中考专题六《折叠问题题型方法归纳》
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt △FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学几何折叠问题
中考数学几何折叠问题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学折叠专项复习汇总
A
折叠与全等三角形
利用折叠构造全等三角形,从而证明线段或角 相等。
折叠与相似三角形
通过折叠构造相似三角形,利用相似三角 形的性质求解问题。
B
C
折叠与四边形
利用折叠构造特殊的四边形(如矩形、菱形 、正方形等),从而证明线段或角相等,或 者求解面积等问题。
折叠与最值问题
通过折叠找到某些量(如线段长度、角度大 小等)的最值,从而解决问题。
注意检查答案,确保准确无误
检查计算过程
在完成计算后,要仔细检查计算过程,确保每一步的计算都是正 确的。
验证答案是否符合题意
将计算得到的答案代入原题进行验证,确保答案符合题目的要求。
注意单位换算和精确度
在涉及长度、面积等物理量时,要注意单位换算和精确度的要求, 确保答案的准确性和规范性。
谢谢聆听
折叠与对称性的应用
02
折叠操作常常与图形的对称性相结合,通过对称性可以确定函
数图像的某些性质,如对称轴、对称中心等。
折叠在动态问题中的应用
03
在动态问题中,通过折叠操作可以建立动态的函数关系,进而
利用函数图像分析问题的变化趋势。
与几何图形结合的综合应用
折叠与三角形的应用
通过折叠操作,可以将三角形转化为 其他图形,或者利用三角形的性质解 决折叠问题。
对称性质
折叠后的图形关于折痕对称,因此可以利用对称性简化面积计算。
利用三角形面积公式求面积
底和高法
通过确定三角形的底和高,利用 公式$S = frac{1}{2} times text{ 底} times text{高}$计算面积。
相似三角形法
当两个三角形相似时,它们的面 积比等于对应边长的平方比。因 此,可以通过求解相似三角形的 边长比例来计算面积。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
折叠问题涉及6种题型梳理
折叠问题涉及6种题型梳理一、问题导读折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养识图能力及灵活运用数学知识解决问题的能力非常有效。
这类问题的解法思路,常常会困扰同学们,同样是翻折类题目,条件不一样,问题不一样,用到的知识和方法也不尽相同,今天我们就一起来探究一下,遇到这类题目,如何找到突破口,如何用我们已经掌握的知识和方法来解答,继而发现这类问题特有的解题思维模式。
二、典例精析类型1 直角三角形的翻折或翻折后产生直角三角形的问题例1.(2018秋昌平区期末)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△NBD中,x +3 =(9﹣x),解得x=4.即BN=4.故选:A.例1变式1.(2018秋平度市期中)如图,在Rt△ABC中,直角边AC=6,BC=8,将△ABC按如图方式折叠,使点B与点A重合,折痕为DE,则CD的长为()A.25/4 B.22/3 C.7/4 D.5/3【解析】由题意得DB=AD;设CD=x,则AD=DB=(8﹣x),∵∠C=90°,∴AD﹣CD=AC ,(8﹣x)﹣x=36,解得x=7/4;即CD=7/4.故选:C.例1变式2.(2018秋瑞安市期末)如图,矩形ABCD中,AB=4,AD=6,点E为BC 上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EH G,且F落在线段E G上,当G F=G H时,则BE的长为_____.【解析】由折叠可得∠AEH=1/2∠BEC=90°,进而得出Rt△AEH中,AE+EH2 =AH,设BE=x,则EF=x,CE=6﹣x=E G,再根据勾股定理,即可得到方程x+4 +(6﹣x)+(6﹣2x)=(2x﹣2)+6 ,解该一元二次方程,即可得到BE的长.BE的长为2.【点评】本题主要考查的是翻折的性质、矩形的性质、勾股定理以及解一元二次方程的综合运用,解决问题的关键是连接AH构造直角三角形AEH,这种折叠问题常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.方法策略模式:在折叠后产生的直角三角形中,把某条边设成未知数根据勾股定理列方程求解。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt △DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO ∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC 相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学折叠问题
A B CE F A’ D (B ) A E D C F C ' B 中考折叠问题1、折叠问题是中考的一个考察重点,经常作为填空题的拉分题出现,有时候也出现在压轴题。
2、折叠对象有三角形、矩形、正方形、梯形等;3、考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;4、解题时,灵活运用轴对称性质和背景图形性质。
5、轴对称性质——①折线是对称轴,折线两边图形全等②对应点连线垂直对称轴③对应边平行或交点在对称轴上。
