机械设计第11章
机械设计基础--第十一章(轴 承)

(第十一章)
第十二章 轴 承
一、基本内容及学习要求 二、学习指导 三、典型实例分析 四、复习题 五、复习题参考答案
回目录
一、基本内容及学习要求
1.基本内容 ⑴ 滑动轴承的结构类型及特点; ⑵ 轴瓦的材料与结构; ⑶ 滑动轴承的润滑; ⑷ 非液体摩擦滑动轴承的计算; ⑸ 滚动轴承的类型及特点,滚动轴承的代号; ⑹ 滚动轴承的类型选择; ⑺ 滚动轴承的失效形式; ⑻ 滚动轴承的疲劳寿命计算和静强度计算。
二、学习指导
4. 轴瓦。 轴瓦是滑动轴承中的关键零件,其工作表面既是承载表面, 又是摩擦表面。因此,轴瓦的材料选取是否适当以及结构是否 合理,对滑动轴承的性能将产生很大的影响。
⑴ 轴瓦和轴承衬的材料
① 对轴承材料的基本要求是:要有足够的强度;良好的减 摩性和耐磨性;良好的塑性、顺应性和嵌入性;良好的导热性 和抗胶合性。
b) 钠基润滑脂:有较好的耐热性(使用温度可达 140oC ),但耐水性较差;
c) 锂基润滑脂:其耐热性和耐水性都较好,使用温 度在-20oC~150oC 。
二、学习指导
润滑脂常用于低速、重载和为避免润滑油流失或不易 加润滑油的场合。
润滑脂的主要性能指标是针入度和滴点。针入度表示 润滑脂的粘稠程度,它是用150g的标准圆锥体放于25oC的 润滑脂中,经5s后沉入的深度(单位为 0.1mm)表示。针 入度愈小,则润滑脂越粘稠。滴点是指润滑脂在滴点计中 受热后滴下第一点油时的温度,滴点标志润滑脂的耐高温 能力。选用时应使润滑脂的滴点高于工作温度20oC以上。
二、学习指导
③ 固体润滑剂。固体润滑剂有石墨、二硫化钼(MoS2)、 聚四氟乙烯等。它通常与润滑油或润滑脂混合使用,也可以单 独涂覆、烧结在摩擦表面形成覆盖膜,或者混入金属或塑料粉 末中烧结成形,制成各种耐磨零件。石墨性能稳定,在 350oC 以上才开始氧化 ,并可在水中工作。聚四氟乙烯摩擦因数低, 只有石墨的一半。二硫化钼吸附性强,摩擦因数低,适用温度 范围广(-60oC~300oC ),但遇水后性能会下降。
机械原理与机械设计 (上册) 第4版 第11章 机械系统动力学

k
qi
δW Fe1δq1 Fe2δq2
P Fe1q1 Fe2q2
(i 1,2)
3. 动力学方程
J11q1
J12q2
1 2
J11 q1
q12
J11 q2
q1q 2
J12 q2
1 2
J 22 q1
q22
Fe1
J 12 q1
J 22q2
J12 q1
1 2
J11 q2
q12
J 22 q1
q1q 2
dt
等效驱动力矩
等效阻力矩
若 me 与 Je 为常数,则
Fed Fer M ed M er
me Je
dv dt
d
dt
能量形式(积分形式)
s2 s1
Fedds
s2 s1
Ferds
1 2
me 2 v22
1 2
me1v12
阻抗功
损耗功
总耗功
输入功
Wd (Wr Wf ) Wd Wc E2 E1
终止动能
起始动能
第二节 多自由度机械系统的动力学分析(简介)
机械系统的动力学方程:外力与运动参数(位移、速度等)之间的函数关系式
一、拉格朗日方程
动能
势能
自由度
d dt
E qi
E qi
U qi
Fei
(i 1,2,, N)
J1 1
m2 vc2 Jc2 2
m3v3
d
1 2
J112
1 2
m2vc22
1 2
J
2
c2 2
1 2
m3v32
(M11
P3v3
)dt
机械设计 螺纹连接 习题课讲解

