初一新生入学测试数学试题含答案

合集下载

2024-2025学年七年级上学期入学测试数学试题及答案

2024-2025学年七年级上学期入学测试数学试题及答案

数学(时间:70分钟满分:100分)亲爱的同学,欢迎来到河南省实验中学的大家庭,这是你进校的第一次考试,希望展示你真实的水平,努力加油哟!一.选择题(共10小题,满分20分)1. 一个三角形,其中有两个角分别是50°和70°,第三个角是( )A. 60°B. 70°C. 80°D. 50°2. 一张地图的比例尺是1:25000,从图中测得两地的距离是4cm ,它们的实际距离是( )kmA. 1B. 10C. 100D. 1000003. 下面各选项中的两种量,成正比例关系的是( )A. 平行四边形面积一定,它的底和高B. 已知3y x =+,y 和xC. 正方体的表面积与它的一个面的面积D. 已知9:4x y =:,y 和x 4. 在5cm 5cm 8cm 8cm 10cm 、、、、的五根小棒中,任选三根围成一个等腰三角形,有( )种不同的围法.A. 2B. 3C. 4D. 55. 某超市按进价加40%作为定价销售某种商品,可是销售得不好,只卖出14,来老板按定价减价40%以210元出售,很快就卖完了,则这次生意盈亏情况是( )A. 不亏不赚B. 平均每件亏了5元C. 平均每件赚了5元D. 不能确定6. 同时掷出两枚相同的骰子,朝上的两个面上的两个点数的和不大于7的概率(可能性)是( ) A. 17 B. 16 C. 712 D. 137. 小明将一个正方形纸对折两次,如图所示:并在中央点打孔再将它展开,展开后的图形是( )A. B. C. D.的8. 把分数a 的分子扩大9倍,分母扩大11倍,得到一个新分数b ;把分数a 的分子扩大8倍,分母扩大9倍,得到一个新分数c ,那么b 和c 比较( )A. b c >B. b c <C. b c =D. 无法比较9. 有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根的可燃时间是短的一根12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( ) A. 35 B. 67 C. 25 D. 4510. 如图,把三角形DBE 沿线段折叠AC ,得到一个多边形DACEFB G ′,这个多边形的面积与原三角形面积的比是7:9,已知图2中阴影部分的面积为15平方厘米,那么原三角形的面积是( )平方厘米.A. 26B. 27C. 28D. 29二.填空题(共10小题,满分20分)11. 2.737373…用四舍五入法保留两位小数是____.12. 一个长方形,周长24厘米,宽4厘米.如果长增加2厘米,那么面积是______平方厘米.13. 陈老师花了600元买了48个本和72支笔.已知每个本8元,那么每支笔____元.14. 用黑、白两种颜色的正六边形地砖按如下图所示规律铺地面,则第n 个图形有____块白色地砖.15. 在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少____.16. 如图,把梯形ABCD 分割成一个平行四边形和一个三角形,已知:3:5BE EC =,如果三角形CDE 的面积是200平方厘米,则平行四边形ABED 的面积是____平方厘米.17. 下面这个几何体,是由10个小正方体组成的.想一想,至少再摆上____个小立方体,它就能拼成一个长方体了.18. “16 ☆”是一个四位数,它同时是2,3,5倍数,其中☆所代表的数字是0,则 所代表的数字最小是____.19. 在甲、乙、丙三缸酒精溶液中,纯酒精含量分别占48%、62.5%和23,已知三酒精溶液的总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量,三缸溶液混合,酒精含量将达到56%,那么丙缸中纯酒精的量是____千克.20. 由200多枚棋子摆成一个n 行n 列的正方形,甲先从中取走10枚,乙再从中取走10枚……这样轮流取下去,直到取完为止,结果最后一枚被乙取走,乙一共取走了 ________枚棋子.三.解答题(本大题共8小题,共60分)21. 请直接写出答案.(1)3.2 1.18+=(2)10.98−=(3)38415×= (4)60.5÷=的(5)0.47 2.5××=(6)1132+÷= (7)35357878×÷×= (8)1542111113 ×+=22. 解方程.(1)13224x += (2)0.75:3:1.2=x(3)111523x x −= 23. 计算下面各题,能简算的要求写出简便过程.(1)5721128336 −+÷(2)()130.58 4.870.4213 5.13 4.25×−+×−×;(3)91131624 ÷×−(4)1111121231234123410+++++++++++++++ 24. 按要求画一画.(1)画出长方形绕点A 顺时针旋转90°后的图形,并在图内标上①.(2)以点O 为圆心,画一个半径是3m 的圆.(3)在空白处画出原长方形按1:2缩小后的图形,并在图内标上②.25. 下边是一个零件,由一个圆锥和圆柱组成,它体积是600立方厘米,那么上面圆锥部分的体积是多少立方厘米?的26. 芳芳从家出发去上学,走到A 地时,发现忘记带学具了,于是赶紧小跑回家;拿好学具后,怕上学迟到,就骑自行车赶往学校,芳芳的行程情况和时间分配如图.芳芳小跑回家的速度是多少?她骑自行车到学校用了多少时间?27. 一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?28. 如果一个四位数满足千位数字和十位数字的和为9,百位数字与个位数字的差为2,那么称M 为“跳跃数”.若一个四位“跳跃数”M 的千位数字与个位数字的2倍的和记作()P M ,百位数字与十位数字的和记作()Q M ,那么()()()P M F M Q M =为整数时,则称M 为“跳跃整数”. 例如:8614满足819,622+=−=,且()()86148816,8614617P Q =+==+=,即()()()167P M F M Q M ==不是整数,故8614不是“跳跃整数”. 又如:9503满足909,532+=−=,且()()95039615,9503505P Q =+==+=,即()()()1535P M F M Q M ===是整数,故9503是“跳跃整数”. (1)判断:5745 “跳跃整数”,5341 “跳跃整数”;(填“是”或“不是”); (2)证明:任意一个四位“跳跃数”与其百位数字2倍之差能被11整除;(3)若2000100010010M a b c d =++++(其中14290909a b c d ≤≤≤≤≤≤≤≤,,,且a b c d 、、、均为整数)是“跳跃整数”,请直接写出满足条件的所有M的值.为的数学(时间:70分钟满分:100分)亲爱的同学,欢迎来到河南省实验中学的大家庭,这是你进校的第一次考试,希望展示你真实的水平,努力加油哟!一.选择题(共10小题,满分20分)1. 一个三角形,其中有两个角分别是50°和70°,第三个角是( )A. 60°B. 70°C. 80°D. 50°【答案】A【解析】【分析】本题考查了三角形内角和定理,根据三角形内角和等于180°,直接求解即可.【详解】解:由题意可知:第三个角的度数是180507060°−°−°=°, 故选:A .2. 一张地图的比例尺是1:25000,从图中测得两地的距离是4cm ,它们的实际距离是( )kmA. 1B. 10C. 100D. 100000【答案】A【解析】【分析】本题主要考查了比例尺,熟练掌握比例尺、图上距离、实际距离的关系是解题的关键.设A、B 两地的实际距离为cm x ,根据比例尺的定义,列方程解答即可.【详解】解:设A ,B 两地的实际距离为cm x ,由题意得: 1425000x= 解:100000x =,又100000cm 1km =故选A .3. 下面各选项中的两种量,成正比例关系的是( )A. 平行四边形的面积一定,它的底和高B. 已知3y x =+,y 和xC. 正方体的表面积与它的一个面的面积D. 已知9:4x y =:,y 和x 【答案】C【解析】【分析】本题主要考查了正反比例, 根据平行四边形的面积,正方体的表面积以及比例的关系列出式子一一判断即可.【详解】解:A .底×高=平行四边形的面积(一定),它的底和高成反比例关系,故该选项不符合题意; B .已知3y x =+,y 和x 不是正比例函数,故该选项不符合题意;C .正方体的表面积6=×一个面的面积,则正方体的表面积与它的一个面的面积成正比例关系,故该选项符合题意;D .9:4x y =:,则36xy =,y 和x 成反比例关系,故该选项不符合题意; 故选:C .4. 在5cm 5cm 8cm 8cm 10cm 、、、、的五根小棒中,任选三根围成一个等腰三角形,有( )种不同的围法.A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查了等腰三角形的定义,三角形的三边关系定理,熟记三角形的三边关系定理是解题关键.根据三角形的三边关系定理即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边则有以下两种选法:①选5cm 5cm 8cm 、、三根木棒,558+>,满足三角形的三边关系定理;②选8cm 8cm 10cm 、、三根木棒,8810+>,满足三角形的三边关系定理;③选885cm cm cm 、、三根木棒,5+8>8,满足三角形的三边关系定理;即有3种不同的围法,故选:B .5. 某超市按进价加40%作为定价销售某种商品,可是销售得不好,只卖出14,来老板按定价减价40%以210元出售,很快就卖完了,则这次生意盈亏情况是( )A. 不亏不赚B. 平均每件亏了5元C. 平均每件赚了5元D. 不能确定【答案】B【解析】【分析】本题主要考查了百分数的应用,先求出进价,再求出现在的售价,相减即可得出答案.【详解】解:()()210140%140%250÷+−=(元),()11250140%210124544 ×+×+×−=(元), ∴2502455−=(元) 故选:B6. 同时掷出两枚相同的骰子,朝上的两个面上的两个点数的和不大于7的概率(可能性)是( ) A. 17 B. 16 C. 712 D. 13【答案】C【解析】【分析】本题主要考查可能性的求法,即求一个数是另一个数的几分之几用除法解答.同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的共21种,用除法计算即可.【详解】解:同时掷两枚相同的骰子,出现的点数的可能结果有36种,点数之和不大于7的有:()1,1,()1,2,()1,3,(1,4),()1,5,()1,6,(2,1),()2,2,(2,3),()2,4,()2,5, ()3,1,()3,2,()3,3,()3,4()4,1,()4,2,()4,3,()5,1,()5,2,()6,1,一共有21种,∴朝上的两个面上的两个点数的和不大于7的概率是2173612=, 故选:C .7. 小明将一个正方形纸对折两次,如图所示:并在中央点打孔再将它展开,展开后的图形是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查了折叠的性质,解题的关键是熟练掌握折叠的性质,发挥空间想象力.动手按照图示顺序操作一下,先左右对折,再上下对折即可得出答案.【详解】解:动手按照图示顺序操作一下,先左右对折,再上下对折,所以得出的图是:故选:B .8. 把分数a 的分子扩大9倍,分母扩大11倍,得到一个新分数b ;把分数a 的分子扩大8倍,分母扩大9倍,得到一个新分数c ,那么b 和c 比较( )A. b c >B. b c <C. b c =D. 无法比较 【答案】B【解析】【分析】本题考查分式基本性质,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变,根据分式的性质求解即可. 【详解】解:根据题意得:911b a =,89c a =, ∵999811111999×==×,881188991199×==×, ∵81889999<, ∴81889999a a <, ∴bc <,故选:B .9. 有两根长短粗细不同的蚊香,短的一根可燃8小时,长的一根的可燃时间是短的一根12,同时点燃两根蚊香,经过3小时,它们的长短正好相等,未点燃之前,短蚊香比长蚊香短( )的A. 35B. 67C. 25D. 45【答案】A【解析】【分析】本题考查代数式的应用,用燃烧3小时后的蚊香长度表示出短蚊香和长蚊香的原长是解题的关键. 【详解】解:长的可燃时间为1842×=小时, 3小时后:短蚊香可燃时间为835−=小时,长蚊香可燃时间为431−=小时,设后来的长度为a , 则短蚊香的长度为85a ,长蚊香的长度为4a , ∴短蚊香比长蚊香短8445a a a −÷=35, 故选:A .10. 如图,把三角形DBE 沿线段折叠AC ,得到一个多边形DACEFB G ′,这个多边形的面积与原三角形面积的比是7:9,已知图2中阴影部分的面积为15平方厘米,那么原三角形的面积是( )平方厘米.A. 26B. 27C. 28D. 29【答案】B 【解析】 【分析】本题考查分数的应用.解题的关键是确定阴影部分的面积是原三角形面积的几分之几. 根据多边形的面积是原三角形面积的79,得到多边形中空白部分的面积是原三角形面积的29,进而得到阴影部分的面积是原三角形面积的59,再根据阴影部分的面积进行求解即可. 【详解】解:由题意,可知:多边形中空白部分的面积是原三角形面积的72199−=, 多边形中阴影部分的面积是原三角形面积的2251999−−=,则原三角形的面积是5915152795÷=×=(平方厘米) 故选B . 二.填空题(共10小题,满分20分)11. 2.737373…用四舍五入法保留两位小数是____.【答案】2.74【解析】【分析】本题主要考查了求一个数的近似数,根据四舍五入法求解即可.【详解】解:2.737373…小数位上第三位数字是7,75>,∴2.737373 2.74…≈, 故答案为:2.74.12. 一个长方形,周长24厘米,宽4厘米.如果长增加2厘米,那么面积是______平方厘米.【答案】40【解析】【分析】本题主要考查了长方体的周长公式以及面积公式, 根据长方形的周长可求出长方形的长,然后再根据长方形的面积公式计算即可得出答案.【详解】解:长方形的长为24248÷−=(厘米), 如果长长增加2厘米,则长变成8210+=(厘米), 所以长方形的面积为:10440×=(平方厘米), 故答案为:40.13. 陈老师花了600元买了48个本和72支笔.已知每个本8元,那么每支笔____元.【答案】3【解析】【分析】题目主要考查有理数的四则混合运算的应用,理解题意,列式计算即可. 【详解】解:根据题意得:600488372−×=元, 故答案为:3.14. 用黑、白两种颜色的正六边形地砖按如下图所示规律铺地面,则第n 个图形有____块白色地砖.【答案】(42)n +##()24n +【解析】【分析】本题考查了规律型−图形变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.根据图示,第1个图形有白色地砖6块;第2个图形有白色地砖6410+=(块);第3个图形有白色地砖64414++=(块);.….;第5个图形白色地砖的块数:64(51)22+×−=(块);……;第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块.