数学建模—非线性规划实验报告

合集下载

《数学建模实验》

《数学建模实验》

《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。

二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类线性规划问题的理解。

4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。

5、用软件lindo 或lingo 求解上述问题。

(选做题)6、编写单纯形算法的MATLAB 程序。

(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。

实验三非线性规划

实验三非线性规划

实验三 非线性规划实验名称:利用运筹学软件求解非线性规划问题实验目的:1.学会建立M 文件,并学会用Matlab 的软件包内部函数求解非线性规划问题;2. 对实际问题进行数学建模,并学会用数学软件Matlab 或运筹软件Lindo/Lingo 对问题进行求解。

实验内容:1.MATLAB 求解非线性规划函数非线性规划分为无约束规划和有约束规划两种。

1. 1无约束规划 标准型定义为: min f(x)用fminunc 函数和fmisearch 函数求解, fminunc 简单形式为: [x,fval]=fminunc(@fun,x0)表示求函数fun 的最小值,fun 函数定义在M 文件fun..m 中,并置初始解向量为x0。

例1:计算无约束非线性问题, 22212123)(m i n x x x x x f ++= 解的初始向量为x0=[1, 1] 第一步,编写M 文件: function f=fun(x)f=3*x(1)^2+2*x(1)*x(2)+x(2)^2第二步,求解:>> x0=[1,1];>> [x,fval]=fminunc(@fun,x0)运行后得:x =1.0e-008 *-0.7512 0.2479fval =1.3818e-016注一:fminunc函数和fmisearch函数使用形式相似,但也有不同:1)对于fminunc函数,目标函数必须连续2)如果目标函数的阶数大于2阶,则一般地fmisearch函数不如fminunc函数1.2有约束非线性规划标准型定义为:min f(x)X(G)若()G X为非G X为线性函数用fmincon函数constr函数都可,若()线性函数用constr函数。

A.用fmincon函数求解的基本形式为[x,fval]=fmincon('fun',x0,A,b)表示求函数fun 的最小值,fun 函数定义在M 文件fun..m 中,并置初始解向量为x0。

数学建模实验报告

数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。

(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

数学建模-非线性规划

数学建模-非线性规划

-32-第三章 非线性规划§1 非线性规划1.1 非线性规划的实例与定义如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。

一般说来,解非线性规划要比解线性规划问题困难得多。

而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。

下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。

已知该企业拥有总资金A 元,投资于第),,1(n i i L =个项目需花资金i a 元,并预计可收益i b 元。

试选择最佳投资方案。

解 设投资决策变量为 ⎩⎨⎧=个项目决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1L =,则投资总额为∑=ni ii xa 1,投资总收益为∑=ni ii xb 1。

因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 ∑=≤<ni ii A xa 1另外,由于),,1(n i x i L =只取值0或1,所以还有 .,,1,0)1(n i x x i i L ==−最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。

因此,其数学模型为:∑∑===ni ii ni ii xa xb Q 11maxs.t. ∑=≤<ni ii A xa 1.,,1,0)1(n i x x i i L ==−上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。

可概括为一般形式)(min x fq j x h j ,,1,0)(s.t.L =≤ (NP) p i x g i ,,1,0)(L ==-33-其中T n x x x ][1L =称为模型(NP)的决策变量,f 称为目标函数,i g ),,1(p i L =和),,1(q j h j L =称为约束函数。

数学实验报告-非线性规划与多目标规划实验

数学实验报告-非线性规划与多目标规划实验
编写函数文件:
1)建立函数M文件:
functionf=fun(x)
f=-20*exp(-0.2*(0.5*(x(1)^2+x(2)^2)^0.5))-exp(0.5*(cos(2*pi*x(1))+cos(2*pi*x(2))))+22.713;
2)
x0=[0,0];
options=optimset('display', 'iter', 'tolfun',1e-10);
1982
0.117
0.465
0.215
0.187
0.213
0.311
-0.019
0.084
1983
0.092
-0.015
0.224
0.235
0.217
0.08
0.237
-0.128
1984
0.103
0.159
0.061
0.03
-0.097
0.15
0.074
-0.175
1985
0.08
0.366
0.316
[3]熟悉MATLAB软件求解非线性规划模型的基本命令;
[4]通过范例学习,了解建立非线性规划模型的全过程,与线性规划比较其难点何在。
本实验包括基础实验、应用实验和创新实验,基础实验和应用实验要求独立完成,创新实验要求合作完成。通过该实验的学习,使学生掌握最优化技术,认识面对什么样的实际问题,提出假设和建立优化模型,并且使学生学会使用MATLAB软件和Lingo软件求解非线性规划模型,注意初始解的选择不同会导致软件求出的解的变化(是局部最优解还是整体最优解)。解决现实生活中的最优化问题是本科生学习阶段中一门重要的课程,因此,本实验对学生的学习尤为重要。

