2019重庆中考数学第25题专题-整除有关的问题

合集下载

重庆市中考数学25题

重庆市中考数学25题

重庆市中考数学专题1、(一中2019级初三下入学考试)《见微知著》读到,从一个简单的经典问题出发,从特殊到一般,由简单到复杂;从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思维阀门发现新问题、新结论的重要方法。

阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思维难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体带入;(4)整体求和等。

例如:11111,1=+++=ba ab 求证:证明:111111=+++=+++=b b b b a ab ab 原式 波利亚在《怎样解题》中指出:“当你找到一个蘑菇或者作出第一个发现后,再四处看看,他们总是成群生长”类似问题:我们有更多的式子满足以上特征。

阅读材料二: 基本不等式()0,02 b a b a ab +≤,当且仅当b a =时等号成立,它是解决最值问题的有力工具;例如:在0 x 的条件下,当x 为何值时,xx 1+有最小值,最小值是多少? 解:∵0 x ,01 x ,∴xx x x 121⋅≥+,即2121=⋅≥+x x x x ,∴21≥+x x 当且仅当x x 1=,即1=x 时,x x 1+有最小值,最小值为2. 请根据阅读材料解答下列问题:(1)已知1=ab ,求下列各式的值: ①=+++221111b a ; ②=+++n n b a 1111 ;(2)若1=abc ,解方程.1151515=++++++++c ca cx b bc bx a ab ax(3)若正数b a 、满足1=ab ,求ba M 21111+++=的最小值。

2、(巴蜀2019级初三下开学考试)材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子。

在解某些特殊方程时,使用换元法常常可以达到转化与划归的目的。

例如在求解一元四次方程,012,0122224=+-==+-t t t x x x 则原方程变为时,令解得,1=t ,从而解得原方程的解为.1±=x材料二:杨辉三角形是中国数学史上的一个伟大成就,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。

重庆中考第25题(阅读理解)专题专训(教师版)

重庆中考第25题(阅读理解)专题专训(教师版)