据此解答.【详解】解:第1个图形有白色地砖6块,第2个图形有白色地砖6410+=(块), 第3个图形有白色地砖64414++=(块), 第5个图形白色地砖的块数:64(51)22+×−=(块), 第n 个图形白色地砖的块数:64(1)(42)n n +×−=+块,故答案为:(42)n +.15. 在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少____.【答案】28【解析】【分析】本题主要考查求三棱柱表面积,根据题意先求得原三棱柱的表面积,再求得切去一个三棱柱后形成新的表面积,作差即可. 【详解】解:原三棱柱的表面积为138********×+×+×××=, 切去一个三棱柱后形成新的表面积为5840×=,则表面积减少了684028−=.故答案为:28.16. 如图,把梯形ABCD 分割成一个平行四边形和一个三角形,已知:3:5BE EC =,如果三角形CDE 的面积是200平方厘米,则平行四边形ABED 的面积是____平方厘米的.【答案】240【解析】【分析】本题考查了比的应用,得出:6:5ABED DEC S S = 是解题关键;根据比的性质,结合平行四边形和三角形的面积公式即可求解;【详解】解:设平行四边形ABED 和三角形CDE 的高为h ,35BE EC :=: ,1:?:?6:52ABED DEC S S BE h CE h ∴== , 三角形CDE 的面积是200平方厘米,∴平行四边形ABED 面积为:62002405×=平方厘米, 故答案为:240 17. 下面这个几何体,是由10个小正方体组成的.想一想,至少再摆上____个小立方体,它就能拼成一个长方体了.【答案】8【解析】【分析】本题考查从不同方向看几何体,解题的关键是理解题意,灵活运用所学知识解决问题;根据几何体特征即可求解;【详解】解:这个几何体是由10个小正方形组成的,332108××−=(个)至少再摆上8个小立方体,它就能拼成一个长方体了,故答案为:818. “16 ☆”是一个四位数,它同时是2,3,5的倍数,其中☆所代表的数字是0,则 所代表的数字最小是____.【答案】2的【解析】【分析】本题考查倍数的特征及其应用,熟练掌握根据倍数的特征是解题的关键;根据倍数的特征求解即可;【详解】解:同时是2,3,5的倍数的特征:个位必须为0且各位上的数字之和为3的倍数, 因此可知,169++= ,2= ,故答案为:219. 在甲、乙、丙三缸酒精溶液中,纯酒精含量分别占48%、62.5%和23,已知三酒精溶液的总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量,三缸溶液混合,酒精含量将达到56%,那么丙缸中纯酒精的量是____千克.【答案】12【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =,∴丙缸中纯酒精的量218123=×=(千克), ∴丙缸中纯酒精的量是12千克,故答案为:12.20. 由200多枚棋子摆成一个n 行n 列的正方形,甲先从中取走10枚,乙再从中取走10枚……这样轮流取下去,直到取完为止,结果最后一枚被乙取走,乙一共取走了 ________枚棋子.【答案】126【解析】【分析】本题主要考查了完全平方数的性质,棋子数是一个完全平方数,最后一枚被乙取走,说明这个完全平方数的十位是奇数,找出200~300之间十位数是奇数的完全平方数即可求解.【详解】解: 棋子摆成n行n列的正方形,∴棋子数是一个完全平方数,最后一枚被乙取走,∴这个数的十位数是奇数,200~300间的完全平方数只有225,256,289,∴棋子数是256个,∴乙取走的棋子数为:24026126÷+=(个).故答案为:126.三.解答题(本大题共8小题,共60分)21. 请直接写出答案.(1)3.2 1.18+=(2)10.98−=(3)38415×=(4)60.5÷=(5)0.47 2.5××=(6)1132+÷=(7)3535 7878×÷×=(8)1542 111113×+=【答案】(1)4.38(2)0.02(3)2 5(4)12(5)7(6)5 6(7)25 64(8)1110 1573【解析】【分析】此题考查了有理数混合运算,小数的乘除法和减法的计算,是一个综合性题,我们要灵活运用小数计算的方法解答,计算除法时用商不变的规律思考,计算乘法时用积的变化规律思考,用整数减小数时,可以同时扩大小数位数的倍数,相减后再缩小回来,本题培养了学生计算能力(1)根据小数加小数计算法则计算即可;(2)根据小数减小数计算法则计算即可;(3)根据分数乘法法则计算即可;(4)根据小数除法法则计算即可;(5)根据乘法交换律,乘法法则计算即可;(6)先计算除法,再根据分数加法法则计算即可;(7)根据分数混合运算法则计算即可;(8)先计算括号里面的式子,再利用分数乘法法则计算即可【小问1详解】解:3.2 1.18 4.38+=小问2详解】10.980.02−=【小问3详解】3824155×=【小问4详解】60.512÷=【小问5详解】()0.47 2.50.4 2.577××=××=【小问6详解】11132513223666+÷=+=+=【小问7详解】3535552578788864×÷×=×=【小问8详解】【154215741110111113111431573×+=×= 22. 解方程.(1)13224x += (2)0.75:3:1.2=x(3)111523x x −= 【答案】(1)18(2)0.3(3)90【解析】【分析】本题考查解方程,注意书写格式,养成检验的好习惯.(1)根据等式的基本性质方程两边同时减去12,再同时除以2即可; (2)根据比例的基本性质化简方程,再根据等式的基本性质方程两边同时除以3即可; (3)先化简,再根据等式的基本性质方程两边同时除以16即可. 【小问1详解】 解:13224x += 113122242x +−=− 124x = 12224x ÷=÷ 18x 【小问2详解】解:0.75:3:1.2=x30.75 1.2x =×30.9x =0.3x =【小问3详解】解:111523x x −= 1156x = 11115666x ÷=÷ 90x =23. 计算下面各题,能简算的要求写出简便过程.(1)5721128336−+÷ (2)()130.58 4.870.4213 5.13 4.25×−+×−×;(3)91131624 ÷×−(4)1111121231234123410+++++++++++++++ 【答案】(1)152(2)12.75(3)34(4)911 【解析】【分析】题目主要考查有理数的四则混合运算,熟练掌握运算法则及运算律是解题关键. (1)将除法转化为乘法,然后运用乘法运算律计算即可;(2)运用乘法运算律先计算括号内的,然后再计算括号外的即可;(3)先计算小括号中的运算,然后计算乘法,最后计算除法即可;(4)将原式进行变形,然后运用简便方法计算即可.【小问1详解】 解:5721128336 −+÷572361283 =−+× 5723636361283=×−×+×6315242=−+ 63392=− 152=; 【小问2详解】()130.58 4.870.4213 5.13 4.25×−+×−×()()130.580.42 4.87 5.13 4.25 =×+−+×[]13110 4.25=×−×3 4.25=×12.75=;【小问3详解】91131624 ÷×− 913164 =÷× 94163=× 34=; 【小问4详解】1111121231234123410+++++++++++++++ 1111(12)22(13)32(14)42(110)102+++++×÷+×÷+×÷+×÷ 23344510112222=++++×××× )111111113402(2311145=×−+−+−++− 2()21111=×− 9222=× 911=. 24. 按要求画一画.(1)画出长方形绕点A顺时针旋转90°后的图形,并在图内标上①.(2)以点O为圆心,画一个半径是3m的圆.(3)在空白处画出原长方形按1:2缩小后的图形,并在图内标上②.【答案】(1)见详解(2)见详解(3)见详解【解析】【分析】本题主要考查作图,()1根据旋转的性质,绕点A作旋转图形;()2根据图中的圆心和已知小方格的长度作圆即可;()3根据题干要求画出长为2m,宽为1m的长方形即可.【小问1详解】解:如图,【小问2详解】解:见上图,【小问3详解】解:见上图,25. 下边是一个零件,由一个圆锥和圆柱组成,它的体积是600立方厘米,那么上面圆锥部分的体积是多少立方厘米?【答案】300立方厘米【解析】【分析】题目主要考查圆柱体积及圆锥体积的计算,设底面积为S ,则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=,得出两部分的体积相同即可求解.【详解】解:这个零件即圆柱和圆锥的底面都相同,设底面积为S , 则圆锥的体积为11243S S ×=,圆柱的体积为44S S ×=, ∴两部分的体积相同,∴上面圆锥部分的体积为:6002300÷=立方厘米.26. 芳芳从家出发去上学,走到A 地时,发现忘记带学具了,于是赶紧小跑回家;拿好学具后,怕上学迟到,就骑自行车赶往学校,芳芳的行程情况和时间分配如图.芳芳小跑回家的速度是多少?她骑自行车到学校用了多少时间?【答案】150米/分,12分钟【解析】【分析】题目主要考查从图象获取相关信息及扇形统计图的应用,根据题意及图象获取相关信息求解是即可.【详解】解:小跑回家的速度为:()45085150÷−=米/分, 骑自行车到学校用的时间为:525%60%12÷×=分钟.答:芳芳小跑回家的速度是15米/分;骑自行车到学校用的时间为12分钟.27. 一项工程,由甲队承租,需工期80天,工程费用100万元,由乙队承担,需工期100天,工程费用80万元.为了节省工期和工程费用,实际施工时,甲乙两队合做若干天后撤出一个队,由另一个队继续做到工程完成.结算时,共支出工程费用86.5万元,那么甲乙两队合做了多少天?【答案】甲、乙两队合作了26天【解析】【分析】此题考查的是一元一次方程的应用,找准等量关系列出方程是解决此题的关键.甲队工作x 天完成的工作量×甲队完成整个工程需要的费用+乙队整个工期完成的工作量×乙队完成整个工程需要的费用86.5=.【详解】解:设甲队工作x 天,则甲队完成的工作量为80x ,乙队完成的工作量为180x −, 由题意得,86.51008018080x x =×+×−, 解这个方程可得:26x =. 乙队工作的天数:261167.580100 −÷= (天), ∵2667.5<,∴撤出的一个队是甲队,则甲队工作的天数就是甲、乙两队合作的天数,答:甲、乙两队合作了26天.28. 如果一个四位数满足千位数字和十位数字的和为9,百位数字与个位数字的差为2,那么称M 为“跳跃数”.若一个四位“跳跃数”M 的千位数字与个位数字的2倍的和记作()P M ,百位数字与十位数字的和记作()Q M ,那么()()()P M F M Q M =为整数时,则称M 为“跳跃整数”. 例如:8614满足819,622+=−=,且()()86148816,8614617P Q =+==+=,即()()()167P M F M Q M ==不是整数,故8614不是“跳跃整数”. 又如:9503满足909,532+=−=,且()()95039615,9503505P Q =+==+=,即()()()1535P M F M Q M ===是整数,故9503是“跳跃整数”. (1)判断:5745 “跳跃整数”,5341 “跳跃整数”;(填“是”或“不是”); (2)证明:任意一个四位“跳跃数”与其百位数字的2倍之差能被11整除;(3)若2000100010010M a b c d =++++(其中14290909a b c d ≤≤≤≤≤≤≤≤,,,且a b c d、、、均为整数)是“跳跃整数”,请直接写出满足条件的所有M 的值.【答案】(1)不是,是(2)见解析 (3)9503或5341或3765【解析】【分析】本题考查了新定义运算,列代数式及整式的加减,关键是理解新定义,正确运用新定义解决问题.(1)根据新定义及其计算方法,即可一一判定;(2)设任意一个四位“跳跃数”千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,可得99010188M a b =++,()2119098M b a b −=++,据此即可证得; (3)根据题意和新定义可得:2192a c b d ++= −= 且212a d b c +++是整数,可得212352a d c b c b c ++−+=+++,再由82c a −=,a ,c 均为整数,可得c 是偶数,最后对c 的取值分别计算,即可分别求得. 【小问1详解】解:5745 满足549,752+=−=,且()574551015P =+=,(5745)=7+4=11Q , 即()()()5745155745=574511P F Q =,不是整数, 5745∴不是“跳跃整数”;5341 满足549,312+=−=,且()5341527P =+=,(5341)=3+4=7Q , 即()()()534175341==153417P F Q =, 5341∴是“跳跃整数”;【小问2详解】证明:设任意一个四位“跳跃数”的千位上的数字为a ,百位上的数字为b ,则十位上的数字为9a −,个位上的数字为2b −,()10001001092M a b a b ∴=++−+−100010090102a b a b ++−+−99010188a b =++()29909988119098M b a b a b ∴−=++=++,a ,b 均为整数,的9098a b ∴++也为整数,2M b ∴−能被11整除,∴任意一个四位“跳跃数”与其百位数字的 2 倍之差能被 11 整除;【小问3详解】解:()200010001001010002110010M a b c d a b c d =++++=++++ 是“跳跃整数”,2192a c b d ++= ∴ −=且212a d b c +++是整数, 把2192a c d b +=− =− 代入212a d b c +++,得 ()()92223525352c b b c c b c c b c b c b c b c −+−+−+−+−+===+++++ 219a c +=− ,82c a −∴=, a ,c 均为整数,8c − 是偶数,c ∴是偶数,09c ≤≤ ,∴当0c =时,52b+是整数, 29b ≤≤ ,b 为整数,∴当5b =时,52=35+是整数, 故此时,4a =,则219,5,0,3a b c d +====, =9503M ∴;当2c =时,6512=222b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;当4c =时,12572=244b b −++−++是整数, 29b ≤≤ ,b 为整数, ∴当3b =时,72=134−+是整数, 故此时,aa =2,则215,3,4,1a b c d +====, =5341M ∴;当6c =时,185132=266b b −++−++是整数, 29b ≤≤ ,b 为整数,∴当7b =时,132=176−+是整数, 故此时,1a =,则213,7,6,5a b c d +====, =3765M ∴;当8c =时,245192=288b b −++−++是整数, 29b ≤≤ ,b 为整数,∴无满足条件的数;综上,满足条件的所有M 的值为9503或5341或3765.。