注:此题用图解法求解。
N 1000
900
800
700600F500F0F0
F
400
F’
300
F”
200
60°
100
30° 45°
45°
F”
变形
机械设计 第11章 螺纹联接习题课
10
BIGC 例4 一钢板采用三个铰制孔螺栓联接,下列三个方案哪个最好?
BIGC
机械设计 第11章 螺纹联接习题课
11
FL 2a
机械设计 第11章 螺纹联接习题课
4
(二)工作条件分析
1、保证结合面不滑移
F s z k f H 又:F F c2 V
c1 c2 z
2、受力最大螺栓轴向载荷
F 1 ( k f H c2 V )
z s c1 c2
=5662.5N
取: kf =1.3 μs=0.13
Q
解: 一)受力分析
R
Q
T
R=Q/2=10000 N T=R×300=3000000 N.mm
Q
FSR
FST FSR
FSR FST
FST FSR FST
BIGC
机械设计 第11章 螺纹联接习题课
7
R使各螺栓受到横向工作载荷FSR: FSR=R/4=2500( N )
T也使各螺栓受到横向工作载荷FST,方向与形心连线垂直。
BIGC
机械设计 第11章 螺纹联接习题课
1
一、螺栓组计算
螺栓联接习题课
螺栓 组受 力分 析
轴向力
横向力
受拉 F k f FR
F=FQ/z
s m z
机械设计基础习题解答第11章

思考题及练习题11.1记里鼓车是中国古代用于计算道路里程的车,由“记道车”发展而来。
车箱内有立轮、大小平轮、铜旋风轮等,轮周各出齿若干,结构及参数如图所示。
求齿轮4与车轮(齿轮1)的传动比。
齿轮4转一周,木人击鼓一次。
假定要求车行500米,木人击鼓一次,问车轮直径应为多少?答:齿轮1~齿轮4组成定轴齿轮系1412441354100====100183i n z z n z z ×× 如果:n 4=1 r ,则 n 1=100 r设车轮直径为d 1,则11=500d n πd 1=1.59 m车轮直径应为1.59米。
11.2如图所示齿轮系,已知1z =15、2z =50、3z =15、4z =60、5z =15、6z =30、7z =2(右旋)8z =60,若1n =1000 r/min 。
试求:(1)求18i =?(2)蜗轮8的转速大小和方向?答:(1)800215151560306050753186428118=××××××===Z Z Z Z Z Z Z Z n n i习题11.1图(2)18181000 1.25r /min 800n n i === 方向用画箭头方法确定,为顺时针方向。
11.3. 如图所示轮系,已知齿轮齿数1z =30、2z =20、3z =30、4z =20、5z =80 、蜗杆头数6z =1、蜗轮齿数7z =60,齿轮1转速n 1=1200 r/min ,方向如图中箭头所示,求齿轮1与蜗轮7的传动比17i ,蜗轮7的转速n 7,并在图中标出其转动方向。
答: 解:235711771246203080602403020201z z z z n i n z z z z ×××====××× 171712005r /min 240n n i === 方向用画箭头方法确定,为逆时针方向。
机械设计网上作业第11章