重庆中考数学第25题专训2501.材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F(m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)= 222 ,(2)求证:当n能被3整除时,F(m,n)一定能被6整除;(3)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.解:(1)F(16,123)=11+12+13+61+62+63=222,故答案为:222证明:设这个三位数的个位数是x,十位数是y,百位数是z,则这个三位数是100z+10y+x,∵各位数字之和能被3整除,∴(x+y+z)÷3是整数,∵100z+10y+x=(99z+9y)+x+y+z,∴(100z+10y+x)÷3=(99z+9y)÷3+(x+y+z)÷3=33z+3y+(x+y+z)÷3,∴这个数就能被3整除;(2)∵s=21x+y,t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),∴当x分别等于1、2、3、4,y,分别等于1、2、3、4、5时,可得s分别等于22、23、24、25、26、43、44、45、46、47、64、65、66、67、68、85、86、87、88、89,t分别等于321、322、323、324、325、442、443、444、445、446、563、564、565、566、567、684、685、686、687、688,∴s的个位上的数是2、3、4、5、6、7、8、9,t′的个位上的数就是t的百位上的数即为:3、4、5、6,又∵当s和t为“珊瑚数对”时有t′与s的个位数字的3倍的和能被11整除的数是33、66、99、132、165…∴t′与s的个位数字的和是:11∵3+8=11、4+7=11、5+6=11,∴“珊瑚数对”是s的个位上的数是3、4、5、6、7、8的数和t的百位上的数即为:3、4、5、6的所有数∴F(s,t)的最大值是:F(88,688)=86+88+88+86+88+88=524.2502.任意一个正整数n,都可以表示为:n=a×b×c(a≤b≤c,a,b,c均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a×b×c是n的“阶梯三分法”,并规定:F (n)=,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)==2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2.(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.解:(1)∵m为立方数∴设m=q×q×q∴|2q﹣(q﹣q)=0∴|q×q×q是m的阶梯三分法∴F(m)=(2)由已知,[23(10x+y)+x+y]能被13整除,整理得:231x+24y能被13整除∵231x+24y=13(10x+2y)﹣(3x+2y)∴3x+2y能被13整除∵1≤x≤9,0≤y≤9 ∴3≤3x+2y≤45∵x,y均为整数∴3x+2y的值可能为13、26或39当3x+2y=13时∵x≥y,x+y≤10∴x=3,y=2,t=32∴32的阶梯三分法为2×4×4 ∴F(32)=同理,当3x+2y=26时可得x=8,y=1或x=6,y=4∴t=81或64∴F(81)=4,F(64)=2同理,当3x+2y=39时可得x=9,y=6∴t=96∴F(96)=∴综合①②③,F(t)最小值为2503.对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为D(n),把这个“递增数”的百位数字与个位数字交换位置后,得到321,即E(123)=321,规定F(n)=,如F(123)==1.(1)计算:F(159),F(246);(2)若D(s)是百位数字为1的数,D(t)是个位数字为9的数,且满足F(s)+F(t)=5,记k=,求k的最大值.解:(1)∵D(159)=159∴E(159)=100×9+10×5+1=951∴F(159)=∵D(246)=246∴E(246)=100×6+10×4+2=642∴F(159)=(2)设s、t的每个数位上的数字递增数值分别为x、y∵x、y为各个数位上的递增数值,递增后的数值不能使各数位上的数字超过9∴x、y分别取1﹣4的整数∴D(s)=100+10(1+x)+(1+2x)=12x+111D(t)=100(9﹣2y)+10(9﹣y)+9=999﹣210y∴E(s)=100(1+2x)+10(1+x)+1=210x+111E(t)=900+10(9﹣y)+(9﹣2y)=999﹣12y∴F(s)===x同理F(t)=y∵F(s)+F(t)=5∴x+y=5∴y=5﹣x∵k=∴k===26x+19∵1≤x≤4,且x为整数∴当x=4时,k最大值为1232504.有一个n位自然数能被x0整除,依次轮换个位数字得到的新数能被x+1整除,再依次轮换个位数字得到的新数能被x+2整除,按此规律轮换后,能被x 0+3整除,…,能被x+n﹣1整除,则称这个n位数是x的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.