=0.现已知:|a |+a=0,求a 的取值范围。

初中数学绝对值专题

初中数学绝对值专题

初中数学绝对值专题数学练习题【篇一】1.已知|x|=3 ,|y|=1,且x-y<0,则1/3x+y²ºº¹=( )2.已知|a|=3,|b|=5 ,且a<b,求a-b< p=""></b,求a-b<>3.已知∣a-4∣+∣B-2∣=0,求a,b的值4.已知|4+a|+|2-5b|=8,求a+b=( )5.|x-2|+1=196.|2x+3|-|x-1|=4x-37.a<b<0<c,化简|2a-b|+2|b-c|-2|c-a|+3|b|< p=""></b<0<c,化简|2a-b|+2|b-c|-2|c-a|+3|b|<>8.a9.c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|< p=""></b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|<>10.b<c<0<a,化简|a+c|+|b+c|-|a-b|+|2a-c|< p=""></c<0<a,化简|a+c|+|b+c|-|a-b|+|2a-c|<>一、选择题1.下列说法中正确的个数是( )(1)一个正数的绝对值是它本身;(2)一个非正数的绝对值是它的相反数;(3)•两个负数比较,绝对值大的反而小;(4)一个非正数的绝对值是它本身. A.1个 B.2个C.3个D.4个2.若-│a│=-3.2,则a是( ) A.3.2 B.-3.2 C.±3.2 D.以上都不对3.若│a│=8,│b│=5,且a+b>0,那么a-b的值是( )A.3或13B.13或-13C.3或-3D.-3或-13 4.一个数的绝对值等于它的相反数的数一定是( )A.负数B.正数C.负数或零D.正数或零 5.a<0时,化简|| 3aaa结果为( ) A. 2 3B.0C.-1D.-2a数学练习题【篇二】1、|-5|相反数是( )A、5B、- 15 C、-5 D、1 52、(2006•哈尔滨)若x的相反数是3,|y|=5,则x+y的值为( )A、-8B、2C、8或-2D、-8或23、(2003•黑龙江)若|a-3|-3+a=0,则a的取值范围是( )A、a≤3B、a<3C、a≥3D、a>34、若ab<0,且a>b,则a,|a-b|,b的大小关系为( )A、a>|a-b|>bB、a>b>|a-b|C、|a-b|>a>bD、|a-b|>b>a5、下列说法正确的是( )A、-|a|一定是负数B、只有两个数相等时,它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数6、有理数a、b在数轴上的位置如图所示,下列各式成立的是( )A、b-a>0B、-b<0C、-|a|>-bD、ab<07、已知a是有理数,且|a|=-a,则有理数a在数轴上的对应点在( )A、原点的左边B、原点的右边C、原点或原点的左边D、原点或原点的右边8、绝对值相等的两个数在数轴上对应的两个点的距离为6,则这两个数为( )A、+6和-6B、+3和-3C、+6和-3D、+3和+69、若aa= -1,则a为( )B、a<0C、0<a0</a10、若|m|= -m,则m一定是( )A、负数B、正数C、负数或0D、011、在数轴上距离原点4个单位长度的点所表示的数是( )A、4B、-4C、4或-4D、2或-212、有理数a,b,c在数轴上对应的点如图所示,化简|b+a|+|a+c|+|c-b|的结果是( )A、2b-2cB、2c-2bC、2bD、-2c13、(2010•吉林)检测足球时,超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,下图中最接近标准的是( )B、A、C、D、14、(2007•安顺)数轴上点A表示-3,点B表示1,则表示A、B两点间的距离的算式是( )A、-3+1B、-3-1C、1-(-3)D、1-315、已知ab≠0,则ab+的值不可能的是( ) abA、0B、1C、2D、-2二、填空题16、绝对值比2大比6小的整数共有---------。

初一数学《绝对值》专项练习(含答案)

初一数学《绝对值》专项练习(含答案)

绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。

初一数学绝对值练习题

初一数学绝对值练习题

初一数学绝对值练习题一、选择题:1. 绝对值的定义是:一个数的绝对值是其数值与0的距离,即|a|=______。

A. a(当a>0时)B. -a(当a<0时)A和B2. 计算|-5|的结果为:A. 5B. -5C. 0A3. 若|a|=3,则a可能的值是:A. 3B. -3C. 0A和B4. 绝对值的几何意义是表示数轴上一个数到原点的距离,若|-2|=2,则-2在数轴上的位置是:A. 原点B. 距离原点2个单位长度C. 距离原点3个单位长度B5. 已知|a+1|=4,那么a的值可能是:A. 3B. -5C. 5B二、填空题:6. 若|a|=5,则a的值是______。

答案:±57. 计算|-3.5|的结果为______。

答案:3.58. 若一个数的绝对值是它本身,则这个数是______。

答案:非负数9. 若|a-b|=b-a,则a和b的大小关系是______。

答案:a≤b10. 若|-x|=|x|,则x是______。

答案:非负数三、计算题:11. 计算|-7|+|-2|-|3|的值。

答案:7+2-3=612. 若|2x-3|=5,求x的值。

答案:x=4或x=-113. 已知|a|=2,|b|=3,且|a+b|=|a-b|,求a和b的值。

答案:a=2,b=3或a=-2,b=-3四、解答题:14. 一个数的绝对值是它到0的距离,如果一个数的绝对值是4,那么这个数可能是什么?答案:这个数可能是4或-4。

15. 已知|a|=2,|b|=1,且a+b=0,求a和b的值。

答案:由于a+b=0且|a|=2,|b|=1,可以推断出a=2,b=-1或a=-2,b=1。

16. 判断以下说法是否正确,并说明理由:(1)若|a|=|b|,则a=b。

(2)若|a|=|b|,则a=-b。

答案:(1)不正确,因为a和b可以是相反数,例如|-3|=|3|,但-3≠3。

(2)正确,因为如果a和b的绝对值相等,那么它们要么相等,要么互为相反数。

绝对值化简110题(含解析)

绝对值化简110题(含解析)