问题1得 1 分,满分 1 分选择题若螺纹的直径和螺旋副的摩擦系数一定,则拧紧螺母时的效率取决于螺纹的_____ 。
所选答案: D.升角和头数正确答案: D.升角和头数问题2得1 分,满分1 分选择题螺纹的螺纹升角为λ,当量摩擦角为ρv,则此螺纹自锁的条件为 ______ 。
所选答案: B.λ≤ρv正确答案: B.λ≤ρv问题3得1 分,满分1 分选择题平键联接的强度计算,主要验算联接的强度.所选答案: C. 挤压强度正确答案: C. 挤压强度问题4得1 分,满分1 分选择题图示为一螺旋拉紧装置,如按图上箭头方向旋转中间零件,能使两端螺杆A及B 向中央移动,从而将两端零件拉紧。
此装置中,A、B螺杆上螺纹的旋向应是____。
问题5得 1 分,满分 1 分选择题非矩形螺纹的螺纹升角为λ,当量摩擦角为ρv,则此螺纹副效率η= ______。
所选答案: B.η=tanλ/tan(λ+ρv)正确答案: B.η=tanλ/tan(λ+ρv)问题6得0 分,满分1 分选择题螺纹副中一个零件相对于另一个转过一转时,则它们沿轴线方向相对移动的距离是____。
所选答案: A. 线数×导程正确答案: C. 线数×螺距问题7得1 分,满分1 分选择题普通平键的宽度b和高度h,根据选择.所选答案: C. 轴径d正确答案: C. 轴径d问题8得1 分,满分1 分选择题紧螺栓联接,螺栓所受应力为。
所选答案: B. 拉扭复合应力正确答案: B. 拉扭复合应力问题9得1 分,满分1 分选择题平键联接,采用相隔180°布置的双键时,强度按单个平键的倍计算.所选答案: D. 1.5正确答案: D. 1.5问题10得1 分,满分1 分选择题在常用的螺旋传动中,传动效率最高的螺纹是____。
所选答案: A. 矩形螺纹正确答案: A. 矩形螺纹问题11得1 分,满分1 分判断题平键联接,依靠键的上表面与轮毂键槽底面挤紧,实现联接。
机械设计基础第11章 轴

§11-1 概述 §11-2 轴的结构设计 §11-3 轴的强度计算
小结
第一节 概述
作用:支承作回转运动的零件(如齿轮、带轮、链轮、凸轮、 车轮、蜗轮等); 传递运动和动力。
一、轴的分类
1.按轴线的形状,分为:
直轴
(通用件)
光轴:形状简单,加工
容易,应力集中源少, 实心轴
但轴上的零件不易装
r < R (或倒角C)<h
滚动轴承的定位轴肩,应小于轴承内圈 的厚度,以方便轴承的拆卸。
3)为便于零件的装拆而设计的非定位轴肩高度(半径差)h ≈
0.5~1.5mm。
第二节 轴的结构设计
2. 长度的确定原则 1) 轴头的长度应比轮毂的宽度小2~3mm ,以保证套筒、圆螺 母、轴端挡圈能靠紧轮毂端面,固定可靠。 2) 轴颈的长度一般等于轴承的宽度。 3)回转零件与机体等固定零件之间要留有适当的间隙,以免相碰
合金钢只能提高轴的强度和耐磨性,但不 能提高轴的刚度,刚度可通过增大轴径,减小 跨度来提高;
第二节 轴的结构设计
轴的结构设计
轴的结构 没有固定 模式,设 计较灵活
即确定轴的合理形状和全部结构尺寸。 工作部分
轴头
轴颈 安装部分
轴身 连接部分
第二节 轴的结构设计
轴的结构设计应主要满足以下要求: ◆满足制造、安装要求
轴应便于加工,轴上零件要方便装拆 ◆满足零件定位固定要求
轴和轴上零件有准确的工作位置,各零件要牢固而可靠地 相对固定。 ◆满足强度要求,受力合理尽量减少应力集中等
第二节 轴的结构设计
一、便于制造和装配
1、在满足使用要求前提下,轴的结构应尽量简单,段数尽可能 少,且相邻轴段的直径差不宜过大,以减小应力集中。
机械设计基础_第11章机械装置的润滑与密封