解:(1)设两位自然数的十位数字为x,则个位数字为2x,∴这个两位自然数是10x+2x=12x,∴这个两位自然数是12x能被6整除,∵依次轮换个位数字得到的两位自然数为10×2x+x=21x∴轮换个位数字得到的两位自然数为21x能被7整除,∴一个两位自然数的个位数字是十位数字的2倍,这个两位自然数一定是“轮换数”;(2)∵三位自然数是3的一个“轮换数”,且a=2,∴100a+10b+c能被3整除,即:10b+c+200能被3整除,第一次轮换得到的三位自然数是100b+10c+a能被4整除,即100b+10c+2能被4整除,第二次轮换得到的三位自然数是100c+10a+b能被5整除,即100c+b+20能被5整除,∵100c+b+20能被5整除,∴b+20的个位数字不是0,便是5,∴b=0或b=5,当b=0时,∵100b+10c+2能被4整除,∴10c+2能被4整除,∴c只能是1,3,5,7,9;∴这个三位自然数可能是为201,203,205,207,209,而203,205,209不能被3整除,∴这个三位自然数为201,207,当b=5时,∵100b+10c+2能被4整除,∴10c+502能被4整除,∴c只能是1,5,7,9;∴这个三位自然数可能是为251,255,257,259,而251,257,259不能被3整除,∴这个三位自然数为255,即这个三位自然数为201,207,255.2505.已知,我们把任意形如:的五位自然数(其中c=a+b,1≤a≤9,1≤b≤9)称之为喜马拉雅数,例如:在32523自然数中,3=2=5,所以32523就是一个喜马拉雅数.并规定:能被自然数整除n的最大的喜马拉雅数记为F(n),能被自然数n整除的最小的喜马拉雅数记为I(n).(1)求证:任意一个喜马拉雅数都能被3整除;(2)求F(3)+I(8)的值.解:(1)t==10000a+1000b+100c+10b+a又∵c=a+b∴t==10000a+1000b+100c+10b+a=10101a+1110b∵(10101a+1110b)÷3=3367a+370b∴任意一个喜马拉雅数都能被3整除;(2)当a=8,b=1,c=9时能被自然数整除n的最大喜马拉雅数F(n)=81918且任意一个喜马拉雅数都能被3整除∴F(3)=81918当a=2,b=1,c=3时能被自然数整除n的最大喜马拉雅数I(n)=21312,且21312能被8整除,∴I(8)=21312∴F(3)+I(8)=81918+21312=103230.2506.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.解:(1)F(243)=(423+342+234)÷111=9;F(617)=(167+716+671)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴或或或或或.∵s是“相异数”,∴x≠2,x≠3.∵t是“相异数”,∴y≠1,y≠5.∴或或,∴或或,∴或或,∴k的最大值为.2507.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a ,十位数字为b ,个位数字为c ),若满足a+c=b ,则称这个三位数为“欢喜数”,并规定F ()=ac .如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F (374)=3×4=12.(1)对于“欢喜数”,若满足b 能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n (m >n ),若F (m )﹣F (n )=3,求m ﹣n 的值.解:(1)证明:∵为欢喜数,∴a+c=b .∵=100a+10b+c=99a+10b+a+c=99a+11b ,b 能被9整除,∴11b 能被99整除,99a 能被99整除,∴“欢喜数”能被99整除. (2)设m=,n=(且a 1>a 2),∵F (m )﹣F (n )=a 1•c 1﹣a 2•c 2=a 1•(b ﹣a 1)﹣a 2(b ﹣a 2)=(a 1﹣a 2)(b ﹣a 1﹣a 2)=3,a 1、a 2、b 均为整数,∴a 1﹣a 2=1或a 1﹣a 2=3.∵m ﹣n=100(a 1﹣a 2)﹣(a 1﹣a 2)=99(a 1﹣a 2),∴m ﹣n=99或m ﹣n=297.∴若F (m )﹣F (n )=3,则m ﹣n 的值为99或297.2508.当一个多位数的位数为偶数时,在其中间插入一位数k ,(0≤k ≤9,且k 为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)现有一个4位数2316,中间插入数字m(0≤m≤9,且m为3的倍数),得其关联数,求证:所得的2316的关联数与原数10倍的差一定能被3整除;(2)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数.解:(1)证明:∵这个4位数的前两位为23,后两位为16,∴2316的关联数是23m16将关联数与原数10倍相减得:m•102﹣9×16.∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除;(2)设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.2509.根据阅读材料,解决问题.。