1.(1)|3|=_______;(2)|﹣2|=_______;(3)|0|=_______;(4)绝对值等于4的数有_______个,它们是_______和_______.2.相反数等于它本身的数是_______,绝对值等于它本身的数是_______,3.化简:-(-5)=_______,-|-5|=_______.4.化简下列各数:(1)|-8.2|=_______;(2)-[-(+3)]=_______.5.-[-(-4)]的相反数是_______,|-5|的绝对值是_______.6.(1)|-3|×|-6.2|;(2)|-5|+|-2.49|;(3)-|-|;(4)|-|÷||7.计算:(1)2.7+|-2.7|-|-2.7|;(2)|-16|+|+36|-|-1|8.计算:(1)|-3|+|+5|-|-4|;(2)-(-6)÷|+(-2)|.9..10.绝对值不大于2的整数有_______个,把它们由小到大排列为_______.11.绝对值不大于2004的所有整数的和为_______.12.绝对值比2大比6小的整数共有_______个.13.一个数的相反数是最大的负整数,这个数是_______;若|-x|=5,则x=_______;若|-a|=a,则a_______0.14.若a<0,则=_______.15.如果|a|=-a,则a是_______数.16.已知a=12,b=-3,c=-(|b|-3),求|a|+2|b|+|c|的值.17.写出符合下列条件的数.①大于-3,且小于2的所有整数;②绝对值不小于2且小于5的所有负整数;③在数轴上,与表示-1的点的距离为2的点的表示的数;④不超过(-)3的最大整数.18.去掉下列各数的绝对值符号:(1)若x<0,则|x|=_______;(2)若a<1,则|a-1|=_______;(3)已知x>y>0,则|x+y|=_______;(4)若a>b>0,则|-a-b|=_______.19.若|-x|=|-4|,则x=_______;若|2x-3|=1,则x=_______.20.若|x-2|=4,则x=_______.21.求下列x的值:(1)|x-3|=1;(2)|x+2|=0;(3)|x-1|=-2.22.当3<a<4时,化简:|a-3|-|a-6|得到的结果是_______.23.若,化简|a-|a||.24.已知x<-3,化简:|3+|2-|1+x|||.25.化简|1-a|+|2a+1|+|a|,其中a<-2.26.有理数a、b在数轴上的位置如图所示,则化简|a+b|-a的结果为_______.27.表示a、b两数的点在数轴上的位置如图,则|a-1|+|1+b|=_______.28.数a,b,c在数轴上的位置如图:化简|b-a|-|1-c|=_______.29.已知a,b,c在数轴上的位置如图所示,化简:|b+c|-|a+c|-|a-b|=_______.30.a,b,c在数轴上的位置如图所示,化简|a+c|+|a+b+c|-|a-b|+|b+c|.31.设a<0,且,则|x+1|-|x-2|=_______.32.若|a|=2,|b|=6,a>0>b,则a+b=_______.33.若|a|=3,b=2,且ab<0,则a-b=_______.34.已知|x|=4,|y|=2,且xy<0,则x-y的值等于_______.35.已知:|x|=2,|y|=3,且xy<0,求6x-8y-7的值.36.若a<0,ab<0,则|a-b|-(b-a+3)的化简结果为_______.37.若-a=-(-2),|b|=3,则|a+b|=_______,|a-b|=_______.38.若ab<0,a<b,化简|b-a+1|-|a-b-5|的正确结果为_______.39.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|-2b|-|3b-2a|.40.|a|=3,|b|=1,|c|=5,而且|a+b|=a+b,|a+c|=-(a+c),则a-b+c的值为_______.41.小明做这样一道题“计算|(-3)+…|”,其中“…”表示被墨水污染看不清的一个数,他翻开后面的答案知该题的计算结果是8,那么“…”表示的数是_______.42.武汉百步亭小区交警每天都骑摩托车沿南北街来回巡逻,早晨从A地出发,晚上最后到达B地.假定向北为正方向,当天巡逻记录如下(单位:km):14,-9,18,-7,13,-6,10,-6,问:(1)B地在A地什么位置?(2)若摩托车每千米耗油0.1升,则一共需耗油多少升?43.某汽车配件厂生产一批圆批的橡胶垫,从中抽取6件进行检验,比标准直45.已知a、b、c都不是零,写出的所有可能的值_______.46.已知三个有理数a、b、c其积是负数,其和是正数,当x=---时,x2-5x+1的值是_______.47.有理数a,b,c均不为0,且a+b+c=0,设,则x=_______.48.已知=-1,试求的值.49.计算:++++++++.50.若|a-b|=|a|-|b|,试求a,b的对应关系.51.以下有两道题,请你选择一道题作答,只记一道题的分数.(1)已知,试确定|a|-|b|+|a+b|+|ab|的值.(2)如果a,b,c,d为互不相等的有理数,且|a-c|=|b-c|=|d-b|=1,试确定|a-d|的值.52.先比较下列各式的大小,再回答问题.(1)|-3|+|+5|_______|-3+5|;(2)+_______;(3)|0|+|-3|_______|0-3|;(4)通过上面的比较,请你归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.53.(1)对于式子|a|+12,当a等于什么值时,它的值最小?最小值是多少?(2)对于式子12-|a|,当a等于什么值时,它的值最大?最大值是多少?54.如果|x+3|+|y-4|=0,求x+2y的值.55.已知有理数a,b,c满足等式|a-2|+|7-b|+|c-3|=0,求a,b,c的值.56.已知,.求y的值.57.设a、b、c为整数,且|a-b|+|c-b|=1,求|c-a|+|a-b|+|b-c|的值.58.若a、b、c为整数,且|a-b|19+|c-a|2010=1,求|a-b|+|b-c|+|c-a|.59.已知|2a-1|+|5b-4|=0,计算下题:(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和.60.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=_______,b=_______,c=_______;(2)点P为一动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|-|x-3|-|5-x|(请写出化简过程)61.已知|x1-1|+|x2-2|+|x3-3|+…+|x2005-2005|=0,求代数式:2x1-2x2-2x3-…-2x2005的值.62.已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y的最大值与最小值.63.若a是有理数,则(-a)+|a|+|-a|+(-|a|)的最小值是_______.64.化简:|2x-1|.65.化简:.66.化简:|x-1|+|x-3|.67.化简:|3x-2|+|2x+3|.68.解有关绝对值的问题,常常需要分区域进行讨论,如果=-2,请你确定x的取值范围.69.已知0≤a≤15且a≤x≤15,则当x取什么数时,式子|x-a|+|x-15|+|x-a-15|的值最小?70.化简:|2x+1|-|x-3|+|x-6|.71.化简:|x+11|+|x-12|+|x+13|.72.化简:|x+5|+|x-7|+|x+10|.73.化简:||x-1|-2|+|x+1|.74.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.75.化简||x-1|-3|+|3x+1|.76.化简:||x-1|-3|+|3x+1|.77.根据结论完成下列问题:结论:数轴上两点之间的距离等于相应两数差的绝对值.问题:(1)数轴上表示3和8的两点之间的距离是_______;数轴上表示-3和-9的两点之间的距离是_______;数轴上表示2和-8的两点之间的距离是_______;(2)数轴上表示x和-2的两点A和B之间的距离是_______;如果|AB|=4,那么x为_______;(3)当代数式|x+1|+|x-2|+|x-3|取最小值时,相应的x的值是_______.78.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是_______;②数轴上表示-2和-6的两点之间的距离是_______;③数轴上表示-4和3的两点之间的距离是_______;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a-3|=7,那么a=_______;②若数轴上表示数a的点位于-4与3之间,求|a+4|+|a-3|的值;③当a取何值时,|a+4|+|a-1|+|a-3|的值最小,最小值是多少?请说明理由.79.求|x-5|+|x-2|的最小值.80.|x+1|+|x-2|+|x-3|的最小值为_______.81.问当x取何值时,|x-1|+|x-2|+|x-3|+…+|x-2011|取得最小值,并求出最小值.82.当|x|≤4时,求|x-2|+|x-3|的最大值和最小值.83.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、-1,①A、B之间的距离可用含x的式子表示为_______;②若该两点之间的距离为2,那么x值为_______.(2)|x+1|+|x-2|的最小值为_______,此时x的取值是_______;(3)已知(|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y的最大值_______和最小值_______.84.三台生产同一种产品的机器M1、M2、M3在x轴上的位置如图所示.M1、M2、M3生产该产品的效率之比为2:1:3,它们生产的产品都需要沿着x轴运送到检验台检验,而移动所需费用与移动的距离成正比.问检验台应该设在x 轴上的何处,才能使移动产品所花费的费用最省?85.已知|x-3|+|x+2|的最小值是a,|x+3|-|x+2|的最大值是b,求a+b的值.86.计算|x-3|+|x-5|+|x-2|+|x+1|+|x+7|的最小值.87.求|x+5|+2|x-4|+3|x-1|的最小值.88.已知a<b,求|x-a|+|x-b|的最小值.89.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.90.已知|x-1|+|x-5|=4,求x的取值范围.91.不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b|+|b-c|=|a-c|,那么B点应为()(1)在A,C点的右边;(2)在A,C点的左边;(3)在A,C点之间;(4)以上三种情况都有可能.92.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使|x+1|+|x-3|=x?(3)是否存在整数x,使|x-4|+|x-3|+|x+3|+|x+4|=14?如果存在,求出所有的整数x;如果不存在,说明理由.93.若|x|≤1,|y|≤1且u=|x+y|+|y+1|+|2y-x-4|,则u min+u max=_______.94.求|x-1|+2|x-2|+3|x-3|+4|x-4|+5|x-5|的最小值及此时x的值.95.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应的点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上数x1与数x2对应的点之间的距离;例1.解方程|x|=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x-1|>2.在数轴上找出|x-1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x-1|=2的解为x=-1或x=3,因此不等式|x-1|>2的解集为x<-1或x>3.例3.解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和-2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或-2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在-2的左边,可得x=-3,因此方程|x-1|+|x+2|=5的解是x=2或x=-3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为_______;(2)解不等式:|x-3|≥5;(3)解不等式:|x-3|+|x+4|≥9.96.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5-3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5、-3在数轴上对应的两点之间的距离;|5|=|5-0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a-b|.