1000立方米球形储罐

1000立方米球形储罐
1000立方米球形储罐

1000立方米球形储罐

喷淋装置设计计算书

球表面积=4ΠR2=4×3.14×6.19×6.19=481.25m2

喷淋强度=9 L/min●m2

Q总=9×481.25=4331.25L/min=72.19L/S

Q单=4331.25÷142=30.50 L/min

V总=k4331.25÷60÷2÷3.14÷0.075÷0.075=2.04m/s

V总=k4331.25÷60÷3.14÷0.1÷0.1=2.30m/s

1圈喷管

S=3.14×2(6.19×0.69)

=26.82 m2

Q=9×26.82=241.40 L/min

Q单=241.40÷8=30.16 L/min

L间距=3.14×3.5÷8=1.37m

DN40 V=k241.40÷60÷4÷3.14÷0.02÷0.02=0.80m/s 按限流孔板计算公式

限流孔板选21mm 实际减压25.00m水柱

2圈喷管

S=3.14×2(6.19×1.7)=66.08 m2

Q=9×66.08=594.72 L/min

Q单=594.72÷19=31.30 L/min

L间距=3.14×8.883÷19=1.46m

DN50 V=k594.72÷60÷4÷3.14÷0.025÷.0.025=1.26m/s 按限流孔板计算公式

限流孔板选26mm 实际减压25.00m水柱

3圈喷管

S=3.14×2(6.19×2.4)=93.29 m2

Q=9×93.29=839.59 L/min

Q单=839.59÷27=31.10 L/min

L间距=3.14×12.563÷27=1.46m

DN65 V=k839.59÷60÷4÷3.14÷0.0325÷.0.0325=1.05m/s 按限流孔板计算公式

限流孔板选44mm 实际减压25.00m水柱

d o

4圈喷管

S=3.14×2(2×6.19×1.4)

=108.84 m2

Q=9×108.84=979.60 L/min

Q单=979.60÷30=32.65 L/min

L间距=3.14×13.9÷30=1.46m

DN80 V=k979.60÷60÷4÷3.14÷0.04÷0.04=0.81m/s 按限流孔板计算公式

限流孔板选48mm 实际减压25.00m水柱

5圈喷管同3圈喷管

6圈喷管同2圈喷管

7圈喷管同1圈喷管

选用两路上水

供水压力 0.6mpa

喷嘴工作压力 0.35mpa

易挥发有机气体的呼吸耗损计算(固定顶储罐、浮顶罐的计算方法)

易挥发有机气体的计算(固定顶储罐、浮顶罐呼吸损耗的计算方法) 诸位:这是一篇关于固定顶储罐储存有机液体时所产生的呼吸损耗的计算方法(依据美国的研究成果),特提供给大家参考,如有做化工类的或加油站(库)项目环评时可套用. 1、储存有机液体的基本罐型有固定顶罐、浮顶罐、可变蒸气空间罐和压力罐等五种,而固定顶罐是一种最普通的罐型,在国内最常被使用,是储存有机液体的普通罐型,一般认为是最低的接受水平,特别是在加油站和石油库用于储存汽油和柴油。 典型的固定顶罐由带有永久性附加罐顶的园筒钢壳组成,其罐顶可以有锥形、园拱顶形到平顶的不同设计。固定顶罐一般装有压力和排气口,它使储罐能在极低或真空下操作,压力和真空阀仅在温度、压力或液面变化微小的情况下阻止蒸气释放。固定顶罐的主要是呼吸排放和工作排放等两种排放方式。 2.排放量计算 2.1 呼吸排放 呼吸排放是由于温度和大气压力的变化引起蒸气的膨胀和收缩而产生的蒸气排出,它出现在罐内液面无任何变化的情况,是非人为干扰的自然排放方式。 固定顶罐的呼吸排放可用下式估算其污染物的排放量: LB=0.191×M(P/(100910-P))^0.68×D^1.73×H^0.51×△T^0.45×FP×C×KC 式中:LB—固定顶罐的呼吸排放量(Kg/a); M—储罐内蒸气的分子量; P—在大量液体状态下,真实的蒸气压力(Pa); D—罐的直径(m); H—平均蒸气空间高度(m); △T—一天之内的平均温度差(℃); FP—涂层因子(无量纲),根据油漆状况取值在1~1.5之间; C—用于小直径罐的调节因子(无量纲);直径在0~9m之间的罐体,C=1-0.0123(D-9)^2 ; 罐径大于9m的C=1; KC—产品因子(石油原油KC取0.65,其他的有机液体取1.0) 2.2工作排放