6、技巧:边读题,边将隐藏条件全部挖掘出来(如线段长、角度大小、或者写出两个量之间的等量关系)。
一般折叠问题都是求值问题,解题思想就是设未知数(可直接设、可间接设),然后利用勾股定理、相似或者条件给出的等量关系列出方程求解即可。
AB 、BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于点F 、G .若∠ADF=80°,则∠CGE= .例2.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若BF =4,FC =2,则∠DEF的度数是_ .例3.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点处,折痕为EF ,若,那么∠ABE 的度数为 ____________C '︒='∠125C EFABCDE例4. 如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为()A.43B.35C.34D.45例5.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为( )A.15°B.30°C. 45°D.60°例6、如图,M为矩形纸片ABCD的边AD的中点,将纸片沿BM、CM折叠,使点A落在A1处,点D落在D1处.若∠A1MD1=40°,则∠BMC的度数为.二、折叠问题求线段长度例1、如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC 沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A、B、2 C、3 D、4例2.如图所示,已知在三角形纸片ABC中,BC=3,6AB ,∠BCA=90°在AC 上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则DE的长度为( )A.6B.3C. 23D. 3例3、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C 与点A重合,折痕为DE,则△ABE的周长为.B CFE例4.如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3B.4C.5D.6例5、如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C′,折痕为BE,则EC的长度是()A、B、C、D、例6.将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF 的长等于cm.例7.如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()(A)(B)(C )(D)6例8、如图,在△ABC中,∠C=90°,点D在AC上,将△BCD沿着直线BD翻折,使点C落在斜边AB上的点E处,DC=5cm,则点D到斜边AB的距离是cm.例9、如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,那么BC′的长为.例10.将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如图所示).若∠C=90°,BC=8cm,则折痕DE的长度是cm.例11、如图,有一矩形纸片ABCD,AB=8,AD=6.将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则CF 的长为()A、6B、4C、2D、1322323例12.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=cm.三、折叠问题求面积,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.四、折叠问题判断图形例1.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE。
初中几何折叠问题总结
初中几何折叠问题是一个重要的知识点,主要考察学生的空间想象能力和几何变换的理解。
这类问题通常涉及到一些平面图形经过折叠变成三维图形,或者三维图形经过折叠变成平面图形。
以下是关于初中几何折叠问题的总结:1. **理解折叠的基本概念**:折叠是一种几何变换,它涉及到将一个平面图形沿着一条或几条折痕进行翻转,使其变成另一个形状。
2. **常见类型**:* 平面图形折叠成三维图形:例如,将一个矩形或三角形折叠成一个立方体或长方体。
* 三维图形折叠成平面图形:例如,将一个立方体或长方体折叠成一个平面图形。
3. **解题策略**:* **画出草图**:为了更好地理解问题和图形之间的关系,建议学生先画出草图。
* **标记关键点**:在草图上标记关键点,以便跟踪这些点在折叠过程中的位置变化。
* **分析角度和边长**:折叠过程可能会导致角度或边长发生变化。
学生需要分析这些变化,并找出其中的规律。
* **空间思考**:解决这类问题需要一定的空间想象力。
建议学生尝试使用不同的方法来解决问题,以增强他们的空间感。
4. **常见考点**:* **角度和边长的变化**:折叠可能会改变角度或边长。
学生需要理解这些变化是如何发生的,并能够计算出具体的数值。
* **轴对称和中心对称**:有些折叠问题涉及到轴对称或中心对称。
学生需要理解这两种对称的概念,并能够应用它们来解决问题。
* **全等图形**:在某些情况下,折叠前后的两个图形是全等的。
学生需要能够识别这种关系,并利用它来解决问题。