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)

2019重庆市中考数学试卷(含答案和详细解析)重庆市中考数学试卷(A 卷)一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时这6.(4分)(2019•重庆)关于x 的方程=1的解是() 647.(4分)(2019•重庆)2019年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、8.(4分)(2019•重庆)如图,直线AB ∥CD ,直线EF 分别交直线AB 、CD 于点E 、F ,过点F 作FG ⊥FE ,交直线AB 于点G ,若∠1=42°,则∠2的大小是()9.(4分)(2019•重庆)如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,11.(4分)(2019•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2019•重庆)方程组的解是14.(4分)(2019•重庆)据有关部分统计,截止到2019年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 _________ .15.(4分)(2019•重庆)如图,菱形ABCD 中,∠A=60°,BD=7,则菱形ABCD 的周长为16.(4分)(2019•重庆)如图,△OAB 中,OA=OB=4,∠A=30°,AB 与⊙O 相切于点C ,则图中阴影部分的面积为 _________ .(结果保留π)17.(4分)(2019•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a ,那么,使关于x 的一次函数y=2x+a的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为 _________ .18.(4分)(2019•重庆)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 _________ .三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2019•重庆)计算:20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.+(﹣3)﹣2019×|﹣4|+20.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.22.(10分)(2019•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有 _________ 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.24.(10分)(2019•重庆)如图,△ABC 中,∠BAC=90°,AB=AC,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.26.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点E(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.2019年重庆市中考数学试卷(A 卷)参考答案与试题解析一、选择题(本大题共12小题,每小题4分共48分)5.(4分)(2019•重庆)2019年1月1日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃,当时 6.(4分)(2019•重庆)关于x 的方程=1的解是()该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、直线AB 于点G ,若∠1=42°,则∠2的大小是()10.(4分)(2019•重庆)2019年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()12.(4分)(2019•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为()13.(4分)(2019•重庆)方程组的解是.5积为 4﹣.(结果保留π)的图象与x 轴、y 轴围成的三角形的面积为,且使关于x 的不等式组有解的概率为. 11DE=2CE,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为19.(7分)(2019•重庆)计算:12 +(﹣3)﹣2019×|﹣4|+20.20.(7分)(2019•重庆)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.21.(10分)(2019•重庆)先化简,再求值:÷(﹣)+,其中x 的值为方程2x=5x ﹣1的解.了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:13(1)某镇今年1﹣5月新注册小型企业一共有 16 家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.1423.(10分)(2019•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a >0).则每户平均集资的资金在150元的基础上减少了a%,求a 的值.BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC .(1)求证:BE=CF;(2)在AB 上取一点M ,使BM=2DE,连接MC ,交AD 于点N ,连接ME .求证:①ME ⊥BC ;②DE=DN.15225.(12分)(2019•重庆)如图,抛物线y=﹣x ﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.1626.(12分)(2019•重庆)已知:如图①,在矩形ABCD 中,AB=5,AD=E 关于AB 的对称点,连接AF 、BF .,AE ⊥BD ,垂足是E .点F 是点(1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角171819。