问题(1):点A、B、C在数轴上分别表示有理数x、-2、1,那么A到B的距离与A到C的距离之和可表示为_______(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x-3|+|x+1|=6的x的所有值是_______,②设|x-3|+|x+1|=p,当x的值取在不小于-1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是_______;当x的值取在_______的范围时,|x|+|x-2|的最小值是_______.问题(3):求|x-3|+|x-2|+|x+1|的最小值以及此时x的值.问题(4):若|x-3|+|x-2|+|x|+|x+1|≥a对任意的实数x都成立,求a的取值.97.如果实数a满足:-2014<a<0,则|x-a|+|x+2014|+|x-a+2014|的最小值是_______.98.已知:x2+y2≤1,其中x,y是实数,则|x+y|+|y+1|+|2y-x-4|的最大值是_______.99.已知有理数x,y,z满足(|x+1|+|x-2|)(|y-1|+|y-3|)(|z-1|+|z+2|)=18,求x+2y+3z的最大值与最小值.100.已知实数x、y、z满足(|x+1|+|x-3|)(|y-2|+|y-5|)(|z+3|+|z-6|)≤108,则代数式x+3y-2z的最大值是_______.101.|x-1|+8|x-2|+a|x-3|+2|x-4|的最小值为12,则a的取值范围为多少?102.求证:|a|+|b|≥|a-b|.103.求证:|a|-|b|≤|a-b|.绝对值化简110题(朱韬老师分享)104.求证:|a+b|+|a-b|≥2|a|.106.证明A=||x-y|+x+y-2z|+|x-y|+x+y+2z=4max{x,y,z},其中max{x,y,z}表示x,y,z这三个数中的最大者.107.将1,2,…,100这100个正整数任意分成50组,每组两个数.现将每组两个数中的一个记为a,另一个记为b,代入中进行计算,并求出结果.50组都代入后,可求得50个值,求这50个值的和的最大值.108.有一台单功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1-x2|的结果.比如依次输入1,2,则输出的结果是|1-2|=1;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.(1)若小明依次输入1,2,3,4,则最后输出的结果是_______;若将1,2,3,4这4个整数任意的一个一个的输入,全部输入完毕后显示的结果的最大值是_______,最小值是_______;(2)若随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,求k的最小值.109.从数码1,2,3,4,5,6,7,8,9中任选4个数码,用这四个数码组成数字最接近的两个两位数,并用d表示这两个两位数的差的绝对值(例如,选取数码1,2,7,9),则d=|27-19|=8),这样,任意四个数码就对应一个正整数d,求d的最大值.110.有一正整数列1,2,3,…,2n-1、2n,现从中挑出n个数,从大到小排列依次为a1,a2,…,a n,另n个数从小到大排列依次为b1,b2,…,b n.求|a1-b1|+|a2-b2|+…+|a n-b n|之所有可能的值.1.解:(1)|3|=3;(2)|﹣2|=2;(3)|0|=0;(4)|±4|=4,∴绝对值等于4的数有2个,分别为4和-4.2.解:由题意得:相反数等于它本身的数是0.绝对值等于它本身的数是非负数,有无数个.3.解:-(-5)=5,-|-5|=-5.4.解:(1)|-8.2|=8.2;(2)-[-(+3)]=-[-3]=3.5.解:-[-(-4)]的相反数是-4,|-5|的绝对值是5.6.解:(1)原式=3×6.2=18.6;(2)原式=5+2.49=7.49;(3)原式=-;(4)原式=×=.7.解:(1)原式=2.7+2.7-2.7=2.7;(2)原式=16+36-1=51.8.解:(1)|-3|+|+5|-|-4|=3+5-4=4;(2)-(-6)÷|+(-2)|=6÷2=3.9.解:原式=-+-+-=-=.10.解:绝对值不大于2的整数有±2,±1,0,共5个.它们按从小到大排列为:﹣2,﹣1,0,1,2.11.解:根据绝对值的性质可知绝对值不大于2004的所有整数是0,±1,±2,±3,…,±2002,±2003,每一组绝对值相等的数均互为相反数,故绝对值不大于2004的所有整数的和为0.12.解:设这个数为x,则:2<|x|<6,∴x为±3,±4,±5,∴绝对值比2大比6小的整数共有6个.13.解:最大的负整数是-1,故一个数的相反数是最大的负整数,这个数是1;若|-x|=5,x=±5;若|-a|=a,则a≥0.14.解:∵a<0,∴==-1.15.解:如果|a|=-a,那么a≤0,所以a是非正数.16.解:∵a=12,b=-3,∴c=-(|b|-3)=-(3-3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.17.解:①大于-3,且小于2的所有整数-2,-1,0,1;②绝对值不小于2且小于5的所有负整数-2,-3,-4;③在数轴上,与表示-1的点的距离为2的点的表示的数是1或-3;④不超过(-)3的最大整数是-5.18.解:(1)∵x<0,∴|x|=-x,(2)∵a<1,∴a-1<0,∴|a-1|=1-a;(3)∵已知x>y>0,∴|x+y|=x+y;(4)∵a>b>0,∴-a-b<0,∴|-a-b|=a+b.19.解:|-x|=|-4|,即|-x|=4;所以x=±4.|2x-3|=1,∴2x-3=±1;所以x=1或2.20.解:若|x-2|=4,则x-2=±4,解得x=6或-2.21.解:(1)x-3=1时,x=4;当x-3=-1时,x=2;(2)x+2=0时,x=-2;(3)|x-1|是非负数,不能等于-2,故无解.22.解:∵3<a<4,∴|a-3|=a-3,|a-6|=6-a,∴原式=|a-3|-|a-6|=a-3-(6-a)=2a-9.23.解:∵=-1,∴|a|=-a,∴a≤0,∴|a-|a||=|a+a|=-2a.24.解:∵x<-3,∴1+x<0,3+x<0,∴原式=|3+|2+(1+x)||=|3+|3+x||=|3-(3+x)|=|-x|=-x.25.解:∵a<-2,∴|1-a|+|2a+1|+|a|=1-a-(2a+1)-a=1-a-2a-1-a=-4a.26.解:由图可知,a<0,b>0,a+b>0,∴|a+b|-a=a+b-a=b.27.解:由数轴可知:a<1,b<-1,所以a-1<0,1+b<0,故|a-1|+|1+b|=1-a-1-b=-a-b.28.解:根据数轴,可得b<a<0<c<1,则|b-a|-|1-c|=-b+a-1+c=a-b+c-1.29.解:根据数轴可知a>0,b<0,c<0,-c>a>-b,∴|b+c|-|a+c|-|a-b|=-(b+c)-(-c-a)-(a-b)=-b-c+c+a-a+b=0.30.解:由图可知:a>0,b<0,c<0,|a|<|b|<|c|∴a+c<0,a+b+c<0,a-b>0,b+c<0∴原式=-(a+c)-(a+b+c)-(a-b)-(b+c)=-3a-b-3c.31.解:∵a<0,且,∴a<0,x≤-1,∴|x+1|-|x-2|=-x-1-(-x+2)=-3.32.解:∵|a|=2,|b|=6,a>0>b,∴a=2,b=-6,∴a+b=2-6=-4.33.解:∵|a|=3,b=2,∴a=±3,b=2;∵ab<0,∴a=-3,b=2;∴a-b=-3-2=-5.34.解:∵|x|=4,|y|=2,∴x=±4,y=±2.又xy<0,∴x=4,y=-2或x=-4,y=2.当x=4,y=-2时,x-y=4-(-2)=6,当x=-4,y=2时,x-y=-4-2=-6.故答案为:6或-6.35.解:由题意得:xy<0可得:x和y异号,①当x=2,y=-3,6x-8y-7=39;②当x=-2,y=3时,6x-8y-7=-53.36.解:∵a<0,ab<0,∴b>0,∴a-b<0,|a-b|-(b-a+3)=b-a-b+a-3=-3.37.解:∵-a=-(-2),|b|=3,∴a=-2,b=±3,当a=-2,b=3时,|a+b|=|-2+3|=1,|a-b|=|-2-3|=5,当a=-2,b=-3时,|a+b|=|-2-3|=5,|a-b|=|-2-(-3)|=1,故答案为:1或5,5或1.38.解:∵ab<0,a<b,∴b>0,a<0,∴|b-a+1|-|a-b-5|=b-a+1+a-b-5=-4.39.解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=-ab,∵|ab|≥0,∴-ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=-a.∴-2b≤0,3b-2a≥0,∴|a|+|-2b|-|3b-2a|=-a+2b-(3b-2a)=a-b=-2b或2a.40.解:根据题意,易得a=±3,b=±1,c=±5,若|a+b|=a+b,则a+b>0,即a>-b,|a+c|=-(a+c),则a+c<0,即a<-c,分析可得,c=-5,a=3,b=±1,则a-b+c=-3或-1.41.解:设“…”表示的数是x,则有:|(-3)+x|=8,-3+x=±8,解得:x1=11,x2=-5;故“…”表示的数是-5或11.42.解:(1)B在A正北27km(2)|14|+|-9|+|18|+|-7|+|13|+|-6|+|10|+|-6|=8383×0.1=8.3 (升)答:一共需耗油8.3升.43.解:(1)第3件、第4件、第5件的质量相对来讲好一些,比较记录数字的绝对值,绝对值越小越接近标准尺寸,所以绝对值较小的相对来讲好一些.(2)有2件产品不合格.44.解:∵-1≤x≤2,∴|x+1|=x+1,|x-2|=2-x,∴y=x+1-2|x|+2-x=3-2|x|,而0≤|x|≤2所以有y的最大值为:当x=0时,y=3,最小值为x=2时y=-1.45.解:根据题意,分4种情况,若三个数都是正数,则x=3,若三个数中有一个正数,两个负数,则x=-1,若三个数中有2个正数,1个负数,则x=1,若三个数都是负数,则x=-3,故答案为±3或±1.46.解:由题意可得:a、b、c三个数中有一个是负数,两个是正数,x=-(-1+1+1)=-1,x2-5x+1=1+5+1=7.47.解:有理数a,b,c均不为0可得a、b、c必有一个大于0,一个小于0,可令a>0,c<0,∴x=-1++1=±1.48.解:由已知可得出:a,b,c中有两个负数、一个正数,①若a<0,b<0,c>0,则ab>0,bc<0,ca<0,abc>0,∴原式=1-1-1+1=0;②若a<0,b>0,c<0,则ab<0,bc<0,ca>0,abc>0,∴原式=-1-1+1+1=0;其它几种情况同理推得:ab,bc,ac,abc中有两个正数,两个负数,所以:=0.49.解:当a>0,b>0,c>0,d>0,e>0,f>0,++++++++=9;当a,b,c,d,e,f中只有一个是负数,++++++++=(5-1)+(2-1)=5;当a,b,c,d,e,f中有两个是负数,++++++++=(4-2)+3=5或++++++++=(4-2)+(1-2)=1;当a,b,c,d,e,f中有三个是负数,++++++++=(3-3)+(-3)=-3或++++++++=(3-3)+(2-1)=1;当a,b,c,d,e,f中有四个是负数,++++++++=(2-4)+(1-2)=-3 或++++++++=(2-4)+(2-1)=-1;当a,b,c,d,e,f中有五个是负数,++++++++=(1-5)+(2-1)=-3;当a<0,b<0,c<0,d<0,e<0,f<0,++++++++=-3.50.解:|a-b|是数轴上表示a、b两数的点之间的距离,|a|-|b|是数轴上表示a、b的两数到原点的距离的差,并且a到原点的距离大于b到原点的距离,∴a,b的对应关系是:a、b是同号两数,且a的绝对值大于b的绝对值.51.解:(1)∵,∴a,b同号,又∵a<-b,即a+b<0,∴a,b必须同为负,∴|a|-|b|+|a+b|+|ab|=-a-(-b)-(a+b)+ab=-2a+ab;(2)已知b≠c,可设b<c,∵|a-c|=|b-c|,∴a-c与b-c必互为相反数(否则a=b,不合题意),即a-c=-(b-c),a+b=2c,又∵b<c,∴a>c.∵|b-c|=|d-b|,∴b-c与d-b必相等(否则c=d,不合题意),即b-c=d-b,从而得2b=c+d,∵b<c,∴b>d,即d<b<c<a.∴|a-d|=a-d=(a-c)+(c-b)+(b-d)=1+1+1=3.若设b>c,同理可得|a-d|=3.52.解:(1)|-3|+|+5|>|-3+5|;(2)|-|+|+|=|--|;(3)|0|+|-3|=|0-3|;(4)|a|+|b|≥|a+b|.故答案为>,=,=.53.解:(1)∵|a|≥0,∴|a|+12≥12,∴当a等于0时,值最小,最小值是12;(2)∵|a|≥0,∴-|a|≤0,∴12-|a|≤12,∴当a等于0时,值最大,最大值是12.54.解:∵|x+3|+|y-4|=0,∴x+3=0,y-y=0,解得,x=-3,y=4,x+2y=-3+4×2=5.55.解:由题意得,a-2=0,7-b=0,c-3=0,解得a=2,b=7,c=3.56.解:∵,∴x-4=0,解得x=20,∵,∴|y-3|=6+20,∴y-3=±39,∴y=42或-36.57.