浅议甲醇储罐的消防设计(标准版)

浅议甲醇储罐的消防设计(标 准版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0807

浅议甲醇储罐的消防设计(标准版) 分子式C-H4-O。分子量32.04。相对密度0.792(20/4℃)。熔点-97.8℃。沸点64.5℃。闪点12.22℃。自燃点463.89℃。蒸气密度1.11。蒸气压13.33KPa(100mmHg21.2℃)。蒸气与空气混合物爆下限6~36.5%。遇热、明火或氧化剂易着火。根据《建筑设计防火规范》火灾危险性分类特征,甲醇为甲类液体。 由燃烧所必须具备的几个基本条件可以得知,灭火就是破坏燃烧条件使燃烧反应终止的过程。其基本原理归纳为以下四个方面:冷却、窒息、隔离和化学抑制。由甲醇的性质可知甲醇罐区的消防需采用泡沫灭火系统进行灭火,消防冷却水进行冷却,同时配备磷酸铵盐干粉灭火器灭火。 【Abstract】:Colorless,transparent,highlyvolatile,flammabl

eliquid.Slightalcoholodor.MolecularFormulaC-H4-O.Molecular weightof32.04.Therelativedensityof0.792(20/4℃).Meltingpoi nt-97.8℃.Boilingpointof64.5℃.Flashpointof12.22℃.Ignitio npointof463.89℃.Vapordensityof1.11.Vaporpressure13.33KPa( 100mmHg21.2℃).Vaporandairmixtureexplosionlimitof6to36.5%. Whenexposedtoheat,flameoroxidantseasytofire.Accordingto"bu ildingdesignforfireprotection"featuresofthefirehazardclass ification,Aliquidmethanol. Bythecombustionofseveralbasicconditionsmusthavetoknow,fire isthedestructionofcombustionprocessoftheterminationoftheco mbustionreaction.Thebasicprinciplegroupedintothefollowingf ourareas:cooling,asphyxia,isolationandchemicalinhibition.M ethanolfromthemethanoltankshowsthenatureofthefireextinguis hingsystemrequirestheuseoffirefightingfoam,firecoolingwate rforcooling,whilewithammoniumphosphatedrypowderfireextingu

球罐设计

第一章 确定设计参数、选择材料 一、确定设计参数 (一) 设计温度 储罐放在室外,罐的外表面用150mm 的保温层保温。在吉林地区,夏季可能达到的最高气温为40℃。最低气温(月平均)为-20℃。 (二) 设计压力 罐内储存的是被压缩且被冷却水冷凝的液氨。氨蒸汽被压缩到0.9~1.4MPa ,被冷却水冷凝。液氨40℃时的饱和蒸汽压由[1]查得为:P 汽=1.55MPa(绝对压力)。为保证安全,在罐顶装有安全阀,故球罐设计压力为安全阀的启动压力,即: P=(1.05-1.1)P 汽=(1.05-1.1)×1.45=1.523~1.595MPa 取设计压力P=1.6MPa (三) 焊缝系数φ 球罐采用X 坡口,双面对接焊,并进行100%的无损探伤,由[2]知φ=1.0 (四) 水压试验压力 由[4]知水压试验压力为: T P =1.25P [] []t σσ 球壳材料为16MnDR ,初选板厚为36mm,由[3]表3查得[]σ=157MPa, []t σ =157MPa 则 T P =1.25P ×157/157=1.25×1.6×1=2.06 MPa 试验时水温不得低于5℃。 (五) 球罐的基本参数 球罐盛装量为170吨/台。液氨-20℃的密度为0.664吨/M 3,,40℃时0.58吨/M 3。 球罐所需容积(按40℃计)为:V= 58 .0170=293.1M 3 已给盛装系数为0.5,即不得装满,故实际所需容积为:V=5 .0170=340M 3,其小于400M 3, 余容较大,足够用,相差17.6%,符合标准要求。 按公称容积4003设计,由[2]附录一P41查得球罐基本参数如表 一 1-1