2019年重庆市中考数学试卷含答案

2019年重庆市中考数学试卷含答案
6.A
解析:A 【解析】 【分析】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.首先解直角三角形 Rt△CDN,求出
CN,DN,再根据 tan24°= AM ,构建方程即可解决问题. EM
【详解】 作 BM⊥ED 交 ED 的延长线于 M,CN⊥DM 于 N.
在 Rt△CDN 中,∵ CN 1 4 ,设 CN=4k,DN=3k, DN 0.75 3
=∠MAP+∠PAB,则 AP=_____.
20.等腰三角形一腰上的高与另一腰的夹角的度数为 20°,则顶角的度数是 .
三、解答题
21.如图,点 B、C、D 都在⊙O 上,过点 C 作 AC∥BD 交 OB 延长线于点 A,连接 CD,
且∠CDB=∠OBD=30°,DB= 6 3 cm.
(1)求证:AC 是⊙O 的切线; (2)求由弦 CD、BD 与弧 BC 所围成的阴影部分的面积.(结果保留 π)
3.B
解析:B 【解析】 【分析】 根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到. 【详解】 解:∵△MNP 绕某点旋转一定的角度,得到△M1N1P1, ∴连接 PP1、NN1、MM1, 作 PP1 的垂直平分线过 B、D、C, 作 NN1 的垂直平分线过 B、A, 作 MM1 的垂直平分线过 B, ∴三条线段的垂直平分线正好都过 B, 即旋转中心是 B. 故选:B.
何体的侧面积是( )
A.12cm2
B. 12 πcm2
C. 6π cm2
D. 8π cm2
12.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8 个,甲做 120 个所用的时间与
乙做 150 个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( )

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案

2019重庆中考数学试题及答案数学试卷重庆市2019年初中毕业暨高中招生考试数学试题全卷共五个大题,满分150分,考试时间120分钟。

注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填入答题卷中对应的表格内)。

1.在一3,一1,0,2这四个数中,最小的数是()A.一3B.一1C.0D.22.下列图形中,是轴对称图形的是()3.计算(ab)的结果是(。

)A.2abB.abC.abD.ab4.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠XXX的度数为()A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是()A.调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF//AB。

若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为(。

)A.2B.3C.4D.58.2019年“国际攀岩比赛”在重庆举行。

XXX从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时XXX也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场。

设XXX从家出发后所用时间为t,XXX与比赛现场的距离为S。

下面能反映S与t的函数关系的大致图象是()9.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为(。

2019重庆中考数学第25题专题-整除有关的问题

2019重庆中考数学第25题专题-整除有关的问题

2018重庆中考数学第25题专题训练一整除有关的问题1、重庆实验外国语学校2018级初三上期期末25. 对于一个各数位上的数字均不为0且互不相等的三位自然数p ,将它各个数位上的数字分别3倍后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数xyz ,当()xz xy -的值最小时,称此时的xyz 为自自然数p 的“冬至数”,并规定()()2x z y p K +-=.例如:p =235时,其各个数位上数字分别3倍后的三个个位数分别是6、9、5,重新组合后的数为为695、659、569、596、965、956,因为(6×5-6×9)的值最小,所以659是235的“冬至数”,此时()()1006952=+-=p K (1)求K (145)和K (746);(2)若s ,t 都是各数位上的数字均不为0且互不相等的三位自然数,s 的个位数字为1,十位数字是个位数字的2倍,t 的十位数字是百位数字的2倍,s 的百位数字与:的个位数字相同.若(s +t )能被4整除,(s -t )能被11整除,求()()t K s K 的最大值.2、重庆八中2018级初三上期期末25.一个三位自然数是s ,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数's ('s 可以与s 相同),设xyz s =',在's 所有的可能情况中,当z y x -+3最大时,我们称此时的's 是s 的“梦想数”,并规定()2223z y x s P -+=.例如125按上述方法可得到新数有:217、172、721,因为,,,,20122121672022112732 =-+=-+=-+ 所以172是172的“梦想数”,此时,()1442731127222=-⨯+=P .(1)求512的“梦想数”及()512P 的值;(2)设三位自然数,ab s 1=交换其个位与十位上的数字得到新数's ,若4887'729=+s s ,且()s P 能被7整除,求s 的值.5、重庆一中2018级初三上期期末25.若一个三位自然m=xyz(x,y,z为整数,且1≤x≤9,O≤y、z≤9)满足y=2x-z,则称m为“无问西东数”,交换m的百位数字与十位数字得新数n=yxz,则称n.m的“无问东西数”,规定F(m,n)=sm+n(s,t均为非零常数),记I(m)=F(m,n).如m=111为“无问西东数”,其“无问东西数”n=111;再如m=102为“无问西东数其无河东西数”n=12.已知I(l11)=ll,I(102)=-78.(1)记最大“无问西东数”为p,则I(P)=______,并求证:任意一个“无问西东数”与其各个数位上数字之和能被3整数(2)已知一个三位自然数h=100a+10b+3c(其中a,b,c为整数,且1≤a≤9,0≤b≤7,0≤c≤9)是“无问西东数”,且被8除余1,求I(h)的最小值.6、重庆南开中学2018级初三上期期末25.一个自然数从左到右各数位上数字和另一个自然数从右到左各数位上的数字完全相同,则称一个数是另一个数的镜反数,即:若A=),(其中0a 0a a a a a n 1n1-n 21≠≠⋯⋯则它的镜反数F(A)=121-n n a a a a ⋯⋯· 例如:F(13062)=26031(1)若M 是一个四位数,求证M+F(M)能被11整除;(2)已知任意四位数P 均可唯一分解为P=100a+b 2+c 的形式(其中a ,b ,c 均为非负整数,0≤b≤9且c <2b+1),规定G(P)=b 2ac -a +.例如:2018=100×20+18=100×20+42+2,所以G(2018)=14942202-20=⨯+.若N 是一个四位数,其中千位比百位大1,十位比个位小1,且存在大于1的整数k ,使得F(N)=k 2N ,求G(N)的最大值.课后练习:1.2.3.4.。