非线性回归之数学建模实验报告

非线性回归之数学建模实验报告

9.93 9.99 16
10.49 10.59 10.6 10.8 10.6 10.9 10.76
分别选择函
y
x cx ax b y a(1 be )
b
y ae x
拟合钢包容积与使用次数的关系 ,在同一坐标系内作出函数图形. 数 程序: x1=[2:16]; y1=[6.42,8.2,9.58,9.5,9.7,10,9.93,9.99,10.49,10.59,10.6,10.8,10.6,10.9,10.76]; b01=[0.1435,0.084] %初始参数值 fun1=inline('x./(b(1)+b(2)*x)','b','x')% 定义函数 [b1,r1,j1]=nlinfit(x1,y1,fun1,b01) y=x1./(0.1152+0.0845*x1) %根据 b1 写出具体函数 plot(x1,y1,'*',x1,y,'-or')
题目:炼钢厂出钢时所用盛钢水的钢包,由于钢水对耐火材料的侵蚀,容积不断增大,我们希望找出使 用次数与增大容积之间的函数关系.实验数据如下: 表 4.2 钢包使用次数与增大容积
使用 次数 增大 容积 使用 次数 增大 容积
2
3
4
5
6
7
8
9
6.42 8.2 10 11
9.58 9.5 9.7 10 12 13 14 15
2
r1 =
Columns 1 through 10
-0.6181 0.0617 0.0719 0.0570
0.7518
0.1986
0.0540
0.0917

大学数学实验 非线性规划问题的实际应用

大学数学实验   非线性规划问题的实际应用

大非线性规划问题的实际应用学号: 姓名: 系别专业:一:实验目的1、熟悉Matlab 软件中有关的命令,用Matlab 做非线性规划计算。

2、掌握非线性规划的方法二:实验内容在数学规划问题中,若目标函数或约束条件中至少有一个是非线性函数,这类问题称之为非线性规划问题,简记为NP 。

非线性规划问题的数学模型可以具有不同的形式,但不同形式之间往往可以转换,因此非线性规划问题的一般形式可以表示为:m in (),nf x x E ∈()0,(1,2,...,).()0,(1,2,...,)i j h x i m s t g x j l ==⎧⎪⎨≤=⎪⎩ 其中,[]12,,...,Tn x x x x =称为模型(NP )的决策变量,f 称为目标函数;(1,2,....)i h i m =和(1,2,...,)j g j l =称为约束函数;()0(1,2,...,)i h x i m ==称为等式约束;()0(1,2,...,)j g x j l ≤=称为不等式约束。

将一个实际问题归结为非线性规划问题时,一般要注意以下4点: (1)确定供选择方案。

(2)提出追求的目标。

(3)给出价值标准。

(4)寻求限制条件。

三:实验方法与步骤某公司欲以每件2元的价格购进一批商品。

一般来说随着商品售价的提高,预期销售量将减少,并对此进行了估算,结果如表一、二栏。

为了尽快收回资金并获得较多的赢利,公司打算做广告,投入一定的广告费后,销售量将有一个增长,可由销售增长因子来表示。

据统计,广告费与销售增长因子关系如表三、四栏所示。

问公司采取怎样的营销决策能使预期的利润最大?表 售价与预期销售量、广告费与销售增长因子售价/元2.00 2.503.00 3.504.00 4.505.00 5.506.00预期销售量/万元 4.1 3.83.4 3.2 2.9 2.8 2.5 2.2 2.0 广告费/万元 0 1234567销售增长因子1.00 1.40 1.70 1.85 1.952.00 1.95 1.80 解:设x 表示售价(单位:元),y 表示预期销售量(单位:万元),z 表示广告费(单位:万元)k 表示销售增长因子。

高教版数学建模与数学实验第3版第6讲_非线性规划.ppt

高教版数学建模与数学实验第3版第6讲_非线性规划.ppt
输出极值点 M文件 迭代的初值 变量上下限 参数说明
(6) [x,fval]= fmincon(…) (7) [x,fval,exitflag]= fmincon(…) (8)[x,fval,exitflag,output]= fmincon(…)
注意:
[1] fmincon函数提供了大型优化算法和中型优化算法.默认 时: 若在fun函数中提供了梯度(options参数的GradObj设置 为’on’),并且只有上下界存在或只有等式约束,fmincon函 数将选择大型算法.当既有等式约束又有梯度约束时,使用中型 算法.
问题(1)可简记为 min f X . X D
定义2 对于问题(1),设 X * D ,若存在 0 ,使得对一切
X D ,且 X X * ,都有 f X * f X ,则称X*是f(X)在D上的
局部极小值点(局部最优解).特别地,当X X* 时,若
f X * f X ,则称X*是f(X)在D上的严格局部极小值点(严格局部最
1112x1 x22 2
0 0
x1 x2
c=[-2 ;-6];A=[1 1; -1 2];b=[2;2];
Aeq=[];beq=[]; VLB=[0;0];VUB=[];
[x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
3.运算结果为:
步骤(5);否则,缩小步长限制,令
k j
=
k j
j = 1,L, n,返
回步骤(3),重解当前的线性规划问题;
5)
判断精度:若
k j
j =1,L,n,则点 X k1为近似最优解;
否则,令
k 1 j
=
k j
j =1,L,n,k=k+1,返回步骤(2). 返回