第二章 球罐结构设计

第二章 球罐结构设计 2、1 球壳球瓣结构尺寸计算 2、1、1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112、5°/7 赤道:67、6°/16 下极:112、5°/7 图 2-1混合式排板结构球罐 2、1、2混合式结构排板得计算: 1、符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (瞧上图数得) α--赤道带周向球角22、5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601、4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001、4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989、6mm 弧长2B )=N R π2=16 14 .362252?x =2443、3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428、9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413、0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936、4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1、139mm 1B ) = 2001、4 L ) = 7601、4 1B ) = 6204、1 2B ) =7167、1 0D ) =9731、7

甲醇储罐设计

目录 第1章甲醇的理化性质 (1) 1.1 甲醇主要的物理性质 (1) 1.2 化学性质 (2) 1.3 甲醇的危险性 (2) 1.3.1 防爆炸性 (2) 1.3.2 防火性 (2) 1.3.3 有毒性 (2) 第2章储罐的设计 (1) 2.3 罐体选材 (1) 2.4 封头结构及选材 (1) 2.5 壁厚: (1) 2.6 封头壁厚计算 (2) 2.7 人孔选择 (2) 2.8 进出料管的选择 (2) 2.9 液位计的设计 (2) 2.10 排污阀的选型 (3) 2.11 温度计: (3) 2.12 放空阀: (3) 2.13 检尺口 (3) 2.14 取样口 (3) 2.15 防静电 (3) 2.16 可燃气体报警(SH3063-1999) (4) 2.17 罐基础《大型储罐基础设计与地基处理》 (4) 2.18 围堰(API Std 2510) (4) 2.19 防火堤 (4) 第3章甲醇储罐的消防设计 (6) 3.1 甲醇储罐的灭火方法 (6)

3.1.2 隔离法 (6) 3.3 甲醇储罐的泡沫管道设计 (8) 3.3.1 储罐区泡沫灭火系统的选择 (8) 3.3.2 泡沫发生器的数目 (8) 3.3.3 液上喷射泡沫灭火系统泡沫产生器的设置 (8) 3.3.4储罐上泡沫混合液管道的设置,应符合下列规定: (9) 3.3.5 防火堤内的泡沫混合液管道的设置,应符合下列规定: (9) 3.3.6 防火堤外的泡沫混合液管道的设置,应符合下列规定: (9) 3.3.7 泡沫混合液管道的设计流速,不宜大于3m/s,其水力计算可按现行的国家标准《自动喷 水灭火系统设计规范》水力计算确定。 (10) 3.3.8 泡沫枪 (10) 3.3.9 泡沫混合液设计用量的确定应符合下列要求: (10) 3.3.10 泡沫管道布置图 (11) 注*: (11) 3.4 甲醇储罐应急事故预案 (12) 3.4.1 编制目的 (12) 3.4.2 危险目标 (12) 3.4.3 应急指挥 (13) 3.4.4 事故处理 (13) 3.4.5 规定和要求 (14) 第4章冷却系统 (15) 4.1水喷雾系统的作用 (15) 4.2选择系统类型 (15) 4.3系统组成设施 (15) 4.5工作原理 (15) 4.5设施介绍 (15) 4.5.1报警阀组 (15) 4.5.2管道 (16)

