信息论与编码第三版答案

合集下载

信息论与编码(第3版)第3章部分习题答案

信息论与编码(第3版)第3章部分习题答案

3.1设信源()12345670.20.190.180.170.150.10.01X a a a a a a a P X ⎛⎫⎧⎫=⎨⎬ ⎪⎩⎭⎝⎭ (1) 求信源熵()H X (2) 编二进制香农码(3) 计算平均码长及编码效率。

答:(1)根据信源熵公式()()()()21log 2.6087bit/symbol i i i H X p a p a ==−=∑(2)利用到3个关键公式:①根据()()()100,0i a i k k p a p a p a −===∑计算累加概率;②根据()()*22log 1log ,i i i i p a k p a k N −≤<−∈计算码长;③根据()a i p a 不断地乘m 取整(m 表示编码的进制),依次得到的i k 个整数就是i a 对应的码字根据①②③可得香农编码为(3)平均码长公式为()13.14i i i K p a k ===∑单符号信源L =1,以及二进制m =2, 根据信息率公式()2log bit/symbol m KR K L==编码效率()83.08%H X Rη==3.2对习题3.1的信源编二进制费诺码,计算其编码效率答:将概率从大到小排列,且进制m=2,因此,分成2组(每一组概率必须满足最接近相等)。

根据平均码长公式为()12.74i iiK p a k===∑单符号信源L=1,以及二进制m=2, 根据信息率公式()2log bit/symbolmKR KL==编码效率(信源熵看题3.1)()95.21%H XRη==3.3对习题3.1的信源编二进制赫夫曼码,计算平均码长和编码效率答:将n个信源符号的概率从大到小排列,且进制m=2。

从m个最小概率的“0”各自分配一个“0”和“1”,将其合成1个新的符号,与其余剩余的符号组成具有n-1个符号的新信源。

排列规则和继续分配码元的规则如上,直到分配完所有信源符号。

必须保证两点:(1)当合成后的信源符号与剩余的信源符号概率相等时,将合并后的新符号放在靠前的位置来分配码元【注:“0”位表示在前,“1”表示在后】,这样码长方差更小;(2)读取码字时是从后向前读取,确保码字是即时码。

信息论与编码第3版第3章习题解答

信息论与编码第3版第3章习题解答

第3章 无失真离散信源编码习题3.1 设信源1234567()0.20.190.180.170.150.10.01X a a a a a a a P X(1) 求信源熵H (X ); (2) 编二进制香农码;(3) 计算其平均码长及编码效率。

解: (1)()()log ()(.log ..log ..log ..log ..log ..log ..log .).7212222222=-020201901901801801701701501501010010012609 i i i H X p a p a bit symbol(2)a i p (a i ) p a (a i ) k i 码字 a 1 0.2 0 3 000 a 2 0.19 0.2 3 001 a 3 0.18 0.39 3 011 a 4 0.17 0.57 3 100 a 5 0.15 0.74 3 101 a 6 0.1 0.89 4 1110 a 70.010.9971111110(3)()3(0.2+0.19+0.18+0.17+0.15)+40.1+70.01=3.1471i i i K k p a()() 2.609=83.1%3.14H X H X R K3.2 对习题3.1的信源编二进制费诺码,计算其编码效率。

解:a i p (a i ) 编 码 码字 k i a 1 0.2 000 2 a 2 0.19 1 0 010 3 a 3 0.18 1 011 3 a 4 0.17 110 2 a 5 0.15 10 110 3 a 6 0.1 10 1110 4 a 70.011 11114()2(0.2+0.17)+3(0.19+0.18+0.15)+4(0.1+0.01)=2.7471i i i K k p a()() 2.609=95.2%2.74H X H X R K3.3 对习题3.1的信源分别编二进制和三进制赫夫曼码,计算各自的平均码长及编码效率。

第三版信息论答案

第三版信息论答案

【】设有 12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1;12“假币的重量比真的轻,或重”该事件发生的概率为P 1;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12log2log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为Ilog 3 比特因此,必须称的次数为I1log24I2log3次因此,至少需称 3 次。