5. **实际应用**:折叠问题不仅在数学中有应用,在实际生活中也有很多应用。
例如,包装、折纸艺术、建筑设计等都涉及到折叠的概念。
通过以上总结,学生可以更好地理解初中几何折叠问题的概念、解题策略、考点和应用,从而更好地掌握这一知识点。
中考数学 折叠问题涉及6种题型梳理
折叠问题涉及6种题型梳理一、问题导读折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养识图能力及灵活运用数学知识解决问题的能力非常有效。
这类问题的解法思路,常常会困扰同学们,同样是翻折类题目,条件不一样,问题不一样,用到的知识和方法也不尽相同,今天我们就一起来探究一下,遇到这类题目,如何找到突破口,如何用我们已经掌握的知识和方法来解答,继而发现这类问题特有的解题思维模式。
二、典例精析类型1直角三角形的翻折或翻折后产生直角三角形的问题例1.(2018秋昌平区期末)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△NBD中,x+3=(9﹣x),解得x=4.即BN=4.故选:A.例1变式1.(2018秋平度市期中)如图,在Rt△ABC中,直角边AC=6,BC=8,将△ABC按如图方式折叠,使点B与点A重合,折痕为DE,则CD的长为()A.25/4B.22/3C.7/4D.5/3【解析】由题意得DB=AD;设CD=x,则AD=DB=(8﹣x),∵∠C=90°,∴AD﹣CD=AC,(8﹣x)﹣x=36,解得x=7/4;即CD=7/4.故选:C.例1变式2.(2018秋瑞安市期末)如图,矩形ABCD中,AB=4,AD=6,点E为BC 上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EH G,且F落在线段E G上,当G F=G H时,则BE的长为_____.【解析】由折叠可得∠AEH=1/2∠BEC=90°,进而得出Rt△AEH中,AE+EH2=AH,设BE=x,则EF=x,CE=6﹣x=E G,再根据勾股定理,即可得到方程x+4+(6﹣x)+(6﹣2x)=(2x﹣2)+6,解该一元二次方程,即可得到BE的长.BE的长为2.【点评】本题主要考查的是翻折的性质、矩形的性质、勾股定理以及解一元二次方程的综合运用,解决问题的关键是连接AH构造直角三角形AEH,这种折叠问题常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.方法策略模式:在折叠后产生的直角三角形中,把某条边设成未知数根据勾股定理列方程求解。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED 的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN 为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
折叠专题(经典)
折叠专题(轴对称变换)折叠问题是近几年中考常考题型,但学生往往对折叠的本质理解不透,造成失分严重。
折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题。
考查的着眼点日趋灵活,能力立意的意图日渐明显。
这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.一、折叠本质折叠问题实际就是轴对称变换。
折叠重合部分一定全等,折叠前后对应边和对应角相等。
折痕所在直线就是这两个全等形的对称轴。
二、方法点拨1、考查问题:求折点位置、求线段长度、求重叠面积、求角度。
2、注意有一个等腰三角形。
通常设X,用方程解题。
3、出题位置:选择题、填空压轴题、或22、23题(22题可能性大些)。
4、折叠对象主是三角形和四边形①三角形折叠模型:②四边形折叠模型:三、典例解析【例题1】(2018广西贵港)如图将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD 交于点M,若∠B′MD=50°,则∠BEF的度数为.提示:连接ME可解或设∠EFC=X度,则x+(x-50)=180可解(2018 广西桂林)如图,在正方形ABCD 中,AB=3,点 M 在 CD 的边上,且DM=1,△AEM 与△ADM 关【例题2】于A M 所在的直线对称,将△ADM 按顺时针方向绕点A旋转90°得到△ABF,连接E F,则线段EF 的长为()(提示:EF=BM)A.2B.C.D.【例3】如图,在矩形纸片A BCD 中,AB=4,AD=12,将矩形纸片折叠,使点C落(考点:勾股定理)在A D 边上的点M处,折痕为P E,此时P D=3.(1)求M P 的值;(2)在A B 边上有一个动点F,且不与点A,B 重合.当A F 等于多少时,△MEF的周长最小?(考点:折叠性质将军饮马)总结解题步骤:1、将已知条件标在图上;2、设未知数,将未知数标在图上;3、列方程,多数情况可通过勾股定理解决。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N 点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF 为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO ∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学几何折叠问题的答题技巧
中考数学几何折叠问题的答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.