2019重庆中考数学第25题专题训练二(含答案)

2019重庆中考数学第25题专题训练二(含答案)

2019重庆中考数学第25题专题训练二25.已知,我们把任意形如:t abcba =的五位自然数(其中c a b =+,19a ≤≤,08b ≤≤)称之为喜马拉雅数,例如:在自然数32523中,325+=,所以32523就是一个喜马拉雅数.并规定:能被自然数n 整除的最大的喜马拉雅数记为()F n ,能被自然数n 整除的最小的喜马拉雅数记为()I n . (1)求证:任意一个喜马拉雅数都能被3整除; (2)求()3+(8)F I 的值.解析:(1)各数位数字之和2222()3()a b c b a a b c a b a b a b ++++=++=+++=+ ∵a b 、是整数 ∴a b +是整数 ∴任意一个喜马拉雅数都能被3整除 (2)(3)90909F =,()101011110321263139888ab a b ba a b a ba b +++==+-∵喜马拉雅数能被8整除∴32a b +能被8整除19,08,1933227a b a b a b ≤≤≤≤≤+≤∴≤+≤,,328,1624a b ∴+=或可得:(8)21312I = ∴(3)(8)9090921312112221F I +=+=25.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为()F k .如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(09,09,09a b c ≤≤≤≤≤≤,a 、b 、c 是整数),规定:(,)a cG m n b-=.当()()24F m F n +=时,求(,)G m n 的值..解:(1)189962808062)8062(=-=F ……(1分)设abcd n = ∴99)10101000(101001000)(b a d c d c b a n F +++-+++=d c b a --+=1010∵d c b a 、、、是整数, ∴d c b a --+1010也为整数,即:结论成立.……(4分)(2)设“平衡数”mnpq N = 由题可得:12,-=+=+n p q p n m∴q p n m N +++=101001000 p n m 91011001++= 91191001-+=n m (5分)∵N 能被11整除∴119910911191191001-++=-+n n m n m ∴1199-n 为整数又∵90≤≤n 且n 为整数 ∴1=n∴112=-=n p ……(7分) ∴1101001+=m N ∵N 能被3整除∴3223633331101001+++=+a m m ∴322+a 为整数又∵91≤≤a ∴852或或=a∴N=2112或5115或8118……(9分) ∵63)8118(,36)5115(,9)2112(===F F F ∴9)(的最小值为N F ……(10分)阅读下列材料,解决问题:一个能被17整除的自然数我们称“灵动数”,“灵动数”的特征是;若把一个整数的个位数字截去,在从余下的数中,减去个位数的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍大,相减,验差”的过程,直到能清楚判断为止.例如:判断1675282是不是“灵动数”,判断过程:16752825167518-⨯=,167518516711-⨯=,1671151666-⨯=,16665136-⨯=,到这里如果你仍然观察不出来,就继续…65=30⨯,现在个位5=30>⨯剩下的13,就用大数减去小数,301317-=,17是17的1倍,所以1675282能被17整除,所以1675282是“灵动数”.(1)请用上述方法判断7242和2098754是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为27mn ,其中个位上的数字为n ,十位上的数字为m ,且m 、n 为整数,若这个数能被51整除,请求出这个数. 解:(1)5154-71,71452-724=⨯=⨯ 51是17的3倍,7242∴是“灵动数”;1827-5927956-209,209650-20962096055-20985,20985554-209875=⨯=⨯=⨯=⨯=⨯18不能被17整除,2098754∴不是“灵动数”. (2)由题可知:2700+10m+n=5153+10m+n-3能被51整除10m+n-3能被51整除96310390,90≤-+≤-∴≤≤≤≤n m n m10m+n-3=0或51,即10m+n=3或54⎩⎨⎧==⎩⎨⎧==∴4530n m n m 或 ∴这个数为2703或275425、一个多位自然数分解为末三位与末三位以前的数,让末三位数减去末三位以前的数,所得的差能被13整除,则原多位数一定能被13整除.(1)判断266357 (能/不能)被13整除,证明任意一个多位自然数都满足上述规律; (2)一个自然数t 可以表示为22q p t -=的形式,(其中q p >且为正整数),这样的数叫做“佛系数”,在t 的所有表示结果中,当q p -最小时,称22q p -是t 的“佛系分解”,并规定q p q p t F -+=2)(.例如:22227-92-632==,267-9-<,则79729)32(-⨯+=F 223=.已知一个五位自然数,末三位数4210800++=y m ,末三位以前的数为y x n ++=)(110(其中81≤≤x ,91≤≤y 且为整数),n 为“佛系数”,交换这个五位自然数的十位和百位上的数字后所得的新数能被13整除,求)(n F 的最大值. 解析:(1)能;…………………………………(1分)设末三位数为B ,末三位以前的数为A ,则这个数为1000A+B.)1377(13131001)131000100013,13+=+=++=+∴+=∴=-A k A k A A B A kA B k k A B (是整数是整数是整数1377,+∴A k A所以:任意一个多位自然数都满足上述规律…………………………………(4分)(2)当51≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、8、(4+y )、2;1345336813472991013)1(10824100+-+++-=++-=-+-++∴y x y x y x y x y )(13453+-∴y x 是整数93,85,32,243,5,2,48,7,2,113,0,13453234531851,81=∴⎩⎨⎧==∴-=+-∴≤+-≤-∴≤≤≤≤n y x y x y x y x …………………………………(6分) 当96≤≤y 时,这个五位数万位、千位、百位、各位数字为(1+x )、y 、9、(6-y )、2;1324340-813518-991013)1(10926-100+-++-=+-=-+-+∴y x y x y x y x y )(13243+-∴y x 是整数⎩⎨⎧==∴---=+-∴-≤+-≤-∴≤≤≤≤6,85,413,26,3924342434096,81y x y x y x y x 66,58=∴n …………………………………(7分)由))((22q p q p q p n -+=-=,)()(q p q p -+,奇偶性相同139)93(127)85(223)32(,217)24(====F F F F ,, 139127223217<<< )(n F ∴最大值是139.…………………………………(10分)25.一个数的后三位数加上前边的数之和能被37整除,那么这个数就能够被37整除,如果前边的数超过三位,那么三个数字为一组,相加能够被37整除,这个数就能被37整除.例如:6549 ,549+6=555,555÷37=15,所以6549能被37整除;12360146, 146+360+12=518,518÷37=14,所以12360146能被37整除.(1)判断:333444 (能、不能)被37整除;证明:若四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数)能被37整除,求证:将abcd 的个位截去,再用余下的数减去个位数的11倍也能被37整除.(2)一个四位数abcd (其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 为整数),其个位数字与千位数字的和等于十位数字与百位数字的和,此四位数能被37整除,且百位数字加上个位数字再与十位数字的差是一个完全平方数,求此四位数.25.(1) 能 .........................1分 证明:由题可知,k a d c b 3710100=+++.........................1分 其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 为整数 ∴a c b k d ---=1010037)()(c b a k c b a k a c b k c b a d c b a 330311371111110111407101003711101001110100+++-=+++-=----++=-++...................3分∴abcd 的个位截去,再用余下的数减去个位的11倍也能被37整除 (2)由题可知,c b d a +=+, k a d c b 3710100=+++2m c d b =-+.........................1分其中91≤≤a ,91≤≤b ,9c 1≤≤,9d 1≤≤,a 、b 、c 、d 、k 、m 为整数∴kc b b k c b k c b c b 37111011137111013710100=+-=+=+++ 1371110k c b =+- (1k 为整数).........................1分 ∵89111079≤+-≤-c b ∴7437037741110、、、、--=+-c b .........................1分 ∴⎩⎨⎧==3711c b 或⎩⎨⎧==7422c b当⎩⎨⎧==3711c b 时,满足条件2m c d b =-+的5=d ,此时5=a当⎩⎨⎧==7422c b 时,满足条件2m c d b =-+的⎪⎩⎪⎨⎧===743321d d d ,此时对应的⎪⎩⎪⎨⎧===478321a a a 综上所述,此四位数为5735、8473、7474、4477.........................2分25.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n 。