2000立方米大型球罐设计说明书

课程设计资料标签 资料编号: 题目球形储罐设计 姓名学号专业材料成型 指导教师成绩 资料清单 注意事项: 1、存档内容请在相应位置填上件数、份数,保存在档案盒内。每盒放3-5名学生资料,每份按序号归档, 如果其中某项已装订于论文正本内,则不按以上顺序归档。各专业可依据实际情况适当调整保存内容。 2、所有资料必须保存三年。课程设计论文(说明书)装订格式可参照毕业设计论文装订规范要求。 3、资料由学院资料室统一编号。编号规则是:年度—资料类别代码·学院代码·学期代码—顺序号,顺 序号由四位数字组成(参照《西安理工大学实践教学资料整理归档要求》)。 4、各院、系应在课程设计结束后一个月内按照规范进行资料归档。 5、特殊情况请在备注中注明,并把相关资料归档,应有当事人和负责人签名。

课程与生产设计(焊) 设计说明书 设计题目球形储罐设计 专业材料成型及控制工程 班级 学生 指导教师 2016年秋学期

目录 一、设计说明 课程设计任务书-------------------------------------------------------------------------------1 1.1 选材-----------------------------------------------------------------------------------------------2 1.2 球壳计算----------------------------------------------------------------------------------------2 1.3 球壳薄膜应力校核---------------------------------------------------- --------------------3 1.4 球壳许用外力----------------------------------------------------------------------- ----------4 1.5 球壳分瓣计算----------------------------------------------------------------------------------5 二、支柱拉杆计算 2.1计算数据---------------------------------------------------------------------------------------9 2.2 支柱载荷计算---------------------------------------------------------------------------------10 2.3支柱稳定性校核-----------------------------------------------------------------------------13 2.4拉杆计算---------------------------------------------------------------------------------------14 三、连接部位强度计算 3.1销钉直径计算-----------------------------------------------------------------------------------15 3.2耳板和翼板厚度计算-------------------------------------------------------------------------15 3.3焊缝剪应力校核-------------------------------------------------------------------------------15 3.4支柱底板的直径和厚度计算---------------------------------------------------------------16 3.5支柱与球壳连接处的应力验算------------------------------------------------------------16 3.6支柱与球壳连接焊缝强度计算------------------------------------------------------------18 四、附件设计 4.1人孔结构-----------------------------------------------------------------------------------------19 4.2 接管结构-----------------------------------------------------------------------------------------19 4.3梯子平台---------------------------------------------------------------------------------------19 4.4液面计--------------------------------------------------------------------------------------------20 五、工厂制造及现场组装 5.1 工厂制造----------------------------------------------------------------------------------------21

储罐拱顶面积计算

钢制常压立式圆柱形储罐是炼油化工企业不可缺少的设备,贯穿整个生产过程,数量众多,并且,储存的介质都为易燃、易爆、高温、有毒、有害的液体或气体,危险性极大。 储罐按储存介质的不同,可以分为原油罐、中间产品罐、产品罐、含硫污水罐和气柜五大类。其中,原油罐是指储存原油的各类储罐;中间产品罐是指储存石脑油、粗汽油、粗柴油、蜡油、渣油、加氢裂化原料等各类中间产品的储罐;产品罐是指储存汽油、煤油、柴油、航空煤油等各类成品油的储罐;含硫污水罐是指储存各类含酸、碱、污油及各类硫化物的污水罐;气柜是指储存未脱硫瓦斯的湿式和干式气柜。 储罐按结构不同,可以分为固定顶罐、浮顶罐、浮顶罐。固定顶罐又分为自支承拱顶罐、自支承锥顶罐、柱支承锥顶罐。 随着装置高含硫原油加工量的不断增加,储罐的腐蚀日益加重,具体表现在:每一次储罐清罐检修时,在罐体、罐底或罐顶经常可以发现麻点、凹坑,甚至被腐蚀穿孔,一旦发生事故,后果将不堪设想。 经调研,集团公司部其他企业也普遍反映储罐腐蚀越来越严重,日益威胁石化企业的安全、稳定、长周期运行。 为了延长金属储罐的使用寿命,现在行之有效的办法就是在储罐的罐体、罐底以及罐顶进行油漆、防腐,工程量非常大。 储罐清罐检修工程竣工后,施工单位要根据《全国统一安装工程预算定额》编制检修工程结算书,计取工程费用。在工程量的计算中,关键是拱顶面积的计算。 目前采用的计算方法是:拱顶面积为罐底面积的1.25倍,部分施工单位按1.2倍或1.3倍计算。 1 按照专业文献,计算储罐拱顶面积 (1)家华先生所著《圆柱形金属油罐设计》[1]一书的介绍:拱顶是一种自支承式的罐顶,形状近似球面,靠拱顶周边支承于焊在罐壁上的包边角钢上,球面由中心盖板和瓜皮板组成。在设计拱顶储罐时,一般都将拱顶设计成球面,则拱顶的几何形状就是一个球缺,详见图1。