2022年Python数学实验与建模第3章 非线性规划

2022年Python数学实验与建模第3章  非线性规划

航空基础学院数学第教8研页室
数学建模算法与应用
第3章 非线性规划
定理 3.2(无约束优化问题有局部最优解的充分 条件) 设 f (x)具有连续的二阶偏导数,点 x*满足 f ( x* ) 0;并且2 f ( x* )为正定阵,则 x*为无约束优
化问题的局部最优解。
定理 3.1 和定理 3.2 给出了求解无约束优化问题 的理论方法,但困难的是求解方程f ( x* ) 0,对于 比较复杂的函数,常用的方法是数值解法,如最速降 线法、牛顿法和拟牛顿法等。
航空基础学院数学第教3研页室
数学建模算法与应用
第3章 非线性规划
定义 3.1 记非线性规划问题(3.1)或(3.2)的可行
域为 K。
(1)若 x* K ,且x K ,都有 f ( x* ) f ( x), 则称 x*为(3.1)或(3.2)的全局最优解,称 f ( x*)为其全 局最优值。如果x K , x x*,都有 f ( x*) f ( x), 则称 x*为(3.1)或(3.2)的严格全局最优解,称 f ( x*)为
若 f ( x),gi ( x),i 1,2, , p和hj ( x), j 1,2, ,q中至
少有一个是 x的非线性函数,称如下形式的数学模型:
min f ( x),
s
.
t
.
gi hj
( (
x x
) )
0, 0,
i 1,2, j 1,2,
, p, ,q
(3.1)
航空基础学院数学第教1研页室
若 x*是问题(3.4)的局部最优解,则存在实向量
λ* [1* , 2* ,
,q* ]T Rq,使得L( x*, λ* ) 0,即
航空基础学院数学第教11研页室

数学建模课堂三个实验报告

数学建模课堂三个实验报告

数学建模实验报告班级:_____计算机科学与技术1班___学号:______11403070137___________姓名:_____ _鄢良康 ___________教师:_______黄正刚 __________计算机科学与工程学院实验一线性规划模型一、实验学时:2H二、实验类型:计算三、实验目的1、掌握建立线性规划数学模型的方法;2、用LINDO求解线性规划问题并进行灵敏度分析;3、对计算结果进行分析。

四、实验所需仪器与设备微机和LINDO软件。

五、实验内容,方法和步骤1、建立数学模型;2、用LINDO软件计算;3、输出计算结果;4、结果分析。

实验一问题内容:某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见表,要求(1)确定获得最大的产品生产计划;(2)产品A的利润在什么范围内变动时,上述计划不变;(3)如果原材料数量不增加,劳动力不足时可从市场购买,为1.8元/h。

问:该厂要不要招收劳动力扩大生产,以购多少为宜?建立数学模型:如截图所示用LINDO软件计算;输出结果:(1)确定获利最大的产品生产计划从数据中可以得出:追求的最大利润为2700元。

其中生产X1数量的50,X2数量的0,X3数量的30。

(2)产品A的利润在什么范围内变动时,上述最优计划不变?30+18=4830-6=24故波动范围在24-48之间。

(4)如果原材料的数量不增,劳动力不足时可从市场购买,伟1.8/h。

问:该厂要不要招收劳动力扩大生产,以购买多少为宜?答:选择购买150个单位。

根据影子价格分析,对于劳动力的购买,每增加1小时,总利润增长为2元大于购买力1.8元,所以选择购买,最大为150个劳动力。

实验二非线性规划模型一、实验学时:1H二、实验类型:计算三、实验目的掌握LINGO求解非线性规划的方法。

四、实验所需仪器与设备微机、LINGO软件。

五、实验内容,方法和步骤1、把非线性规划模型输入LINGO软件计算;2、输出计算结果。

【精品】非线性规划建模实验

【精品】非线性规划建模实验

非线性规划建模实验一、二次规划标准型为:MinZ=1/2X T HX+c T Xs。

t。

AX<=bVLB≤X≤VUB用MATLAB软件求解,其输入格式如下:1。

x=quadprog(H,C,A,b);2. x=quadprog(H,C,A,b,Aeq,beq);3。

x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4。

x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5. x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6. [x,fval]=quaprog(.。

);7. [x,fval,exitflag]=quaprog(。

);8. [x,fval,exitflag,output]=quaprog(.。

.);第一题:minf(x1,x2)=—2x1—6x2+x12-2x1x2+2x22 s。

t。

x1+x2≤2-x1+2x2≤2x1≥0,x2≥01、写出标准形式为2、输入命令:H=[1-1;-12]; c=[-2;—6];A=[11;—12];b=[2;2];Aeq=[];beq=[];VLB=[0;0];VUB=[];[x,z ]=quadprog(H,c,A ,b ,Aeq,beq ,VLB ,VUB )3、运算结果为:x=0.66671。