解:∵a、b、c为整数,且|a-b|+|c-b|=1,∴①|a-b|=0,|c-b|=1,即a=b,|c-b|=|c-a|=1,得出|c-a|+|a-b|+|b-c|=1+1=2,②|a-b|=1,|c-b|=0,即c=b,|a-b|=|a-c|=|c-a|=1,得出|c-a|+|a-b|+|b-c|=1+1=2,综上所述|c-a|+|a-b|+|b-c|=2.58.解:由|a-b|19+|c-a|2010=1可知|a-b|=1,|c-a|=0或|a-b|=0,|c-a|=1,当a-b=±1,c-a=0时,b-c=±1,当c-a=±1,a-b=0时,b-c=±1,即|b-c|=1,则原式=|a-b|+|b-c|+|c-a|=1+1=2.59.解:∵|2a-1|≥0,|5b-4|≥0,|2a-1|+|5b-4|=0,∴|2a-1|=0,|5b-4|=0,即a=,b=,(1)a的相反数为-,b的倒数为,b的倒数的相反数为-,a的相反数与b的倒数的相反数的和为:-+(-)=-;(2)a的绝对值为,b的绝对值为,a的绝对值与b的绝对值的和为:+=.60.解:(1)∵b是最小的正整数,∴b=1.根据题意得:,∴a=-1,b=1,c=5;(2)∵0≤x≤2,∴x+1>0,x-3≤0,5-x>0,则|x+1|-|x-3|-|5-x|=x+1+(x-3)-(5-x)=x+1+x-3+x-5=3x-7.61.解:∵|x1-1|+|x2-2|+|x3-3|+…+|x2005-2005|=0,∴x1=1,x2=2,x3=3,…x2005=2005,∴2x1-2x2-2x3-...-2x2005=2(x1-x2-x3-...-x2005)=2(1-2-3- (2005)=2×[1-(2+3+…+2005)]=2×(1-1002×2007)=-4022026.62.解:|x+2|+|1-x|=9-|y-5|-|1+y|,∴|x+2|+|1-x|+|y-5|+|1+y|=9,当x≥1,y≥5时,x+2+x-1+y-5+y+1=9,2x+2y=12,x+y=6,当1>x≥-2,5>y≥-1时,x+2+1-x+5-y+y+1=9,但x+y<6,当x<-2,y<-1时,-x-2+1-x+5-y-1-y=9,-2x-2y=6,x+y=-3,故x+y最大值为6,最小值为-3.63.解:若a≥0,则(-a)+|a|+(-a)+(-|a|)=0,若a<0,则(-a)+|a|+|-a|+(-|a|)=-2a>0.所以(-a)+|a|+|-a|+(-|a|)的最小值是0.64.解:①当x≥,原式=2x-1;②当x<,原式=-(2x-1)=1-2x.65.解:当x>0时,=0;当x<0时,=-2;66.解:①当x<1,原式=-(x-1)-(x-3)=4-2x;②当1≤x<3,原式=(x-1)-(x-3)=2;③当x≥3,原式=(x-1)+(x-3)=2x-4.67.解:当3x-2<0,2x+3<0,即x<-时,原式=2-3x-2x-3=-5x-1;当3x-2≥0,2x+3≥0,即x≥时,原式=3x-2+2x+3=5x+1;当3x-2≥0,2x+3<0时,x不存在;3x-2<0,2x+3≥0,即-≤x<时,原式=2-3x+2x+3=-x+5;故答案为:.68.解:∵=-2,∴x<0且x+1>0,∴-1<x<0.69.解:∵0≤a≤15,a≤x≤15,∴x-a≥0,x-15≤0,又∵a≥0即-a≤0,∴x-a-15≤0,∴|x-a|+|x-15|+|x-a-15=x-a+15-x+a+15-x|=30-x,∴当x=15时最小,最小值为15.70.解:∵由2x+1=0、x-3=0、x-6=0分别求得:x=-,x=3,x=6,当时,原式=-(2x+1)+(x-3)-(x-6)=-2x+2;当时,原式=(2x+1)+(x-3)-(x-6)=2x+4;当3≤x<6时,原式=(2x+1)-(x-3)-(x-6)=10;当x≥6时,原式=(2x+1)-(x-3)+(x-6)=2x-2;∴原式=.71.解:①当x≤-13时,|x+11|+|x-12|+|x+13|=-x-11+12-x-x-13=-3x-12.②当-13≤x≤-11时,|x+11|+|x-12|+|x+13|=-x-11-x+12+x+13=-x+14,③当-11<x≤12,|x+11|+|x-12|+|x+13|=x+11-x+12+x+13=x+36,④当x≥12时,|x+11|+|x-12|+|x+13|=x+11+x-12+x+13=3x+12.72.解:当x≥7时,|x+5|+|x-7|+|x+10|=3x+8;当-5≤x≤7 时,|x+5|+|x-7|+|x+10|=x+5-(x-7)+x+10=x+22;当-10≤x≤-5时,|x+5|+|x-7|+|x+10|=-(x+5)-(x-7)+x+10=12-x;当x≤-10 时,|x+5|+|x-7|+|x+10|=-3x-8.73.解:①x≥3,原式=|x-1-2|+x+1=x-3+x+1=2x-2;②1≤x<3,原式=|x-1-2|+x+1=3-x+x+1=4;③-1≤x<1,原式=|1-x-2|+x+1=|-(x+1)|+x+1=x+1+x+1=2x+2;④x<-1,原式=|1-x-2|-(x+1)=|-(x+1)|-x-1=-(x+1)-x-1=-2x-2.74.解:分析首先使用“零点分段法”将y化简,然后在各个取值范围内求出y 的最大值,再加以比较,从中选出最大者.有三个分界点:-3,1,-1.(1)当x≤-3时,y=-(2x+6)-(x-1)+4(x+1)=x-1,由于x≤-3,所以y=x-1≤-4,y的最大值是-4.(2)当-3≤x≤-1时,y=(2x+6)-(x-1)+4(x+1)=5x+11,由于-3≤x≤-1,所以-4≤5x+11≤6,y的最大值是6.(3)当-1≤x≤1时,y=(2x+6)-(x-1)-4(x+1)=-3x+3,由于-1≤x≤1,所以0≤-3x+3≤6,y的最大值是6.(4)当x≥1时,y=(2x+6)+(x-1)-4(x+1)=-x+1,由于x≥1,所以1-x≤0,y的最大值是0.综上可知,当x=-1时,y取得最大值为6.75.解:当x≥4时,原式=x-1-3+3x+1=4x+3;当1≤x<4时,原式=4-x+3x+1=2x+5;当-≤x<1时,原式=x+2+3x+1=4x+3;当-2≤x<时,原式=x+2-3x-1=-2x+1当x<-2时,原式=1-x-3-3x-1=-4x-3.综上所述,当x≥4时,原式=4x+3;当1≤x<4时,原式=2x+5;当-≤x<1时,原式4x+3;当-2≤x<时,原式=-2x+1;当x<-2时,原式=-4x-3.76.解:当|x-1|-3≥0,3x+1≥0,①x-1≥0时,|x-1|-3=x-1-3≥0,x≥4,此时原式=x-1-3+3x+1=4x-3;②x-1<0时,|x-1|-3=1-x-3>0,此时x<-2且x>-,此时x不存在;当|x-1|-3>0,3x+1<0,③x-1>0时,|x-1|-3=x-1-3≥0,x>4且x<-,此时x不存在;④x-1<0时,|x-1|-3=1-x-3>0,x<-2,此时原式=-4x-3;当|x-1|-3<0,3x+1<0,⑤x-1≥0时,|x-1|-3=x-1-3<0,x<4且x<-,此时x无解;⑥x-1<0时,|x-1|-3=1-x-3≤0,x>-2且x<-,此时-2≤x<-,原式=-2x+1;当|x-1|-3≤0,3x+1≥0,⑦x-1≥0时,|x-1|-3=x-1-3≤0,x<4且x≥1,此时1≤x<4,原式=2x+5;⑧x-1<0,x<1时,|x-1|-3=1-x-3≤0,x≥-2且x≥-,此时-≤x<1,原式=4x+3.故答案为:.77.解:(1)|3-8|=5,|(-3)-(-9)|=|-3+9|=6,|2-(-8)|=|2+8|=10;(2)由已知得,|x-(-2)|=|x+2|,∵|AB|=4,∴|x+2|=4,∴x+2=4或x+2=-4,解得x=2或x=-6;(3)由条件可知,|x+1|+|x-2|+|x-3|表示x到-1、2、3这三个点的距离之和,所以,当x在点2的位置时,其距离之和最小.78.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示-2和-6的两点之间的距离是4,③数轴上表示-4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a-3|=7,那么a=10或a=-4,②若数轴上表示数a的点位于-4与3之间,|a+4|+|a-3|=a+4-a+3=7,a=1时,|a+4|+|a-1|+|a-3|最小=7,|a+4|+|a-1|+|a-3|是3与-4两点间的距离.79.解:当2≤x≤5时,|x-5|+|x-2|有最小值,|x-5|+|x-2|=5-x+x-2=3.故|x-5|+|x-2|的最小值是3.80.解:当x≤-1时,|x+1|+|x-2|+|x-3|=-x-1-x+2-x+3=-3x+4,则-3x+4≥7;当-1<x≤2时,|x+1|+|x-2|+|x-3|=x+1-x+2-x+3=-x+6,则4≤-x+6<7;当2<x≤3时,|x+1|+|x-2|+|x-3|=x+1+x-2-x+3=x+2,则4<x+2≤5;当x>3时,|x+1|+|x-2|+|x-3|=x+1+x-2+x-3=3x-4,则3x-4>5.综上所述|x+1|+|x-2|+|x-3|的最小值为4.81.解:1-2011共有2011个数,最中间一个为1006,此时|x-1|+|x-2|+|x-3|+…+|x-2011|取得最小值,最小值为|x-1|+|x-2|+|x-3|+…+|x-2011|=|1006-1|+|1006-2|+|1006-3|+…+|1006-2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=1011030.82.解:因为-4≤x≤4,所以当-4≤x<2时,|x-2|+|x-3|=2-x+3-x=5-2x,当x=-4时,此时原式最大,原式=5-2×(-4)=13;当2≤x<3时,|x-2|+|x-3|=x-2+3-x=1,当3≤x≤4时,|x-2|+|x-3|=x-2+x-3=2x-5,当x=4时,此时原式最大,原式=2×4-5=3;则最大值为13,最小值是:1.83.解:(1)①A、B之间的距离可用含x的式子表示为|x+1|;②依题意有|x+1|=2,x+1=-2或x+1=2,解得x=-3或x=1.故x值为-3或1.(2)|x+1|+|x-2|的最小值为3,此时x的取值是-1≤x≤2;(3)∵(|x+1|+|x-2|)(|y-3|+|y+2|)=15,∴-1≤x≤2,-2≤y≤3,∴x-2y的最大值为2-2×(-2)=6,最小值为-1-2×3=-7.故x-2y的最大值6,最小值-7.84.解:设检验台应该设在x轴上的P处,P点表示的数为x,根据题意得到移动的距离总和S=1×|x+2|+2×|x-1|+3×|x-3|=|x+2|+2|x-1|+3|x-3|,当x≤-2时,S=-x-2-2x+2-3x+9=-6x+9,此时x=-2时,S的值最小为21;当-2<x<1时,S=x+2-2x+2-3x+9=-4x+13,S没有值最小值;当1≤x≤3时,S=x+2+2x-2-3x+9=9,此时S的值不变,等于9;当x>3时,S=x+2+2x-2+3x-9=6x-9,此时S没有最小值.因为移动所需费用与移动的距离成正比,而1≤x≤3时,移动的距离总和最小,所以检验台应该设在x轴上的M1与M3之间(包括M1与M2),才能使移动产品所花费的费用最省.85.解:把|x-3|看成是数轴上点x到3的距离,|x+2|看成是数轴上点x到-2的距离,所求的值就是表示数x的点到-2、3的距离的和,最小值显然是-2到3的距离为5,故a=5同理,|x-3|-|x+2|则可以看成数轴上表示数x的点到3与-2的距离的差,最大值就是3与-2之间的距离,也是5,从而b=5,故a+b=10.86.解:①当x≤-7时,最小值出现在x=-7,即原式=10+12+9+6+0=37,②当-7<x≤-1时,x到-7与x到-1的距离之和是固定的,为6,最小值出现在x=-1,即原式的最小值=4+6+3+6=19,③当-1<x≤2时,将五个式子看作两组.第一组是x至-7的距离与x至3的距离的和,这个和是固定的,即为10,第二组是x至-1的距离与x至2的距离的和,这个和也是固定的,即为3,因此,最小值,就是x与5的距离的最小值,即x=2时,原式的最小值=10+3+3=16④当2<x≤3时,将五个式子看作两组.第一组是x至5的距离与x至-1的距离的和,这个和是固定的,即为6,第二组是x至2的距离与x至3的距离的和,这个和也是固定的,即为1,因此,最小值,就是x与-7的距离的最小值,即x=3时,原式的最小值=6+1+10=17,⑤当3<x<5时,x到5与x到3的距离的和是固定的,为2,最小值出现在x→3时,即原式的最小值=2+1+4+10=17,⑥当x≥5时,最小值出现在x=5,即原式的最小值=2+0+3+6+12=23,综上所述,x到各点的距离的和的最小值是16,此时x=2.87.解:当x<-5时,则-x-5+2(4-x)+3(1-x)=6-6x,则最小值为36;当-5≤x<1时,则x+5+2(4-x)+3(1-x)=16-4x,则最小值为12;当1≤x<4时,则x+5+2(4-x)+3(x-1)=2x+10,则最小值为12;当x≥4时,则x+5+2(x-4)+3(x-1)=6x-6,则最小值为18.故|x+5|+2|x-4|+3|x-1|的最小值为12.88.解:∵|x-a|+|x-b|即数轴上一点到a与b的两点的距离的和,∴当点在a与b之间时,式子的值最小,最小值是b-a.89.解:设a,b,c,d,x在数轴上的对应点分别为A,B,C,D,X,则|x-a|表示线段AX之长,同理,|x-b|,|x-c|,|x-d|分别表示线段BX,CX,DX之长.