计量经济学模型案例

合集下载

计量经济学第5章案例

计量经济学第5章案例

异方差案例:取2004年全国31个省市自治区农作物种植业产值Y t (亿元)和农作物播种面积X t (万亩)数据研究二者之间的关系。

得估计的线性模型如下,tY ˆ = 25.09 + 0.113 X t (9.56) R 2 = 0.76, F = 91.37,T = 31(一)异方差的检验1、图示法:050010001500200050001000015000XY-600-400-200020040060080051015202530图1 农业总产值Y t 和播种面积X t 图2 残差图无论是从Y t 和X t 观测值的散点图(见图1)还是模型的残差图(见图2)都可以发现数据中存在异方差。

2、用Goldfeld-Quandt 方法检验是否存在异方差。

①首先以X t 为基准对成对样本数据(Y t ,X t )按取值大小排序。

②去掉中间7个数据,按X t 取值大小分成样本容量各为11的两个子样本。

③用两个子样本各自回归得结果如下,tY ˆ = 35.14+ 0.1244 X t , (t = 1, …, 12) (4.96) R 2 = 0.71 F = 24.64, ESS =138421.2,tY ˆ= -241.18+ 0.1421X t , (t = 20, …, 29) (3.0) R 2 = 0.53 F = 11.48, ESS =996129.4统计量:F =)212/(2.138421)212/(4.996129-- = 7.196,因为F = 11.2 > F 0..05 (10, 10) = 2.98,所以存在异方差。

3、用Glejser 方法检验是否存在异方差。

用回归后残差的绝对值t e 对X t 的不同次幂作回归得如下回归式: t t X e 0281.0=(6.694) R 2=0.131 t t X e 4964.2=(7.339) R 2=0.225 20620.13.117t t X E e -+=(1.95) R 2=0.12经比较可以发现,随机误差项存在形如第二个方程形式的异方差。

计量经济学EVIEWS模型案例

计量经济学EVIEWS模型案例

数据收集
数据来源: 《中国统计年鉴》 其中:
Y ——各项税收收入(亿元)
X2——国内生产总值(亿元) X3——财政支出(亿元) X4——商品零售价格指数(%)
参数估计
假定模型中随机项满足基本假定,可用 假定模型中随机项满足基本假定,可用OLS法估计 法估计 其参数。具体操作: 软件, 其参数。具体操作:用EViews软件,估计结果为: 软件 估 X2t + β2 X3t + β3 X4t + ut
其中: 其中: 各项税收收入(亿元) Y — 各项税收收入(亿元) X2 — 国内生产总值(亿元) 国内生产总值(亿元) X3 — 财政支出(亿元) 财政支出(亿元) 商品零售价格指数( ) X4 — 商品零售价格指数(%)
上机要求: 上机要求:
1、更新数据至2009年,并对模型进行估 计和检验; 2、上网查2010年各解释变量的数据,求 出2010年税收收入的点预测和区间预测, 并与实际值进行比较分析; 3、形成报告于下次上机课上交打印稿。
R 2 = 0.9971
F = 2717.238
df = 21
模型检验: 模型检验: 拟合优度: 较高, 拟合优度:可决系数 R 2 = 0.9974 较高, R 2 = 0.9971 也较高, 修正的可决系数 也较高, 表明模型拟合较好。 表明模型拟合较好。
显著性检验
F检验: 针对 H0 : β2 =,取β4 = 0 检验: 检验 β3 = 查自由度为 k -1=3 和 的临界值 n - k =21
理论分析 影响中国税收收入增长的主要因素可能有: 影响中国税收收入增长的主要因素可能有: (1)从宏观经济看,经济整体增长是税收增长的 )从宏观经济看, 基本源泉。 基本源泉。 2) (2)社会经济的发展和社会保障等都对公共财政 提出要求, 提出要求,公共财政的需求对当年的税收收入可 能会有一定的影响。 能会有一定的影响。 (3)物价水平。中国的税制结构以流转税为主, )物价水平。中国的税制结构以流转税为主, 以现行价格计算的GDP和经营者的收入水平都与 以现行价格计算的 和经营者的收入水平都与 物价水平有关。 物价水平有关。 (4)税收政策因素。 )税收政策因素。