22
11.2润滑剂及其选择
11.2.4 气体润滑剂
任何气体都可以作为气体润滑剂,其中用得最多的是空气, 另外还有氢、氦等气体。气体的粘度很小仅为润滑油的几千 分之一,摩擦系数很小,承载能力低,故适用于轻载高速的 条件下,也可用于需要防止产品污染的场合。
上一页 下一页 返回
23
上一页 下一页 返回
20
11.2润滑剂及其选择
在选择润滑脂时还应注意,所选润滑脂的滴点必须高于工 作温度l 5~20℃(一般为20~30℃);载荷愈大和冲击振动严 重时,所选润滑脂的针入度应越小,以提高油膜承载能力; 速度越高,所选润滑脂的锥入度应越大,以减少内摩擦,提 高效率;当润滑脂用于集中润滑时,锥入度一般应在300以上。
上一页 下一页 返回
14
11.2润滑剂及其选择
3)工作温度 工作温度与环境温度有关。低温环境应选粘 度较小、凝点低的油;高温环境应选粘度大、闪点高的润滑 油。特殊低温下,如采用抗凝添加剂也不能满足要求时,则 应选用固体润滑剂。工作温度变化大要选粘温性能好、粘度 指数较高的油。一般润滑油使用温度最好不超过60℃,高温 条件下润滑油氧化速度加快,应加入抗氧化、抗腐蚀添加剂。
此外,润滑还能起清洗、减少噪声等作用。因此,在机器 的设计和使用中,润滑是一个非常重要的问题。
上一页 下一页 返回
5
11.1 润滑和密封的作用
11.1.2密封的主要作用
1. 防止液体、气体等工作介质和润滑剂的泄漏 2. 防止灰尘、水及有害介质等进入润滑部位 (研究润滑技术的目的是使机器的摩擦表面之间建立并保
第11章 机械装置的润滑与密封
11.1 润滑和密封的作用 11.2 润滑剂及其选择 11.3 润滑方式和润滑装置 11.4 常用传动装置和典型零部件的润滑 11.5 密封装置 思考与练习
机械设计基础第11章 键连接习题解答

11-1一齿轮装在轴上,采用A 型普通平键连接,齿轮、轴、键均用45号钢,轴径d =80mm ,轮毂长度L =150mm ,传递转矩T =2000N.m ,工作中有轻微冲击,试确定平键尺寸和标记并验算连接的强度。
解答:1)确定平键尺寸由轴径d=80mm 查得A 型平键剖面尺寸b=22mm ,h=14mm 。
参照毂长L '=150mm 及键长度系列选取键长L=140mm 。
2)挤压强度校核计算Mpa hld T p 53.608011814102000443=⨯⨯⨯⨯==σl ——键与毂接触长度mmb L l 11822140=-=-=查得[]100=p σ~120pa ,故[]p p σσ≤,安全。
[]MPa 140~100=P σ,取[]P σ=120Mpa11-3图所示凸缘半联轴器及圆柱齿轮,分别用键与减速器的低速轴相连接。
试选择两处键的类型及尺寸,并校核其连接强度。
已知轴的材料为45钢,传递的转矩T =1000N.m ,齿轮用锻钢制造,半联轴器用灰铸铁制成,工作时有轻微冲击。
题11-3图解:1、联轴器处①键的类型和尺寸选A (或C )型普通平键,根据轴径d =70mm ,查表11.1得键的截面尺寸为:b =20mm ,h =12mm ,根据轮毂的长度130mm ,取键长L=110mm ,键的标记:键20×110GB/T1096—1979(键C 20×110GB/T1096—1979)②校核联接强度联轴器的材料为铸铁,查表11.2,取[σP ]=55MP a ,k =0.5h =6mm ,l=L -b =90mm (或l=L -b/2=100mm )满足强度条件2、齿轮处①键的类型和尺寸选A 型平键,根据轴径d =90mm ,查表11.1得键的截面尺寸为:b =25mm ,h =14mm ,根据轮毂的宽度90mm ,取键长L =80mm ,键的标记:键25×80GB/T1096—1979②校核联接强度齿轮和轴的材料均为钢,查表11.2,取[σP ]=110MP a ,k =0.5h =7mm ,l=L -25=55mm[]p a p σMP kld T σ≤=⨯⨯⨯⨯=⨯=725790557101000210233.满足强度条件。
机械设计第11章斜齿与圆锥齿轮传动