现要求|x-a|,|x-b|,|x-c|,|x-d|之和的值最小,就是要在数轴上找一点X,使该点到A,B,C,D四点距离之和最小.因为a<b<c<d,所以A,B,C,D的排列应如图所示:所以当X在B,C之间时,距离和最小,这个最小值为AD+BC,即(d-a)+(c-b).90.解:当x<1时,|x-1|+|x-5|=1-x+5-x=6-2x>4;当1≤x≤5时,|x-1|+|x-5|=x-1+5-x=4;当x>5时,|x-1|+|x-5|=x-1+x-5=2x-6>4;综上所述,x的取值范围是1≤x≤5.91.解:|a-b|+|b-c|=|a-c|表示:数轴上表示a,b,c三个数的点距离之间的关系,a到b的距离,即b到a的距离与到c的距离的和等于a与c之间的距离,因而点B在A,C之间.∴选(3).92.解:(1)|a-b|;(2)x的取值可能是x<-1,-1≤x≤3,x>3,化简得-2x+2,4,2x-2,则不存在|x+1|+|x-3|=x的情况;(3)x的取值可能是x<-4,-4≤x<-3,-3≤x≤3,3<x≤4,x>4,化简得-4x,-2x+8,14,2x+8,4x,故存在整数x,使|x-4|+|x-3|+|x+3|+|x+4|=14,即-3≤x≤3,x=-3,-2,-1,0,1,2,3.93.解:∵|x|≤1,|y|≤1,∴-1≤x≤1,-1≤y≤1,∴y+1>0,2y-x-4<0,∴|y+1|=y+1,|2y-x-4|=4+x-2y,当x+y≥0时,|x+y|=x+y,原式=2x+5,x=-1时,u min=3;x=1时,u max=7;当x+y<0时,|x+y|=-x-y,原式=5-2y,当y=1时,u min=3,y=-1时,u max=7.∴u min+u max=7+3=10.94.解:(1)当x≤1,原式=1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)=55-15x,则x=1时,有最小值40;(2)当1<x≤2时,原式=x-1+2(2-x)+3(3-x)+4(4-x)+5(5-x)=53-13x,则x=2时,有最小值27;(3)当2<x≤3时,原式=x-1+2(x-2)+3(3-x)+4(4-x)+5(5-x)=45-9x,则x=3时,有最小值18;(4)当3<x≤4时,原式=x-1+2(x-2)+3(x-3)+4(4-x)+5(5-x)=27-3x,则x=4时,有最小值15;(5)当4<x≤5时,原式=x-1+2(x-2)+3(x-3)+4(x-4)+5(5-x)=5x-5,则y没有最小值;(6)当x>5,原式=x-1+2(x-2)+3(x-3)+4(x-4)+5(x-5)=15x-55,则y没有最小值;故当x=4时,|x-1|+2|x-2|+3|x-3|+4|x-4|+5|x-5|的最小值为15.95.解:(1)∵在数轴上到-3对应的点的距离等于4的点对应的数为1或-7,∴方程|x+3|=4的解为x=1或x=-7.(2)在数轴上找出|x-3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8,∴方程|x-3|=5的解为x=-2或x=8,∴不等式|x-3|≥5的解集为x≤-2或x≥8.(3)在数轴上找出|x-3|+|x+4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x对应的点在3的右边或-4的左边.若x对应的点在3的右边,可得x=4;若x对应的点在-4的左边,可得x=-5,∴方程|x-3|+|x+4|=9的解是x=4或x=-5,∴不等式|x-3|+|x+4|≥9的解集为x≥4或x≤-5.96.解:问题(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x-1|;问题(2)①-2、4,②4;不小于0且不大于2,2;问题(3)由分析可知,当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;问题(4)|x-3|+|x-2|+|x|+|x+1|=(|x-3|+|x+1|)+(|x-2|+|x|)要使|x-3|+|x+1|的值最小,x的值取-1到3之间(包括-1、3)的任意一个数,要使|x-2|+|x1|的值最小,x取0到2之间(包括0、2)的任意一个数,显然当x取0到2之间(包括0、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x-3|+|x-2|+|x|+|x+1|=3+2+0+1=6方法二:当x取在0到2之间(包括0、2)时,|x-3|+|x-2|+|x|+|x+1|=-(x-3)-(x-2)+x+(x+1)=-x+3-x+2+x+x+1=6.97.解:∵-2014<a<0,∴a-2014<-2014<a,当x<a-2014时,|x-a|+|x+2014|+|x-a+2014|=-(x-a)-(x+2014)-(-a+2014)=2a-4028-3x >2014-a>2014;当a-2014≤x<-2014时,|x-a|+|x+2014|+|x-a+2014|=-(x-a)-(x+2014)+(x-a+2014)=-x>2014;当-2014≤x<a时,|x-a|+|x+2014|+|x-a+2014|=-(x-a)+(x+2014)+(x-a+2014)=x+4028≥2014;当a≤x时,|x-a|+|x+2014|+|x-a+2014|=(x-a)+(x+2014)+(x-a+2014)=3x-2a+4028≥4028+a>2014.综上|x-a|+|x+2014|+|x-a+2014|的最小值为2014.98.解:∵x2+y2≤1,∴y+1≥0,2y-x-4<0,①若x+y≥0时,|x+y|+|y+1|+|2y-x-4|=x+y+y+1+4+x-2y=2x+5,∵x,y满足x2+y2≤1,x+y≥0,∴x≤1,∴2x+5≤7;②若x+y≤0时,|x+y|+|y+1|+|2y-x-4|=-x-y+y+1+4+x-2y=5-2y,∵x,y满足x2+y2≤1,x+y≤0,∴y≥-1,∴5-2y≤7;综上,得|x+y|+|y+1|+|2y-x-4|的最大值是7.99.解:当x<-1时,y=-(x+1)-(x-2)=-2x+1>3,当-1≤x≤2时,y=x+1-(x-2)=3,当x>2时,y=x+1+x-2=2x-1>3,所以可知|x+1|+|x-2|≥3,同理可得:|y-1|+|y-3|≥2,|z-1|+|z+2|≥3,所以(|x+1|+|x-2|)(|y+1|+|y-2|)(|z-3|+|z+1|)≥2×3×3=18,所以|x+1|+|x-2|=3,|y-1|+|y-3|=2,|z-1|+|z+2|=3,所以-1≤x≤2,1≤y≤3,-2≤z≤1,∴x+2y+3z的最大值为:2+2×3+3×1=11,最小值为:-1+2×1+3×(-2)=-5.100.解:∵当-1≤x≤3时,|x+1|+|x-3|=x+1+3-x=4,当-1>x时,|x+1|+|x-3|=-x-1+3-x=2-2x>4,当3<x时,|x+1|+|x-3|=x+1+x-3=2x-2>4,故|x+1|+|x-3|的最小值为4;同理可得出:当2≤y≤5时,|y-2|+|y-5|最小为3;当-3≤z≤6时,|z+3|+|z-6|最小为9;则4×3×9=108,故x,y取最大值,z取最小值时,此时代数式x+3y-2z的最大值是:3+3×5-2×(-3)=24.101.解:|x-1|,|x-2|,|x-3|,|x-4|可以看成x分别到1,2,3,4的距离,则通过数轴可以发现当2≤x<3,(x=3时,原式=12),故原式化简为:x-1+8x-16+3a-ax+8-2x=(7-a)x+3a-9≥12,则(7-a)=0时,原式=12,当7-a<0时,(7-a)x+3a-9≥12,(7-a)x≥-3a+21,解得:x≤3,故7-a<0时,a>7,综上所述,a≥7.102.证明:①当a<0,b<0时,|a|+|b|=-a-b,|a-b|=a-b或-a+b,∵-a-b>a-b,-a-b>-a+b,∴|a|+|b|>|a-b|;②当a<0,b≥0时,|a|+|b|=-a+b,|a-b|=-a+b,∵-a+b=-a+b,∴|a|+|b|=|a-b|;③当a≥0,b<0时,|a|+|b|=a-b,|a-b|=a-b,∵a-b=a-b,∴|a|+|b|=|a-b|;④当a≥0,b≥0时,|a|+|b|=a+b,|a-b|=a-b或-a+b,∵a+b≥a-b,a+b≥-a+b,∴|a|+|b|≥|a-b|.综上所述,|a|+|b|≥|a-b|.103.证明:①当a<0,b<0时,|a|-|b|=-a+b,|a-b|=a-b或-a+b,∵-a+b<a-b,-a+b=-a+b,∴|a|-|b|≤|a-b|;②当a<0,b≥0时,|a|-|b|=-a-b,|a-b|=-a+b,∵-a-b≤-a+b,∴|a|-|b|≤|a-b|;③当a≥0,b<0时,|a|-|b|=a+b,|a-b|=a-b,∵a+b<a-b,∴|a|-|b|<|a-b|;④当a≥0,b≥0时,|a|-|b|=a-b,|a-b|=a-b或-a+b,∵a-b=a-b,a-b≤-a+b,∴|a|-|b|≤|a-b|.综上所述,|a|-|b|≤|a-b|.104.证明:∵|a+b|+|a-b|≥|a+b+a-b|=|2a|=2|a|,∴|a+b|+|a-b|≥2|a|.105.解:(1)当a与b同号时,|a+b|=|a|+|b|;(2)当a与b异号时,|a+b|=||a|-|b||;(3)当a与b异号或a都b为0时,|a-b|=|a|+|b|;(4)当a与b同号时,|a-b|=||a|-|b||;(5)当a与b同号,且|a|>|b|时,|a-b|=|a|-|b|;(6)当b=0时,|a+b|=|a-b|;(7)当a与b同号,且a、b都不为0时,|a+b|>|a-b|;(8)当a与b异号,且a、b都不为0时,|a+b|<|a-b|.106.证明:(1)当x≥y,x≥z时,A=|x-y+x+y-2z|+x-y+x+y+2z=2x-2z+2x+2z=4x;(2)当y≥z,y≥x时,A=|y-x+x+y-2z|+y-x+x+y+2z=2y-2z+2y+2z=4y;(3)当z≥x,z≥y时,因为|x-y|+x+y=max{x,y}≤2z,所以A=2z-|x-y|-x-y+|x-y|+x+y+2z=4z.从而A=4max{x,y,z}.107.解:①若a≥b,则代数式中绝对值符号可直接去掉,∴代数式等于a,②若b>a则绝对值内符号相反,∴代数式等于b由此可见输入一对数字,可以得到这对数字中大的那个数(这跟谁是a谁是b 无关)既然是求和,那就要把这五十个数加起来还要最大,我们可以枚举几组数,找找规律,如果100和99一组,那么99就被浪费了,因为输入100和99这组数字,得到的只是100,如果我们取两组数字100和1一组,99和2一组,则这两组数字代入再求和是199,如果我们这样取100和99,2和1,则这两组数字代入再求和是102,这样,可以很明显的看出,应避免大的数字和大的数字相遇这样就可以使最后的和最大,由此一来,只要100个自然数里面最大的五十个数字从51到100任意俩个数字不同组,这样最终求得五十个数之和最大值就是五十个数字从51到100的和,51+52+53+…+100=3775.108.解:(1)根据题意可以得出:|1-2|=|-1|=1,|1-3|=|-2|=2,|2-4|=|-2|=2,对于1,2,3,4,按如下次序|||1-3|-4|-2|=0,|||1-3|-2|-4|=4,故全部输入完毕后显示的结果的最大值是4,最小值是0;故答案为:2,4,0;(2)∵随意地一个一个的输入三个互不相等的正整数2,a,b,全部输入完毕后显示的最后结果设为k,k的最大值为10,∴设b为较大数字,当a=1时,|b-|a-2||=|b-1|=10,解得:b=11,故此时任意输入后得到的最小数为:|2-|11-1||=8,设b为较大数字,当b>a>2时,|b-|a-2||=|b-a+2|=10,则b-a+2=10,即b-a=8,则a-b=-8,故此时任意输入后得到的最小数为:|a-|b-2||=|a-b+2|=6,综上所述:k的最小值为6.109.解:显然,两位数的十位项肯定是相差最少的两个数.由于9个数取4个,所以至少有2个数字的差不大于2.因此要让d尽量大的话,十位数最大也就相差2.要让两个两位数尽量接近,那么较小的十位数应该与较大的个位数组合,较大的十位数与较小的个位数组合,那么其差值就会比较小.所以为了让d最大化,个位数应该尽量接近.但是再接近其差值也不能小于2,因为一旦小于2,这两个数就会被选为十位数了.所以最后的结论就是,要让d最大化,这四个数字必须分别相差2.你可以设四个数分别为A,A+2,A+4,A+6那么d=|A×10+A+6-(A+2)×10-(A+4)|d=|11A-11A+6-24|d=18.110.解:令n+1、n+2、n+3、…、2n为大数,1、2、3、…、n为小数.设a i中必也有n-k个小数,则b i中必有n-k个大数,k个小数,其中i=1,2,3,n,0≤k≤n,k∈Z令:a1,a2,…,a k,b k+1,b k+2,…,b n为大数,b1,b2,…,b k,a k+1,a k+2,…,a n为小数.故|a1-b1|+|a2-b2|+…+|a n-b n| =|a1-b1|+|a2-b2|+…+|a k-b k|+|a k+1-b k+1|+|a k+2-b k+2|+…+|a n-b n|=(a1-b1)+(a2-b2)+…+(a k-b k)+(b k+1-a k+1)+(b k+2-a k+2)+…+(a n-b n)=((n+1)+(n+2)+…+(2n))-(1+2+3+…+n)=n2.。