甲醇罐区设计规范

甲醇罐区设计规范 篇一:甲醇储罐设计 目录 第1章甲醇的理化性质 (1) 1.1 甲醇主要的物理性 质 ................................................................. ......................................................... 1 1.2 化学性质 ................................................................. ........................................................................ .... 2 1.3 甲醇的危险 性.................................................................. .. (2) 1.3.1 防爆炸 性.................................................................. .. (2) 1.3.2 防火 性.................................................................. (2) 1.3.3 有毒 性.................................................................. (2) 第2章储罐的设计 (1) 1

2.3 罐体选 材 ................................................................. ........................................................................ .... 1 2.4 封头结构及选 材.................................................................. ................................................................ 1 2.5 壁 厚: ................................................................ ........................................................................ ......... 1 2.6 封头壁厚计 算.................................................................. .. (2) 2.7 人孔选 择 ................................................................. ........................................................................ .... 2 2.8 进出料管的选 择.................................................................. ................................................................ 2 2.9 液位计的设 计.................................................................. .. (2) 2.10 排污阀的选

10000立球罐设计说明

摘要 球形压力容器(以下简称球罐)具有占地少、受力情况好、承压能力高,可分片运到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点,在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。近年来我国球罐的大型化和高参数化工程技术水平有了长足的进步,通过对引进球罐的消化、吸收和创新,很多高参数球罐已经实现了国产化,为我国的经济发展做出了积极的贡献。为满足我国石油液化气存储需求,同时也满足石油、化工、轻纺、冶金等行业对球罐大型化的需要,迫切需要发展有自主知识产权的特大型球罐核心技术。球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。针对10000m3大型石油液化气球罐设计、制造中的几个关键技术:球罐选材、结构设计和应力分析等方面进行了研究,完成了如下工作:(1)阅读大量国内外文献,在系统了解球罐结构设计及制造方法的基础上,完成文献综述的撰写。 (2)对球罐选材进行分析比较,最终确定采用15MnNbR;对球罐进行工艺结构设计和尺寸计算;根据GB12337-98《钢制球形储罐》对球罐进行结构与强度设计计算。 (3)进行球罐图纸绘制,完成球罐装配图及各主要零部件图。 (4)使用压力容器分析设计系统(VAS2.0)对球罐进行强度分析,对球壳和支座连接处进行应力分析和强度评定。 关键词:球形储罐;容器用钢;结构;应力分析