【延伸】如何测量?分 3 堆,每堆 4 枚,经过 3 次测量能否测出哪一枚为假币。

【】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为 2”或“面朝上点数之和为 8”或“两骰子面朝上点数是 3 和 4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为 2”有一种可能,即两骰子的点数各为 1,由于二者是独立的,因此该种情况发生的概率为P1 16 61,该事件的信息量为:36I log 36比特“两骰子总点数之和为 8”共有如下可能:2 和 6、3 和 5、4 和 4、5 和 3、6 和2,概率为P 1 1 56 65,因此该事件的信息量为:36I log365比特“两骰子面朝上点数是 3 和 4”的可能性有两种:3 和 4、4 和 3,概率为P因此该事件的信息量为:1 121,6 6 18I log18比特【】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1,因此此时从答案中获得的信息量为7I log 7比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。

信息论与编码习题答案

信息论与编码习题答案

信息论与编码习题答案1.在无失真的信源中,信源输出由H(X) 来度量;在有失真的信源中,信源输出由R(D) 来度量。

2.要使通信系统做到传输信息有效、可靠和保密,必须首先信源编码,然后_____加密____编码,再______信道_____编码,最后送入信道。

3.带限AWGN波形信道在平均功率受限条件下信道容量的基本公式,也就是有名的香农公式是log(1)=+;当归一化信道容量C/W趋C W SNR近于零时,也即信道完全丧失了通信能力,此时E b/N0为-1.6 dB,我们将它称作香农限,是一切编码方式所能达到的理论极限。

4.保密系统的密钥量越小,密钥熵H(K)就越小,其密文中含有的关于明文的信息量I(M;C)就越大。

5.已知n=7的循环码42=+++,则信息位长g x x x x()1度k为 3 ,校验多项式《信息论与编码A》试卷第 2 页共 10 页《信息论与编码A 》试卷 第 3 页 共 10 页h(x)=31x x ++ 。

6. 设输入符号表为X ={0,1},输出符号表为Y ={0,1}。

输入信号的概率分布为p =(1/2,1/2),失真函数为d (0,0) = d (1,1) = 0,d (0,1) =2,d (1,0) = 1,则D min = 0 ,R (D min )= 1bit/symbol ,相应的编码器转移概率矩阵[p(y/x )]=1001⎡⎤⎢⎥⎣⎦;D max = 0.5 ,R (D max )= 0 ,相应的编码器转移概率矩阵[p(y/x )]=1010⎡⎤⎢⎥⎣⎦。

7. 已知用户A 的RSA 公开密钥(e,n )=(3,55),5,11p q ==,则()φn = 40 ,他的秘密密钥(d,n )=(27,55) 。

若用户B 向用户A 发送m =2的加密消息,则该加密后的消息为 8 。

二、判断题1. 可以用克劳夫特不等式作为唯一可译码存在的判据。

(√ )2. 线性码一定包含全零码。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

第三版信息论答案

第三版信息论答案

【2.1】设有12 枚同值硬币,其中有一枚为假币。

只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。

现用比较天平左右两边轻重的方法来测量。

为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:从信息论的角度看,“12 枚硬币中,某一枚为假币”该事件发生的概率为P 1 ;12“假币的重量比真的轻,或重”该事件发生的概率为P 1 ;2为确定哪一枚是假币,即要消除上述两事件的联合不确定性,由于二者是独立的,因此有I log12 log 2 log 24 比特而用天平称时,有三种可能性:重、轻、相等,三者是等概率的,均为P 1 ,因此天3平每一次消除的不确定性为I log 3 比特因此,必须称的次数为I1log 24I 2 log 32.9 次因此,至少需称3 次。