初一新生入学综合素质测试数学试题含答案

初一新生入学综合素质测试数学试题含答案

初一新生入学综合素质测试数学试题(全卷满分100分)一、填空。

(44分)1.一个数由五十个亿、六百二十三个万和四百个一组成,这个数写作( ),改写成以“万”作单位的数是( ),省略亿位后面的尾数约是( )。

2.94的分数单位是( ),再添上( )个这样的分数单位就是最小的合数。

3.把8米长的钢管平均锯成5段,每段是这根钢管的( ),每段长( )。

4.某班男生是女生的53,女生是全班的( )男生比女生少( )% 5.A 和B 是两个自然数,A 除以B 的商正好是5,那么A 和B 的最大公因数是( ),最小公倍数是( )。

6. 一个分数的分子与分母之和是67,如果把分子与分母各加上5,则分子与分母的比是2:5,原分数是( )。

7.一个圆柱形水桶,里面盛48升的水,正好盛满,如果把一块与水桶等底等高的圆锥形,放入水中,桶内还有( )升水。

8.比80吨多14 的是( ),80吨比( )多 14 。

9、若A :B =2:3,B :C =1:2,且A +B +C =22,则A =( )。

10.同学们排着方阵做操,最外层每边都是15人,最外层共有( )人,整个方阵共有( )人。

11.两数相除商15余5,被除数、除数、商、余数之和为313,被除数是( )12、一个圆柱的侧面积是188.4平方厘米,高是10厘米,底面积( ),体积是( )。

把它削成一个最大的圆锥,应削去( )。

二、列式计算(10分) ①一个数的54比120的20%多56,这个数是多少?②某数加8、减15、乘6、除以5得18,这个数是多少?三、求右图阴影部分的面积。

(单位:厘米。

7分)四、应用题:(1-3题每题8分,4题15分,共39分)1、小明把2000元钱存入银行,存定期二年,年利率是2.25%(利息税5%),到期时,小明一共可从银行领到多少钱?2、一辆汽车从甲地开往乙地,每小时行40千米,返回时每小时50千米,结果返回时比去的时间少48分钟,求甲乙两地的路程?3、两个书架共有书260本,甲书架借出的本数与剩下的本数比为1:3,乙书架借出的本数与剩下的本数比是2:3,已知两个书架借出的本数一样多,原来两个书架各有书多少本?4、一个用塑料薄膜制作的蔬菜大棚长20米,横截面是一个半径2米的半圆。

初一入学数学考试试卷含答案

初一入学数学考试试卷含答案

数学试卷 (用时:用时:6060分钟)卷首语卷首语::亲爱的同学,希望你好好思考,好好努力,交上一份满意的答卷!项 目 一二三四五六总 分 得 分一、填空:(每题3分,共42分)分)1、三个连续奇数,中间一个是a ,另外两个分别是,另外两个分别是、 。

2、用0、5、3这三个数字组成一个两位数,使它同时是2、3、5的倍数,这个数是的倍数,这个数是 。

3、一个数十万位上是最大的一位数字,万位上是最小的合数,百位上是一偶质数,其余各位都是0,这个数写作这个数写作 ,改写成以“万”为单位的数是,改写成以“万”为单位的数是 。

4、如果小明向东走28米记作米记作+28+28米,那么米,那么-50-50米表示小明向米表示小明向 走了走了 米。

米。

5、250千克∶0.5吨化成最简整数比是吨化成最简整数比是 : ,比值是,比值是。

6、18的因数中有的因数中有 个素数、个素数、 个合数;从18的因数中的因数中 选出两个奇数和两个偶数,组成一个比例式是选出两个奇数和两个偶数,组成一个比例式是。

7、如右图,一个半径为1厘米的圆沿着一个直角三角形的三边滚动一周,厘米的圆沿着一个直角三角形的三边滚动一周, 那么这个圆的圆心所经过的总路程为那么这个圆的圆心所经过的总路程为厘米。

取3π≈ 8、小明、小惠、小强是同一小区的三个小伙伴,在小学某年级时,小明的年龄是小惠和小强两人的平均数。

现在小明小学毕业了,长成了一个13岁的少年,而小惠现在11岁,那么小强现在岁,那么小强现在 岁 9、如图,大长方形的长和宽分别为19厘米和13厘米,厘米,形内放置7个形状、大小都相同的小长方形,个形状、大小都相同的小长方形, 那么图中阴影部分的面积是那么图中阴影部分的面积是 平方厘米平方厘米1010、、 如左图所示,把底面周长18.84厘米、厘米、高10厘米的圆柱切成若干等分,拼成一个近似的长方体,表面积厘米的圆柱切成若干等分,拼成一个近似的长方体,表面积 比原来增加了比原来增加了 平方厘米,体积是平方厘米,体积是 立方厘米。

江苏省徐州市2024-2025学年七年级上学期新生入学数学测试题(解析版)

江苏省徐州市2024-2025学年七年级上学期新生入学数学测试题(解析版)