初一数学绝对值经典练习题

初一数学绝对值经典练习题

绝对值经典练习【1】1、判断题:⑴、|-a|=|a|.⑵、-|0|=0.⑶、|-3|=-3.⑷、-(-5)›-|-5|.⑸、如果a=4,那么|a|=4.⑹、如果|a|=4,那么a=4.⑺、任何一个有理数的绝对值都是正数.⑻、绝对值小于3的整数有2, 1, 0.⑼、-a一定小于0.⑽、如果|a|=|b|,那么a=b.⑾、绝对值等于本身的数是正数.⑿、只有1的倒数等于它本身.⒀、若|-X|=5,则X=-5.⒁、数轴上原点两旁的点所表示的两个数是互为相反数.⒂、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、填空题:⑴、当a_____0时,-a›0;⑵、当a_____0时,‹0;⑶、当a_____0时,-›0;⑷、当a_____0时,|a|›0;⑸、当a_____0时,-a›a;⑹、当a_____0时,-a=a;⑺、当a‹0时,|a|=______;⑻、绝对值小于4的整数有_____________________________;⑼、如果m‹n‹0,那么|m|____|n|;⑽、当k+3=0时,|k|=_____;⑾、若a、b都是负数,且|a|›|b|,则a____b;⑿、|m-2|=1,则m=_________;⒀、若|x|=x,则x=________;⒁、倒数和绝对值都等于它本身的数是__________;⒂、有理数a、b在数轴上的位置如图所示,则|a|=___;|b|=____;⒃、-2的相反数是_______,倒数是______,绝对值是_______;⒄、绝对值小于10的整数有_____个,其中最小的一个是_____;⒅、一个数的绝对值的相反数是-0.04,这个数是_______;⒆、若a、b互为相反数,则|a|____|b|;⒇、若|a|=|b|,则a和b的关系为__________.3、选择题:⑴、下列说法中,错误的是_____A.+5的绝对值等于5 B.绝对值等于5 的数是5C.-5的绝对值是5 D.+5、-5的绝对值相等⑵、如果|a|=||,那么a与b之间的关系是A.a与b互为倒数B.a与b互为相反数C.a〮b=-1D.a〮b=1或a〮b=-1⑶、绝对值最小的有理数是_______A.1 B.0 C.-1 D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A.a= B.|a|=|b| C.a=-b D.a⑸、如果a,那么_______A.|a|‹0 B.-(-a)›0 C.|a|›0 D.-a‹0⑹、有理数a、b在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A.|a|›|b| B.|a|‹|b| C.|a|=|b| D.无法确定⑺、下列说法正确的是________A.一个数的相反数一定是负数 B.两个符号不同的数叫互为相反数C.|-(+x)|=x D.-|-2|=-2⑻、绝对值最小的整数是_______A.-1 B.1 C.0 D.不存在⑼、下列比较大小正确的是_______A. B.-(-21)‹+(-21) C.-|-10|›8 D.-|-7|=-(-)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a、b为有理数,那么下列结论中一定正确的是_____A.若a‹b,则|a|‹|b| B.若a›b,则|a|›|b|C.若a=b,则|a|=|b|D.若a≠b,则|a|≠|b|4、计算下列各题:⑴、|-8|-|-5| ⑵、(-3)+|-3| ⑶、|-9|(+5)D、15|-3|5、填表a12-(0.1) -a-57+|a|0126、比较下列各组数的大小:⑴、-3与-;⑵、-0.5与|-2.5|;⑶、0与-|-9|; ⑷、|-3.5|与-3.57、把下列各数用“‹”连接起来:⑴、5,0,|-3|,-3,|-|,-(-8),-;⑵、1,-,0,-6;⑶、|-5|,-6,-(-5),-(-10),-|-10|⑷(|+|)(-)=-10,求O、,其中O和表示整数.8、比较下列各组数的大小:⑴、-(-9)与-(-8);⑵、|-|与50⑶、-与-3.14 ⑷、-与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴‹ ⑵‹ ⑶‹ ⑷≠ ⑸‹ ⑹= ⑺-a ⑻±1,±2,±3,0⑼、>⑽3 ⑾‹ ⑿3或1 ⒀≧0 ⒁1 ⒂-a、b ⒃2⒄19 -9 ⒅±0.04 ⒆⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3 ⑵0 ⑶45 ⑷55a50-70.1-0-12-a-|a|570.16.⑴‹ ⑵‹ ⑶› ⑷›7.⑴‹-3‹0‹|-|‹|-3|‹5‹-(-8);⑵-6‹-5‹0‹1;⑶-|-10|‹-6‹-|-5|‹|-5|‹-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,18.⑴›⑵‹⑶‹⑷›。

绝对值化简110题(含解析)

绝对值化简110题(含解析)

1.(1)|3|=_______;(2)|﹣2|=_______;(3)|0|=_______;(4)绝对值等于4的数有_______个,它们是_______和_______.2.相反数等于它本身的数是_______,绝对值等于它本身的数是_______,3.化简:-(-5)=_______,-|-5|=_______.4.化简下列各数:(1)|-8.2|=_______;(2)-[-(+3)]=_______.5.-[-(-4)]的相反数是_______,|-5|的绝对值是_______.6.(1)|-3|×|-6.2|;(2)|-5|+|-2.49|;(3)-|-|;(4)|-|÷||7.计算:(1)2.7+|-2.7|-|-2.7|;(2)|-16|+|+36|-|-1|8.计算:(1)|-3|+|+5|-|-4|;(2)-(-6)÷|+(-2)|.9..10.绝对值不大于2的整数有_______个,把它们由小到大排列为_______.11.绝对值不大于2004的所有整数的和为_______.12.绝对值比2大比6小的整数共有_______个.13.一个数的相反数是最大的负整数,这个数是_______;若|-x|=5,则x=_______;若|-a|=a,则a_______0.14.若a<0,则=_______.15.如果|a|=-a,则a是_______数.16.已知a=12,b=-3,c=-(|b|-3),求|a|+2|b|+|c|的值.17.写出符合下列条件的数.①大于-3,且小于2的所有整数;②绝对值不小于2且小于5的所有负整数;③在数轴上,与表示-1的点的距离为2的点的表示的数;④不超过(-)3的最大整数.18.去掉下列各数的绝对值符号:(1)若x<0,则|x|=_______;(2)若a<1,则|a-1|=_______;(3)已知x>y>0,则|x+y|=_______;(4)若a>b>0,则|-a-b|=_______.19.若|-x|=|-4|,则x=_______;若|2x-3|=1,则x=_______.20.若|x-2|=4,则x=_______.21.求下列x的值:(1)|x-3|=1;(2)|x+2|=0;(3)|x-1|=-2.22.当3<a<4时,化简:|a-3|-|a-6|得到的结果是_______.23.若,化简|a-|a||.24.已知x<-3,化简:|3+|2-|1+x|||.25.化简|1-a|+|2a+1|+|a|,其中a<-2.26.有理数a、b在数轴上的位置如图所示,则化简|a+b|-a的结果为_______.27.表示a、b两数的点在数轴上的位置如图,则|a-1|+|1+b|=_______.28.数a,b,c在数轴上的位置如图:化简|b-a|-|1-c|=_______.29.已知a,b,c在数轴上的位置如图所示,化简:|b+c|-|a+c|-|a-b|=_______.30.a,b,c在数轴上的位置如图所示,化简|a+c|+|a+b+c|-|a-b|+|b+c|.31.设a<0,且,则|x+1|-|x-2|=_______.32.若|a|=2,|b|=6,a>0>b,则a+b=_______.33.若|a|=3,b=2,且ab<0,则a-b=_______.34.已知|x|=4,|y|=2,且xy<0,则x-y的值等于_______.35.已知:|x|=2,|y|=3,且xy<0,求6x-8y-7的值.36.若a<0,ab<0,则|a-b|-(b-a+3)的化简结果为_______.37.若-a=-(-2),|b|=3,则|a+b|=_______,|a-b|=_______.38.若ab<0,a<b,化简|b-a+1|-|a-b-5|的正确结果为_______.39.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|-2b|-|3b-2a|.40.|a|=3,|b|=1,|c|=5,而且|a+b|=a+b,|a+c|=-(a+c),则a-b+c的值为_______.41.小明做这样一道题“计算|(-3)+…|”,其中“…”表示被墨水污染看不清的一个数,他翻开后面的答案知该题的计算结果是8,那么“…”表示的数是_______.。

初中数学七年级绝对值练习题

初中数学七年级绝对值练习题

初中数学七年级绝对值练习题绝对值练一、选择题1.|-3|的值是(A)3(B)-3(C)13(D)-13.2.绝对值等于其相反数的数一定是(A)负数(B)正数(C)负数或零(D)正数或零。

3.若|x|+x=0,则x一定是(A)负数(B)0(C)非正数(D)非负数。

4.绝对值最小的数是(A)不存在(B)0(C)1(D)-1.5.当一个负数逐渐变大(但仍然保持是负数)时,它的绝对值逐渐变大(A)(B)它的相反数逐渐变大(C)它的绝对值逐渐变小(D)它的相反数的绝对值逐渐变大。

6.下列说法中正确的是(A)-a一定是负数(B)只有两个数相等时它们的绝对值才相等(C)若a=b则a与b互为相反数(D)若一个数小于它的绝对值,则这个数是负数。

7.绝对值不大于11.1的整数有(A)11个(B)12个(C)22个(D)23个。

二、填空题1.一个数的绝对值是2/3,那么这个数为-2/3.2.一个数的倒数是它本身,这个数是1或-1.一个数的相反数是它本身,这个数是0.绝对值是它本身的数是1或-1.绝对值是它的相反数的数是0.3.|3.14-π|=0.27.4.绝对值小于3的所有整数有-2,-1,0,1,2.5.数轴上表示1和-3的两点之间的距离是4.6.一个数比它的绝对值小10,则这个数为-5.7.(1)符号是+号,绝对值是8.5的数是8.5.(2)符号是-号,绝对值是8.5的数是-8.5.(3)-85的符号是负号,绝对值是85.(4)-7.2的绝对值等于7.2.8.一个正数增大时,它的绝对值增大,一个负数增大时,它的绝对值减小。

9.如果a>3,则a-3>0,3-a<0.10.在数轴上,绝对值为4,且在原点左边的点表示的有理数为-4.11.-3.7=-37/10;-3.3=-33/10;-0.75=-3/4.12.-10+(-5)=-15;-6÷(-3)=2;-6.5-(-5.5)=-1.三、解答题1.如果|a|=4,|b|=3,且a>b,求a,b的值。

(完整版)初中数学七年级绝对值练习题

(完整版)初中数学七年级绝对值练习题

《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。

初一有理数绝对值题50练

初一有理数绝对值题50练

初一有理数绝对值题50练一、基础概念理解1、绝对值的定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

例如,5 的绝对值是 5,-3 的绝对值是 3,0 的绝对值是 0。

练习 1:求下列各数的绝对值:(1)-7 (2)8 (3)0 (4)-12练习 2:若一个数的绝对值是 4,求这个数。

练习 3:绝对值等于本身的数是()A 正数B 负数C 非负数D 非正数二、简单计算2、计算绝对值的运算。

例如:| 5 + 3 |=| 2 |= 2练习 4:计算:(1)| 7 9 |(2)| 3 + 8 |(3)| 5 12 |练习 5:已知| a |= 3,| b |= 5,且 a < b,求 a + b 的值。

练习 6:若| x 2 |= 5,求 x 的值。

三、比较大小3、利用绝对值比较有理数的大小。

两个负数比较大小,绝对值大的反而小。

例如:比较 3 和 5 的大小。

因为| 3 |= 3,| 5 |= 5,3 <5,所以 3 > 5。

练习 7:比较下列各组数的大小:(1) 1 和 4 (2)0 和 2 (3) 05 和 2练习 8:如果 a < 0,b < 0,且| a |<| b |,那么 a 和 b 的大小关系是()A a > bB a = bC a < bD 无法确定练习 9:有理数 a、b 在数轴上的位置如图所示,比较| a |和| b |的大小。

(数轴略)四、综合应用4、绝对值在实际问题中的应用。

例如:出租车的收费标准是起步价 8 元(3 千米以内),超过 3 千米的部分每千米 15 元。

某人乘坐出租车行驶了 x 千米(x > 3),则应付车费为 8 + 15(| x 3 |)元。

练习 10:某工厂生产一种零件,规定零件的尺寸误差不能超过±05毫米,若生产的零件尺寸为 x 毫米,用绝对值表示零件尺寸的误差范围。

练习 11:一足球队在一场比赛中的胜负情况可以用净胜球数来表示,若净胜球数为正数,则表示赢球;若净胜球数为负数,则表示输球;若净胜球数为 0,则表示平局。

初一绝对值练习题

初一绝对值练习题

初一绝对值练习题初一绝对值练习题初中数学中,绝对值是一个重要的概念。

它不仅在数轴上有明确的图示,还在实际生活中有广泛的应用。

在初一的学习中,绝对值的概念是一个必须掌握的基础知识。

下面我们来练习一些初一绝对值的题目,帮助大家更好地理解和运用这一概念。

1. 求下列各式的值:a) |3|b) |-5|c) |0|解析:绝对值的定义是一个数与0的距离,所以无论正数、负数还是0,它们的绝对值都是它们本身。

因此,答案分别是:a) 3b) 5c) 02. 计算下列各式的值:a) |7 - 10|b) |5 - (-3)|c) |-2 - 4|解析:在计算绝对值时,首先要计算绝对值符号内的表达式的值,然后再取它的绝对值。