3333z=—8。

2222二、一般的非线性规划标准型为:minF (X )s.t AX 〈=bG (X)Ceq (X)=0 VLB X VUB 其中X 为n 维变元向量,G (X)与Ceq(X )均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同。

用Matlab111222 1 -12min (,) 1 26Tx x z x x x x -⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭1212 1 121 2200x x x x ⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭s.t.求解上述问题,基本步骤分三步:1。

大学数学实验九_非线性规划

大学数学实验九_非线性规划
3
0
z_x4_x2 =
99/5
z_x4_x3 =
(-360)*x3
z_x4_x4 =
1001/5
----------------------------------------------------------------------------------------------------------------------
2、练习建立实际问题的非线性规划模型。
【实验内容】
1 对问题
3, 1),求解非线性规划:
(1)

(2)
(3)
增加以下条件,并分别取初值(-3, -1, -3, -1)和(3, 1, ;
再取不同的初值或用分析梯度计算,比较计算结果,你能从中得到什么启示?
1.1 目标函数的 M 文件的编写 设
ห้องสมุดไป่ตู้
现在需要求 的梯度。下面利用 MATLAB 的 diff 命令求函数 的梯度。 --------------------------------------------------编写程序如下-------------------------------------------------syms x1 x2 x3 x4; z=100*(x2-x1^2)^2+(1-x1)^2+90*(x4-x3^2)^2+(1-x3)^2+10.1*[(1-x2)^2+(1-x4)^2]+19.8*(x2-1)*(x 4-1);
f=100*(x(2)-x(1)^2)^2+(1-x(1))^2+90*(x(4)-x(3)^2)^2+(1-x(3))^2+10.1*[(1-x(2))^2+(1-x(4))^2]+19.8

数学实验非线性规划.docx

数学实验非线性规划.docx

《大学数学实验》作业非线性规划班级:姓名:学号: 日期:目录【实验目的】 (3)【实验内容】 (3)题目1 (课本习题第九章第4题) (3)【第(1)问求解】 (3)【第(2)问求解】 (7)【第(3)问求解】 (7)【拓展实验、思考、对比、分析】 (8)【木题小结】 (10)题目2(课本习题第九章第8题) (10)【模型建立】 (11)【模型求解】 (14)【第(1)问求解】 (14)【第(2)问求解】 (20)【第(3)问求解】 (22)【拓展实验、思考、对比、分析】 (23)【本题小结】 (25)【实验心得、体会】 (25)注:本实验作业脚本文件均以ex9_4_l形式命名,其中ex代表作业,9_4_1表示第九章第四小题第一个程序。

自编函数均以exf9_4_l形式命名,exf代表作业函数,9_4_1 表示第九章第四题第一个自编函数。

【实验目的】1.掌握用MATLAB优化工具箱和LINGO解非线性规划的方法;2.练习建立实际问题的非线性规划模型。

【实验内容】题目1 (课本习题第九章第4题)某公司将3种不同含硫量的液体原料(分别记为甲、乙、丙)混合生产两种产品(分别记为A, B)。

按照生产工艺的要求,原料甲、乙必须首先倒入混合池中混合,混合后的液体再分别与原料丙混合牛产A, Bo已知原料甲、乙、丙的含硫量分别是3%, 1%, 2%,进货价格分别为6千元/t, 16千元/t, 10千元/t;产品A, B的含硫量分别不能超过2.5%, 1.5%,售价分别为9千元/t, 15千元/t。

根据市场信息,原料甲、乙、丙的供应量都不能超过500t;产品A, B的最大市场需求量分别为100t, 200to(1)应如何安排生产?⑵如果产品A的最大市场需求量增长为600t,应如何安排生产?⑶如果乙的进货价格下降为13千元/t,应如何安排生产?分别对(1)、(2)两种情况进行讨论。