2024年新初一学情调研数学卷(满分100分,考试时间60分钟)一、选择题(每题只有一个正确选项,请将正确选项填入括号内,每题2分,共16分)1. 用一条长16厘米的铁丝围成一个长方形,如果长和宽都是质数,它的面积是()平方厘米.A. 6B. 10C. 15D. 21【答案】C【解析】【分析】解答此题的关键是:依据长方形的周长公式及长和宽都是质数,先确定长与宽的值,进而求其面积.由“用一条长16厘米的铁丝围成一个长方形”可知,这个长方形的周长是16厘米,则长方形的长与宽÷厘米,再据“长和宽都是质数”即可确定出长与宽的值,从而可以计算出这个长方形的面积.的和是162÷=(厘米);【详解】解:长与宽的和:1628因为长和宽都是质数,则长是5厘米,宽是3厘米,×=(平方厘米);长方形的面积:5315答:这个长方形的面积是15平方厘米.故选:C.2. 下列物品中,()的体积大约是6立方厘米.A. 一粒黄豆B. 一块橡皮C. 一个文具盒D. 一个篮球【答案】B【解析】【分析】该题主要考查了对体积单位和数据大小的认识.根据生活经验对体积单位和数据大小的认识,即可求解.【详解】解:一块橡皮的体积大约是6立方厘米,故选:B.3. 把整个图形看作“1”,涂色部分能用“0.4”表示的是().A. B. C. D.【答案】D【解析】【分析】本题考查了分数化小数,熟练掌握分数化小数是解题的关键.分析各选项图形涂色部分的占比,然后分数化小数即可求解.【详解】解:A.该选项的图形平均分成了16份,涂色部分占4份,也就是416,即0.25,故不符合题意;B.该选项的图形不是平均分,故不符合题意;C.该选项的图形平均分成了4份,涂色部分占1份,也就是14,即0.25,故不符合题意;D.该选项的图形平均分成了5份,涂色部分占4份的一半,也就是1425×,即25,也就是0.4,故符合题意.故选D.4. 一种圆柱形的罐头,它的侧面有一张商标纸,沿着高把商标纸剪开(如图)展开后是().A. 平行四边形B. 三角形C. 梯形D. 长方形【答案】D【解析】征,将圆柱分别沿高展开得到长方形,沿除高外的任何直线展开都可得到展开图是平行四边形.【详解】解:将圆柱侧面沿高展开,得到一个长方形,而长方形是特殊的平行四边形,沿除高之外的任何一条不同于高的直线展开都会得到平行四边形,所以沿着高把商标纸剪开展开后是长方形;.故选:D.5. 用一副三角尺的两个角不能拼成()度的角.A. 15B. 105C. 110D. 120【答案】C【解析】【分析】本题考查了角的计算.用三角板拼特殊角其实质是角的和差运算,理解题意是关键.用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【详解】解:A.15°的角,453015°−°=°;故本选项不符合题意;°+°=°;故本选项不符合题意;B.105°的角,4560105C.110°的角,无法用三角板中角的度数拼出;故本选项符合题意;D.120°的角,9030120°+°=°;故本选项不符合题意.故选C.6. 某品牌的饮料促销方式如下:甲店打七五折,乙店“买三送一”,丙店“每满100元减30元”.李老师要买30瓶标价9元的这种品牌的饮料,在()店购买更省钱A. 甲B. 乙C. 丙D. 无法确定【答案】A【解析】【分析】解决本题关键是理解三家商店不同的优惠政策,分别找出求现价的方法,求出现价,再比较.甲店打七五折:是指现价是原价的75%,把原价看成单位“1”,用原价9元乘75%求出每瓶的现价,再乘30瓶,即可求出在甲店需要的钱数;乙店“满三送一”:是指买4瓶饮料只需要付3瓶的钱,先用30瓶除以4,求出里面最多有几个4瓶,还余几瓶,从而求出需要付钱的瓶数,再乘9元,即可求出在乙店需要的钱数;丙店“每满100元减30元”:是指每100元可以减免30元,先用30瓶乘9元,求出原价一共是多少钱,再除以100,求出总钱数里面有多少个100元,就是可以减免多少个30元,再用乘法求出可以减免的钱数,然后用原总价减去可以减免的钱数,从而求出丙店需要的钱数,再比较即可求解.【详解】解:甲店:×(元)××=6.7530=202.5975%30乙店:()÷+÷⋅⋅⋅⋅⋅⋅3031=304=72()×+×7329×=239=207(元)丙店:×(元)309=270÷⋅⋅⋅⋅⋅⋅270100=270−×270230−=27060=210(元)202.5207210<<答:在甲店购买更省钱.故选:A .7. 下面几句话中,正确的有( )句.(1)把连续五个自然数按从大到小的顺序排列,中间的数就是这五个数的平均数;(2)从上面看这个正方体(如图)的黑色部分应该是一个锐角三角形;(3)如果a 是一个偶数,b 是一个奇数,那么32a b +的结果是奇数;(4)一杯糖水的含糖率是25%,再加入5克糖和20克水,这杯糖水的含糖率不变.A. 1B. 2C. 3D. 4【答案】A【解析】 【分析】本题考查的是平均数的含义,奇数与偶数,正方体的认识,百分比的含义,掌握基础概念是解本题的关键.(1)设这五个自然数中的中间数是a ,再根据平均数计算方法求出这五个数的平均数,即可判断正误; (2)因为正方形的4(3)如果a 是一个偶数,3a 是偶数,如果b 是一个奇数,2b 是偶数,所以32a b +的结果是偶数,据此判断即可;(4)求出25克糖水的含糖率,再进行分析即可判断.【详解】解:(1)设这五个自然数中的中间数是a ,则这五个自然数分别为:2a −,1a −,a ,1a +,2a +,()112112555a a a a a a a −+−+++++=×= 所以中间的数就是这五个数的平均数,原题说法正确;(2)因为正方形的4个角是直角,所以黑色部分是直角三角形,所以原题说法错误;(3)如果a 是一个偶数,3a 是偶数,如果b 是一个奇数,2b 是偶数,偶数+偶数=偶数,所以32a b +的结果是偶数,所以原题说法错误;(4)5520100%525100%0.2100%20%25%÷+×=÷×=×=<(),所以加入5克糖和20克水,这杯糖水的含糖率会变低,故原题说法错误;综合以上分析可得正确的是(1),故只有一个正确.故选:A .8. 我们学过+、-、×、÷这四种运算,现在规定“*”是一种新的运算,*A B 表示:5A B −,如:4*354317=×−=,那么()7*6*5= ( ). A. 5B. 10C. 15D. 20【答案】B【解析】【分析】本题考查有理数的混合运算,根据新定义“*”的运算法则计算即可.【详解】解:由题意知,6*556525=×−=, 则()7*6*57*255725352510==×−=−=, 故选B .二、填空题(9至15题每空1分,16至18题每空2分,共28分)9. 今年“五一”假期,江苏省A 级旅游景区、省级旅游重点村、文旅消费集聚区和文化场馆累计接待游客三千一百三十二万四千三百人次,写作___人次,改写成用“万”作单位是___万人次,旅游消费总额14115000000元,省略“亿”后面的尾数约是___亿元.【答案】 ①. 31324300 ②. 3132.43 ③. 141【解析】【分析】本题考查有理数的读写、近似数,把一个多位数改写成以“万”为单位的数,只要找到这个数的万位,在万位的右下角点上小数点,去掉小数末尾的0,再在后面添上一个“万”字;按照“四舍五入”的原则写近似数.【详解】解:三千一百三十二万四千三百人次写作31324300人次,313243003132.43=万,14115000000元省略“亿”后面的尾数约是141亿元,故答案为:31324300,3132.43,141.10. 大年三十,米米一家在家庭微信群里抢红包,米米抢到了35元,微信账单显示35+元,妈妈发出了一个66元的红包,那么妈妈的微信账单会显示___元,爸爸的微信账单显示20+元,表示___.【答案】 ①. 66− ②. 抢到了20元红包【解析】【分析】本题考查了正数和负数,正负数来表示具有意义相反的两种量:负数表示发出红包,那么正数就表示抢到红包,再直接得出结论即可.【详解】解:妈妈发出了一个66元的红包,那么妈妈的微信账单会显示66−元,爸爸的微信账单显示20+元,表示抢到了20元红包.故答案为:66−,抢到了20元红包.11. __1212/=:___34==___%=___折. 【答案】 ①. 9 ②. 16 ③. 75 ④. 7.5【解析】 【分析】本题考查比、分数、百分数的互化,从34入手,利用比与分数、百分数的关系求解即可. 【详解】解:39:1212/1675%7.54====折. 故答案为:9,16,75,7.5. 12. 一个两位小数精确到十分位是10.0,这个小数最大是 _________,最小是 ________.【答案】 ①. 10.04 ②. 9.95【解析】【分析】本题主要考查了取近似数,解题的关键是考虑到两种情况:“四舍”得到10.0,“五入”得到10.0,即可得出这个两位小数最大值和最小值.【详解】解:一个两位小数精确到十分位是10.0,这个小数最大是10.04,最小是9.95.故答案为:10.04;9.95.13. 如图,第二根绳长约___米,当 4.2a =米时,两根绳长一共约__米.【答案】 ①. ()22a + ②. 14.6【解析】【分析】本题考查列代数式及代数式求值,根据图示列代数,再将 4.2a =代入求值即可.【详解】解:由图可知,第二根绳长()22a +米,当 4.2a =米时,两根绳长之和为:()22323 4.2214.6a a a ++=+=×+=(米), 故答案为:()22a +,14.614. 比较大小:49_____48,π_____3.14, 1324______0.499,324−_____ 2.75−. 【答案】 ①. < ②. > ③. > ④. =【解析】【分析】本题考查的是有理数的大小比较,π的近似值,结合π与有理数的大小比较的方法可得答案.【详解】解:∵98>, ∴4498<; ∵π 3.142≈,∴π 3.14>; ∵1312124242>=,10.4992<, ∴130.49924>, 32 2.754−=−; 故答案为:<,>,>,= 15. 如图,一个拧紧瓶盖的瓶子里装有一些水,根据图中数据,可以算出瓶中水的体积占瓶子容积的__.【答案】12【解析】 【分析】本题考查有理数的除法的应用,根据两个图中瓶子空余部分的体积相等,可得答案.【详解】解:由图可得,第一个图中水高度为8cm ,第二图中空余部分的高度为()18108cm −=, 两个图中瓶子空余部分的体积相等,∴水的体积占瓶子容积的81882=+, 故答案为:12. 16. 将一根6米长的细木棍先截去它的12,再截去余下的13,再截去余下的14,⋅⋅⋅⋅⋅⋅,直到减截去余下的16,最后剩下的细木棍长是___米. 【答案】1【解析】的【分析】本题考查了有理数的混合运算,熟练掌握相关运算法则是解题关键.根据题意列出算式,计算即可得到答案. 【详解】解:1111161111123456×−×−×−×−×− 12345623456=××××× 1=,故答案为:117. 如图是小明和弟弟两人进行100米赛跑的情况.(1)从图上看,弟弟跑的路程和时间成___比例;(2)弟弟每秒跑___米,当小明到达终点时,弟弟离终点__米.【答案】 ① 正 ②. 3 ③. 25【解析】(1)根据正比例的意义,两种相关联的量,一种量变化另一种量也随着变化,两种量中相对应的两个数的比值一定,这两种量成正比例.从图上看,弟弟跑的路程和时间比是60203÷=,所以弟弟跑的路程和时间成正比例.(2)根据速度=路程÷时间,据此可以求出弟弟每秒跑多少米,又知小明跑60米用15分钟,由此可以求出小明每秒速度,进而求出小明跑100米用多少分钟,然后根据路程=速度×时间,据此可以求出当小明到达终点时,弟弟已经跑了多少米,从而可得答案.【详解】解:(1)因为 60203÷=(一定),所以弟弟跑的路程和时间成正比例. (2)60203÷=(米/秒), ()()31006015 31004 325 75×÷÷=×÷=×= (米), ∴1007525−=(米)答:弟弟每秒跑3米,当小明到达终点时,弟弟离终点25米.故答案为:正;3、25.18. 把相同规格的小长方形(黑长方形和白长方形)按规律排列(如图),照此规律,当刚好出现第7个黑.的长方形时,黑长方形个数占小长方形总个数的___.【答案】14【解析】 【分析】本题考查了数与形结合的规律.找出规律,按照规律计算是解题的关键.按照图中规律可知,第1个黑长方形,1个白长方形,第2个黑长方形,2个白长方形,第3个黑长方形,3个白长方形,第4个黑长方形,4个白长方形,第5个黑长方形,5个白长方形,第6个黑长方形,6个白长方形,第7个黑长方形,然后先求出小长方形的总个数,然后按照黑长方形个数÷小长方形的总个数即可求解.【详解】解: 出现7个黑长方形时,小长方形总个数为:7+1+2+3+4+5+6=28, 所以黑长方形个数占小长方形总个数的71=284. 故答案为:14. 三、计算题19. 直接写出下列各题的得数:(1)13460+=(2)5.6 3.8−=(3)1164+= (4)4%5×= (5)22174×= (6)3988÷= 【答案】(1)194(2)1.8 (3)512(4)0.2 (5)32(6)1 3【解析】【分析】(1)根据整数的加法运算法则计算即可;(2)根据小数的减法运算法则计算即可;(3)先通分,再计算即可;(4)根据百分数的乘法运算法则计算即可;(5)根据分数的乘法运算法则计算即可;(6)根据分数的除法运算法则计算即可;【小问1详解】解:13460194+=;【小问2详解】解:5.6 3.8 1.8−=;【小问3详解】解:11235 64121212 +=+=;【小问4详解】解:4%50.2×=;【小问5详解】解:2213 742×=,小问6详解】解:39381 88893÷=×=;【点睛】本题考查的分数,百分数的加,减,乘法,除法运算,掌握运算法则是解本题的关键.20. 怎样简便就怎样算:(1)117 2.750.5324−+−;(2)7279 92525+×+;(3)857 1.98.578085.7×−×−;(4)9174 104205−+÷.【【答案】(1)2(2)8(3)857(4)3 8【解析】【分析】本题考查了有理数的四则混合运算.熟练掌握有理数的四则混合运算的运算法则是解题的关键.(1)先将各项化为小数,然后从左往右计算即可;(2)先利用乘法分配律计算,然后从左往右计算即可;(3)观察式子数字的特点,发现可以通过积不变的规律把式子变形,然后用乘法分配律计算即可;(4)将括号内各项通分,然后先算小括号,再算中括号,最后从左往右计算即可.【小问1详解】解:11 7 2.750.53 24−+−7.5 2.750.5 3.25 =−+−2=;【小问2详解】解:7279 92525+×+18772525=++8=;【小问3详解】解:857 1.98.578085.7×−×−8.57100 1.98.57808.5710 =××−×−×()8.571908010=×−−8.57100×857=;【小问4详解】解:9174 104205−+÷185742020205=−+÷ 1812420205=−÷ 65204=× 38=. 四、解方程(每题3分,共6分)21. (1)5720.4x +=;(2)0.4:52:3x =.【答案】(1) 2.2x =;(2)253x =【解析】【分析】本题主要考查一元一次方程的解法,解一元一次方程的基本步骤有:去分母,去括号,移项,合并同类项,系数化1,根据方程的特点,灵活运用相应步骤解方程.(1)移项后,直接合并同类项,系数化1即可解得方程;(2)转换后,系数化1即可解得方程;【详解】解:(1)5720.4x +=移项得:720.45x =−,合并同类项得:715.4x =,系数化1得: 2.2x =;(2)0.4:52:3x =则1.210x =,系数化1得:253x =. 五、解决问题(每题5分,共20分)22. (1)用数学眼光看成语“立竿见影”,是应用了比例的知识,即同一时间、同一地点,杆高和影长成 比例;(2)如果一颗小树的高度是1.5米,影长是0.8米,同一时间、同一地点,测得一颗大树的影长是4.8米,那么你能求出这棵大树的高度吗?列出求这棵大树高度的算式并计算出结果.【答案】(1)正;(2)这棵大树的高度是9米.【解析】【分析】本题考查的同一时间、同一地点,物体的长度和它的影子的长度的比值一定.(1)根据同一时间、同一地点,物体的长度和它的影子的长度的比值一定可得答案;(2)根据正比例的含义列式计算即可.【详解】解:(1)用数学的眼光看成语“立竿见影”,是应用了比例知识,即同一时间、同一地点,竿高和影长成正比例.(2)这棵大树的高度为 1.54.86 1.590.8×=×=(米). 答:这棵大树的高度是9米.23. 如图是一个底面半径为3厘米的圆柱木块被削去一半后的形状,请你计算出它的体积.(圆周率取3.14)【答案】它的体积是169.56立方分米.【解析】【分析】此题考查了圆柱的体积,解题的关键是熟练掌握圆柱的体积公式.根据圆柱的体积公式进行求解即可. 详解】解:21π31254π54 3.14169.562××=≈×=(立方分米). 答:它的体积是169.56立方分米.24. 完成一项任务,甲独做要6小时,乙独做要8小时,现在两人合作,乙中途请假2小时,完成任务时一共用了几小时?【答案】完成任务时一共用了247小时 【解析】【分析】此题是一个稍复杂的工程问题的应用题,注意认真分析题意,理清解题思路,解答此题求出“乙与甲合作的工作总量”是解此题的关键.先计算出甲与乙合作完成的任务,再用它除以工作效率和,就得到了合作所用的时间,最后加上2小时即可. 【详解】解:111122668 −×÷++【1712324 =−÷+ 272324=÷+ 224237=×+ 2227=+ 247=. 答:完成任务时一共用了247小时; 25. 体育器材室李老师用546元买足球和篮球,一共买了12个.他买的足球和篮球各多少个?【答案】学校买篮球5个,足球7个.【解析】【分析】本题主要考查了一元一次方程组的应用,找准等量关系,正确列出一元一次方程组是解题的关键.设学校买篮球x 个,足球()12x −个,根据用546元买了篮球和足球共12个,列出一元一次方程组,解方程即可.【详解】解:设学校买篮球x 个,足球()12x −个,根据题意得:()424812546x x +−=, 解得:5x =,∴127x −=,答:学校买篮球5个,足球7个.六、探索与发现(8分)26. 数学中我们经常用平移、旋转等方式将不规则图形转化成规则图形,观察下表中每组图形与算式的变化,你有什么发现?根据发现的规律填空:(1)()2461×+=;()216181×+=; (2)( ) × ( )212024+=.【答案】(1)5,17(2)2023,2025【解析】【分析】本题考查数字类规律探索:(1)观察所给图形及算式可得()()2111a a a −×++=; (2)利用发现的规律即可求解.【小问1详解】解:由所给图形及算式可得()()2111a a a −×++=, 因此2461255×+==,21618117×+=;【小问2详解】解:由(1)中发现规律可得:()()2202412024112024−×++= 即22023202512024×+=.。