(8-44)
4. 公式应用中的参数选择和注意事项
(1) 软齿面闭式齿轮传动在满足弯曲强度的条件下,为提 高传动的平稳性,小齿轮齿数一般取z1=20~40,速度较高时 取较大值;硬齿面的弯曲强度是薄弱环节,宜取较少的齿数, 以便增大模数,通常取z1 =17~20。
(2)为保证减小加工量,也为了装配和调整方便,大齿轮 齿宽应小于小齿轮齿宽。取b2=φdd1,则b1=b2+(5~10)。
图8-43表示一斜齿圆柱齿轮传动,取主动小齿轮作为研究对 象,设法向力Fn集中作用在分度圆柱上的齿宽中点P处。在法向 平面内的Fn可分解为径向力Fr、切向力Ft和轴向力Fa,F′是Ft和Fa 的合力,是Fn在P点分度圆柱切平面上的分力。
图8-43 斜齿圆柱齿轮传动的受力分析
切向力 径向力
轴向力 法向力
许用弯曲应力[σ]F:由表8-9得 σFlim1=330+0.45HBS1=(330+0.45×236)MPa=436.2 MPa σFlim2=184+0.74×HBS2=(184+0.74×190)MPa=324.6 MPa
由表8-10得,SFmin=1。所以
F1
Flim
SFmin
436.2MPa436.2MPa 1
法向力Fn分解为切于平均分度圆的切向力Ft和垂直分度圆锥母
线的分力F′,再将F′分解为径向力Fr和轴向力F(8-45)
Fr1=F′cosδ1=Ft1tanα cosδ1
(8-46)
Fa1=F′sinδ1 =Ft1tanαsinδ1
(8-47)
式中:dm1——小齿轮平均分度圆直径, dm1=d1(1-0.5b/R)。
由表8-10得SHmin=1,所以
机械设计作业集第11章答案

第十一章蜗杆传动一、选择题11—1与齿轮传动相比,___D____不能作为蜗杆传动的优点。
A 传动平稳、噪声小B 传动比可以较大C 可产生自锁D 传动效率高11—2阿基米德蜗杆和蜗轮在中间平面上相当与直齿条与_B_齿轮的啮合。
A 摆线B 渐开线C 圆弧曲线D、变态摆线11—3 在蜗杆传动中,如果模数和蜗杆头数一定,增加蜗杆分度圆直径,将使___B___。
A 传动效率提高,蜗杆刚度降低B 传动效率降低,蜗杆刚度提高C 传动效率和蜗杆刚度都提高D 传动效率和蜗杆刚度都降低11—4大多数蜗杆传动,其传动尺寸主要由齿面接触疲劳强度决定,该强度计算的目的是为防止___D___。
A 蜗杆齿面的疲劳点蚀和胶合B 蜗杆齿的弯曲疲劳折断C 蜗轮齿的弯曲疲劳折断D 蜗轮齿面的疲劳点蚀和胶合11—5在蜗杆传动中,增加蜗杆头数z1,有利于___D___。
A 提高传动的承载能力B 提高蜗杆刚度C 蜗杆加工D 提高传动效率11—6为了提高蜗杆的刚度,应___A___。
A 增大蜗杆的直径B 采用高强度合金钢作蜗杆材料C 蜗杆硬度,减小表面粗糙度值11—7 为了提高蜗杆传动的啮合效率ηl,在良好润滑的条件下,可采用___B___。
A 单头蜗杆B 多头蜗杆C 较高的转速n1D 大直径系数蜗杆11—8对闭式蜗杆传动进行热平衡计算,其主要目的是__B__。
A 防止润滑油受热后外溢,造成环境污染B 防止润滑油油温过高使润滑条件恶化C 防止蜗轮材料在高温下机械性能下降D 蜗杆蜗轮发生热变形后正确啮合受到破坏11—9对于一般传递动力的闭式蜗杆传动,其选择蜗轮材料的主要依据是__A__。
A 齿面滑动速度B 蜗杆传动效率C 配对蜗杆的齿面硬度D 蜗杆传动的载荷大小11—10对于普通圆柱蜗杆传动,下列说法错误的是__B__。
A 传动比不等于蜗轮与蜗杆分度圆直径比B 蜗杆直径系数越小,则蜗杆刚度越大C 在蜗轮端面内模数和压力角为标准值D 蜗杆头数z1多时,传动效率提高11—11蜗杆传动的当量摩擦系数f v随齿面相对滑动速度的增大而___C____。
《机械设计基础》课件 第11章 齿轮传动