Design of 10000m3 Spherical Tank for Liquefied Petrolem Gas Abstract Because of its unexampled advantages such as less floor area covering, high-pressure capability and transport facilitates,Spherical pressure tanks (hereinafter referred to as the―sto rage tank‖)used for storage of gas and liquefied gas more widely than other storage tanks in the oil,chemical,city gas,metallurgy and other fields. In recent years,China engineering and technical level of spherical tank has made great progress through the introduction,absorption and innovation of foreign spherical tank technology.To meet the demand of our country's liquefied petrolem gas storage,and meet the demand of large-scale tank in the petroleum,chemical,textile,metallurgical and other industries,it is urgent to develop the core technique of large-scale spherical tank with our own intellectual property rights.Construction of increasingly larger spherical tank is a complex and systematicproject,which involves a number of disciplines and technical fields. in view of research of key design and manufacture technology of 10000 m3large-scale liquefied petrolem gas tank,from the perspectives such as evaluation and selection of main material , structure design theory and stress analysis,we have solved several key technology of spherical tank construction.This article has completed the primary research work coverage,which was shown as follows: (1)Based on well understanding of structure design and manufacturing methods of spherical tank , I write literature summary after reading a large number of domestic and foreign literature. (2) Through analysis and comparison of the materials,I finally select 15MnNbR;After the structural design of process and dimension calculation,I complete the calculation of structure and strength according to GB12337-98. (3) The drawings of the tank include an assembly drawing and several parts drawings. (4)For the junction between spherical shell and stanchion, stress analysis and strength assessment is completed by the system of Design by Analysis for pressure vessels(VAS2.0). Key Words:Spherical tank;Steel for pressure vessels ;structure ;stress analysis

15M3 甲醇储罐设计

目录 一序言 (一)设计任务 (二)设计思想 (三)设计特点 二储罐总装配示意图 三材料及结构的选择 (一)材料的选择 (二)结构的选择 四设计计算内容 (一)设计温度和设计压力的确定 (二)名义厚度的初步确定 (三)容器的压力实验 (四)容器应力的校核计算 (五)封头的设计 (六)人孔的设置 (七)支座的设计确定 (八)各物料进出管位置的确定及其标准的选择(九)液位计的设计 (十)焊接接头设计 五设计小结 六参考资料

太原科技大学材料科学与工程学院 过程设备课程设计指导书 课程设计题目: (15)M3甲醇储罐设计 课程设计要求及原始数据(资料): 一、课程设计要求: 1.使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。 2.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 3.设计计算采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。 4.工程图纸要求计算机绘图。 5.毕业设计全部工作由学生本人独立完成。 二、原始数据: 设计条件表

管口表 课程设计主要内容: 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 应交出的设计文件(论文): 1.设计说明书一份 2.总装配图一张 (折合A1图纸一张)

一序言 (一)设计任务: 针对化工厂中常见的甲醇储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图和零件图,并编写设计说明书。(二)设计思想: 综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。在设计过程中综合考虑了经济性,实用性,安全可靠性。(三)设计特点: 容器的设计一般由筒体,封头,法兰,支座,接口管及人孔等组成。常,低压化工设备通用零件大都有标准,设计时可直接选用。本设计书主要介绍了液罐的筒体,封头的设计计算,低压通用零件的选用。 各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

丙烯球罐设计方案

方案编号 施工技术方案 吉化集团公司10.6万吨/年丙烯腈扩建工程丙烯球罐组焊 三类 批准: 复审:审核: 编制: 编制单位:

1、工程概况 吉化集团公司丙烯腈装置是“吉化30万吨乙烯及其配套工程”的配套装置之一。该装置采用美国BP公司的工艺技术,于1997年10月建成投产。 原设计规模为6.6万吨/年,2000年丙烯腈装置扩建至10.6万吨/年。根据吉林石化公司“十五”计划和吉林化纤厂“十五”计划,吉林地区对丙烯腈产品的总需求量预计超过21万吨/年。 鉴于上述原因,吉化集团公司决定将10.6万吨/年丙烯腈装置扩建至21万吨/年,并相应增设罐区及配套设施。扩建后的丙烯腈装置提供储存原料丙烯和成品丙烯腈能力的罐区。在现有的基础上新增3台2000m3丙烯球罐。 本施工方案针对吉化集团公司10.6万吨/年丙烯腈装置罐区中的丙烯球罐而编制。其中包括组装及焊接施工工艺,并另对安全措施给予介绍。 所达到的质量目标计划: a、单位工程交验合格率100%; b、分部、分项工程交验优良率90%; c、封闭设备抽检合格率100%; d、无任何大小质量事故; 2、编制依据 a、《压力容器安全技术监察规程》国家技术质量监督局 b、GB150-98《钢制压力容器》 c、GB12337-98《钢制球形贮罐》及附录A“低温球形储罐” d、HG20585-1998《钢制低温压力容器技术规定》 e、GB50094-98《球形储罐施工及验收规范》