七年级入学考试 (数学)(含答案)100146

七年级入学考试 (数学)(含答案)100146

七年级入学考试 (数学)试卷考试总分:125 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 下面两个数互为相反数的是( )A.与B.与C.与D.与2. 关于的方程是一元一次方程,则的取值情况是( )A.B.C.D.为任意数3. 如图,梯形绕虚线旋转一周所形成的图形是( )A.B.C.D.4. 某校学生会为了解本校学生垃圾分类知识的普及情况,打算采用问卷的形式进行随机抽样调查,调查情况分为:不了解;了解很少;基本了解;非常了解四种情况.他们制定了几个调查步骤,但是记录员把步骤打乱了,你觉得正确的步骤是( )①被调查的学生填写垃圾分类知识的问卷;②把调查收集的数据绘制成扇形统计图;③整理调查的数据;④每个班随机抽取部分学生;⑤估计本校全体学生中对垃圾分类知识非常了解的人数.A.①④③②⑤B.④①③②⑤−[−(−3)]−(+3)−(−)13+(−0.33)−|−6|−(−6)−π 3.14x a −3(x−5)=b(x+2)b b ≠−3b =−3b =−2bC.④①②⑤③D.④⑤①③②5. 一项工程甲单独做要天完成,乙单独做需要天完成,甲先单独做天,然后两人合作天完成这项工程,则可列的方程是 A.B.C.D.6. 实数,,在数轴上对应的点如下图所示,则下列式子中正确的是( )A.B.C.D.7. 一家手机商店的某品牌手机原价元,先提价,再降价出售.现价和原价相比,结论是( )A.价格相同B.原价高C.现价高D.无法比较8. 如图,是直线上的一点,过点作射线,平分,平分,若,则的度数为( )A.B.C.D.9. 下列各式的计算,正确的是( )A.B.C.D.40504x ()+=1x 40x 40+50+=1440x 40×50+=1440x 50++=1440x 40x 50a b c ac >bc|a −b|=a −b−a <−b <c−a −c >−b −c4800110110O AB O OC OD ∠AOC OE ∠BOC ∠DOC =50∘∠BOE 50∘40∘25∘20∘D+BC =AB710. 如图,点,为线段上两点,,且,则等于( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )11. 我国第一艘航母“辽宁舰”最大排水量为吨,用科学记数法表示,其结果应是________.12. 如图,将一副三角尺叠放在一起,使直角的顶点重合于点,则________.13. 一本笔记本的原价是元,现在按折出售,购买本笔记本需要付费________元.14. 单项式的系数是________.15. 在数轴上,点,,分别表示数,,,小明不小心将墨水洒在了数轴上,造成的值无法辨认,已知点在点,之间,且为整数,则的值为________.16. 如图,自左至右,第个图由个正六边形、个正方形和个等边三角形组成;第个图由个正六边形、个正方形和个等边三角形组成;第个图由个正六边形、个正方形和个等边三角形组成;按照此规律,第个图中正方形和等边三角形的个数之和为________.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )17. 已知,为有理数,现规定一种新运算,满足=.(1)求的值;(2)求的值;(3)任意选择两个有理数,分别填入下列□和〇中,并比较它们的运算结果:□〇和〇□.18. 小马解方程.去分母时,方程右边的忘记乘,因而求得的解为,试C D AB AC +BD =a AD+BC =AB 75CD a 25a 23a 53a 576750067500O ∠AOC +∠DOB =n 85−3πyz x 25A B C a −1.5 1.5a A B C a |−a −2|1166221110331614⋯n x y ※x※y xy+12※4(1※4)※(−2)※※=−12x−13x+a 2−16x =2求的值.19. 先化简,再求值:,其中,满足.20. 为了便于广大市民晚上出行,政府计划用天的时间在某段公路两侧修建路灯便民设施,若此项工程由甲队单独做需要天完成,由乙队单独做需要天完成.在甲队单独做了一段时间后,为了加快工程进度乙队也加入了工程建设,正好按原计划完成了此项工程,问此项工程甲队单独做了多少天?21. 某学校为了了解学生网上购物的情况,随机抽取了部分学生进行问卷调查,发出问卷份,每份问卷围绕“习惯网购、从不网购、偶尔网购中,你属于哪一种情况”(必选且只选一种)的问题进行调查,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图所示的两幅不完整的统计图.根据以上信息解答下列问题:回收的问卷数为________份;把条形统计图补充完整;扇形统计图中,“习惯网购”部分的圆心角的度数是________;全校名学生中,请你估计“习惯网购”的人数为多少?22. 定义:设有有序实数对,若等式成立,则称为“共生实数对”.通过计算判断实数对, 是不是“共生实数对”;若 是“共生实数对”,①判断是否能等于;②判断是否是“共生实数对”;③直接用含的代数式表示.23. 如图所示,线段,线段,,分别是线段,的中点,求的长.24. 已知:如图,、分别为锐角内部的两条动射线,当、运动到如图的位置时,=,=,(1)求的度数;(2)如图,射线、分别为、的平分线,求的度数.(3)如图,若、是外部的两条射线,且==,平分,a x−2(x−)+(−x+)1213y 23213y 2x y |x−2|+(y+1=0)22440205000(1)(2)(3)(4)24000(a,b)a −b =ab +1(a,b)(1)(−2,1)(4,)35(2)(m,n)n 1(−n,−m)n m AD=6cm AC=BD =4cm E F AB CD EF 1OB OC ∠AOD OB OC ∠AOC +∠BOD 100∘∠AOB+∠COD 40∘∠BOC 2OM ON ∠AOB ∠COD ∠MON 3OE OF ∠AOD ∠EOB ∠COF 90∘OP ∠EOD平分,当绕着点旋转时,的大小是否会发生变化,若不变,求出其度数,若变化,说明理由. 25.如图,在数轴上,点、分别表示数、.若,则点、间的距离是多少?若点在点右侧:①求的取值范围;②判断:表示数的点应落在________(填序号).(.点左边 .线段上 .点右边)OQ ∠AOF ∠BOC O ∠POQ A B 2−2x+6(1)x =−1A B (2)B A x −x+4A A B AB C B参考答案与试题解析七年级入学考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】C【考点】相反数绝对值【解析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:.,,不是相反数,故错误;.,,不是相反数,故错误;.,,互为相反数,故正确;.绝对值不同,不是相反数,故错误.故选.2.【答案】A【考点】一元一次方程的定义【解析】先把方程整理为一元一次方程的一般形式,再根据一元一次方程的定义求出的值即可.【解答】解:,,,∴,解得:.故选.3.【答案】D【考点】点、线、面、体【解析】A −[−(−3)]=−3−(+3)=−3AB −(−)=1313−(−0.33)=0.33BC −|−6|=−6−(−6)=6CD D C b a −3(x−5)=b(x+2)a −3x+15−bx−2b =0(3+b)x =a −2b +15b +3≠0b ≠−3A根据面动成体得到旋转后的图形的形状,然后选择答案即可.【解答】解:将梯形绕虚线旋转一周,形成的图形是上面和下面分别是圆锥,中间是一个圆柱的组合体.故选.4.【答案】B【考点】全面调查与抽样调查【解析】本题主要考查抽样调查方法的步骤.【解答】解:抽样调查的步骤,第一步应该先抽取部分学生,所以排除;第二步填写问卷,排除;第三步整理数据,排除.故选.5.【答案】D【考点】由实际问题抽象出一元一次方程【解析】由题意一项工程甲单独做要天完成,乙单独做需要天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分.【解答】解:设整个工程为,根据关系式甲完成的部分+两人共同完成的部分列出方程式为:.故选6.【答案】D【考点】不等式的性质数轴【解析】【解答】D A D C B 4050140150=11=1++=1440x 40x 50D.解:,因为,,所以,所以此选项错误;,因为,所以,,所以此选项错误;,因为,所以,所以此选项错误;,因为,,所以,,所以此选项正确;故选.7.【答案】B【考点】列代数式求值【解析】由一部手机原价元,先提价原来的,这时把手机原价看成单位““,再降价出售,这时把降价后的价格看成单位““,所以现价可求出,再与原价比较即可.【解答】解:一部手机原价元,先提价,价格为,再降价,价格为,∴现价为(元).∵,故原价高.故选.8.【答案】B【考点】角的计算角平分线的定义【解析】根据角平分线的定义和补角的定义可得.【解答】解:∵,平分,∴,∴,又∵平分,∴,故选:.9.【答案】C【考点】合并同类项A a <b c >0ac <bcB a <b a −b <0|a −b |=b −aC a <b <c −a >−b >−cD a <b c >0−a >−b −a −c >−b −c D 48001101110148001104800×(1+)1101104800×(1+)×(1−)1101104800×(1+)×(1−)=47521101104752<4800B ∠DOC =50∘OD ∠AOC ∠AOC =2∠DOC =100∘∠BOC =−∠AOC =180∘80∘OE ∠BOC ∠BOE =∠BOC =1240∘B根据整式的加减法,即可解答.【解答】解:、,故错误;、,故错误;、,故正确;、,故错误;故选:.10.【答案】B【考点】线段的和差【解析】根据线段的和差定义计算即可.【解答】解:,,,,,解得,.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )11.【答案】【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【解答】=.12.【答案】【考点】A 2a +3b ÷5abB 2−=y 2y 2y 2C −10t+5i=−5tD 3n−2m ;mn m 2n 2C ∵AD+BC =AB 75∴5(AD+BC)=7AB ∴5(AC +CD+CD+BD)=7(AC +CD+BD)∵AC +BD =a ∴5(a +2CD)=7(a +CD)CD =a 23B 6.75×104a ×10n 1≤|a |<10n n a n >1n <1n 67500 6.75×104180∘【解析】由图可知,,根据角的和差关系可得结果.【解答】解:∵,,∴.故答案为:.13.【答案】【考点】列代数式【解析】直接根据条件,表示即可.【解答】解:原价元,折出售,则为元,购买本笔记本需要付费(元).故答案为:.14.【答案】【考点】单项式【解析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式的数字因数是,∴此单项式的系数是:.故答案为:.15.【答案】或或【考点】数轴绝对值∠AOC =∠AOB+∠BOC ∠DOB =∠DOC −∠BOC ∠AOC =∠AOB+∠BOC =+∠BOC 90∘∠DOB =∠DOC −∠BOC =−∠BOC 90∘∠AOC +∠DOB=+∠BOC +−∠BOC 90∘90∘=180∘180∘4nn 80.8n 55×0.8n =4n 4n −3π5−3πyz x 25−3π5−3π5−3π5321【解析】先求出,间的整数,再分情况求值,即可解答.【解答】解:在到的整数有,,,当时,,当时,,当时,.故答案为:或或.16.【答案】【考点】规律型:图形的变化类【解析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【解答】解:∵第个图由个正六边形、个正方形和个等边三角形组成,∴正方形和等边三角形的和;∵第个图由个正方形和个等边三角形组成,∴正方形和等边三角形的和;∵第个图由个正方形和个等边三角形组成,∴正方形和等边三角形的和,,∴第个图中正方形和等边三角形的个数之和.故答案为:.三、 解答题 (本题共计 9 小题 ,每题 5 分 ,共计45分 )17.【答案】===;∵==,∴原式====;∵===,===,∴=.【考点】有理数的混合运算【解析】B C −1.5 1.5−101a =−1|−a −2|=|−(−1)−2|=1a =0|−a −2|=|0−2|=2a =1|−a −2|=|−1−2|=33219n+31166=6+6=12=9+321110=11+10=21=9×2+331614=16+14=30=9×3+3⋯n =9n+39n+32※42×4+18+191※41×4+155※(−2)5×(−2)+1−10+1−92※(−2)2×(−2)+2+(−2)+1−4+2+(−2)+1−3(−2)※2(−2)×2+(−2)+2+1−4+(−2)+2+1−32※(−2)(−2)※2x※y(1)根据=,可以求得所求式子的值;(2)根据=,可以求得所求式子的值;(3)根据根据=和题意,可以比较出所求两个式子的大小,本题得以解决.【解答】===;∵==,∴原式====;∵===,===,∴=.18.【答案】解:由小马的解法可知去分母后的方程为:,即,∵,∴,解得.【考点】解一元一次方程【解析】先根据小马的解法得出去分母后的方程,把代入即可求出的值;再根据解一元一次方程的方法求出的值即可.【解答】解:由小马的解法可知去分母后的方程为:,即,∵,∴,解得.19.【答案】解:原式,由,得到,,则原式.【考点】整式的加减——化简求值非负数的性质:绝对值非负数的性质:偶次方x※y xy+x+y+1x※y xy+x+y+1x※y xy+x+y+12※42×4+18+191※41×4+155※(−2)5×(−2)+1−10+1−92※(−2)2×(−2)+2+(−2)+1−4+2+(−2)+1−3(−2)※2(−2)×2+(−2)+2+1−4+(−2)+2+1−32※(−2)(−2)※22(2x−1)=3(x+a)−1x =3a +1x =23a +1=2a =13x =2a x 2(2x−1)=3(x+a)−1x =3a +1x =23a +1=2a =13=x−2x+−x+=−3x+1223y 23213y 2y 2|x−2|+(y+1=0)2x =2y =−1=−6+1=−5【解析】(1)原式去括号合并得到最简结果,利用非负数的性质求出与的值,代入计算即可求出值;【解答】解:原式,由,得到,,则原式.20.【答案】解:设甲队单独做了天,根据题意得: ,解得:,答:此项工程甲队单独做了天.【考点】一元一次方程的应用——工程进度问题【解析】此题暂无解析【解答】解:设甲队单独做了天,根据题意得:,解得:,答:此项工程甲队单独做了天.21.【答案】份,补全条形统计图如图所示.人.答:“习惯网购”的人数为.【考点】用样本估计总体扇形统计图条形统计图【解析】x y =x−2x+−x+=−3x+1223y 23213y 2y 2|x−2|+(y+1=0)2x =2y =−1=−6+1=−5x x+(24−x)(+)=1140120140x =1616x x+(24−x)(+)=1140120140x =16164000(2)4000−1000−500=2500225∘(4)24000×=15000250040001500此题暂无解析【解答】解:份.故答案为:.份,补全条形统计图如图所示..故答案为:.人.答:“习惯网购”的人数为.22.【答案】解:∵,,∵,∴不是共生实数对.∵,,∴,∴是共生实数对.∵ 是共生实数对,∴.①将代入,得,显然这样的不存在,∴的值不能等于;②,,∵,∴,∴ 是共生实数对;③∵,∴,∴,由①知,,∴.【考点】有理数的混合运算定义新符号【解析】此题暂无解析【解答】解:∵,,∵,∴不是共生实数对.∵,,∴,∴是共生实数对.(1)1000÷25%=40004000(2)4000−1000−500=2500(3)×=360∘25004000225∘225∘(4)24000×=15000250040001500(1)−2−1=−3−2×1+1=−1−2−1≠−2×1+1(−2,1)4−=351754×+1=351754−=4×+13535(4,)35(2)(m,n)m−n =mn+1n =1m−n =mn+1m−1=m+1m n 1−n−(−m)=−n+m −n×(−m)+1=mn+1m−n =mn+1−n+m=mn+1(−n,−m)m−n =mn+1mn−m=−(n+1)(n−1)m=−(n+1)n−1≠0m=−n+1n−1(1)−2−1=−3−2×1+1=−1−2−1≠−2×1+1(−2,1)4−=351754×+1=351754−=4×+13535(4,)35∵ 是共生实数对,∴.①将代入,得,显然这样的不存在,∴的值不能等于;②,,∵,∴,∴ 是共生实数对;③∵,∴,∴,由①知,,∴.23.【答案】解:∵,,∴,∴.【考点】线段的中点线段的和差【解析】由已知条件可知,=,又因为、分别是线段、的中点,故=可求.【解答】解:∵,,∴,∴.24.【答案】∵=,∴=,又∵=,∴==,∴=,答:的度数为;∵是的平分线,∴==,又∵是的平分线,∴==,∴==,∴===,答:的度数为;∵==,=,∴==,∵===,∴===,又∵平分,平分,∴==,∴==,∴===.【考点】(2)(m,n)m−n =mn+1n =1m−n =mn+1m−1=m+1m n 1−n−(−m)=−n+m −n×(−m)+1=mn+1m−n =mn+1−n+m=mn+1(−n,−m)m−n =mn+1mn−m=−(n+1)(n−1)m=−(n+1)n−1≠0m=−n+1n−1AD=6cm AC=BD =4cm BC =AC +BD−AD =2cm EF =BC +(AB+CD)12=2+×(6−2)12=4cm BC AC +BD−AB E F AB CD EF BC +(AB+CD)12AD=6cm AC=BD =4cm BC =AC +BD−AD =2cm EF =BC +(AB+CD)12=2+×(6−2)12=4cm ∠AOC +∠BOD 100∘∠AOB+∠BOC +∠BOC +∠COD 100∘∠AOB+∠COD 40∘2∠BOC −100∘40∘60∘∠BOC 30∘∠BOC 30∘OM ∠AOB ∠AOM ∠BOM ∠AOB ON ∠COD ∠CON ∠DON ∠COD ∠DON +∠BOM (∠COD+∠AOB)∠MON ∠BOM +∠BOC +∠DON +20∘30∘50∘∠MON 50∘∠EOB ∠COF 90∘∠BOC 30∘∠EOF +−90∘90∘30∘150∘∠AOD ∠AOB+∠BOC +∠COD +40∘30∘70∘∠AOF +∠DOE ∠EOF −∠AOD −150∘70∘80∘OP ∠EOD OQ ∠AOF ∠AOQ ∠FOQ ∠AOF ∠DOE ∠AOQ +∠DOP (∠AOF +∠DOE)∠POQ ∠AOQ +∠DOP +∠AOD +40∘70∘110∘角平分线的定义【解析】(1)根据角的和差关系,由=,=,可得出答案;(2)由角平分线的定义可得=,进而求出的度数;(3)由==,可以得出=,进而得出,再根据平分,平分,进而求出答案.【解答】∵=,∴=,又∵=,∴==,∴=,答:的度数为;∵是的平分线,∴==,又∵是的平分线,∴==,∴==,∴===,答:的度数为;∵==,=,∴==,∵===,∴===,又∵平分,平分,∴==,∴==,∴===.25.【答案】解:当时,,则,即,两点的距离为.①由题意得:,;②∵,∴,∴,即数轴上表示数内点在的右边,又∵,∴,即数轴上表示数的点在点的左边,∴数轴上表示数的点应落在线段上,选.【考点】数轴两点间的距离解一元一次不等式在数轴上表示实数∠AOC +∠BOD 100∘∠AOB+∠COD 40∘∠NOC +∠BOM (∠AOB+∠COD)∠MON ∠EOB ∠COF 90∘∠COE ∠BOF ∠EOF OP ∠EOD OQ ∠AOF ∠AOC +∠BOD 100∘∠AOB+∠BOC +∠BOC +∠COD 100∘∠AOB+∠COD 40∘2∠BOC −100∘40∘60∘∠BOC 30∘∠BOC 30∘OM ∠AOB ∠AOM ∠BOM ∠AOB ON ∠COD ∠CON ∠DON ∠COD ∠DON +∠BOM (∠COD+∠AOB)∠MON ∠BOM +∠BOC +∠DON +20∘30∘50∘∠MON 50∘∠EOB ∠COF 90∘∠BOC 30∘∠EOF +−90∘90∘30∘150∘∠AOD ∠AOB+∠BOC +∠COD +40∘30∘70∘∠AOF +∠DOE ∠EOF −∠AOD −150∘70∘80∘OP ∠EOD OQ ∠AOF ∠AOQ ∠FOQ ∠AOF ∠DOE ∠AOQ +∠DOP (∠AOF +∠DOE)∠POQ ∠AOQ +∠DOP +∠AOD +40∘70∘110∘(1)x =−1−2x+6=−2×(−1)+6=8AB =8−2=6A B 6(2)−2x+6>2x <2x <2−x >−2−x+4>2−x+4A (−x+4)−(−2x+6)=x−2<0−x+4<−2x+6−x+4B −x+4AB B(1)先求出的值,再求出;(2)①根据数轴上的点表示的数右边的总比左边的大,可得不等式,解不等式可得答案;②根据的取值范围,利用不等式的性质可得,然后利用作差法求出,即可得出答案.【解答】解:当时,,则,即,两点的距离为.①由题意得:,;②∵,∴,∴,即数轴上表示数内点在的右边,又∵,∴,即数轴上表示数的点在点的左边,∴数轴上表示数的点应落在线段上,选.−2x+6AB x −x+4>2−x+4<−2x+6(1)x =−1−2x+6=−2×(−1)+6=8AB =8−2=6A B 6(2)−2x+6>2x <2x <2−x >−2−x+4>2−x+4A (−x+4)−(−2x+6)=x−2<0−x+4<−2x+6−x+4B −x+4AB B。