H
2
bd1
u
Zβ cos
32
§11-8 斜齿圆柱齿轮传动
2 KT1
F
YFaYSa F
bd1mn
2 KT1 YFaYSa
2
mn 3
cos
2
d z1 F
z
zv
3
cos
33
§11-9 直齿圆锥齿轮传动
34
§11-9 直齿圆锥齿轮传动
35
轴向力:
Fa Ft tan
29
§11-8 斜齿圆柱齿轮传动
力的方向:
圆周力t :主动轮与运动方向相反,
从动轮与运动方向相同
径向力r :两轮都是指向各自的轴心
轴向力a :主动轮的左(右)手法则
30
根据主动轮轮齿的齿向(左旋或右旋)伸左手或右手,四指
沿着主动轮的转向握住轴线,大拇指所指即为主动轮所受的
轮齿会变形,需要磨齿。
二、主要参数
1. 齿数比:一般≤7,同要求的传动比误差≤ (3~5)%
2. 齿数:一般z1>17
3. 齿宽:过大,宽度方向载荷分布不均匀
28
§11-8 斜齿圆柱齿轮传动
一、轮齿上的作用力
轮齿所受总法向力
可分解为:
2T1
圆周力:Ft
d1
Ft tan n
径向力:Fr
cos
开式传动的主要失效形式为齿面磨粒磨损和轮齿的弯曲疲劳
折断。
由于目前齿面磨粒磨损尚无完善的计算方法,因此通常只对
其进行抗弯曲疲劳强度计算,并采用适当加大(10%~20%)
模数(或降低许用弯曲应力)的方法来考虑磨粒磨损。
机械设计课后参考答案第十一章

15.蜗杆常用材料是。
A.40Cr B.GCr15 C.ZCuSn10P1
16.蜗轮常用材料是。
A.40Cr B.GCr15 C.ZCuSn10P1
17.采用变位前后中心距不变蜗杆传动,则变位后使传动比。
A.增大 B.减小 C.可能增大也可能减小
18.蜗杆传动的当量摩擦系数fv随齿面相对滑动速度的增大而。
2.在图示传动系统中,件1、5为蜗杆,件2、6为蜗轮,件3、4为斜齿圆柱齿轮,件7、8为直齿圆锥齿轮。已知
蜗杆1为主动,要求输出齿轮8的回转方向如图所示。
试在图上标出:
(1)各轴的回转方向。
(2)考虑Ⅰ、Ⅱ、Ⅲ轴上所受轴向力能抵消
一部分,定出各轮的螺旋线方向。
(3) 各轮的轴向力方向。
3. 图示传动系统中,1为蜗杆、2为蜗轮,3、4为斜齿轮,5、6为直齿锥齿轮,蜗杆主动,要求输出齿轮6的回转方向如图所示。试确定: (在图中标出)
A.传动效率提高、蜗杆刚度降低 B.传动效率降低、蜗杆刚度提高 C.传动效率和蜗杆刚度都提高
13.对闭式蜗杆传动进行热平衡计算,其主要目的是。
A.防止润滑油受热膨胀后外溢,造成环境污染 B.防止蜗轮材料在高温下力学性能下降
C.防止润滑油温度过高而使润滑条件恶化
14.在蜗杆传动中,当其他条件相同时,增加蜗杆头数Z1,则滑动速度。
10.为了配凑中心距或改变传动比,可采用变位蜗杆传动,这时。
A.仅对蜗杆进行变位 B.仅对蜗轮进行变位 C.同时对蜗杆、蜗轮进行变位
11.起吊பைடு நூலகம்物用的手动蜗杆装置,应采用蜗杆。
A.单头、小导程角 B.单头、大导程角 C.多头、小导程角
12.在蜗杆传动中,如果模数和蜗杆头数一定,增加蜗杆分度圆直径将使。
机械设计基础第11章滚动轴承轴向力的计算