折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与
另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.
根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等; 对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.
1、利用点的对称
例1.(2006 年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸
片折叠,使顶点A 与边CD 上的点E 重合.
(1)如果折痕FG 分别与AD、AB 交于F、G(如图①),AF=
,求DE 的长;
(2)如果折痕FG 分别与CD、AB 交于F、G(如图②),△AED 的
外接圆与直线BC 相切,求折痕FG 的长.。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
[教学]中考专题六《折叠问题题型方法归纳》[1]
折叠问题中考专题六《折叠问题题型方法归纳》[1]4折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。
轴对称性质-----折线是对称轴、折线两边图形全等、对应点连线垂直对称轴、对应边平行或交点在对称轴上。
中考专题六《折叠问题题型方法归纳》[1]4折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。
轴对称性质--压轴题是由一道道小题综合而成,常常伴有折叠;解压轴题时,要学会将大题分解成一道道小题;那么多作折叠的选择题填空题,很有必要。
中考专题六《折叠问题题型方法归纳》[1]4折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之1、如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°,则APD ∠等于( ) A .42° B .48° C .52° D .58°中2、如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )中考专题六《折叠问题题型方法归纳》[1]4折叠问题折叠对象有三角形、矩形、正方形、梯形等;考查问题有求折点位置、求折线长、折纸边长周长、求重叠面积、求角度、判断线段之间关系等;解题时,灵活运用轴对称性质和背景图形性质。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。
中考数学几何折叠问题
中考数学几何折叠问题答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于F、G(如图①),AF=,求DE的长;(2)如果折痕FG分别与CD、AB交于F、G(如图②),△AED的外接圆与直线BC相切,求折痕FG的长.图①中FG是折痕,点A与点E重合,根据折叠的对称性,已知线段AF的长,可得到线段EF的长,从而将求线段的长转化到求Rt△DEF的一条直角边DE. 图②中,连结对应点A、E,则折痕FG垂直平分AE,取AD的中点M,连结MO,则MO=DE,且MO ∥CD,又AE为Rt△AED的外接圆的直径,则O为圆心,延长MO交BC于N,则ON⊥BC,MN=AB,又Rt△AED的外接圆与直线BC相切,所以ON是Rt△AED的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150的角对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再次折叠纸片,使A点落在折痕EF上的N点处,并使折痕经过点B得到折痕BM,同时得到线段BN,观察所得到的∠ABM、∠MBN和∠NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NG⊥BC,则直角三角形中NG=BN,从而可得∠ABM=∠MBN=∠NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN为等边三角形,所以∠ABM=∠MBN=∠NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006年临安)如图,△OAB是边长为2的等边三角形,其中O是坐标原点,顶点B在y轴的正方向上,将△OAB折叠,使点A落在OB上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB上运动,但不与O、B重合时,能否使△A`EF为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF为直角三角形,且直角顶点在F处时,根据轴对称性质我们可以得到∠AFE=∠A`FE=900,此时A`点与B点重合,与题目中已知相矛盾,所以直角顶点在点F处不成立. 同理可证,直角顶点亦不可能在点E处. 故当A`点在OB上运动,若不与O、B重合,则不存在这样的A`点使△A`EF为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题.。