初一数学入学试题及答案

初一数学入学试题及答案

初一数学入学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个算式的结果为负数?A. 3 + 4B. 5 - 8C. 2 × 3D. 6 ÷ 2答案:B3. 如果一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. 0答案:A4. 一个数的平方是16,这个数是:A. 4B. -4C. 2D. 16答案:A、B5. 以下哪个选项是正确的不等式?A. 3 > 5B. 2 < 1C. 4 ≥ 4D. 6 ≤ 3答案:C6. 一个长方形的长是10厘米,宽是5厘米,它的面积是:A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米答案:C7. 一个数的立方是27,这个数是:A. 3B. 9C. -3D. -9答案:A、C8. 以下哪个选项是正确的分数?A. 1/2B. 2/0C. 3/4D. 5/-2答案:A、C、D9. 一个数加上它的相反数等于:A. 0B. 1C. 2D. 无法确定答案:A10. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:8 = 10:16D. 7:9 = 14:18答案:A、C二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______或______。

答案:5, -52. 一个数的倒数是1/2,这个数是______。

答案:23. 一个数的平方根是3,这个数是______。

答案:94. 一个数的立方根是2,这个数是______。

答案:85. 一个数的因数有1和2,这个数至少是______。

答案:26. 一个数的倍数有6和12,这个数至少是______。

答案:67. 一个数的约数有3和9,这个数是______。

答案:98. 一个数的公倍数有24和36,这个数至少是______。

七年级数学新生入学能力自测卷(小升初衔接)含解析版

七年级数学新生入学能力自测卷(小升初衔接)含解析版

七年级新生入学能力自测卷数学一、选择题(本大题共6小题,每题2分,共12分)A....【答案】C【详解】解:根据旋转的性质,旋转前后,各点的相对位置不变,得到的图形全等,7.2022年内,小轩的体重增加了4kg.我们记为+4kg,小涵的体重减少了3kg,应记为 g.−【答案】3000角形、4个三角形…搭2020个三角形共需要 根火柴棒… 【答案】4041【详解】解:1个三角形需要3根火柴棒,2个三角形需要5根火柴棒,3个三角形需要7根火柴棒,4个三角形需要9根火柴棒,……照此规律下去搭n 个这样的三角形需要21n 个三角形,当2020n =时,212202014041n +=×+=,故答案为:4041.13.中国古代数学著作《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数,若其意义相反,则分别叫做正数与负数.如果“盈利6%”记作“+6%”,那么“-5%”表示 .【答案】亏损5%【详解】“盈利6%”记作“+6%”,那么“-5%”表示亏损5%.14.做数学“24点”游戏时,抽到的数是:2−,3,4,6−;你列出算式是: (四个数都必须用上,而且每个数只能用一次.可以用加、减、乘、除、乘方运算,也可以加括号,列一个综合算式,使它的结果为24或24−).【答案】()()326424 ×−−−+=【详解】解:抽到的数是:2−,3,4,6−,列出的算式是()()326424 ×−−−+=. 故答案为:()()326424 ×−−−+= .15.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:第七个图案中有白色地砖 块。

【答案】30【详解】因为第一个图案有白色地面砖6块,第二个有10块,第三个有14块……据此总结出规律,第n 个图案中白色地砖数有(2+4n )块【答案】4所以冲锋舟离出发地最远的是第三次有16km远.+++++++=,(3)1589108971278km×=升;720.539答:邮箱容量至少要39升.23.(6分)笑笑在银行存了20000元人民币,定期三年,年利率是2.70%.到期后银行应付给笑笑本金和利息一共多少元?【答案】银行应付给笑笑本金和利息一共21620元.+××【详解】解:2000020000 2.7%3+20000162021620=(元),∴银行应付给笑笑本金和利息一共21620元.24.(8分)12人乘车去某地,可供租的车辆有两种:一种车可乘8人,另一种车可乘4人.(1)请给出3种以上的租车方案;(2)如果第一种车的租金是300元/天,第二种车的租金是200元/天,那么采用哪种方案费用最少?(1)需一辆8人座,一辆4人座.(2)一辆8人座,一辆4人座费用最少.【答案】(1)都租8人座的;都租4人座的;8人座和4人座的各一辆.(2)结合(1)进行解答.【详解】(1)都租8人座的:12÷8=1.5,需2辆;都租4人座的:12÷4=3,需3辆;8人座和4人座都租:8+4=12,需一辆8人座,一辆4人座.(2)都租8人座的,需付费:2×300=600(元);都租4人座的,需付费:3×200=600(元);8人座和4人座的各一辆:需付费:300+200=500(元).故一辆8人座,一辆4人座费用最少.25.(8分)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④后面的横线上写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④;⑤1+3+5+7+9=52;…(2)请写出第n个等式;a 2 2−4−3− 3b 1 0 3 2−1−− 1 2−7−a bA,B两点之间的距离d 1 2 7。