在进行轴承寿命计算时,轴承在许多应用场合, 常常同时承受径向载荷Fr和轴向载荷Fa; 这时,必须把实际载荷换算为与确定基本额动
定动载荷的载荷条件相一致的当量动载荷,用 字母P表示。 对于以承受径向载荷为主的轴承,称为径向 当量动载荷,用Pr表示; 对于以承受轴向载荷为主的轴承,称为轴向 当量动载荷,用Pa表示.
当量动载荷P的一般计算公式: 1 见课件机械设计重点难点寿命计算 P=XFr+YFa
径向载荷即为由外界作用到轴上的径向力 Fr 在各轴承上
产生的径向载荷; 轴向载荷Fa并不完全由外界轴向作用力 FA产生的,而是 应该根据整个轴上的轴向载荷(包括径向载荷 Fr 产生的 内部轴向力F/)之间的平衡条件得出。
四、角接触向心轴承轴向载荷的计算
如果F/2+FA < F/1 (见图),此时轴有左移的趋势, 轴承2被“压紧”,轴承1被“放松”。 为了保持轴的平衡,在轴承2的外圈上必有一个平衡力Fb2
作用,作与上述相同的分析。
Fb2
FA
1 2 O2 F’2 F’1 O1 a2 a1 Fr2 Fr1
同样的分析,得作用在轴承1及轴承2上的轴向力分别 为 Fa1 = F/1 (16-8) 5 Fa2= F/1 -FA (16-8) 见课件机械设计重点难点寿命计算
见课件机械设计重点难点寿命计算
3
四、角接触向心轴承轴向载荷的计算
如果F/2+FA> F/1,如图所示,则轴有右移的趋势,此时 轴承2被“放松”,轴承1被“压紧”。但实际上轴并没 有移动。为保持轴的平衡,在轴承 1 的外圈上必有一平 衡力Fb1作用。因此,根据力的平衡关系,作用在轴承1 的外圈上的力应是F/1+ Fb1,且有 F/2+FA= F/1+Fb1 故 Fb1= F/2+FA-F/1
机械设计基础第十一章 齿轮传动

Ft1 = 2T1
d1
Fr1 = Ft1tan
Fn1
Ft1
cos
小齿轮上的转矩:
O2
T1
106
P
1
9.55 106
P n1
N mm
P为传递的功率(KW)
t
ω1----小齿轮上的角速度,
d1----小齿轮上的分度圆直径, N1
n1----小齿轮上的转速
α----压力角
α
ω2
(从动)
标准直齿圆柱齿轮几何尺寸的计算
分度, 取标准值 ha*=1
齿根高:hf=(ha* +c*)m ca* ——顶隙系数, 取标准值 c*=0.25
ha s N e h hf
pn pb
rb
rf r ra
α
全齿高:h= ha+hf =(2ha* +c*)m
合金结构钢 铸钢 灰铸铁
球墨铸铁
表13-1
牌号
35
45
50 40Cr
35SiMn 40MnB
…… ZG270-500
…… HT200 …… QT500-5 ……
常用的齿轮材料
热处理
正火 调质 表面淬火 正火 调质 表面淬火 正火 调质 表面淬火 调质 表面淬火 调质 ……
正火
……
硬度(HBS或HRC)
1.2~1.6
1.6~1.8
1.6~1.8
1.8~2.0
(
Fn b
)min
大的冲击 1.6~1.8 1.9~2.1 2.2~2.4
§11-5 直齿圆柱齿轮传动的 齿面接触强度计算
齿轮强度计算的主要目的是避免失效。 闭式齿轮传动的主要失效形式是齿面点蚀 和齿根弯曲疲劳折断。 开式齿轮传动的主要失效形式是齿面磨损 和齿根弯曲疲劳折断。
机械设计基础 第十一章