【第(1)问求解】【模型建立】⑴模型该题为带约束非线性规划问题,其模型包含决策变量、FI标函数和约束条件。

非线性实验报告

非线性实验报告

非线性实验报告非线性实验报告摘要:本实验旨在研究非线性系统的特性,并通过实验验证非线性系统的存在和影响。

实验过程中,我们采用了不同的实验方法和工具,包括数学模型、实验仪器和数据分析软件。

通过实验结果的分析和对比,我们得出了一些关于非线性系统的结论,并对实验中可能存在的误差和限制进行了讨论。

引言:非线性系统是指其输入与输出之间的关系不符合线性关系的系统。

在现实世界中,非线性系统无处不在,如生物系统、电子电路、经济系统等。

了解和研究非线性系统的特性对于我们理解和应用这些系统具有重要意义。

本实验旨在通过实际操作和数据分析,探索非线性系统的行为和特性。

实验方法:我们选择了一种简单的非线性系统作为研究对象,即二次函数。

通过调整二次函数的系数和参数,我们可以观察到不同的非线性行为。

在实验中,我们使用了一台计算机和数据采集卡作为实验仪器,利用数学建模和数据分析软件进行数据处理。

实验步骤:1. 设计二次函数模型:我们首先根据实验要求设计了一个二次函数模型,包括系数和参数的选择。

这个模型可以模拟实际系统中的非线性行为。

2. 数据采集:我们通过计算机和数据采集卡采集了一系列输入和输出数据。

输入数据是实验中施加在系统上的不同信号,输出数据是系统对这些信号的响应。

3. 数据处理和分析:我们使用数据分析软件对采集到的数据进行处理和分析。

首先,我们绘制了输入-输出曲线,以观察系统的非线性特性。

然后,我们对数据进行了拟合和回归分析,以确定二次函数的系数和参数。

实验结果:通过实验和数据分析,我们得到了以下结果:1. 非线性特性的存在:我们观察到系统的输入-输出曲线不是一条直线,而是呈现出弯曲的形状。

这表明系统存在非线性特性。

2. 参数对系统行为的影响:我们发现,调整二次函数的系数和参数可以改变系统的响应。

例如,增加二次项的系数可以使曲线更加陡峭,而增加线性项的系数可以使曲线更加平缓。

3. 非线性现象的局限性:我们也观察到,在一定范围内,系统的响应是线性的。

AP0805414实验四求解非线性规划模型

AP0805414实验四求解非线性规划模型

《数学建模》实验指导书姓名:李继滨班号:AP08054学号:AP0805414五邑大学数学物理系二○○八年八月印刷实验4 指导书实验项目名称:求解非线性规划模型所属课程名称:数学建模实验计划学时:2学时一、 实验目的掌握数学软件Lingo 用集合步和循环语句等编程求解非线性规划模型。

二、 实验内容和要求(一)实验内容(钢管下料模型)某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出,从钢管厂进货时原料钢管都是168米。

现有顾客需要968根12米、848根23米、1253根28米和988根35米的钢管。

1. 因为零售商如果采用不同切割模式太多,将会导致生产过程复杂化,从而增加生产成本,所以该零售商规定采用的切割模式不超过3种。

请你确定下料方案。

2. 若该零售商规定采用的切割模式不超过4种。

请你重新确定下料方案。

3. 思考题在上面下料问题中若不限制切割模式的数量,请你确定下料方案。

(二)要求有问题分析、数学模型、Lingo 的求解程序、程序的运行结果和所有问题的回答。

三、 实验主要仪器设备和材料每人一台计算机,要求已安装Lingo 8.0以上版本。

四、 实验方法、步骤及结果测试(1)模型建立:决策变量: 由于不同切割模式不超过3种,可以用i x 表示按照第i 模式(i=1,2,3)切割的原料,显然它们应当是非负整数,设所使用的第i 种切割模式下每根原料钢管生产12米,23米,28米和38米的钢管分别为1234,,,i i i i r r r r .决策目标:切割原料钢管的总根数最少,目标为Min 123(1)x x x ++约束条件 为满足客户的需求,应有111122133211222233311322333411422433968(2)848(3)1253(4)988(5)r x r x r x r x r x r x r x r x r x r x r x r x ++≥⎛ ++≥ ++≥ ++≥⎝ 每一种切割模式必须可行,合理,所以每根原料钢管的成品量不能超过168米,也不能少于157米,于是有:11213141122232421323334315712232835168(6)15712232835168(7)15712232835168(8)r r r r r r r r r r r r ≤+++≤⎛ ≤+++≤ ≤+++≤⎝为了把模型求解的范围缩小,我们再假设第一种全部用来切割12米的,一根可以切割14根,第二种全部用来切割23米的,一根可以切割7根,第三种一根可以用来切割4根28和1根35米的故最多要用70+122+988=1180根,又假设每根完全用完,没有剩余量,则最少要用(968128482312532898835)168600⨯+⨯+⨯+⨯÷=根,故有1236001180(9)x x x ≤++≤模型求解:将构成的模型输入LINGO 中,程序如下:Title 钢管下料 - 最小化钢管根数的LINGO 模型;SETS :NEEDS/1..4/:LENGTH,NUM;! 定义基本集合NEEDS 及其属性LENGTH,NUM;CUTS/1..3/:X;! 定义基本集合CUTS 及其属性X;PATTERNS(NEEDS,CUTS):R;! 定义派生集合PATTERNS (这是一个稠密集合)及其属性R;ENDSETSDATA :LENGTH=12 23 28 35;NUM=968 848 1253 988;C=168;ENDDATAmin =@SUM (CUTS(I): X(I) );!目标函数;@FOR (NEEDS(I): @SUM (CUTS(J): X(J)*R(I,J) ) >NUM(I) );!满足需求约束;@FOR (CUTS(J): @SUM (NEEDS(I): LENGTH(I)*R(I,J) ) <C );!合理切割模式约束;@FOR (CUTS(J): @SUM (NEEDS(I): LENGTH(I)*R(I,J) ) >C-@MIN (NEEDS(I):LENGTH(I))+1 );!合理切割模式约束;@SUM (CUTS(I): X(I) ) >600; @SUM (CUTS(I): X(I) ) <1180;!人为增加约束;@FOR (CUTS(I)|I#LT#@SIZE (CUTS):X(I)>X(I+1) );!人为增加约束;@FOR (CUTS(J): @GIN (X(J)) ) ;@FOR (PATTERNS(I,J): @GIN (R(I,J)) );end输出结果为:Local optimal solution found at iteration: 265490Objective value: 603.0000Model Title: 钢管下料 - 最小化钢管根数的LINGO 模型Variable Value Reduced CostC 168.0000 0.000000LENGTH( 1) 12.00000 0.000000LENGTH( 2) 23.00000 0.000000LENGTH( 3) 28.00000 0.000000LENGTH( 4) 35.00000 0.000000NUM( 1) 968.0000 0.000000NUM( 2) 848.0000 0.000000NUM( 3) 1253.000 0.000000NUM( 4) 988.0000 0.000000X( 1) 389.0000 1.000000X( 2) 144.0000 1.000000X( 3) 70.00000 1.000000R( 1, 1) 2.000000 0.000000R( 1, 2) 0.000000 0.000000R( 1, 3) 3.000000 0.000000R( 2, 1) 2.000000 0.000000R( 2, 2) 0.000000 0.000000R( 2, 3) 1.000000 0.000000R( 3, 1) 1.000000 0.000000R( 3, 2) 6.000000 0.000000R( 3, 3) 0.000000 0.000000R( 4, 1) 2.000000 0.000000R( 4, 2) 0.000000 0.000000R( 4, 3) 3.000000 0.000000Row Slack or Surplus Dual Price1 603.0000 -1.0000002 20.00000 0.0000003 0.000000 0.0000004 0.000000 0.0000005 0.000000 0.0000006 0.000000 0.0000007 0.000000 0.0000008 4.000000 0.0000009 11.00000 0.00000010 11.00000 0.00000011 7.000000 0.00000012 3.000000 0.00000013 577.0000 0.00000014 245.0000 0.00000015 74.00000 0.000000由运算得出的数据可以知道:总使用原料钢管的总根数为603根,第一种切割模式下一根原料钢管切割成2根12米、2根23米、1根28米和2根35米;第二种切割模式下一根原料钢管切割成6根28米;第三种切割模式下一根原料钢管切割成3根12米、1根23米和3根35米。

