考研数学(高等数学-线性代数-概率论)公式

合集下载

2020年考研数学(高数、线代、概率论)最全公式手册

2020年考研数学(高数、线代、概率论)最全公式手册

且 lim (x) lim (x) A, 则 lim f (x) A
xx0
x x0
x x0
2 单调有界定理:单调有界的数列必有极限 3 两个重要极限:
极限存在 的两个准 则:单调 有界准则 和夹逼准 则,两个 重要极 限:
sin x (1) lim 1
x0 x
1
(2) lim(1 x) x e x0
d(ln x) 1 dx x
d(sin x) cos xdx d(cos x) sin xdx
(7) y tan x
y

1 cos2
x

sec2
x
d(tan x) sec2 xdx
(8) y cot x
(9) y sec x (10) y csc x
y


1 sin2
x

csc2
x
d(cot x) csc2 xdx
y sec x tan x
d(sec x) sec x tan xdx
y csc x cot x
d(csc x) csc x cot xdx
(11) y arcsin x (12) y arccos x
y 1 1 x2
重要公式: lim a0 xn a1xn1 an1x an x b0 xm b1xm1 bm1x bm

0ab,00n,
n
m m


, n m
4 几个常用极限特例
lim n n 1,
n
lim arctan x
连续,反之则不成立.即函数连续不一定可导.
Th3: f (x0 ) 存在 f(x0 ) f(x0 )

研究生考研数学公式(高数线代)

研究生考研数学公式(高数线代)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总

2024考研数学常必背公式汇总在准备2024考研数学的过程中,掌握一些常用的公式是非常重要的。

这些公式不仅可以帮助我们更快地解题,还能提高我们的答题准确性。

下面是2024考研数学一、数学二、数学三需要背诵的常用公式的汇总:一、基本数学公式:1.平方差公式:(a+b)^2 = a^2 + 2ab + b^2(a-b)^2 = a^2 - 2ab+ b^22.二次方程的求根公式:若ax^2+bx+c=0(a≠0),则x = (-b ± √(b^2-4ac))/2a3.数列的通项公式:递推公式:a(n+1)=a(n)+d通项公式:a(n)=a(1)+(n-1)d二、高等数学公式:1.常用三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ2.常用反三角函数公式:sin²θ + cos²θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθ3.常用指数函数公式:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)a^(-m)=1/a^m4.常用对数函数公式:log_a(m * n) = log_a(m) + log_a(n)log_a(m^n) = n * log_a(m)log_a(m/n) = log_a(m) - log_a(n)log_a(1) = 05.常用复数公式:i²=-1复数的共轭:若z = a + bi,则z的共轭为a - bi三、线性代数公式:1.行列式的加减法:A±B,=,A,±,B2.行列式的乘法:A*B,=,A,*,B3.矩阵的逆:若,A,≠0,则A存在逆矩阵A^(-1),且AA^(-1)=A^(-1)A=I4.特征值与特征向量:设A是n阶矩阵,若存在数λ和非零向量x,使得Ax=λx,则λ称为矩阵A的特征值,x称为λ对应的特征向量5.向量的内积:a ·b = ,a,,b,cosθ其中,a、b分别为向量,θ为a、b之间的夹角四、概率与统计公式:1.事件的概率公式:对于一个随机事件A,其概率满足0≤P(A)≤12.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)3.乘法公式:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)4.全概率公式:P(A)=P(An)P(A,An)+P(A2)P(A,A2)+...+P(Am)P(A,Am)其中,A1,A2,...,Am为一组互斥且全体之并为样本空间Ω的事件5.贝叶斯公式:P(A,B)=P(AnB)/P(B)=P(An)P(B,An)/[P(A1)P(B,A1)+P(A2)P(B,A2)+...+P(An)P(B,An)]其中,A1,A2,...,An与前述全概率公式的条件相同。

考研数学线性代数常用公式

考研数学线性代数常用公式

考研数学线性代数常用公式数学考研考前必背常考公式集锦。

希望对考生在暑期的复习中有所帮助。

本文内容为线性代数的常考公式汇总。

1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。

(整理)考研必备考研数学公式(高数,线性代数)全收录

(整理)考研必备考研数学公式(高数,线性代数)全收录

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

考研数学公式大全(高数、线代、概率论应有尽有)