中考数学第25题专题复习训练(含答案)

中考数学第25题专题复习训练(含答案)

第25题专题复习训练(含答案)1.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接DF、CF。

DE ,求CF;(1)如图1,当点D在AB上,点E在AC中点,2(2)如图2,在(1)的条件下将△ADE绕A点顺时针旋转45°时,线段DF、CF有何数量关系和位置关系?证明你的结论;(3)如图3,在(1)的条件下将△ADE绕A点顺时针旋转任意角度时,线段DF、CF又有何数量关系和位置关系?证明你的结论;2. 如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.F为线段BD的中点.(1)如图1,点E在AB上,点D与C重合,EF=2,求AB的长.(2)如图2,当D、A、C在一条直线上时.线段EF与FC有何数量关系和位置关系?证明你的结论;(3)如图③,连接EF、FC,线段EF与FC又有何数量关系和位置关系?证明你的结论;.3.如图1,△ACB 、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连CE ,M 、N 分别为BD 、CE 的中点.(1)求证:MN ⊥CE ;(2)如图2将△AED 绕A 点逆时针旋转30°,CE 与MN 有何数量关系和位置关系?证明你的结论.4. 已知,如图1,等腰直角△ABC 中,E 为斜边AB 上一点,过E 点作E F ⊥AB 交BC 于点F ,连接AF ,G 为AF 的中点,连接EG ,CG 。

(1)如果BE=2,∠BAF=30°,求EG ,CG 的长;(2)将图1中△BEF 绕点B 逆时针旋转45°,得如图2所示,取AF 的中点G ,连接EG ,CG 。

延长CG 至M ,使GM=GC ,连接EM=EC ,求证:△EMC 是等腰直角三角形;(3)将图1中△BEF 绕点B 旋转任意角度,得如图3所示,取AF 的中点G ,再连接EG ,CG ,问线段EG 和GC 有怎样的数量关系和位置关系?并证明你的结论。

中考数学整除知识点总结

中考数学整除知识点总结

中考数学整除知识点总结一、整除的定义在中学数学中,我们把两个整数a和b(a≠0)满足条件a÷b = c(c是整数),就称a能被b 整除,b能整除a,记作b | a。

另外,任意整数都能被1整除,0不能被任何数整除。

二、整除的性质1. 如果a能被b整除,b能被c整除,那么a能被c整除。

2. 如果a能被b整除,且b能被c整除,那么a能被c整除。

3. 如果a能被b整除,b≠0,那么a和b的绝对值之差能被b整除。

4. 如果a能被m整除,b能被m整除,那么a ± b(a和b同号)也能被m整除。

5. 如果a能够被b整除,而b不等于0,那么a的倍数中也能被b整除。

三、整除的运算1. 整除与乘法运算如果a能被b整除,且c≠0,那么a×c能被b×c整除。

2. 整除与除法运算如果a能被b整除,且c≠0,那么a÷c能被b÷c整除。

四、整除定理1. 整除定理一如果整数a能被整数b整除,那么a必能被b的所有因数整除。

2. 整除定理二如果整数a和b均为非零整数,则a能被b整除的充分必要条件是当且仅当b的所有质因数都是a的质因数时a能被b整除。

五、奇数与偶数整除的性质在奇数和偶数之间也有一些特殊的表现。

奇数与奇数相乘或相加、偶数与偶数相乘或相加、奇数与偶数相乘或相加,分析后都是奇数,而偶数与偶数相除或奇数与偶数相除就一定是偶数。

六、整除在数论中的应用整除在数论中有着非常重要的应用,比如素数、最大公因数和最小公倍数等问题都是基于整除概念来研究的。

(1)素数素数就是只能被1和自身整除的自然数,素数是数论中的基本概念。

(2)最大公因数最大公因数是指有多个数的一个共同因子中最大的一个数,它是整除概念在数论中的一个重要应用。

(3)最小公倍数最小公倍数是指一个自然数所有公倍数中,除1之外最小的一个数。

整除是数学中一个基础而又重要的概念,它贯穿于整个数学学科,涉及到了很多数学问题的解答。

2019年重庆市中考数学试卷(解析版)