数学建模—非线性规划实验报告

数学建模—非线性规划实验报告

实验六数学建模—非线性规划实验目的:1.直观了解非线性规划的基本内容.2.掌握用数学软件求解优化问题.实验内容:1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为()2bxaxxf+=(单位:元), 其中x是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.2、一基金管理人的工作是: 每天将现有的美元、英镑、马克和日元四种货币按当天汇率相互兑换,使在满足需要的条件下,按美元计算的价值最高.设某天的汇率、现有货币和当天需求如下:问该天基金管理人应如何操作. (“按美元计算的价值”指兑入、兑出汇率的平均值,如1英镑相当于()258928.01697.1+=1.696993美元.)实验过程与结果:1、(1)模型建立决策变量:设第1,2,3季度分别生产x1,x2,x3台发动机,第1,2季度末分别有存货40-x1,x1+x2-100台,第3季度末无存货目标函数:设总费用为z=a(x1+x2+x3)+b(x1^2+x2^2+x3^2)+c[(x1-40)+(x1+x2-100)]约束条件:生产的发动机应该在第3季度末全部卖出,则有x1+x2+x3=180;同时要保证第1,2季度能供货且有能力生产,要求x1≥40,x1+x2≥100,100≥x1,100≥x2,100≥x3非负约束:x1,x2,x3≥0综上可得:Maxz=a(x1+x2+x3)+b(x1^2+x2^2+x3^2)+c[(x1-40)+(x1+x2-100)]s.t.x1+x2+x3=180x1+x2≥100x1≥400≤x1,x2,x3≤100(2)模型求解结果为:即工厂应第一季度生产50台发动机,第二季度生产60台发动机,第三季度生产70台发动机,才能既满足合同又使总费用最低。

非线性实验实验报告

非线性实验实验报告

非线性实验实验报告本实验主要通过实验数据反映非线性实验的特点,通过实验结果分析非线性实验数据的规律和特点。

实验仪器及材料:1. 实验用的非线性元件2. 信号源3. 示波器4. 多用表实验步骤:1. 将信号源正弦波输出端与非线性元件的输入端连接;2. 将非线性元件的输出端与示波器的输入端连接;3. 将示波器的输出端与多用表测量端连接;4. 调节信号源的频率和幅度,记录非线性元件的输入电压和输出电压;5. 分析实验数据,绘制非线性特性曲线。

实验结果及分析:在实验中,我们记录了非线性元件的输入电压和输出电压的数据,并通过数据绘制了非线性特性曲线。

实验结果如下表所示:输入电压(V) 输出电压(V)0.3 0.40.5 0.60.8 0.91.0 1.11.2 1.31.5 1.71.82.02.0 2.32.3 2.62.5 2.9通过绘制非线性特性曲线图,我们可以观察到非线性元件的输入电压与输出电压之间不是简单的线性关系,而是存在一定的非线性特性。