考研数学公式大全(高数、线代、概率论应有尽有)

dx
1
x
arctg C
a2 x2 a
a
dx
1 xa
ln
C
x2 a2 2a x a
dx
1 ax
ln
C
a2 x2 2a a x
dx
x
arcsin C
a2 x2
a
dx
cos 2 x
sec 2 xdx
tgx
C
dx sin 2
x
csc 2
xdx
ctgx
C
sec x tgx dx sec x C
csc x ctgxdx csc x C a x dx a x C
ln a
shxdx chx C
chxdx shx C
dx
ln( x
x2 a2
x2 a2 ) C
I n
2
sin n xdx
2
cos n xdx
n 1 I n2
n
0
0
x 2 a 2 dx x 2
2
2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2
1 cos
sin
1 cos
2
1 cos
sin
1 cos
·正弦定理: a b c 2 R
sin A sin B sin C
·余弦定理: c 2 a 2 b 2 2 ab cos C
f f 函数 z f ( x , y ) 在一点 p ( x , y )的梯度: grad f ( x , y ) i j
x y
它与方向导数的关系是 单位向量。

考研概率论需要注意的五大公式

考研概率论需要注意的五大公式

考研概率论需要注意的公式五大公式包括减法公式、加法公式、乘法公式、全概率公式、贝叶斯公式。

下面进展详细介绍:一、减法公式,P(A-B)=P(A)-P(AB)。

此公式来自事件关系中的差事件,再结合概率的可列可加性总结出的公式。

二、加法公式,P(A+B)=P(A)+P(B)-P(AB)。

此公式来自于事件关系中的和事件,一样结合概率的可列可加性总结出来。

学生还应把握三个事件相加的加法公式。

以上两个公式,在应用当中,有时要结合文氏图来讲明会更清楚明白,同时这两个公式在考试中,更多的会出此刻填空题当中。

因此记住公式的形式是全然要求。

3、乘法公式,是由条件概率公式变形取得,考试中较多的出此刻计算题中。

在温习进程中,局部同窗分不清楚何时用条件概率来求,何时用积事件概率来求。

例如“第一次抽到红球,第二次抽到黑球〞时,因为第一次抽到红球也是未知事件,因此要考虑它的概率,这时用积事件概率来求;若是“在第一次抽到红球的情形下,第二次抽到黑球的概率〞,这时因为抽到了红球,它已是一个确信的事实,因此这时不用考虑抽红球的概率,直接用条件概率,求第二次取到黑球的概率即可。

4、全概率公式五、贝叶斯公式以上两个公式是五大公式极为重要的两个公式。

结合起来学习比拟容易明白得。

第一,这两个公式第一背景是一样的,即,完成一件情形在逻辑或时刻上是需要两个步骤的,通常把第一个步骤称为缘故。

第二,若是是“由因求果〞的问题用全概率公式;是“由果求因〞的问题用贝叶斯公式。

例如;买零件,一个零件是由A、B、C三个厂家生产的,别离次品率是a%,b%,c%,此刻求买到次品的概率时,就要用全概率公式;假设买到次品了,问是A厂生产的概率,这就要用贝叶斯公式了。

如此咱们第一分清楚了何时用这两个公式。

那么,在应用进程中,咱们要注意的问题确实是,如何划分完备事件组。

通常咱们用“因〞来做为完备事件组划分的依据,也确实是看第一时期中,有哪些全然领件,依照他们来划分整个样本空间。

考研数学考前公式

考研数学考前公式

考研数学考前公式
考研数学考试的内容主要涉及高等数学、线性代数和概率论与数理统计三大部分,每个部分包含的内容和公式如下:
高等数学部分:
1. 极限公式:
对数函数极限:lim(log(1+x)/x)=1,当x趋于0时
三角函数极限:lim(sin(x)/x)=1,当x趋于0时;lim((1-cos(x))/x)=0,当x趋于0时
2. 牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数
3. 泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-
a)^n/n!+Rn(x),其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。

线性代数部分:
1. 向量公式:
向量的模:a=√(x1^2+x2^2+...+xn^2)
向量的点积:a·b=x1y1+x2y2+...+xnyn
向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k
2. 矩阵公式:
矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj
矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-
1A=E
矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。