《计量经济学》建模案例

《计量经济学》建模案例

《计量经济学》建模案例案例1:用回归模型预测木材剩余物伊春林区位于黑龙江省东北部。

全区有森林面积2189732公顷,木材蓄积量为23246.02万m 3。

森林覆盖率为62.5%,是我国主要的木材工业基地之一。

1999年伊春林区木材采伐量为532万m 3。

按此速度44年之后,1999年的蓄积量将被采伐一空。

所以目前亟待调整木材采伐规划与方式,保护森林生态环境。

为缓解森林资源危机,并解决部分职工就业问题,除了做好木材的深加工外,还要充分利用木材剩余物生产林业产品,如纸浆、纸袋、纸板等。

因此预测林区的年木材剩余物是安排木材剩余物加工生产的一个关键环节。

下面,利用简单线性回归模型预测林区每年的木材剩余物。

显然引起木材剩余物变化的关键因素是年木材采伐量。

伊春林区16个林业局1999年木材剩余物和年木材采伐量数据见附表。

散点图见图2.14。

观测点近似服从线性关系。

建立一元线性回归模型如下:y t = β0 + β1 x t + u t5101520253010203040506070XY图 年剩余物y t 和年木材采伐量x t 散点图图1 Eviews 输出结果Eviews 估计结果见图1。

下面分析Eviews 输出结果。

先看图1的最上部分。

LS 表示本次回归是最小二乘回归。

被解释变量是y t 。

本次估计用了16对样本观测值。

输出格式的中间部分给出5列。

第1列给出截距项(C )和解释变量x t 。

第2列给出相应项的回归参数估计值(0ˆβ和1ˆβ)。

第根据Eviews 输出结果(图2.15),写出OLS 估计式如下:t yˆ= -0.7629 + 0.4043 x t (-0.6) (12.1) R 2= 0.91, s. e . = 2.04其中括号内数字是相应t 统计量的值。

s.e .是回归函数的标准误差,即σˆ=)216(ˆ2−∑t u 。

R 2是可决系数。

R 2 = 0.91说明上式的拟合情况较好。

y t 变差的91%由变量x t 解释。

计量经济学建模案例

计量经济学建模案例

计量经济学建模案例计量经济学是一种运用数学和统计方法对经济现象进行定量分析的方法,可以帮助经济学家解释和预测经济现象,并制定相应的政策。

下面是一种计量经济学建模案例:假设我们要研究某个城市的房价与房屋面积之间的关系。

我们可以使用多元线性回归模型来建模,其中自变量是房屋面积,因变量是房价。

为了使模型更加准确,我们还可以引入其他可能影响房价的变量,如地理位置、房屋年龄、房屋类型等。

首先,我们需要收集相关的数据。

我们可以通过调查和市场价格来获得房屋面积、房价以及其他相关变量的数据。

假设我们收集了100个样本数据来建立模型。

接下来,我们需要进行数据的预处理。

这包括数据清洗、缺失值处理、异常值处理等。

我们可以使用统计软件进行数据处理和分析。

然后,我们可以使用多元线性回归模型来建立房价与房屋面积以及其他相关变量之间的关系。

模型的形式可以表示为:房价= β0 + β1 × 房屋面积+ β2 × 地理位置+ β3 × 房屋年龄 +β4 × 房屋类型+ ε其中,β0、β1、β2、β3、β4是模型的回归系数,表示不同变量对房价的影响程度。