f、JB/T4709-2000<钢制压力容器焊接工艺评定》 g、JB4730-94《压力容器无损检测》、 中国石油集团工程设计有限责任公司东北分公司设计院丙烯球罐设计图纸h、JB4708-2000 《钢制压力容器焊接工艺评定》 i、〔日〕高压气体保安协会“高强度钢使用标准” j、〔日〕WES3003“低温结构用钢板评定标准” k、〔日〕JISZ3700-80 3、工程简介 3.1结构简图

大型甲醇储罐安全措施设计实用版

YF-ED-J7837 可按资料类型定义编号 大型甲醇储罐安全措施设 计实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

大型甲醇储罐安全措施设计实用 版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1. 甲醇内浮顶储罐设夏季水喷淋系统,配氮 封设施,比采用拱顶罐减少物料损失约95%, 中国石化总公司将内浮顶罐列为环保、清洁生 产设备。另外,由于喷淋水属间接冷却水,受 污染少,可循环使用,不会带来新的环境问 题。 2.甲醇储罐连接管线发生泄露后果预测: 在不利气象条件下甲醇浓度达到最低致死 浓度86000mg/m3和短时间接触浓度限值

50mg/m3的距离分别是23m和2.2km;在典型条件下达到最低致死浓度86000mg/m3和短时间接触浓度限值50mg/m3的距离分别是20m和1.8km 甲醇泄露后的影响区域比较大,需要采取有效的控制和管理措施避免甲醇的泄露。另外还需要制定合理的应急预案来确保一旦甲醇泄露后的应对措施。 正常工况,少量的甲醇蒸汽排入全厂火炬系统烧掉。 3. 用内浮顶加氮封比较好,安全且环保,需要注意的是氮封压力的控制要可靠,必要时罐顶可设压控的通大气的快开阀,以保证罐内氮气压力超高时的压力卸放,以策设备安全。退而求其次,也可以采用拱顶加氮封的形式。

甲醇储罐设计

甲醇储罐设计. 目录 第1章甲醇的理化性 质 (1) 1.1 甲醇主要的物理性 质 ............................ . (1)

1.2 化学性 质 ............................ (2) 1.3 甲醇的危险 性 ............................ . (2) 1.3.1 防爆炸 性 ............................ . (2) 1.3.2 防火 性 ............................ .. (2) 1.3.3 有毒 性 ............................ .. (2) 第2章储罐的设 计 (1) 2.3 罐体选 材 ............................

(1) 2.4 封头结构及选 材 ............................ (1) 2.5 壁 厚: ........................... ............................... . (1) 2.6 封头壁厚计 算 ............................ . (2) 2.7 人孔选 择 ............................ (2) 2.8 进出料管的选 择 ............................ (2) 2.9 液位计的设 计 ............................

(2) 2.10 排污阀的选 型 ............................ .. (3) 2.11 温度 计: ........................... .. (3) 2.12 放空 阀: ........................... .. (3) 2.13 检尺 口 ............................ .. (3) 2.14 取样 口 ............................ .. (3) 2.15 防静 电 ............................