【延伸】如何测量?分3 堆,每堆4 枚,经过3 次测量能否测出哪一枚为假币。

【2.2】同时扔一对均匀的骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“两骰子面朝上点数是3 和4”时,试问这三种情况分别获得多少信息量?解:“两骰子总点数之和为2”有一种可能,即两骰子的点数各为1,由于二者是独立的,因此该种情况发生的概率为P 1 16 61 ,该事件的信息量为:36I log 36 5.17 比特“两骰子总点数之和为8”共有如下可能:2 和6、3 和5、4 和4、5 和3、6 和2,概率为P 1 1 56 6 5 ,因此该事件的信息量为:36I log3652.85 比特“两骰子面朝上点数是3 和4”的可能性有两种:3 和4、4 和3,概率为P 因此该事件的信息量为:1 121 ,6 6 18I log18 4.17 比特【2.3】如果你在不知道今天是星期几的情况下问你的朋友“明天星期几?”则答案中含有多少信息量?如果你在已知今天是星期四的情况下提出同样的问题,则答案中你能获得多少信息量(假设已知星期一至星期日的顺序)?解:如果不知今天星期几时问的话,答案可能有七种可能性,每一种都是等概率的,均为P 1 ,因此此时从答案中获得的信息量为7I log 7 2.807 比特而当已知今天星期几时问同样的问题,其可能性只有一种,即发生的概率为1,此时获得的信息量为0 比特。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

《信息论与编码》第三章部分习题参考答案

《信息论与编码》第三章部分习题参考答案

第三章习题参考答案3-1解:(1)判断唯一可译码的方法:①先用克劳夫特不等式判定是否满足该不等式;②若满足再利用码树,看码字是否都位于叶子结点上。

如果在叶节点上则一定是唯一可译码,如果不在叶节点上则只能用唯一可译码的定义来判断是不是。

其中C1,C2,C3,C6都是唯一可译码。

对于码C2和C4都满足craft 不等式。

但是不满足码树的条件。

就只能举例来判断。

对C5:61319225218ki i ---==+⨯=>∑,不满足该不等式。

所以C5不是唯一可译码。

(2)判断即时码方法:定义:即时码接收端收到一个完整的码字后,就能立即译码。

特点:码集任何一个码不能是其他码的前缀,即时码必定是唯一可译码, 唯一可译码不一定是即时码。

其中C1,C3,C6都是即时码。

对C2:“0”是“01”的前缀,……,所以C2不是即时码。

(1) 由平均码长61()i i i K p x k ==∑得1236 3 1111712(3456) 241681111712(3456) 2416811152334 24162K bitK bitK bitK bit==⨯+⨯+⨯+++==⨯+⨯+⨯+++==⨯+⨯+⨯⨯=62111223366()()log () 2 /()266.7%3()294.1%178()294.1%178()280.0%52i i i H U p u p u H U K H U K H U K H U K ηηηη==-=============∑比特符号3-7解:(1)信源消息的概率分布呈等比级数,按香农编码方法,其码长集合为自然数数列1, 2, 3, ···, i, ···;对应的编码分别为:0, 10, 110, ···, 111…110 ( i – 1个1), ···。

(2) 先求熵和平均码长,二者的比值即信息传输速率2()()log () 2 /()...2/()1 bit/i i Ii i IH p x p x bit k p x k H R k=-======∑∑X X 符号码元符号码元时间(3)编码效率:η = 1 =100%3-11解:(1)621()()log () 2.355/i i i H X p x p x ==-=∑比特符号(2)香农编码如下表所示:61()0.322(0.220.180.16)30.0840.0452.84/i i i k p x k ===⨯+++⨯+⨯+⨯=∑码元符号() 2.3550.82982.9%2.84H X kη==== (3)费诺编成二进变长制码,%1.984.2355.2)(4.24*04.04*08.03*16.02*18.02*22.02*032)(61====+++++==∑=k x H k x p K ii iη(4)huffman 编码%1.984.2355.2)(4.21=====k x H ii iη(5)huffman 三进制%7.7511.3355.2)(11.33log *)3*04.03*08.03*16.02*18.02*22.01*032(3log *)(2261====+++++==∑=k x H k x p K ii iη(6)log 26=2.58 采用定长码则必须使得K=3才能完成编码 效率%5.783355.2)(===k x H η(7)046.0%1.98355.2355.2)()(==+=+=εεεηx H x HL ≧23865810*046.0505.0*3222==-δεσ3-12解:(1) 821()()log () 2.56/i i i H X p x p x ==-=∑比特符号R=H(X)=2.56 bit/s{}505.0355.2)04.0(log *04.0)08.0(log *08.0)16.0(log *16.0)18.0(log *18.0)22.0(log *22.0)32.0(log *32.0)]([)]()[log ()]()([2222222221222=-+++++=-=-=∑=X H x p x p X H x I E ni iiiσ。