概率论与数理统计部分:
这部分的公式涉及的内容较多,可以查阅考研数学大纲或者相关教辅书来获取更全面的信息。

以上信息仅供参考,如有需要,建议查阅考研数学大纲或咨询专业教师。

考研必备考研数学公式(高数,线性代数)全收录25页

考研必备考研数学公式(高数,线性代数)全收录25页

高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-co tα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

线性代数考研公式大全

线性代数考研公式大全

线性代数考研公式大全线性代数考研公式大全(最新整理收集)线性代数部分基本运算①A B B A②A B C A B C③c A B cA cB c d A cA dA④cdA cd A⑤cA 0 c 0或A 0。

ATTAA B T AT BTcA Tc AT。

AB TBTATn n 1 21 C2n n 1 n2D a21A21 a22A22 a2nA2n转置值不变AT A逆值变A 11Acn, 1 2, , 1, , 2,A 1, 2, 3 ,3阶矩阵B 1, 2, 3A B A BA B 1 1, 2 2, 3 3A B 1 1, 2 2, 3 3A 0B A0BABE i,j c 1有关乘法的基本运算线性代数考研公式大全(最新整理收集) Cij ai1b1j ai2b2j ainbnj线性性质A1 A2 B A1B A2B,A B1 B2 AB1 AB2cA B c AB A cB 结合律AB C A BCAB TBTATABAkAl Ak lAklAklAB kAkBk不一定成立!AE A,EA AA kE kA,kE A kAAB E BA E与数的乘法的不同之处AB kAkBk不一定成立!无交换律因式分解障碍是交换性一个矩阵A的每个多项式可以因式分解,例如A2 2A 3E A 3E A E无消去律(矩阵和矩阵相乘)当AB 0时A 0或B 0由A 0和AB 0 B 0由A 0时AB AC B C(无左消去律)特别的设A可逆,则A有消去律。

左消去律:AB AC B C。

右消去律:BA CA B C。

如果A列满秩,则A有左消去律,即①AB 0 B 0 ②AB AC B C可逆矩阵的性质i)当A可逆时,AT也可逆,且AT1A 1T。

线性代数考研公式大全(最新整理收集)Ak也可逆,且Ak1A 1k 1数c0,cA也可逆,cA1 1A。

cii)A,B是两个n阶可逆矩阵AB也可逆,且AB 1 B 1A 1。

考研数学公式大全

考研数学公式大全

考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。

以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。

一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。

考研数学三大公式

考研数学三大公式

高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 和差角公式: ·和差化积公式:倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±= ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x arcc x x x tan 2arctan arccos 2arcsin -=-=ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理和导数使用:拉格朗日中值定理。

考研数学一有哪些重要的考点

考研数学一有哪些重要的考点

考研数学一有哪些重要的考点考研数学一有哪些重要的考点考研数学一有高等数学、线性代数、概率论与数理统计三部分内容,我们复习的时候,应该抓住重要的考点。

店铺为大家精心准备了考研数学一重要知识点,欢迎大家前来阅读。

考研数学一重要考点预测一、高等数学考点函数、极限、连续:(1)无穷小量、无穷小量的比较方法、用等价无穷小量求极限;(2)函数连续性、判别函数间断点的类型;(3)闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)。

一元函数微分学:(1)罗尔定理、拉格朗日中值定理、泰勒定理、柯西中值定理;(2)用洛必达法则求未定式极限;(3)用导数判断函数的单调性和求函数极值、最大值和最小值;(4)求函数图形的拐点及水平、铅直和斜渐近线;(5)计算曲率和曲率半径。

一元函数积分学:(1)求变上限积分函数的导数、牛顿-莱布尼兹公式;(2)计算反常积分;(3)用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

向量代数和空间解析几何:(1)求平面方程和直线方程;(2)求简单的柱面和旋转曲面的方程。

多元函数微分学:(1)求多元复合函数一阶、二阶偏导数;(2)求多元隐函数的偏导数;(3)求空间曲线的切线和法平面及曲面的切平面和法线的方程;(4)求简单多元函数的最大值和最小值。

多元函数积分学:(1)计算二重积分、三重积分;(2)计算两类曲线积分、曲面积分;(3)格林公式、高斯公式;(4)用重积分、曲线积分、曲面积分求一些几何量和物理量。