因此,答案分别是:a) |-3| = 3b) |5 + 3| = 8c) |-2 - 4| = |-6| = 63. 比较下列各式的大小:a) |3 - 5|和|5 - 3|b) |7 - 10|和|10 - 7|c) |-2 - 4|和|4 - (-2)|解析:比较绝对值的大小时,可以先计算绝对值符号内的表达式的值,然后再比较。

因此,答案分别是:a) |-2|和|2|,两者相等。

b) |-3|和|3|,两者相等。

c) |-6|和|6|,两者相等。

4. 解方程:|x - 3| = 5解析:要解这个方程,首先要明确绝对值的定义。

绝对值等于一个数与0的距离,所以|x - 3| = 5 可以分解为两个方程:x - 3 = 5 或者 x - 3 = -5。

解得:x = 8 或者 x = -2所以,方程的解集是{x | x = 8 或者 x = -2}。

5. 计算下列各式的值:a) |7 - 10| + |5 - (-3)|b) |7 - 10| - |10 - 7|c) |-2 - 4| + |4 - (-2)|解析:在计算绝对值的和或差时,可以先计算绝对值符号内的表达式的值,然后再进行相应的运算。

因此,答案分别是:a) |-3| + |8| = 3 + 8 = 11b) |-3| - |3| = 0c) |-6| + |6| = 6 + 6 = 12通过这些练习题,我们可以更好地掌握绝对值的概念和运用。

七年级数学绝对值练习题

七年级数学绝对值练习题

七年级数学绝对值练习题1、一个数的绝对值表示该数在数轴上到原点的;因此, -3的绝对值是,7的绝对值是,绝之值等于本身的数是。

2、若|x|=5,则x= ;若|-x|=3,则x= ;若|x-3|=2则 x= 。

3、若|a|=a,则a的取值范围是 :若|a|=-a,则a的取值范围是 . .4、下列说法正确的是①绝对值等于相反数的数只有负数;②距离原点越远的数绝对值越大;③一个数越小则绝对值越小;④若两数的绝对值相等则两数一定相等;⑤若两数不相等则两数的绝对值一定不相等;⑥在负数范围内,一个数越大则其绝对值越小。

5、如图, 点 a,b关于原点对称,则|a+b|= ;|α|-|b|= 。

6、绝对值不超过4的的整数有个,它们的和是 .7、若x>0, 则|x|x =¯;若x<0, 则|x|x=¯。

8、如图, 化简﹔ |a|+|a-b|+|b-c|-|c-a|= .9、一个数到原点的距离是4,则这个数是;一个数的绝对值是9,则这个数是。

10、计算:|13−12|+|14−13|+|15−14|+|16−15|=¯。

11、如|a|=5,|b|=1, 且|a-b|=b-a, 则; a+b= .12、|a-b|表示在数轴上点a和点b的距离;|a+b|表示在数轴上点α和点-b的距离:(1)|x-3|表示在数轴上和的距离;(2)|x+2|表示在数轴上和的距离;(3)由此可以得出|x=3|+|x+2|表示在数轴上和的距离与和的距离和。

所以|x-3|+|x+2|的最小值是 . 答案:距离;3;7;非负数2、 若|x|=5, 则x= ; 若|-x|=3, 则x= ; 若|x-3|=2则 x= 。

答案: 5或-5; 3或-3; 1或53、若|a|=a,则a 的取值范围是 ;若|a|=-a,则a 的取值范围是 . ,答案: a≥0; a≤04、 下列说法正确的是 ①绝对值等于相反数的数只有负数; ②距离原点越远的数绝对值越大; ③一个数越小则绝对值越小; ④若两数的绝对值相等则两数一定相等;⑤若两数不相等则两数的绝对值一定不相等;⑥在负数范围内,一个数越大则其绝对值越小。

七年级数学绝对值专项练习题集

七年级数学绝对值专项练习题集

七年级数学绝对值专项练习题集Document number:WTWYT-WYWY-BTGTT-绝对值综合练习题一1、判断 (1)|31|-和31-互为相反数。

( ) (2)-|a|=|a| ( ) (3)|-a|=|a| ( ) (4)-|a|=|-a| ( ) (5)若|a|=|b|,则a =b ( ) (6)若a =b ,则|a|=|b| ( ) (7)若|a|>|b|,则a >b ( ) (8)若a >b ,则|a|>|b| ( ) (9)若a >b ,则|b-a|=a-b( ) (10)若a 为任意有理数,则|a|=a ( )(11)如果一个数的倒数是它本身,那么这个数是1和0. ( ) (12)如果一个数的绝对值是它本身,那么这个数是0或1. ( ) (13)如果说“一个数的绝对值是负数”,那么这句话是错的. ( ) (14)如果一个数的相反数是它本身,那么这个数是0. ( )2、在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.3、若x<y<0,则|x|<|y|.4、 如果|a|>a ,那么a 是_____.4、若a+b=0,则a,b 的关系是5、x =y ,那么x 和y 的关系6、已知有理数a ,b 在数轴上的位置如图所示,那么a ,b ,-a ,-b 的大小关系是 。

(用“>”连结)7、若零件的长度比标准多0.1cm 记作0.1cm ,那么—0.05cm 表示_____. 8、大于-412且小于114的整数有 。

9、绝对值小于的整数有________。

10、计算:|31-21|+|41-31|-|41-21|=___________11、化简4-+-ππ的结果是_______12、绝对值最小的数是_______,绝对值最小的整数是_______. 13、一个数在数轴上对应点到原点的距离为m ,则这个数为__________ 14、绝对值大于小于的所有负整数为_____.15、18、已知|a|=1,|b|=2,|c|=3,且a>b>c ,那么a+b-c=__________ 16、下列各数中,互为相反数的是( )A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 17、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在18、已知a=|-2004|+15,则a 是( )A .合数B .质数C .偶数D .负数 19、绝对值与相反数都是它的本身( ) 个 个 个 D.不存在20、若()b a b a +-=+,则下列结论正确的是( ) A .a+b ≤0 B. a+b<0 C. a+b=0 D. a+b>021、设a 是最小的自然数, b 是最大的负整数。

初一数学综合算式绝对值练习题

初一数学综合算式绝对值练习题

初一数学综合算式绝对值练习题1. 将下列各组数按照从小到大的顺序排列,并计算每组数的绝对值:a) -5, 3, -2, 7b) 9, -1, 0, -7c) -3, -8, 6, -4d) 2, 4, -6, -1, 0解答:a) -5, -2, 3, 7绝对值:5, 2, 3, 7b) -7, -1, 0, 9绝对值:7, 1, 0, 9c) -8, -4, -3, 6绝对值:8, 4, 3, 6d) -6, -1, 0, 2, 4绝对值:6, 1, 0, 2, 42. 计算下列各式的值,结果应取绝对值:a) |-6 + 2|b) |3 - 8|c) |5 - 2 + 4|d) |-11 + 5 + 8|解答:a) |-6 + 2| = |-4| = 4b) |3 - 8| = |-5| = 5c) |5 - 2 + 4| = |7| = 7d) |-11 + 5 + 8| = |2| = 23. 求解下列绝对值方程:a) |2x + 3| = 7b) |x - 4| = 2c) |5 - x| = 9d) |3x - 1| = 10解答:a) 当2x + 3 = 7 或 2x + 3 = -7 时,方程成立。

解得:x = 2 或 x = -5b) 当x - 4 = 2 或 x - 4 = -2 时,方程成立。

解得:x = 6 或 x = 2c) 当5 - x = 9 或 5 - x = -9 时,方程成立。

解得:x = -4 或 x = 14d) 当3x - 1 = 10 或 3x - 1 = -10 时,方程成立。

解得:x = 11/3 或 x = -9/3 = -34. 求下列数的绝对值和相反数:a) 7b) -2c) 0d) -9解答:a) 绝对值:|7| = 7相反数:-7b) 绝对值:|-2| = 2相反数:2c) 绝对值:|0| = 0相反数:0d) 绝对值:|-9| = 9相反数:9通过以上练习题,我们复习了数的大小比较、绝对值的概念以及绝对值的运算性质。

七年级数学绝对值专项练习题集

七年级数学绝对值专项练习题集

绝对值综合练习题一1、判断 (1)|31|-和31-互为相反数。

( ) (2)-|a|=|a| ( )(3)|-a|=|a| ( ) (4)-|a|=|-a| ( )(5)若|a|=|b|,则a =b ( ) (6)若a =b ,则|a|=|b| ( ) (7)若|a|>|b|,则a >b ( ) (8)若a >b ,则|a|>|b| ( )(9)若a >b ,则|b-a|=a-b( ) (10)若a 为任意有理数,则|a|=a ( )(11)如果一个数的倒数是它本身,那么这个数是1和0. ( )(12)如果一个数的绝对值是它本身,那么这个数是0或1. ( )(13)如果说“一个数的绝对值是负数”,那么这句话是错的. ( )(14)如果一个数的相反数是它本身,那么这个数是0. ( )2、在数轴上,绝对值为4,且在原点左边的点表示的有理数为________.3、若x<y<0,则|x|<|y|.4、 如果|a|>a ,那么a 是_____.4、若a+b=0,则a,b 的关系是5、x =y ,那么x 和y 的关系6、已知有理数a ,b 在数轴上的位置如图所示,那么a ,b ,-a ,-b 的大小关系是 。

(用“>”连结)7、若零件的长度比标准多0.1cm 记作0.1cm ,那么—0.05cm 表示_____.8、大于-412且小于114的整数有 。

9、绝对值小于3.14的整数有________。

10、计算:|31-21|+|41-31|-|41-21|=___________11、化简4-+-ππ的结果是_______12、绝对值最小的数是_______,绝对值最小的整数是_______.13、一个数在数轴上对应点到原点的距离为m ,则这个数为__________14、绝对值大于2.5小于7.2的所有负整数为_____.15、18、已知|a|=1,|b|=2,|c|=3,且a>b>c ,那么a+b-c=__________16、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和3217、绝对值最小的有理数的倒数是( )A 、1 B 、-1 C 、0 D 、不存在18、已知a=|-2004|+15,则a 是( )A .合数B .质数C .偶数D .负数19、绝对值与相反数都是它的本身( )A .1个 B.2个 C.3个 D.不存在20、若()b a b a +-=+,则下列结论正确的是( )A .a+b ≤0 B. a+b<0 C. a+b=0 D. a+b>021、设a 是最小的自然数, b 是最大的负整数。