《信息论与编码》部分课后习题参考答案

《信息论与编码》部分课后习题参考答案

P ( y1 = 0 | M 1 ) P ( y1 = 0)
因为信道为无记忆信道,所以
P( y1 = 0 | M 1 ) = P( y1 = 0 | x11 x12 = 00) = P( y1 = 0 | x11 = 0) = P(0 | 0) = p
同理,得 I ( y1 = 0 | M i ) = P ( y1 = 0 | xi1 xi 2 ) = P ( y1 = 0 | xi1 ) 输出第一个符号是 y1=0 时, 有可能是四个消息中任意一个第一个数字传送来的。 所以
第二章
2.1 同时掷两个骰子,设每个骰子各个面向上的概率都是 1/6。试求: (1)事件“2 和 6 同时出现”的自信息量; (2)事件“两个 3 同时出现”的自信息量; (3)事件“两个点数中至少有一个是 5”的自信息量; (4)两个点数之和的熵。 答: (1)事件“2 和 6 同时出现”的概率为:
《信息论与编码》
部分课后习题参考答案
1.1 怎样理解消息、信号和信息三者之间的区别与联系。 答:信号是一种载体,是消息的物理体现,它使无形的消息具体化。通信系统中传输的是 信号。 消息是信息的载体, 信息是指消息中包含的有意义的内容, 是消息中的未知成分。 1.2 信息论的研究范畴可以分成哪几种,它们之间是如何区分的? 答:信息论的研究范畴可分为三种:狭义信息论、一般信息论、广义信息论。 1.3 有同学不同意“消息中未知的成分才算是信息”的说法。他举例说,他从三岁就开始背 诵李白诗句“床前明月光,疑是地上霜。举头望明月,低头思故乡。 ” ,随着年龄的增长, 离家求学、远赴重洋,每次读到、听到这首诗都会带给他新的不同的感受,怎么能说这 些已知的诗句没有带给他任何信息呢?请从广义信心论的角度对此现象作出解释。 答:从广义信息论的角度来分析,它涉及了信息的社会性、实用性等主观因素,同时受知识 水平、文化素质的影响。这位同学在欣赏京剧时也因为主观因素而获得了享受,因此属于广 义信息论的范畴。

信息论与编码姜丹第三版答案

信息论与编码姜丹第三版答案

信息论与编码习题参考答案 第一章单符号离散信源信息论与编码作业是 74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14 还有证明熵函数的 连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1) “2和6同时出现”这一事件的自信息量; (2) “两个5同时出现”这一事件的自信息量; (3) 两个点数的各种组合的熵; ⑷两个点数之和的熵;(5) “两个点数中至少有一个是 1”的自信息量。

解:样本空间:N =c ;c ; =6 X6 =36n 12(1) R =—”1(a) =—log R =log18=4.17bitN 36 n 2 1(2) F 2 N =36 I (a) = -log F 2 =log36 =5.17bit (3) 信源空间:2 36 1.H(x)=15 log 6 log 36 = 4.32bit36 2 36(4)log 36+ — l og 36 — log 36 — log 迸36 2 36 3 36 4 log 塑 + — log 36 =3.71bit5 36 6 (5) F 3 =匹 二11. 1(a) - Tog F 3 -log 36 =1.17bit N 36 111.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它2H(r.卫36们的坐标分别为(Xa,Ya) , (Xb,Yb),但A,B不能同时落入同一方格内。