无穷级数:(1)任意项级数绝对收敛与条件收敛;(2)函数项级数的收敛域及和函数;(3)幂级数的收敛半径、收敛区间及收敛域;(4)常用函数的麦克劳林展开式。

常微分方程:(1)变量可分离的微分方程及一阶线性微分方程;(2)二阶常系数齐次线性微分方程;(3)用微分方程解决一些简单的应用问题。

考研数学必备公式(数三)

考研数学必备公式(数三)

(7)y=tanx, y′=co1s2x
(8)y=cotx, y′=-sin12x
(9)y=secx, y′=secxtanx
(10)y=cscx, y′=-cscxcotx
(11)y=arcsinx, y′= 1
槡1-x2
(12)y=arccosx, y′=- 1
槡1-x2
(13)y=arctanx, y′=1+1x2
f(ξ)=0.
2.微分中值定理
Th1 (费尔马)若函数 f(x)满足: (1)函数 f(x)在 x0的某邻域内有定义,且在该邻域内恒有 f(x)≤f(x0)或 f(x)≥f(x0); (2)f(x)在 x0处可导. 则 f′(x0)=0. Th2 (洛尔)设函数 f(x)满足: (1)在[a,b]上连续;(2)在(a,b)内可导;
sinx

arcsinx
tanx
1-cosx~12x2
~x,
arctanx

(1+x)n
-1~1nx
ln(1+x)
ex-1

2.重要定理
Th1 xl→imx0f(x)=Af-(x0)=f+(x0)=A.
Th2 limf(x)=Af(x)=A+α(x),其中limα(x)=0
(2)y=xα(α为实数),y′=αxα-1
(槡x)′=21槡x
特例
( )

1 x
′=-x12
(3)y=ax,y′=axlna,特例(ex)′=ex
(4)y=logx a(a>0,a≠1), y′=xl1na,(lnx)′=1x
(5)y=sinx, y′=cosx
(6)y=cosx, y′=-sinx
x→x0