11.2.3 惰轮
如图11-7所示的定轴齿轮系中,运动由齿轮1经齿 轮2传给齿轮3。总的传动比为:
i13
n1 n3
z2 z3 z1z2
z3 z1
图11-7 惰轮的应用
【例11-1】如图11-2所示空间定轴轮系,蜗杆的头数 z1 2, 右旋;蜗轮的齿数z2 60,z2 20,z3 24,z3 20,z4 24, z4 30,z5 35,z5 28,z6 135 。若蜗杆为主动轮,其转速 n1 900 r / min ,试求齿轮 6 的转速n6 的大小和转向(用画箭头
14.8
r
/
min
负号表示末轮5的转向与首轮1相反,顺时针转动。
11.3 行星齿轮系的传动比计算
行星齿轮系传动比的计算方法有许多种,最常用的是转化 机构法,即设想将周转轮系转化为假想的定轴轮系,借用定 轴轮系传动比计算公式来求解周转轮系中有关构件的转速及 传动比。
如图11-8所示,现假想给行星齿轮系加一个与行星架
相同。
iH1
nH n1
600 120
5
11.4 混合齿轮系的传动比计算
既包含定轴齿轮系又包含行星齿轮系的齿轮系,称为混 合齿轮系,如图11-10所示。
图11-10 混合齿轮系
计算混合齿轮系传动比的一般步骤如下:
① 区分轮系中的定轴齿轮系部分和行星齿轮系部分。 ② 分别列出定轴齿轮系部分和行星齿轮系部分的传动比公式, 并代入已知数据。 ③ 找出定轴齿轮系部分与行星齿轮系部分之间的运动关系,并 联立求解即可求出混合轮系中两轮之间的传动比。
传动比 iGHK 也不等于绝对传动比 iGK 。
【例11-3】在图11-8(a) 所示的差动齿轮系中,已知n1 100 r / min n3 60 r / min,n1与 n3 转向相同;齿数z1 17,z2 29,z3 75
机械设计基础第11章齿轮传动(六-2)

2T1 dm1
F F tg ' t
Ft的方向在主动轮上与运动方向 相反,在从动论上与运动方向相
同;
径向力:Fr1 F'cos 1 Ft tg cos 1
径向力指向各自的轴心;
轴向力:Fa Ft tg sin
F’
Fr
δ Fr δ
轴向力Fa的方向对两个齿轮都是背着锥顶。
当δ 1+δ 2 = 90˚ 时,有: sinδ 1=cosδ 2
YFaYSa
[ F ]
mm
MPa
§11-10 齿轮的构造
一、概述 由强度计算只能确定齿轮的主要参数:
如齿数z、模数m、齿宽B、螺旋角、分度圆直径d 等。
其它尺寸由结构设计确定
齿轮结构设计的内容: 主要是确定轮缘,轮辐,轮毂等结构形式及尺寸大小。
Ft tan n cos
Fr
Fn
c α F n
F β a
潘存云教授研制
t
长方体对角面即轮齿法面
Fr
潘存云教授研制
β
Fn αn
F’
潘存云教授研制
T1 F’ ω1
Ft Fr = F’ tanαn
β
d1
Fa
F’ 长方体底面
2
F’=Ft /cosβ
方向判断:
Ft、Fr 方向判断均同直齿圆柱齿轮 Ft:主动轮上与转向相反,从动轮上与转向相同。 Fr:均由作用点指向各自轮心。
dm2 d dm是平均分度圆直径
2
R =0.25 ~ 0.3
当量齿轮分度圆直径:
Re
rv1
dm1
2 cos 1
rv 2
dm2