曲线图显示随着输入电压的增加,输出电压也逐渐增加,但增速逐渐变缓。

这是因为非线性元件在工作时存在一定的饱和效应,当输入电压超过一定阈值后,元件的输出不再按照线性规律增加,导致输出电压的增加速度减缓。

此外,从实验结果中还可以观察到非线性元件存在一定的失真效应。

例如,在输入电压为2.0V时,输出电压应为2.3V,但实际测量到的输出电压为2.0V,存在一定的失真。

实验总结:通过本实验,我们深入了解了非线性实验的特点,并通过实验结果分析了非线性实验数据的规律和特点。

非线性元件的工作特性不是简单的线性关系,而是存在饱和效应和失真效应。

在实际电路设计中,我们必须考虑这些非线性特性,并采取相应的措施来处理和补偿非线性效应,以确保电路的工作稳定性和可靠性。

非线性实验的研究对于电子工程领域的发展和应用具有重要的意义。

非线性实验报告实验1

非线性实验报告实验1

非线性实验报告实验1在咱们的科学世界里,有很多神奇又有趣的现象等着我们去探索。

今天,我要和大家分享的是一次关于非线性的实验。

我记得有一次,我在公园里散步,看到一个小朋友在玩秋千。

那秋千荡来荡去的,一开始幅度很小,慢慢地越来越大。

这让我一下子就想到了非线性这个概念。

咱们先来聊聊啥是非线性。

简单说,非线性就是那种不按常规出牌,不遵循简单线性规律的东西。

比如说,你给一个系统输入一个小的变化,结果它却给出一个巨大的、不成比例的输出,这就是非线性啦。

这次的实验呢,是关于一个物理现象的。

我们准备了一个简单的装置,就是一个弹簧连着一个小球。

正常情况下,如果我们轻轻拉伸弹簧,小球的位移应该和拉力成正比,这是线性的表现。

但当我们加大拉力,超过一定限度的时候,神奇的事情发生了!弹簧不再是乖乖地按照我们预想的那样伸长,小球的运动也变得复杂起来。

有时候它会突然跳动,有时候又会缓慢移动,完全没有了之前那种规律的样子。

在实验过程中,我可是瞪大眼睛,仔细观察着每一个细节。

就拿测量弹簧的伸长量来说吧,我得拿着尺子,小心翼翼地凑近,生怕读错了一个数字。

那紧张的劲儿,就像是在参加一场重要的比赛。

而且呀,这个实验可没那么一帆风顺。

有好几次,因为操作不当,数据都不准确了,只能重新再来。

我心里那个着急哟,就盼着能快点得到理想的结果。

再说说数据处理的环节。

看着那一堆密密麻麻的数字,头都大了。

不过,为了搞清楚这非线性的奥秘,我还是耐着性子,一点点地分析、计算。

经过多次的尝试和改进,我们终于发现了一些有趣的规律。

原来,在非线性的世界里,小小的变化真的能引发大大的不同。

这让我想到了生活中的很多事情。

比如说,我们学习的时候,可能一开始只是多花了一点时间,多做了一道题,但长期坚持下来,成绩的提升可能会远超我们的想象。

又比如,我们在和朋友相处时,一个小小的关心举动,也许会让友谊变得更加深厚。

总之,这次非线性实验让我明白了,世界并不是总是那么简单和可预测的,有时候小小的改变就能带来意想不到的结果。

非线性规划实训报告范文

非线性规划实训报告范文

一、前言非线性规划是运筹学中的一个重要分支,主要研究非线性约束条件下的优化问题。

为了提高我们的实践能力,加深对非线性规划理论的理解,我们选择了非线性规划实训作为本学期的实践课程。

本文将详细记录实训过程,总结实训成果,并对实训过程中遇到的问题进行分析。

二、实训目的与要求1. 了解非线性规划的基本概念和理论;2. 掌握非线性规划问题的建模方法;3. 熟悉非线性规划算法,如梯度下降法、牛顿法等;4. 通过实际问题,提高解决非线性规划问题的能力。

三、实训环境1. 操作系统:Windows 102. 编程语言:Python3. 数学软件:MATLAB4. 非线性规划软件:Optimization Toolbox四、实训原理非线性规划问题一般可以表示为以下形式:min f(x)s.t. g_i(x) ≤ 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., n其中,f(x)为目标函数,g_i(x)和h_j(x)分别为不等式约束和等式约束。

五、实训过程1. 学习非线性规划的基本概念和理论,包括目标函数、约束条件、可行域、最优解等;2. 通过MATLAB软件,学习非线性规划问题的建模方法,如二次规划、非线性约束优化等;3. 熟悉非线性规划算法,如梯度下降法、牛顿法、共轭梯度法等;4. 分析实际问题,建立非线性规划模型,并选择合适的算法进行求解;5. 对求解结果进行分析,评估算法的效率和精度。