考研数学公式大全(高数、概率、线代)目前文库中最全的

考研数学公式大全(高数、概率、线代)目前文库中最全的

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

考研数学三公式大全

考研数学三公式大全

高等数学公式导数公式:基本积分表:ax x a a a x x x x x x x x x x a x x ln 1)(log ln )(cot csc )(csc tan sec )(sec csc )(cot sec )(tan 22='='⋅-='⋅='-='='222211)cot (11)(arctan 11)(arccos 11)(arcsin x x arc x x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx xdx x Cx dx x x Cx xdx x dx C x xdx x dx xx)ln(ln csc cot csc sec tan sec cot csc sin tan sec cos 22222222Ca x x a dx C x a xa a x a dx C a x ax a a x dx C a xa x a dx Cx x xdx C x x xdx Cx xdx C x xdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 21arctan 1cot csc ln csc tan sec ln sec sin ln cot cos ln tan 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , A.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin B.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 1.正弦定理:A asin =B b sin =Cc sin = 2R (R 为三角形外接圆半径)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一.高等数学公式1导数公式 12.基本积分表 13..三角函数的有理式积分 14.一些初等函数. 25.两个重要极限 26.三角函数公式: 27.高阶导数公式——莱布尼兹(Leibniz)公式: 38. 中值定理与导数应用: 39.曲率 3910.定积分的近似计算 411.定积分应用相关公式 412.空间解析几何和向量代数 413.多元函数微分法及应用514.微分法在几何上的应用: 615.方向导数与梯度 616.多元函数的极值及其求法 617.重积分及其应用 718.柱面坐标和球面坐标 719.曲线积分 720.曲面积分 821.高斯公式 922.斯托克斯公式——曲线积分与曲面积分的关系 923.常数项级数 924.级数审敛法 3225.绝对收敛与条件收敛 1026.幂级数 1027.函数展开成幂级数 1128.一些函数展开成幂级数 1130.三角级数 1231.傅立叶级数 1232微分方程的相关概念. 132二.概率公式整理1.随机事件及其概率 142.概率的定义及其计算 143.条件概率 154随机变量及其分布 155.离散型随机变量 156.连续性随机变量 167.多维性随机变量及其分布 178.连续型二维随机变量 179.二维随机变量的条件分布 1810.随机变量的数字特征 18三.线性代数部分1.基本运算 202.有关乘法的基本运算 213.可逆矩阵的性质 224.伴随矩阵的基本性质 235.伴随矩阵的其他性质 236.线性表示 247.线性相关 248.各性质的逆否形式 259.极大无关组 2610.矩阵的秩的简单性质 2611.矩阵在运算中秩的变化 2712.解的性质 2713.解的情况判断 2814.特征值特征向量 2915.特征值的性质 2916.特征值的应用 2917.正定二次型与正定矩阵性质与判别 3018.基本概念 3120.范德蒙行列式 3221.乘机矩阵的列向量与行向量 3322.初等矩阵及其在乘法中的作用 3423.乘法的分块法则 3424矩阵方程与可逆矩阵 3525可逆矩阵及其逆矩阵 3526.伴随矩阵 3527.线性表示 3528.线性相交性 3629..极大无关组和秩 3630.有相同线性关系的向量组 3631.矩阵的秩 3732.方程组的表达形式 3833.基础解系和通解 3834.通解 3835.特征向量与特征值 3936.特征向量与特征值计算 3937.n阶段矩阵的相似关系 3938.n阶段矩阵的对用化 3939判别法则 4040.二次型(实二次型) 4041.可逆线性变量替换 4142.实对称矩阵的合同 4143.二次型的标准化和规范化 4144.正二次型与正定矩阵 42附录一内积,正交矩阵,实对称矩阵的对角化1.向量的内积 452.正交矩阵 463.施密特正交化方法 474.实对称矩阵的对角化 47附录二向量空间1.n维向量空间及其子空间 492.基,维数,坐标 493.过渡矩阵,坐标变化公式 504.规范正交积..................................................................... .. (51)一.高等数学公式1.导数公式:2.基本积分表:3.三角函数的有理式积分:4.一些初等函数:5. 两个重要极限:6.三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α -sinα-cosαtgαctgα270°-α -cosα-sinαctgαtgα270°+α -cosαsinα-ctgα-tgα360°-α -sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:7.高阶导数公式——莱布尼兹(Leibniz)公式:8.中值定理与导数应用:9.曲率:10.定积分的近似计算:11.定积分应用相关公式:12.空间解析几何和向量代数:13.多元函数微分法及应用14.微分法在几何上的应用:15.方向导数与梯度:16.多元函数的极值及其求法:17.重积分及其应用:18.柱面坐标和球面坐标:19.曲线积分:20.:曲面积分:21.高斯公式:22.斯托克斯公式——曲线积分与曲面积分的关系:23.常数项级数:24.级数审敛法:25.绝对收敛与条件收敛:26.幂级数:27.函数展开成幂级数:28.一些函数展开成幂级数:29.欧拉公式:30.三角级数:31.傅立叶级数:周期为的周期函数的傅立叶级数:32.微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程二.概率公式整理1.随机事件及其概率吸收律:反演律:2.概率的定义及其计算若对任意两个事件A, B, 有加法公式:对任意两个事件A, B, 有3.条件概率乘法公式全概率公式Bayes公式4.随机变量及其分布分布函数计算5.离散型随机变量(1) 0 – 1 分布(2) 二项分布若P ( A ) = p*Possion定理有(3) Poisson 分布6.连续型随机变量(1) 均匀分布(2) 指数分布(3) 正态分布N ( , 2 )*N (0,1) —标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数边缘分布函数与边缘密度函数8.连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布9.二维随机变量的条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的k阶原点矩X 的k阶绝对原点矩X 的k阶中心矩X 的方差X ,Y 的k + l阶混合原点矩X ,Y 的k + l阶混合中心矩X ,Y 的二阶混合原点矩X ,Y 的二阶混合中心矩X ,Y 的协方差X ,Y 的相关系数X 的方差D (X ) =E ((X - E(X))2)协方差相关系数三.线性代数部分梳理:条理化,给出一个系统的,有内在有机结构的理论体系。

沟通:突出各部分内容间的联系。

充实提高:围绕考试要求,介绍一些一般教材上没有的结果,教给大家常见问题的实用而简捷的方法。

大家要有这样的思想准备:发现我的讲解在体系上和你以前学习的有所不同,有的方法是你不知道的。

但是我相信,只要你对它们了解了,掌握了,会提高你的解题能力的。

1.基本运算①②③④⑤或。

转置值不变逆值变,3阶矩阵2.有关乘法的基本运算线性性质,结合律不一定成立!,,与数的乘法的不同之处不一定成立!无交换律因式分解障碍是交换性一个矩阵的每个多项式可以因式分解,例如无消去律(矩阵和矩阵相乘)当时或由和由时(无左消去律)特别的设可逆,则有消去律。