球罐结构设计

第二章 球罐结构设计 2.1 球壳球瓣结构尺寸计算 2.1.1 设计计算参数: 球罐内径:D=12450mm []23341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:112.5°/7 赤道:67.6°/16 下极:112.5°/7 图 2-1混合式排板结构球罐 2.1.2混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角22.5° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??=7601.4mm 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 =2001.4mm 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22=1989.6mm 弧长2B )=N R π2=16 14 .362252?x =2443.3mm 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)=2428.9mm 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 7413.0mm 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 7936.4mm 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1.139mm 1B ) = 2001.4 L ) = 7601.4 1B ) = 6204.1 2B ) =7167.1 0D ) =9731.7

各种常见油罐储油量的计算方法

各种常见油罐储油量的计算方法 摘要:本文介绍了一些常见形状的储油罐油量的计算方法,并给出了每种形状的储油罐容积的计算公式和整个推导过程,供各位同仁共同探讨和分享。 现实生活中,尽管储油罐的形状各式各样,仔细分析无非存在以下两种结构:卧式结构和立式结构。无论是卧式结构还是立式结构,都有可能存在半椭圆形封头、平面封头、半圆形封头、圆锥形封头等。笔者在计算储油罐的过程中,积累了大量的经验,现简要做一介绍。 一、椭圆封头卧式椭圆形油罐 这种油罐的形状一般是两端封头为半椭球形,中间为截面积是椭圆形的椭圆柱体,如图1-1、图1-2所示。 计算时,可以把这种油罐的容积看成两部分,一部分为椭球体(把两端的封头看作是一个椭球),另一部分为平面封头中间截面为椭圆形的椭圆柱体,见图1-3、图 1-4所示,然后,采用微积分计算任一液面高度时油罐内的容积。 我们建立如图1-3、图1-4所示的坐标系,设油罐除封头以外的长度为L ,其截面长半轴为 A , B ,短半轴 为C ,则在图1-3、图1-4所示的坐标系中,分别得到椭圆的方程为: 在某一液面高度H 时,油罐内油的容积为: 由(1)得: 图1-2:椭圆封头卧式椭圆形油罐结构图 图1-1:椭圆封头卧式椭圆形油罐实体图 y x 图1-3:椭圆柱体剖面图 图1-4:封头椭球体剖面图 dy xz xL 2V H ?π+=)(2 y By 2B A x -= C (3) (4) ??π+=H 0 H xzdy xdy L 21B B y A x 2 222=-+) ((1) (2) 1C z B B y 2 2 22=+-)(

大型甲醇储罐安全措施设计(正式版)

文件编号:TP-AR-L4713 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 大型甲醇储罐安全措施 设计(正式版)

大型甲醇储罐安全措施设计(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1. 甲醇内浮顶储罐设夏季水喷淋系统,配氮封设施,比采用拱顶罐减少物料损失约95%,中国石化总公司将内浮顶罐列为环保、清洁生产设备。另外,由于喷淋水属间接冷却水,受污染少,可循环使用,不会带来新的环境问题。 2.甲醇储罐连接管线发生泄露后果预测: 在不利气象条件下甲醇浓度达到最低致死浓度86000mg/m3和短时间接触浓度限值50mg/m3的距离分别是23m和2.2km;在典型条件下达到最低致死浓度86000mg/m3和短时间接触浓度限值50mg/m3的距

离分别是20m和1.8km甲醇泄露后的影响区域比较大,需要采取有效的控制和管理措施避免甲醇的泄露。另外还需要制定合理的应急预案来确保一旦甲醇泄露后的应对措施。 正常工况,少量的甲醇蒸汽排入全厂火炬系统烧掉。 3. 用内浮顶加氮封比较好,安全且环保,需要注意的是氮封压力的控制要可靠,必要时罐顶可设压控的通大气的快开阀,以保证罐内氮气压力超高时的压力卸放,以策设备安全。退而求其次,也可以采用拱顶加氮封的形式。 4. 如果储存的仅是可燃液体的话,按道理来讲,选用浮顶罐本身就是为减少储罐火灾几率和火灾危险程

相关文档
最新文档