(1)若仅有质点A,求A落入任一方格的平均信息量;(2)若已知A已落入,求B落入的平均信息量;(3)若A,B是可辨认的,求A,B落入的平均信息量。

解:1(1) 幕A落入任一格的概率:P(a i) I (aj =-log P(aJ = log 484848.H(a) - P(a j)log P(aJ = log 48 =5.58biti 41(2) ;在已知A落入任一格的情况下,B落入任一格的概率是:P(bJ = —47.I(b) - -logP(b i) =log4748.H(b) = -' P(b i)log P(b i) =log47 =5.55biti -11 1(3) AB同时落入某两格的概率是P(ABJ二一一48 47.I(ABJ =-log P(AB i)48 47H(AB」-八P(ABJIog P(ABJ =log(48 47)=11.14biti 二1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

《信息论与编码》课后习题答案

《信息论与编码》课后习题答案

《信息论与编码》课后习题答案第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p u u =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭ 状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息;(3) 两个点数的各种组合(无序)对的熵和平均信息量; (4) 两个点数之和(即2, 3, … , 12构成的子集)的熵; (5) 两个点数中至少有一个是1的自信息量。

信息论与编码习题参考答案(全)

信息论与编码习题参考答案(全)
110
111
(1)在W4=011中,接到第一个码字“0”后获得关于a4的信息量I(a4;0);
(2)在收到“0”的前提下,从第二个码字符号“1”中获取关于a4的信息量I(a4;1/0);
(3)在收到“01”的前提下,从第三个码字符号“1”中获取关于a4的信息量I(a4;1/01);
(4)从码字W4=011中获取关于a4的信息量I(a4;011)。
其中N=2FT,б2X是信号的方差(均值为零),б2N是噪声的方差(均值为零).
再证:单位时间的最大信息传输速率
信息单位/秒
(证明详见p293-p297)
5.12设加性高斯白噪声信道中,信道带宽3kHz,又设{(信号功率+噪声功率)/噪声功率}=10dB.试计算改信道的最大信息传输速率Ct.
解:
5.13在图片传输中,每帧约有2.25×106个像素,为了能很好的重现图像,需分16个量度电平,并假设量度电平等概率分布,试计算每分钟传输一帧图片所需信道的带宽(信噪功率比为30dB).
(2)求信源的极限熵H∞;
(3)求当p=0,p=1时的信息熵,并作出解释。
解:
3.10设某马尔柯夫信源的状态集合S:{S1S2S3},符号集X:{α1α2α3}。在某状态Si(i=1,2,3)下发发符号αk(k=1,2,3)的概率p(αk/Si) (i=1,2,3; k=1,2,3)标在相应的线段旁,如下图所示.
证明:
3.5试证明:对于有限齐次马氏链,如果存在一个正整数n0≥1,对于一切i,j=1,2,…,r,都有pij(n0)>0,则对每个j=1,2,…,r都存在状态极限概率:
(证明详见:p171~175)
3.6设某齐次马氏链的第一步转移概率矩阵为:

信息论与编码姜丹第三版答案精编版

信息论与编码姜丹第三版答案精编版

信息论与编码习题参考答案 第一章 单符号离散信源信息论与编码作业是74页,1.1的(1)(5),1.3,1.4,1.6,1.13,1.14还有证明熵函数的连续性、扩展性、可加性1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。

解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。

(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。

解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。

信息论与编码曹雪虹第三版第五章

信息论与编码曹雪虹第三版第五章

信息论与编码曹雪虹第三版第五章1、在Windows 的"资源管理器" 窗口中,如果想一次选定多个分散的文件或文件夹,正确的操作是()。

[单选题] *A.按住Ctrl 键,用鼠标右键逐个选取B.按住Ctrl 键,用鼠标左键逐个选取(正确答案)C.按住Alt键,用鼠标右键逐个选取D.按住Alt键,用鼠标左键逐个选取2、72.在下列关于字符大小关系的说法中,正确的是()。