ε是误差项,表示模型无法解释的部分。

接着,我们可以使用最小二乘法估计回归系数,并进行统计显著性检验和模型拟合度检验。

这可以帮助我们判断模型的准确性和可解释性。

最后,我们可以使用估计的回归模型来进行预测和分析。

通过对模型的解释和系数的分析,我们可以得出不同变量对房价的影响程度,并制定相应的政策措施。

总之,计量经济学建模能够帮助我们理解和预测经济现象,对于研究者和政策制定者具有重要意义。

以上是一个简单的计量经济学建模案例,实际的建模过程可能更加复杂,需要根据具体问题进行相应的分析和处理。

计量经济学_三元线性回归模型案例分析

计量经济学_三元线性回归模型案例分析

选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。

由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。

所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。

计量经济学案例

计量经济学案例

计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。

在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。

下面,我们将通过一个实际的案例来说明计量经济学的应用。

某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。

为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。

首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。

在这个模型中,销量是因变量,而价格是自变量。

通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。

接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。

通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。

这为他们制定合理的定价策略提供了重要的依据。

最后,他们利用建立的数学模型,进行了一系列的预测和模拟。

他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。

这些预测和模拟结果为企业提供了重要的决策参考。

通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。

它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。

当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。

总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。

通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。

希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。

计量经济学模型应用例题和知识点总结

计量经济学模型应用例题和知识点总结

计量经济学模型应用例题和知识点总结计量经济学作为一门将经济理论、统计学和数学相结合的学科,旨在通过建立经济模型来分析和预测经济现象。

在实际应用中,计量经济学模型发挥着重要作用,为政策制定、企业决策等提供了有力的支持。

接下来,我们将通过一些具体的例题来展示计量经济学模型的应用,并对相关知识点进行总结。

一、简单线性回归模型简单线性回归模型是计量经济学中最基本的模型之一,其表达式为:$Y =\beta_0 +\beta_1 X +\epsilon$,其中$Y$是被解释变量,$X$是解释变量,$\beta_0$是截距项,$\beta_1$是斜率系数,$\epsilon$是随机误差项。

例如,我们想要研究家庭收入($X$)对家庭消费支出($Y$)的影响。

通过收集一定数量的家庭样本数据,运用最小二乘法估计出模型的参数$\beta_0$和$\beta_1$。

在这个例题中,需要掌握的知识点包括:1、最小二乘法的原理和计算方法,其目标是使残差平方和最小。

2、模型的假设条件,如随机误差项的均值为零、同方差、无自相关等。

3、参数的经济意义和统计显著性检验。

二、多元线性回归模型当影响被解释变量的因素不止一个时,就需要使用多元线性回归模型,其表达式为:$Y =\beta_0 +\beta_1 X_1 +\beta_2 X_2 +\cdots +\beta_k X_k +\epsilon$。