七年级新生入学考数学试卷(含答案)

七年级新生入学考数学试卷(含答案)

初一新生素质训练检测 数学试卷(时间:90分钟座位号:一、认真填空。

(24分)1.下面是泉州市的一些信息:请你根据以上信息,完成下列填空:(1)总人口数改写成用“万”作单位的数是( )万人;(2)土地面积为( )公顷;耕地面积为( )平方千米;(3)生产总值省略“亿”后面的尾数约是( )亿元。

2.计算口÷△,结果是:商为10,余数为▲。

如果▲的最大值是6,那么△的最小值是()。

3.在145,114,83,52,21,……这一列数中的第8个数是( )。

4.用数字1、2、3、4可以组成( )个没有重复数字的三位数。

5.右图是某服装厂2006年各季度产值统计图:(1)平均每月产值( )万元。

(2)第三季度比第一季度增产( )%。

毕业小学:姓名: 考场:密封线内不要答题6.一个整数保留到万位是10万,这个数最大是( ),最小是( )。

7.有两堆煤,甲堆4.5吨,乙堆6吨,甲堆每天用去0.36吨,乙堆每天用去0.51吨,( )天后两堆煤剩下的相等。

8. 左图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是( )平方厘米;至少还需要( )块这样的小正方体,才能搭成一个大正方体。

9.2007年的国庆节是星期一,2008年的国庆节是星期( )。

10.某小学举行一次数学竞赛,共15题,每做对一题得8分,每做错一题倒扣4分,小明共得了72分,他做对了( )题。

11.一个等腰直角三角形,腰长6厘米,如果以腰为轴旋转一周,占空间( )立方厘米。

12.如右图:长方形面积是48平方厘米,BC :AB=3:2,AE=23 AD , F 是DC 的中点,四边形EBFD 的面积是()平方厘米。

二、精心挑选。

(10分)1.甲、乙二人各走一段路,他们速度比是4:5,时间比是5:6,则路程比是( )。

A . 24:25B .25:24C .3:2D .2:32.一根绳子剪成两段,第一段长是53米,第二段是全长的53,两段相比( )。

2023年成都市棕北中学初一新生入学检测数学试卷附详细答案

2023年成都市棕北中学初一新生入学检测数学试卷附详细答案

2023年成都市棕北中学初一新生入学检测数学试卷测试时间:100分钟一、填空(共20分,每空1分)1、80405000读作______,改写成用“万”作单位的数是______,保留到万位约是______。

2、5.05L=______L______ml,2小时15分=______小时。

3、如果甲与乙的比是1︰2,那么甲、乙的和是甲的______倍。

4、小明在期中测试中,语文、数学和英语三科的平均分是a分,语文和数学共得b 分,英语得______分。

5、______÷4=9=0.75=______︰20=______%。

(_____)6、8比5多______%。

7、一个画在图上的长是3cm的物件,实际长是15m,这幅图的比例尺是______。

8、8,12和24三个数的最大公约数是______,最小公倍数是______。

9、比较大小,填“<”、“=”或“>”。

______1.3;8.7×0.93______8.7。

1.5___1.50;1.3÷81410、我们知道,被减数与减数都增大相同的数,差不变,例如:12-7与(3+12)-(3+7)相等。

根据以上规律,探索计算132-(25-43)=______。

二、判断(对的打“√”,错的打“×”)(共8分,每题1分)1、周长相等的两个长方形面积也一定相等。

(▲)2、钟邱洁看一本书,看过的页数与剩下的页数成反比例。

(▲)3、王刚上山每小时行2千米,返回下山每小时行4千米,他上、下山的平均速度是千米。

(▲)每小时834、12能化成有限小数。

(▲)155、李师傅做了95个零件,全都合格,合格率是95%。

(▲)6、折线统计图既可以表示数量的多少,也方便看到数量的增减情况。

(▲)7、如果+300元表示存入300元,则-500元表示支出500元。

(▲) 8、口袋里有3个红球和2个白球,一次摸到白球的可能性是23。

(▲)三、选择(把正确答案前的序号填在括号里)(共5分,每题1分) 1、如果△÷○=□,那么下面算式不正确的是(▲)。

初一新生入学素质测试数学卷

初一新生入学素质测试数学卷

初一新生入学素质测试数学卷(一)姓名: 分数:欢迎你,新同学!在你刚刚跨进中 学大门的时候,请认真做好这份试题,让初中老师真实了解你的学习基础,以便我们今后的教学。

新的初中生活,由此开始。

一、选择题(5×4分=20分)1、一个家用冰箱的体积约是220( )A 立方厘米B 立方分米C 立方米2、抛硬币6次,6次都正面朝上,则抛第7次反面朝上的可能性是( ) A76 B 100% C21 D76 3、一件商品提价20%后,又降价20%,现在的价格( )A 与原价相同B 比原价低C 比原价高D 以上答案都不对 4、有两根同样长的绳子,从第一根中先用去31,再用去31米;从第二根中先用去31米,再用去余下的31,两者都有剩余。

第一根所剩部分与第二根所剩部分相比较( ) A 第一根长 B 第二根长 C 两根同样长 D 无法确定5、小明上个月的个人开支是120元,比计划节约了30元,节约百份之几?正确的算式是: A%10012030120⨯- B %10012030⨯ C %1003012030⨯+ D %1003012030120⨯+-二、填空题(8×4分=32分)6、一种数学运算符号⊙,使用下列等式成立2⊙4=12,5⊙3=18,9⊙7=80,那么6⊙4= 。

7、一堆煤,第一天运走的质量与总质量的比是1:3,第二天运走4.5吨后,两天正好运走了总质量的一半,这堆煤有 吨8、有一串分数:11;21;22;31;32;33;41;42;43;44 (1)1007是第 个分数 (2)第135个分数是 9、一件服装按成本价提高50%后定价,再按定价打8折销售,售价为240元,则这件服装的成本是 元。

10、如图个完全一样的长方形和1个小的正方形,正好拼成1个大 的正方形,其中大、小正方形的面积分别是64平方米和9平方 米,那么长方形的长是 ,宽是 。

11、一个圆柱和圆锥的体积之比是8:3,圆柱的底面半径是圆锥的底面半径的2倍,若圆锥高是36厘米,则圆柱的高是 厘米。

初一新生入学数学能力测试题含答案

初一新生入学数学能力测试题含答案

初一入学数学能力测试1. 计算:(631351301)712=______.2. )4321()321(4)321()21(3)21(121…10.(129)(1210)= 3. 把自然数1,2,3,…99分成三组,如果每一组的平均数恰好都相等,那么这三个平均数的乘积是_____.4. 一桶农药,第一次倒出2/7然后倒回桶内120克,第二次倒出桶中剩下农药的3/8,第三次倒出320克,桶中还剩下80克,原来桶中有农药____克. 5. 小明在计算器上从1开始,按自然数的顺序做连加练习.当他加到某一数时,结果是1991,后来发现中间漏加了一个数,那么,漏加的那个数是_____.6. 把若干个自然数1、2、3…乘到一起,如果已知这个乘积的最末13位恰好都是零,那么最后出现的自然数最小应该是_____.7. 某校活跃体育活动,购买同样的篮球7个,排球5个,足球3个,共花费用450元,后来又买同样的篮球3个,排球2个,足球1个共花费170元,问买同样的篮球1个,排球1个,足球1个,共需_____元.8. 平面上有5个点,无三点共线,以任意三点组成一个三角形,则三角形的个数应为___.9. 一副中国象棋,黑方有将、车、马、炮、士、相、卒16个子,红方有帅、车、马、炮、士、相、兵16个子.把全副棋子放在一个盒子内,至少要取出____个棋子来,才能保证有3个同样的子(例如3个车或3个炮等).10. 一长方体长、宽、高分别为3、2、1厘M,一只小虫从一顶点出发,沿棱爬行,如果要求不走重复路线,小虫回到出发顶点所走最长路径是____厘M.11. 在ABC 中,EC BE :=3:1,D 是AE 的中点,且DF BD :=7:1.求FC AF :=12. 有甲、乙、丙三辆汽车各以一定的速度从A 地开往B 地,乙比丙晚出发10分钟,出发后40分钟追上丙。

甲比乙又晚出发20分钟,出发后1小时40分追上丙.那么甲出发后需用___分钟才能追上乙.13. 某校组织甲、乙两班去距离学校30公里处参观,学校有一辆交通车,只能坐一个班,车速每小时45公里,人行速度每小时5公里,为了使两班同学尽早到达,他们上午8时同时从校出发, 那么两班到达参观地点是上午____时____分____秒. 14. 如图,已知边长为8的正方形E ABCD ,为AD 的中点,P为CE 的中点,BDP 的面积________. 15. 有一个由9个小正方形组成的大正方形,将其中两个涂黑,有种不同的涂法。

初一新生入学数学参考答案1

初一新生入学数学参考答案1

数学试卷参考答案一、填空题。

(本题共26分,每小题2分)1、< > = >2、 2.13 59003、 5 16 62.5 0.6254、2 4 5.235、 54 106、 1507、1 :60000008、△ 89、 502.4(160∏) 10、 盈利 1 二、判断题。

(本题共5分,每小题1分)11、× 12、× 13、 √ 14、 × 15 、√ 三、选择题。

(本题共5分,每小题1分)16、C 17、C 18、D 19、B 20、C 四、计算题。

21、用递等式计算。

(本题共12分,每小题3分)① 2.3×1.5+4.5÷0.75 ②61+72÷73 =3.45+6 ……2分 = 61+32……2分=9.45 ……3分 =65……3分③(1+31)÷(1-31) ④ 53÷[117×(52+31)]=34÷32 ……2分 = 53÷[117×1511] ……1分 =2 ……3分 =53÷157……2分=172……3分22、简算。

(本题共12分,每小题3分)①361-99 ② 0.7+3.8+4.2+9.3 =361-100+1 =(0.7+9.3)+(3.8+4.2) =261+1 =10+8 =262 =18③53×41+53×43 ④(511-872)÷291+22÷51 =53×(41+43) =5129+5122-32 =53×1 =1-32=53 =3123、求未知数X 。

(本题共6分,每小题3分)①2.5 :5 =21 :X ②21-2X = 41 解 :2.5 X = 5×21 解: 2X = 21-412.5X = 2.5 2X = 41X = 1 X = 8124、文字题。

(本题共8分,每小题4分)①1.65÷5+16×8 ②解:设这个数为X 。

泉州一中初一新生入学考试数学试卷附参考答案

泉州一中初一新生入学考试数学试卷附参考答案

泉州一中初一新生入学考试数学试卷一、填空题1.奥斑马、小泉、欧欧三人进行200米赛跑,当奥斑马到终点时,小泉离终点还有8米,欧欧离终点还有20米,如果奥斑马、小泉、欧欧赛跑的速度都不变,那么当小泉到达终点时,欧欧离终点还有_____米。

2.在横线里写上合适的数。

6÷_____=_____︰4=0.75=_____%=_____(写分数)。

3.一个三角形的三个内角度数的比是5︰3︰2,最小的角是____度,这个三角形是____三角形。

4.一根3m 长的竹竿直立在地上,量得它的影长是1.8m ,同时同地量得教学楼的影长是7.2m ,这栋教学楼高_____m 。

5.2.5︰23化简成最简整数比是_____,比值是_____。

6.三个小于100且互不相同的质数能构成一个等差数列,并且它们的数字和都相同,那么这三个质数的和是_____。

7.母亲节到了,冰冰准备了一个漂亮的水晶杯送给妈妈。

如图,这个水晶杯一次最多可以装_____毫升水。

8.广场上有一排彩旗,按一面红旗,二面黄旗,3面绿旗的顺序排列,第50面彩旗是_____颜色,第100面是_____颜色。

9.定义新运算a ○b=3a -b ,例如12○3=3×2-3=3,那么2018○(4○5)=_____。

10.2018年是中国农历戊戌年,生肖属狗.狗是一种可爱的动物,喜欢吃骨头。

图中的“骨头”是由一个长方形和4个34圆组成,已知长方形的长是60厘米,宽是20厘米,那么整个“骨头”的面积是_____平方厘米。

(π取3.14)二、选择题1.如图,两条平行线之间的三个阴影部分的面积相比较,(▲)的面积最小。

A.三角形B.平行四边形C.梯形2.○和□各表示一个数,已知○+□=48,○=□+□+□,则○=(▲)。

A.12B.24C.363.如图,把一个棱长是40厘米的正方体削成一个最大的圆柱体,圆柱的侧面积是多少平方厘米?正确的列式是(▲)。

初一入学考试数学试卷(含答案)

初一入学考试数学试卷(含答案)