[单选题] *A.空格>a>AB.空格>A>aC.a>A>空格(正确答案)D.A>a>空格3、40.下列选项属于面向对象的程序设计语言是()。

[单选题] *A.Java和CB.Java和C++(正确答案)C.VB和CD.VB和Word4、76.计算机病毒的危害表现为()[单选题] *A.能造成计算机芯片的永久性失效B.使磁盘霉变C.影响程序运行,破坏计算机系统的数据与程序(正确答案)D.切断计算机系统电源5、在WPS表格中,关于筛选数据的说法正确的是()。

[单选题] *A.删除不符合设定条件的其它内容B.筛选后仅显示符合我们设定筛选条件的某一值或符合一组条件的行(正确答案)C.将改变不符合条件的其它行的内容6、执行删除操作时,()中的文件不能被送入回收站,而是直接删除。

[单选题] *A. C盘B. D盘C.U盘(正确答案)7、能够实现电子邮件服务器之间传输邮件的协议是()。

易[单选题] *A.DNSB.SNMPC.HTTPD.SMTP(正确答案)8、计算机硬件能直接识别和执行的只有()。

[单选题] *A.高级语言B.符号语言C.汇编语言D.机器语言(正确答案)9、把计算机网络看成是自治的计算机系统的集合,其中“自治的计算机”主要指()易[单选题] *A.可以独立运行的计算机(正确答案)B. 网络计算机C.裸机D. 网络终端10、在Internet 上,政府机构类别的域名中一般包括()。

信息论第三版课后答案

信息论第三版课后答案

信息论第三版课后答案【篇一:西电邓家先版信息论与编码第3章课后习题解答】6x11/6y13/41/4x2图3.1 二元信道y2?x??x1x2???=?0.60.4?通过一干扰信道,接收符号y=?y1y2?,信道传递概率如p(x)????图3.33所示。

求:(1)信源x中事件x1,和x2分别含有的自信息。

(2)收到消息yj(j=1,2)后,获得的关于xi(i=1,2)的信息量。

(3)信源x和信源y的信息熵。

(4)信道疑义度h(x|y)和噪声熵h(y|x)。

(5)接收到消息y后获得的平均互信息。

解:(1)由定义得:i(x1)= -log0.6=0.74biti(x2)= -log0.4=1.32biti(xi;xj)= i(xi)-i(xi|yj)=log[p(xi|yj)/p(xi)]= log[p(yj|xi)/p(yj)]则 i(x1;y1)= log[p(y1|x1)/p(y1)]=log5/6/0.8=0.059bit i (x1;y2)= log[p(y2|x2)/p(y2)]=log1/6/0.2=-0.263biti(x2;y1)= log[p(y1|x2)/p(y1)]=log3/4/0.8=-0.093bit i(x2;y2)= log[p(y2|x2)/p(y2)]=log1/4/0.2=0.322bit(3)由定义显然 h(x)=0.97095bit/符号h(y)=0.72193bit/符号(4)h(y|x)=?22p(xy)log[1/p(y|x)]=??i?1j?1p(xi)p(yj|xi)log[1/p(yj|xi)]h(x|y)= h(x)+h(y|x)-h(y)=0.9635bit/符号(5) i(x;y)= h(x)-h(x|y)=0.00745 bit/符号3.2设8个等概率分布的消息通过传递概率为p的bsc进行传送。

八个消息相应编成下述码字:m1=0000, m2=0101, m3=0110, m4=0011, m5=1001, m6=1010, m7=1100, m8=1111, 试问 (1) 接受到第一个数字0与m之间的互信息。

最新信息论与编码(第三版)