初一数学绝对值练习题完整版

初一数学绝对值练习题完整版

初一数学绝对值练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】绝对值经典练习1、 判断题:⑴ 、|-a|=|a|. ⑵ 、-|0|=0. ⑶ 、|-312|=-312.⑷ 、-(-5)-|-5|.⑸ 、如果a=4,那么|a|=4. ⑹ 、如果|a|=4,那么a=4.⑺ 、任何一个有理数的绝对值都是正数. ⑻ 、绝对值小于3的整数有2,1,0. ⑼ 、-a 一定小于0.⑽ 、如果|a|=|b|,那么a=b.⑾ 、绝对值等于本身的数是正数. ⑿ 、只有1的倒数等于它本身. ⒀ 、若|-X|=5,则X=-5.⒁ 、数轴上原点两旁的点所表示的两个数是互为相反数.⒂ 、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、 填空题:⑴ 、当a_____0时,-a?0; ⑵⑶ 、当a_____0时,1a 0; ⑷⑸ 、当a_____0时,-1a 0; ⑹⑺ 、当a_____0时,|a|?0; ⑻ 、当a_____0时,-a?a; ⑼⑽ 、当a_____0时,-a=a; ⑾ 、当a?0时,|a|=______;⑿ 、绝对值小于4的整数有_____________________________; ⒀ 、如果mn0,那么|m|____|n|; ⒁⒂ 、当k+3=0时,|k|=_____;⒃、若a 、b 都是负数,且|a|?|b|,则a____b;⒄ 、|m-2|=1,则m=_________;⒅ 、若|x|=x,则x=________;⒆ 、倒数和绝对值都等于它本身的数是__________;⒇ 、有理数a 、b 在数轴上的位置如图所示,则|a|=___;|b|=____; 21 、-223的相反数是_______,倒数是______,绝对值是_______; 22 、绝对值小于10的整数有_____个,其中最小的一个是_____; 23 、一个数的绝对值的相反数是-0.04,这个数是_______; 24 、若a 、b 互为相反数,则|a|____|b|;25、若|a|=|b|,则a 和b 的关系为__________.3、 选择题:⑴ 、下列说法中,错误的是_____A .+5的绝对值等于5B.绝对值等于5的数是5 C .-5的绝对值是5D.+5、-5的绝对值相等 ⑵、如果|a|=| 1b |,那么a 与b 之间的关系是A.a 与b 互为倒数B.a与b互为相反数C.a?b=-1 D.ab=1或ab=-1 ⑶、绝对值最小的有理数是_______A .1B.0C.-1D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A .a=1b B.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么_______A .|a|?0B.-(-a) 0C.|a|?0D.-a?0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A .|a|?|b|B.|a|?|b|C.|a|=|b|D.无法确定 ⑺、下列说法正确的是________A .一个数的相反数一定是负数B.两个符号不同的数叫互为相反数 C .|-(+x)|=xD.-|-2|=-2 ⑻、绝对值最小的整数是_______A .-1B.1C.0D.不存在⑼、下列比较大小正确的是_______A .−56<−45B.-(-21)+(-21)C.-|-1012|?823D.-|-723|=-(-723)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是_____A .若ab,则|a||b|B.若ab,则|a||b|C.若a=b,则|a|=|b|D.若a ≠b,则|a|≠|b|4、计算下列各题:⑴ 、|-8|-|-5|⑵、(-3)+|-3|⑶、|-9|×(+5)D 、15÷|-3|5、填表6、比较下列各组数的大小:⑴ 、-3与-12;⑵、-0.5与|-2.5|;⑶、0与-|-9|;⑷、|-3.5|与-3.57、把下列各数用“”连接起来:⑴、5,0,|-3|,-3,|- 13|,-(-8),-[−(−8)]; ⑵ 、123,-512,0,-614;⑶ 、|-5|,-6,-(-5),-(-10),-|-10|⑷ (||+||)×(-O)=-10,求O、,其中O 和表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812);⑵、|-572|与50%⑶、-π与-3.14⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴?⑵?⑶?⑷≠⑸?⑹=⑺-a ⑻±1,±2,±3,0⑼、>⑽3⑾?⑿3或1⒀≧0⒁1⒂-a 、b ⒃223 −38 223⒄19-9⒅±0.04⒆=⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3⑵0⑶45⑷57.⑴[−(−8)]-30|- 13||-3|5-(-8);⑵-614-5120123;⑶-|-10|-6-|-5||-5|-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,1 8.⑴?⑵?⑶?⑷?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值综合练习题一1、有理数的绝对值一定是().2、绝对值等于它本身的数有()个.3、下列说法正确的是().A -|a|一定是负数.B 只有两个数相等时它们的绝对值才相等.C 若|a|=|b|,则a与b互为相反数.D 若一个数小于它的绝对值,则这个数为负数.4、()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________.6、-4的倒数的相反数是______.7、绝对值小于2的整数有________.8、若|-x|=2,则x=____;若|x-3|=0,则x=;若|x-3|=1,则x=____.9、实数a的大小关系是_______.10、已知|a|+|b|=9,且|a|=2,求b的值.11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值.12、如果m>0,n<0,m<|n|,那么m,n,-m, -n的大小关系().13、如果,则的取值范围是().A.>0 B.≥0 C.≤0 D.<014、绝对值不大于11.1的整数有( ).A .11个B .12个C .22个D .23个15、|a |= -a ,a 一定是( ).A 、正数B 、负数C 、非正数D 、非负数16、有理数m ,n 在数轴上的位置如图,17、若|x -1| =0, 则x =__________,若|1-x |=1,则x =_______.18、如果,则,.19、已知|x +y +3|=0, 求|x +y |的值.20、|a -2|+|b -3|+|c -4|=0,则a +2b +3c = .21、如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1, 求代数式xb a ++x 2+cd 的值. 22、已知|a |=3,|b |=5,a 与b 异号,求|a -b |的值.23、如果 a 、b 互为相反数,那么a +b = ,2a +2b = .24、 a +5的相反数是3,那么, a = .26、若x 的相反数是—5,则x =___;若—x 的相反数是—3.7,则x =_______.27、若一个数的倒数是1.2,则这个数的相反数是______,绝对值是________.28、若-a =1,则a =____; 若-a =-2,则a =______;如果-a =a ,那么a =______.29、已知|x —4|+|y +2|=0,求2x —|y |的值.30、若)5(--=-x ,则=x ,42=-x ,则=x .31、绝对值小于4且不小于2的整数是 .b c a1032、已知|a |=3, |b |=5,且a <b,则a +b 等于 .33、若1<a <3,则=-+-a a 13 .34、若|x -2|=7,则x = .35、给出两个结论:①a b b a -=-;②-21>-31.其中 .A.只有①正确B.只有②正确C.①②都正确D.①②都不正确36、若|a |=2,|b |=5,则a +b =( ).如果|a |=4,|b |=3,且a >b ,求a ,b 的值.37、对于式子|x |+13,当x 等于什么值时,有最小值?最小值是多少?38、对于式子2-|x |,当x 等于什么值时,有最大值?最大值是多少?39、a <0时,化简||3a a a +结果为_______. 40、有理数a 、b 、c 在数轴上的位置如图所示: 试化简:│a +b │-│b -1│-│a -c │-│1-c │=___________.41、 已知│a -3│+│-b +5│+│c -2│=0,计算2a +b +c 的值.42、如果a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是1,求代数式x 2+(a+b)x-•cd 的值.42、 化简│1-a │+│2a +1│+│a │(a <-2).44、已知-a <b <-c <0<-d ,且│d │<│c │,试将a ,b ,c ,d ,0•这五个数由大到小用“>”依次排列出来.45、若|x |=,则x 的相反数是_______. 46、若|m -1|=m -1,则m _______1.47、若|m -1|>m -1,则m_______1.48、若|x |=|-4|,则x =_______.49、 若|-x |=||,则x =_______.50、若|x -2|+|y +3|+|z -5|=0计算:(1)x ,y ,z 的值.(2)求|x |+|y |+|z |的值.51、若2<a <4,化简|2-a |+|a -4|.54、a +b <0,化简|a +b -1|-|3-a -b |.55、若y x -+3-y =0 ,求2x +y 的值.56、当b 为何值时,5-12-b 有最大值,最大值是多少?57、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子的值.58、若|x |=3,|y |=2,且|x -y |=y -x ,求x +y 的值.59、化简:|3x +1|+|2x -1|.60、|a -1|+|b +2|=0,求(a +b )2001+(a +b )2000+..(a +b )²+a +b =_________.61、已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab 62.已知5=a ,3=b 且b a b a +=+,求b a +的值.63.a 与b 互为相反数,且54=-b a ,求12+++-ab a b ab a 的值. 64.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?65、(整体的思想)方程|x -2008|=2008-x 的解的个数是_____.66、若,且,,则 .67、大家知道|5|=|5-0|,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|6-3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式于|a +5|在数轴上的意义是___________.m n n m -=-4m =3n =2()m n +=68、(距离问题)观察下列每对数在数轴上的对应点间的距离,4与-2,3与5,-2与-6,-4与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A 表示的数为x ,点B 表示的数为一1,则A 与B 两点间的距离以表示为___________.3)结合数轴求得|x -2|+|x +3|的最小值为______,取得最小值时x 的取值范围为_________.(4)满足|x +1|+|x +4|>3的x 的取值范围为_____.69、化简:|3x +1|+|2x -1|.70、已知y =|2x +6|+|x -1|-4|x +1|,求y 的最大值.71、设a <b <c <d ,求|x -a |+|x -b |+|x -c |+|x -d |的最小值.72、若2+|4-5x |+|1-3x |+4的值恒为常数,求x 该满足的条件及此常数的值.73、 |a -1|+|b +2|=0,求(a +b )2001+(a +b )2000+···+(a +b )2+a +b =74、已知2-ab 与1-b 互为相反数,设法求代数式.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab 75、 若a ,b ,c 为整数,且|a -b |2001+|c -a |2001=1,计算|c -a |+|a -b |+|b -c |的值.76、若97,19==b a ,且b a b a +≠+,那么b a -= .77、已知5=a ,3=b 且b a b a +=+,求b a +的值.78、化简| |+| |+···+| |79、已知a 、b 、c 是非零有理数,且a +b +c =0,求的值.80、有理数a 、b 、c 均不为0,且a +b +c =0,试求的值. 81、三个有理数a ,b ,c ,其积是负数,其和是正数,当x =时,求代x 2001-2x 2000+3.82、a 与b 互为相反数,且54=-b a ,求12+++-ab a b ab a 的值. 83、已知a 、b 、c 都不等于零,且x=,根据a 、b 、c 的不同取值,x 有 种不同的值.84、设a 、b 、c 是非零有理数(1)求 的值 (2)求 + 的值.85、(学科综合题)不相等的有理数a 、b 、c 在数轴上的对应点分别是A、B、C,如果|a -b |+|b -c |=|a -c |,那么点B( ).A.在A、C点的右边 B. 在A、C点的左边C.在A、C点之间 D.上述三种均有可能86、(课标创新题)已知a 、b 、c 都是有理数,且满足=1求代数式:6- 的值.87、设有理数a 、b 、c 在轴上的对应点如图1-1所示,化简|b -a |+|a +c |+|c -b |.88、若y x -+3-y =0 ,求2x +y 的值.89、 当b 为何值时,5-12-b 有最大值,最大值是多少?90、已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0,求式子的值.91、 已知x <-3,化简:|3+x |+|2-x |+|1+x |.92、若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.93、化简:|3x+1|+|2x-1|.94、若a、b、c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.95、已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.96、设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.97、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.98、(1)b9有最值,其值为.-a-(2)3+ba有最值,其值为.+99、若0-x+x,则x的取值范围为.-33=100、若(|x|-x)(1+x)=0, 则x的取值范围为.101、若aa21.--a=,则=-a-102、若x<-2,则|1-|1+x|=_ .103、若x<-3,则|3+|2-|1+x||=___ .104、若bab.=+,则=a-ab105、若b-,则a、b 应满足的关系是.=aba+106、若3a+b=0,则.107、|x+1|+|x-1|的最小值是.108、对任意有理数a,式子1a-+,1a+中,结果不为0的是.a+,1a-,1109、如果2-x,那么=<1.1-x+110、已知a<0,b>0,求5a-bab的值.-+1--111、三个互不相等的有理数,可表示为1,a+b,a的形式,又可表示为0,,b的形式,试求a1998+b1999的值.112、如果0<m<10,并且m≤x≤10,那么代数式|x-m|+|x-10|+|x-m-10|化简后得到的最后结果是( ) .A.-10B.10C.x-20D.20-x113、若a 、b 、c 、d 为非负整数,且(a 2+b 2)(c 2+d 2)=1993.则a 2+b 2+c 2+d 2=_ .114、数a 、b 在数轴上对应的点如图所示试化简:|a +b |+|a -b |+|a |+|b |-|a -|a ||.115、 若0432=-+-+-c b a ,求c b a ++2的值.。

相关文档
最新文档