左消去律:。

右消去律:。

如果列满秩,则有左消去律,即①②3.可逆矩阵的性质i)当可逆时,也可逆,且。

也可逆,且。

数,也可逆,。

ii),是两个阶可逆矩阵也可逆,且。

推论:设,是两个阶矩阵,则命题:初等矩阵都可逆,且命题:准对角矩阵可逆每个都可逆,记4.伴随矩阵的基本性质:当可逆时,得,(求逆矩阵的伴随矩阵法)且得:5.伴随矩阵的其他性质①,②③,④⑤,⑥。

时,关于矩阵右上肩记号:,,,*i) 任何两个的次序可交换,如,等ii) ,但不一定成立!6.线性表示有解有解有解,即可用A的列向量组表示,,则。

,则存在矩阵,使得线性表示关系有传递性当,则。

等价关系:如果与互相可表示记作。

7.线性相关,单个向量,相关,相关对应分量成比例相关①向量个数=维数,则线性相(无)关,有非零解如果,则一定相关的方程个数未知数个数②如果无关,则它的每一个部分组都无关③如果无关,而相关,则证明:设不全为0,使得则其中,否则不全为0,,与条件无关矛盾。

于是。

④当时,表示方式唯一无关(表示方式不唯一相关)⑤若,并且,则一定线性相关。

证明:记,,则存在矩阵,使得。

有个方程,个未知数,,有非零解,。

则,即也是的非零解,从而线性相关。

8.各性质的逆否形式①如果无关,则。

②如果有相关的部分组,则它自己一定也相关。

③如果无关,而,则无关。

⑤如果,无关,则。

推论:若两个无关向量组与等价,则。

9.极大无关组一个线性无关部分组,若等于秩,就一定是极大无关组①无关②另一种说法:取的一个极大无关组也是的极大无关组相关。

证明:相关。

③可用唯一表示④⑤10.矩阵的秩的简单性质行满秩:列满秩:阶矩阵满秩:满秩的行(列)向量组线性无关可逆只有零解,唯一解。

11.矩阵在运算中秩的变化初等变换保持矩阵的秩①②时,③④⑤可逆时,弱化条件:如果列满秩,则证:下面证与同解。

是的解是的解可逆时,⑥若,则(的列数,的行数)⑦列满秩时行满秩时⑧12.解的性质(1).的解的性质。

如果是一组解,则它们的任意线性组合一定也是解。

(2).①如果是的一组解,则也是的解是的解特别的:当是的两个解时,是的解②如果是的解,则维向量也是的解是的解。

13.解的情况判别方程:,即有解无解唯一解无穷多解方程个数:①当时,,有解②当时,,不会是唯一解对于齐次线性方程组,只有零解(即列满秩)(有非零解)14.特征值特征向量是的特征值是的特征多项式的根。

两种特殊情形:(1)是上(下)三角矩阵,对角矩阵时,特征值即对角线上的元素。

(2)时:的特征值为15.特征值的性质命题:阶矩阵的特征值的重数命题:设的特征值为,则①②命题:设是的特征向量,特征值为,即,则①对于的每个多项式,②当可逆时,,命题:设的特征值为,则①的特征值为②可逆时,的特征值为的特征值为③的特征值也是16.特征值的应用①求行列式②判别可逆性是的特征值不可逆可逆不是的特征值。

当时,如果,则可逆若是的特征值,则是的特征值。

不是的特征值可逆。

n阶矩阵的相似关系当时,,而时,。

相似关系有i)对称性:,则ii)有传递性:,,则,,则命题当时,和有许多相同的性质①②③,的特征多项式相同,从而特征值完全一致。

与的特征向量的关系:是的属于的特征向量是的属于的特征向量。

17.正定二次型与正定矩阵性质与判别可逆线性变换替换保持正定性变为,则它们同时正定或同时不正定,则,同时正定,同时不正定。

例如。

如果正定,则对每个(可逆,,!)我们给出关于正定的以下性质正定存在实可逆矩阵,。

相关文档
最新文档