假设我们要研究一个地区的房价($Y$)与房屋面积($X_1$)、地理位置($X_2$)、房龄($X_3$)等因素的关系。

相关知识点:1、多重共线性的概念和检验方法,避免解释变量之间存在高度线性相关。

2、逐步回归法用于筛选重要的解释变量。

3、调整的可决系数用于比较不同模型的拟合优度。

三、异方差性在回归模型中,如果随机误差项的方差不是常数,就存在异方差性。

例如,研究不同规模企业的利润($Y$)与销售额($X$)的关系,可能会出现大企业的利润波动较大,小企业的利润波动较小的情况,即存在异方差。

计量经济学模型案例

计量经济学模型案例

计量经济学模型案例计量经济学是经济学的一个重要分支,它通过建立数学模型来研究经济现象,并利用实证数据对模型进行检验和估计。

在实际应用中,计量经济学模型可以帮助我们理解经济现象的规律,预测未来的经济走势,制定经济政策等。

下面,我们将通过几个实际案例来介绍计量经济学模型在经济分析中的应用。

首先,我们来看一个简单的线性回归模型的案例。

假设我们想研究劳动力市场的供求关系,我们可以建立一个简单的线性回归模型来分析劳动力市场的工资水平与就业率之间的关系。

我们收集了一些城市的数据,包括每个城市的平均工资水平、就业率、教育水平等变量,然后利用线性回归模型来估计工资水平与就业率之间的关系。

通过对模型的检验和估计,我们可以得出一些结论,比如工资水平的提高是否会影响就业率,教育水平对工资水平的影响等。

其次,我们来看一个时间序列模型的案例。

假设我们想预测未来几个季度的经济增长率,我们可以利用时间序列模型来进行预测。

我们收集了过去几年的经济增长率数据,然后利用时间序列模型来对未来的经济增长率进行预测。

通过对模型的估计和预测,我们可以得出一些结论,比如未来几个季度的经济增长率可能会呈现什么样的趋势,有助于政府制定经济政策和企业进行经营决策。

最后,我们来看一个面板数据模型的案例。

假设我们想研究不同地区的经济增长对环境污染的影响,我们可以利用面板数据模型来进行分析。

我们收集了不同地区的经济增长率和环境污染指标的数据,然后利用面板数据模型来估计经济增长与环境污染之间的关系。

通过对模型的检验和估计,我们可以得出一些结论,比如经济增长对环境污染的影响程度,不同地区之间的差异等。

综上所述,计量经济学模型在经济分析中具有重要的应用价值。

通过建立合适的模型并利用实证数据进行分析,我们可以更好地理解经济现象的规律,预测未来的经济走势,为政府制定经济政策和企业经营决策提供科学依据。

希望以上案例可以帮助大家更好地理解计量经济学模型在实际应用中的重要性和价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学模型案例
计量经济学是经济学的一个重要分支,它运用数理统计和经济理论来研究经济
现象。

在实际应用中,计量经济学模型可以帮助我们分析经济数据,预测经济变化,评估政策效果等。

下面我们将通过几个实际案例来展示计量经济学模型的应用。

首先,我们来看一个关于劳动力市场的案例。

假设我们想要研究教育水平对个
体工资收入的影响。

我们可以建立一个计量经济学模型,以教育水平作为自变量,工资收入作为因变量,控制其他可能影响工资收入的因素,如工作经验、性别、地区等。

通过对大量的劳动力市场数据进行回归分析,我们可以得出教育水平对工资收入的影响程度,进而评估教育政策对经济的影响。

其次,我们来考虑一个关于消费行为的案例。

假设我们想要研究收入水平对消
费支出的影响。

我们可以建立一个消费函数模型,以收入水平作为自变量,消费支出作为因变量,控制其他可能影响消费支出的因素,如家庭规模、价格水平、偏好等。

通过对消费者调查数据进行计量经济学分析,我们可以得出收入水平对消费支出的弹性,从而预测未来的消费趋势,指导政府制定经济政策。

最后,我们来看一个关于市场竞争的案例。

假设我们想要研究市场结构对企业
利润的影响。

我们可以建立一个产业组织模型,以市场结构(如垄断、寡头、完全竞争)作为自变量,企业利润作为因变量,控制其他可能影响企业利润的因素,如生产成本、市场需求、技术创新等。

通过对不同产业的数据进行计量经济学分析,我们可以得出不同市场结构下的企业利润水平,为政府监管和产业政策提供依据。

通过以上案例的介绍,我们可以看到计量经济学模型在实际经济分析中的重要
作用。

它不仅可以帮助我们理解经济现象的规律,还可以指导政策制定和企业决策。

当然,计量经济学模型的建立和分析也需要注意数据的质量、模型的假设条件等问题,只有在严谨的理论基础和丰富的实证分析基础上,我们才能得出可靠的经济结论。

综上所述,计量经济学模型在经济学研究中具有重要的地位和作用,它为我们提供了一种强大的工具来分析经济现象,预测经济变化,评估政策效果。

通过不断地应用和完善计量经济学模型,我们可以更好地理解经济规律,推动经济发展,实现社会福祉的提升。

相关文档
最新文档