六、实训案例1. 案例一:二次规划问题目标函数:min f(x) = x1^2 + 2x2^2 + 2x1x2约束条件:g1(x) = x1 + x2 - 1 ≤ 0g2(x) = x1 - x2 - 1 ≤ 0x1, x2 ≥ 0通过MATLAB软件,利用二次规划算法求解该问题,得到最优解为x1 = 0.5, x2 = 0.5,最小值为1。

2. 案例二:非线性约束优化问题目标函数:min f(x) = x1^2 + x2^2约束条件:g1(x) = x1^2 + x2^2 - 1 ≤ 0g2(x) = x1 - x2 - 1 ≤ 0x1, x2 ≥ 0通过MATLAB软件,利用非线性规划算法求解该问题,得到最优解为x1 = 1.5, x2 = 0.5,最小值为2.25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六数学建模—非线性规划
实验目的:
1.直观了解非线性规划的基本内容.
2.掌握用数学软件求解优化问题.
实验内容:
1、某厂向用户提供发动机,合同规定,第一、二、三季度末分别交货40台、60台、80台.每季度的生产费用为()2
bx
ax
x
f+
=(单位:元), 其中x是该季度生产的台数.若交货后有剩余,可用于下季度交货,但需支付存储费,每台每季度c元.已知工厂每季度最大生产能力为100台,第一季度开始时无存货,设a=50、b=0.2、c=4,问:工厂应如何安排生产计划,才能既满足合同又使总费用最低.讨论a、b、c变化对计划的影响,并作出合理的解释.
2、一基金管理人的工作是: 每天将现有的美元、英镑、马克和日元四种货币按当天汇率相互兑换,使在满足需要的条件下,按美元计算的价值最高.设某天的汇率、现有货币和当天需求如下:
问该天基金管理人应如何操作. (“按美元计算的价值”指兑入、兑出汇率
的平均值,如1英镑相当于
()
2
58928
.0
1
697
.1+=1.696993美元.)
实验过程与结果:
1、(1)模型建立
决策变量:设第1,2,3季度分别生产x1,x2,x3台发动机,第1,2季度末分别有存货40-x1,x1+x2-100台,第3季度末无存货
目标函数:设总费用为
z=a(x1+x2+x3)+b(x1^2+x2^2+x3^2)+c[(x1-40)+(x1+x2-100)]
约束条件:生产的发动机应该在第3季度末全部卖出,则有x1+x2+x3=180;同时要保证第1,2季度能供货且有能力生产,要求x1≥40,x1+x2≥100,100≥x1,100≥x2,100≥x3
非负约束:x1,x2,x3≥0
综上可得:
Maxz=a(x1+x2+x3)+b(x1^2+x2^2+x3^2)+c[(x1-40)+(x1+x2-100)]
s.t.x1+x2+x3=180
x1+x2≥100
x1≥40
0≤x1,x2,x3≤100
(2)模型求解
结果为:
即工厂应第一季度生产50台发动机,第二季度生产60台发动机,第三季度生产70台发动机,才能既满足合同又使总费用最低。

进一步讨论参数a,b,c对生产计划的影响:
由于生产总量是恒定的,即x1+x2+x3=180,而z=a(x1+x2+x3)+b(x1^2+ x2^2 +x3^2)+c[(x1-40)+(x1+x2-100)],故a的变化不会影响生产计划;b是x的二
次项的系数,它反映了生产费用。

当b比较大时,生产费用占主导地位,x1,x2,x3应趋于相等;而当b较小时,贮存费占主导地位,此时应使每季度的贮存量较少。

c反映了贮存费。

当c较大时,贮存费占主导地位,此时应使贮存量尽量少;而当c较小时,生产费用占主导地位,x1,x2,x3应趋于相等。

2、
解:日元现有量为0,可不予考虑
现有美元8,需求为6,设兑换成美元,英镑,马克,日元的美元数量为x1,x2,x3,x4 现有英镑1,需求为3,设兑换成美元,英镑,马克,日元的英镑数量为x5,x6,x7,x8
现有马克8,需求为1,设兑换成美元,英镑,马克,日元的马克数量为x9,x10,x11,x12,英镑,马克,日元按美元计算的价值分别为
y1=(1.697+(1/0.58928))/2,
y2=(0.57372+(1/1.743))/2,
y3=(0.007233+(1/138.3))/2
目标函数为:
minz=-(x1+x2*0.58928*y1+x3*1.743*y2+x4*138.3*y3+x5*1.697+x6*y1+x7 *2.9579*y2+x8*234.7*y3+x9*0.57372+x10*0.33808*y1+x11*y2+x12*79.346*y3 )
约束条件为:
x1+x2+x3+x4=8
x5+x6+x7+x8=1
x9+x10x+x11+x12=8
x1+1.697*x5+0.57372*x9>=6
0.58928*x2+x6+0.33808*x10>=3
1.743*x3+
2.9579*x7+x11>=1
138.3*x4+234.7*x8+79.346*x12>=10
实现的matlab代码为:
结果为:
实验总结:
1、通过本次实验,我了解了非线性规划的基本理论.
2、掌握用数学软件求解优化问题.。

相关文档
最新文档