最新信息论与编码(第三版)
信息度量1平均符号熵67另一方面因信源符号之间的另一方面因信源符号之间的依赖关系长度依赖关系长度为为n所以可以求出已知前面所以可以求出已知前面nn11个符号时后面出现一个符号的个符号时后面出现一个符号的平均不确定性平均不确定性
信息论与编码(第三版)
简介
是一门应用概率论、随机过程、数理统计和近 代代数的方法,来研究信息传输、提取和处理 中一般规律的学科。
信源编码器的主要指标
是它的编码效率。一般来说,效率越高,编译码 器的代价也将越大。
信源译码器
把信道译码器的输出变换成信宿所需的消息形式,
相当于信源编码器的逆过程。
14
信道编码器与译码器
信道编码 主要作用是提高信息传送的可靠性。
信道编码器的作用 在信源编码器输出的代码组上有目的地增加一些监督 码元,使之具有检错或纠错的能力。
1)离散信源
特点:输出单符号消息。符号集的取值A:{a1,a2,…,aq}是 有限的或可数的,可用离散型随机变量X描述。
数学模型:设每个信源符号ai出现的(先验)概率p(ai)
(i=1,2,…,q) 满足:
q
p(ai ) 1
i 1
则 : P X (x ) P ( a a 1 1 )
I(ak)lorP g(1 ak)lorP g(ak)
28
2.1.1 自信息
设离散信源X的概率空间为:
P X (x ) P ( a a 1 1 )
a 2 P (a 2)
a 3 ......a q P (a 3) .....P .(a q)
q
i 1
P(ai )
1
自信息量:事件ai发生所含有的信息量
信宿:信息归宿之意,亦即收信者或用户, 是信息传送的终点或目的地。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信息论与编码第三版答案
《信息论与编码》是一本非常经典的书籍,已经成为了信息科
学领域中的经典教材。

本书的第三版已经出版,相比于前两版,
第三版的变化不小,主要是增加了一些新内容,同时也对一些旧
内容做了修改和完善。

作为一本教材,上面的题目和习题都是非常重要的,它们可以
帮助读者更好地理解书中的相关概念和知识点,同时也可以帮助
读者更好地掌握理论和技术。

因此,本文将介绍《信息论与编码》第三版中部分习题的答案,方便读者快速查阅和学习。

第一章:信息量和熵
1.1 习题1.1
Q:两个随机变量的独立性和无关性有什么区别?
A:独立性和无关性是两个不同的概念。

两个随机变量是独立的,当且仅当它们的联合概率分布等于乘积形式的边缘概率分布。

两个随机变量是无关的,当且仅当它们的协方差等于0。

1.2 习题1.7
Q:什么样的随机变量的熵等于0?
A:当随机变量的概率分布是确定的(即只有一个概率为1,其余全为0),其熵等于0。

第二章:数据压缩
2.5 习题2.9
Q:为什么霍夫曼编码比熵编码更加高效?
A:霍夫曼编码能够更好地利用信源的统计特征,将出现频率高的符号用较短的二进制编码表示,出现频率低的符号用较长的二进制编码表示。

这样一来,在编码过程中出现频率高的符号会占用较少的比特数,从而能够更加高效地表示信息。

而熵编码则是针对每个符号分别进行编码,没有考虑符号之间的相关性,因此相比于霍夫曼编码更加低效。

第四章:信道编码
4.2 习题4.5
Q:在线性块码中,什么是生成矩阵?
A:在线性块码中,生成矩阵是一个包含所有二元线性组合系
数的矩阵。

它可以用来生成码字,即任意输入信息序列可以通过
生成矩阵与编码器进行矩阵乘法得到相应的编码输出序列。

4.3 习题4.12
Q:简述CRC校验的原理。

A:CRC校验是一种基于循环冗余校验的方法,用于检测在数
字通信中的数据传输错误。

其基本思想是将发送数据看作多项式
系数,通过对这个多项式进行除法运算,得到余数,将余数添加
到数据尾部,发送给接收方。

接收方将收到的带有余数的数据看
做多项式,使用同样的多项式除以一个预先定义好的生成多项式,
计算出余数,若余数等于0,则认为数据传输成功;否则认为数据传输出错,并进行相应的纠错处理。

以上是对部分《信息论与编码》第三版习题的答案介绍,希望能对读者们有所帮助。

当然,除了这些习题,本书中还有更多的内容等待读者去探索和学习。

相关文档
最新文档