初一入学考试数学试卷一、填空题(每小题2分,共24分)1、我国总人口达到十二亿九千五百三十三万人,这个数写作(),省略“亿”后面的尾数是()。

2、一项工作,甲用6小时完成,乙用8小时完成,甲之效比乙之效快()%。

3、把125克盐放入100克15%的盐水中,这时的含盐量是()。

4、已知y= 12x,x与y成()比例。

5、一段木料,锯4段需6分钟,如果锯5段需()分钟。

6、甲、乙两数的和是30.8,把甲数的小数点向左移动一位就和乙数相等,甲数是(),乙数是()。

7、六一儿童节,小明按了3个蓝气球,2个黄气球,1个绿气球的顺序把气球串起来装饰会场,则第2012个气球是()。

8、一根绳子用去全长的13还多4米,剩下的比用去的多10米,这根绳子原长()米。

9、在比例尺是1:8的图纸上,量得某零件的长度是12cm,这个零件的实际长度是()cm;如果这个零件画在图纸上的长度为4cm,这张图纸的比例尺是()。

10、2012年奥运会将在英国伦敦举行,这一年的上半年有()天。

11、把0.7:14化成最简整数比是(),45吨:600千克的比值是()。

12、小强的语文、英语平均分是93分,数学公布后,平均成绩又提高2分,小强的数学成绩是()分。

二、判断题(每题1分,共5分)1、两个面积相等的三角形,一定能拼成一个平行四边形。

()2、车轮的直径一定,车轮的转数与所行的路程成正比例。

()3、用110粒玉米种子做发芽试验,结果发芽的有100粒,发芽率是100%。

()4、小数点后不添上0或去掉0,小数的大小不变。

()5、一个自然数(0除外),不是质数就是合数。

()三、选择题(将正确答案的序号填在括号里,每题1分,共9分)1、先把9.675扩大10倍,再把小数点向左移动两位,所得的数比原数()A、减小10倍B、缩小10倍C、扩大10倍D、减小9倍2、下列各数中不能化成有限小数的是()A、714B、712C、720D、7103、在100克含糖10%的糖水中加入10克糖和10克水,结果糖水的含糖是()A、不变B、降低C、提高了D、不能确定4、如果甲数的18和乙数的23相等,那么()A、甲数>乙数B、甲数<乙数C、两数相等D、不能判断5、小王今年a岁,小刘今年(a—4)岁,再过2年他们相差()岁A、aB、4C、2D、66、一个数的小数点向右移动三位,再向左移动两位,这个数就()A、扩大100倍B、缩小100倍C、扩大10倍D、缩小10倍7、一个大圆的半径恰好是一个小圆的直径,这个小圆的面积是大圆面积的()A、12B、12×3.14 C、14D、188、一种商品,夏季时降价20%,冬季又涨价20%,则现价是夏季降价前的()A、100%B、85%C、96%D、120%9、在一个高为30cm的圆锥形容器里盛满水,将它全部倒入与它等底等高的圆柱形容器中,水面高()厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一新生入学测试数学试题含答案初一新生入学考试数学试题(全卷共4页,60分钟完成,满分120分)一、计算题(共34分)1、 直接写出得数。

(每小题1分,共12分)31+52= 32-52= 43+83= 21-61= 53×97= 712×1514= 74÷148= 95÷65= 1.5×0.4= 10÷2.5= 2.4×5= 0.78÷1.3= 2、 解方程。

(每小题3分,共6分)(1)45x -83x=27 (2)3x -52×43=593、 脱式计算(能简算的要简算)。

(每小题4分,共16分)(1)54-85÷65 (2)57-52÷157-71(3)0.8×0.95+0.3×0.8 (4)154×[(43-127)÷94]二、 填空题。

(每小题2分,共16分)1、据报道,2009年元旦广州市七大主要百货销售额达10400万元,把这个数改写成以亿为单位的数大约是( )亿元;如果保留整数是( )亿元。

2、613时=( )时( )分 2009立方分米=( )立方米 3、六年级男生人数占全级人数的53,那么六年级男女生人数的比是( );如果全年级有学生190人,其中女生有( )人。

4、在85、116、1611和4029这几个数中,最大的是( ),最小的是( )。

5、甲乙两地相距175千米,要画在比例尺是1:2500000的地图上,应画( )厘米。

6、9.42 (单位:cm)7、一个底面直径和高都是3分米的圆锥,它的体积是( )立方分米,一个与它等底等高的圆柱的体积比它大( )立方分米。

8、右图中每一个图形都是由一些小 △组成的,从第一个图形开始, 小△的个数分别是1,4,9……,那么 第八个图形的小△个数一共有( )个。

三、 判断题。

(每小题2分,共10分)1. 圆柱体的底面积与底面半径成正比。

( )2.1512不能化成有限小数。

( ) 3. 冰冰年龄是爸爸的 52,那么爸爸与冰冰年龄的比试5:2。

( )4. 两个假分数的乘积一定大于1。

( )5. 如果a<b ,那么a 与b 的比值一定小于1。

(a>0) ( ) 四、选择题(括号里填写正确答案的字母编号,每小题2分,共16分) 1、下面各式中,计算结果比a 大的是( )。

(a >0) A. a ×21 B. a ÷23 C. a ×53 D. a ÷532、如果a 是b 的75%,那么a :b=( )A. 3:4B. 4:3C. 4:5D. 7:5 3、等腰三角形一个底角的度数是45°,这是一个( )三角形。

左图是一个圆柱体的侧面展开图,原来这个圆柱的体积可能是( )cm 3A. 锐角B. 钝角C. 直角D. 等边4、张远按右边的利率在银行存了10000元,到期算得税前的利息共612元,他存了()年。

A. 5B. 3C. 2D. 15、把28.26立方米的沙子堆成高是3米的圆锥形沙滩,沙滩的底面积是()立方米。

A. 6.28B. 28.26C. 12.56D. 9.426、某班有学生52人,那么这个班男女生人数的比可能是()。

A. 8:7B. 7:6C. 6:5D. 5:47、买同样的书,所花的钱数与()成正比例。

A. 书的本数B. 书的页数C. 书的单价D. 不能确定8、右图阴影部分的周长()cm。

A. πB. 2πC. 4πD. 2.5π五、计算与操作(共8分)1、西陵超市第二季度每个月销售的情况如右图。

己知六月份销售额是150万元,请分别计算出四月份与五月份的销售额。

(5分)2、根据以上数据完成右边的统计图。

(3分)六、解决问题(共36分)1.一袋米30千克,第一周吃了40%,第二周吃了50%,还剩多少千克?(5分)2.、同学们绕学校操场的跑道跑步。

王津跑了1200米,李峰比王津多跑了多少米?(5分)3、六年级两个班共有学生92人,如果从六(1)班调8人到六(2)班,那么(1)班和(2)班人数的比是10: 13,两个班原来各有多少人?(5分)4、右图是一种钢制的配件(图中数据单位:cm)请计算它的表面积和体积。

(6分)5.一些长方形的长与宽的长度变化如下表。

(每小题2分,共6分)长/厘米 5 7.5 10 12.5 15 17.5 ……宽/厘米 2 3 4 5 6 7 ……(1)若长方形的宽是8厘米,长是( )厘米;若长是8厘米,宽是()厘米。

(2)这些长方形的宽与长成( )比例。

如果用y表示长,x表示宽,则y=( )。

(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)6.右图是小明和小东家到学校的路线图。

(1,2,3小题每空1分,第4小题4分,共8分)(1)量一量:小东和小明家到学校的图上距离分别是( )厘米和( )厘米。

(量得的结果取整厘米数)(2)如果小东家到学校的实际距离是1 000米,请算出这幅图的比例尺,并填在图中相应的括号里。

(3)小明家到学校实际距离是( )米。

(4)某天他们两人同时从家里出发上学,同时到达学校,己知小东每分走50米,那么小明每分走多少米?(列式解答)答案与解析(全卷共4页,60分钟完成,满分120分)一、计算题(共34分)4、 直接写出得数。

(每小题1分,共12分)31+52=151132-52=15443+83=8921-61=31 53×97=157712×1514=5874÷148=1 95÷65=32 1.5×0.4= 0.6 10÷2.5=4 2.4×5=12 0.78÷1.3=0.65、 解方程。

(每小题3分,共6分)(1)45x -83x=27 (2)3x -52×43=59解:87x = 27 (1分) 解:3x -103=59x=27÷87 (2分) 3x=1021x=4 (3分) x=1076、 脱式计算(能简算的要简算)。

(每小题4分,共16分)(1)54-85÷65 (2)57-52÷157-71原式= 54-43 (2分) 原式=57-76-71= 201 (4分) =57-(76+71)=52(3)0.8×0.95+0.3×0.8 (4)154×[(43-127)÷94] 原式=0.8×(0.95+0.3) 原式=154×(61-94) (1分)=0.8×1.25 =154×83(3分)=1 =101(4分)二、 填空题。

(每小题2分,共16分)1、据报道,2009年元旦广州市七大主要百货销售额达10400万元,把这个数改写成以亿为单位的数大约是(1.04)亿元;如果保留整数是( 1 )亿元。

2、613时=(2)时(10)分 2009立方分米=(2.009)立方米 3、六年级男生人数占全级人数的53,那么六年级男女生人数的比是(3:2);如果全年级有学生190人,其中女生有( 76 )人。

4、在85、116、1611和4029这几个数中,最大的是( 4029 ),最小的是( 116 )。

5、甲乙两地相距175千米,要画在比例尺是1:2500000的地图上,应画( 7 )厘米。

6、9.42cm7、一个底面直径和高都是3分米的圆锥,它的体积是(7.065)立方分米,一个与它等底等高的圆柱的体积比它大(14.13)立方分米。

8、右图中每一个图形都是由一些小 △组成的,从第一个图形开始, 小△的个数分别是1,4,9……,那么 第八个图形的小△个数一共有(64)个。

6左图是一个圆柱体的侧面展开图,原来这个圆柱的体积可能是(27或42.39 )cm 3三、判断题。

(每小题2分,共10分)6. 圆柱体的底面积与底面半径成正比例。

( × )7.1512不能化成有限小数。

( × ) 8. 冰冰年龄是爸爸的 52,那么爸爸与冰冰年龄的比试5:2。

( √ )9. 两个假分数的乘积一定大于1。

( √ ) 10. 如果a<b ,那么a 与b 的比值一定小于1。

(b ≠0) ( √ )四、选择题(括号里填写正确答案的字母编号,每小题2分,共16分) 1、下面各式中,计算结果比a 大的是( D )。

(a >0) A. a ×21 B. a ÷23 C. a ×53 D. a ÷532、如果a 是b 的75%,那么a :b=( A )A. 3:4B. 4:3C. 4:5D. 7:5 3、等腰三家性一个底角的读书时45°,那么a :b=( C ) A. 锐角 B. 钝角 C. 直角 D. 等边 4、张远按右边的利率在银行存了10000元,到期算得 税前的利息共612元,他村了( C )年A. 5B. 3C. 2D. 1 5、把28.26立方米的沙子堆成高3米的圆锥形沙滩,沙滩的底面积是( B )立方米。

A. 6.28B. 28.26C. 12.56D. 9.42 6、某班有学生52人,那么这个班男女神工人数的比可能是( B )。

A. 8:7B. 7:6C. 6:5D. 5:4 7、买同样的书,所化的钱数与( A )成正比。

A. 书的本数B. 书的页数C. 书的单价D. 不能确定 8、有图阴影部分的周长( B )cm 。

A. πB. 2πC. 4πD. 2.5π五、计算与操作(共8分)1、西陵超市第二季度每个月销售的情况如右图。

己知六月份销售额是150万元,请分别计算 出四月份与五月份的销售额。

150÷30%=500(万元) (2分) 四月份:500×35%=160(万元) (3.5分) 五月份:500×38%=190(万元) (5分)2、根据以上数据完成右边的统计图。

(3分)六、解决问题(共36分)1.一袋米30千克,第一周吃了40%,第二周吃了50%,还剩多少千克?(5分) 30×(1-40%-50%)=3(千克) (4.5分) 答:(略) (5分)注:解决问题列式正确而计算错误的只给一半分,漏写:“答:……”的,扣0.5分,下同。

2.同学们绕学校操场的跑道跑步。

王津跑了1200米,李峰比王 津多跑了多少米?(5分)1200÷4×6=1800(米) (3分) 1800-1200=600(米) (4.5分) 答:(略) (5分)3.六年级两个班共有学生92人,如果从六(1)班调8人到六(2)班,那么(1)班和 (2)班人数的比是10: 13,两个班原来各有多少人?(5分)五月份38%六月份30%四月份32%10+13=23 92÷23=4(人)(2分)六(1)班:4×10+8=48(人)(3.5分)六(2)班:4×13-8=44(人)(4.5分)答:(略)(5分)4.右图是一种钢制的配件(图中数据单位:cm)请计算它的表面积和体积。

相关文档
最新文档