2019年重庆市中考数学试卷(解析版)

2019年重庆市中考数学试卷(解析版)一、选择题:(本大题12个小题,每小题4分,共48分)1.(4分)下列各数中,比﹣1小的数是()A.2B.1C.0D.﹣2【解答】解:∵﹣2<﹣1<0<2,∴比﹣1小的数是﹣2,故选:D.2.(4分)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.3.(4分)如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A.2B.3C.4D.5【解答】解:∵△ABO∽△CDO,∴=,∵BO=6,DO=3,CD=2,∴=,解得:AB=4.故选:C.4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C =50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°【解答】解:∵AC是⊙O的切线,∴AB⊥AC,∴∠BAC=90°,∵∠C=50°,∴∠ABC=40°,∵OD=OB,∴∠ODB=∠ABC=40°,∴∠AOD=∠ODB+∠ABC=80°;故选:C.5.(4分)下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形【解答】解:A、有一个角是直角的平行四边形是矩形,是真命题;B、四条边相等的四边形是菱形,是假命题;C、有一组邻边相等的平行四边形是菱形,是假命题;D、对角线相等的平行四边形是矩形,是假命题;故选:A.6.(4分)估计(2+6)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【解答】解:(2+6)×,=2+6,=2+,=2+,∵4<5,∴6<2+<7,故选:C.7.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A .B .C .D .【解答】解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.8.(4分)按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【解答】解:当m=1,n=1时,y=2m+1=2+1=3,当m=1,n=0时,y=2n﹣1=﹣1,当m=1,n=2时,y=2m+1=3,当m=2,n=1时,y=2n﹣1=1,故选:D.9.(4分)如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.40【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20.故选:B.10.(4分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC =26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米【解答】解:如图,∵=1:2.4=,∴设CF=5k,AF=12k,∴AC==13k=26,∴k=2,∴AF=10,CF=24,∵AE=6,∴EF=6+24=30,∵∠DEF=48°,∴tan48°===1.11,∴DF=33.3,∴CD=33.3﹣10=23.3,答:古树CD的高度约为23.3米,故选:C.11.(4分)若关于x的一元一次不等式组的解集是x≤a,且关于y的分式方程﹣=1有非负整数解,则符合条件的所有整数a的和为()A.0B.1C.4D.6【解答】解:由不等式组得:∵解集是x≤a,∴a<5;由关于y的分式方程﹣=1得2y﹣a+y﹣4=y﹣1∴y=,∵有非负整数解,∴≥0,∴a≥﹣3,且a=﹣3,a=﹣1(舍,此时分式方程为增根),a=1,a=3它们的和为1.故选:B.12.(4分)如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)13.(4分)计算:(π﹣3)0+()﹣1=3.【解答】解:原式=1+2=3,故答案为:3.14.(4分)今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为 2.56×107.【解答】解:25600000=2.56×107.故答案为:2.56×107.15.(4分)一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.【解答】解:画树状图为:共有30种等可能的结果数,其中两次都摸到红球的结果数为6,所以两次都摸到红球的概率为=.故答案为:.16.(4分)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C 为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为2﹣π.(结果保留π)【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.17.(4分)某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是6000米.【解答】解:由题意可得,甲的速度为:4000÷(12﹣2﹣2)=500米/分,乙的速度为:=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12﹣2)﹣500×2+500×4=6000(米),故答案为:6000.18.(4分)在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收入.经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是3:20.【解答】解:设该村已种药材面积x,余下土地面积为y,还需种植贝母的面积为z,则总面积为(x+y),川香已种植面积x、贝母已种植面积x,黄连已种植面积依题意可得,由①得x=③,将③代入②,z=y,∴贝母的面积与该村种植这三种中药材的总面积之比=,故答案为3:20.三、解答题:(本大题7个小题,每小题10分,共70分)19.(10分)计算:(1)(x+y)2﹣y(2x+y)(2)(a+)÷【分析】(1)根据完全平方公式、单项式乘多项式可以解答本题;(2)根据分式的加法和除法可以解答本题.【解答】解:(1)(x+y)2﹣y(2x+y)=x2+2xy+y2﹣2xy﹣y2=x2;(2)(a+)÷====.【点评】本题考查分式的混合运算、完全平方公式、单项式乘多项式,解答本题的关键是明确它们各自的计算方法.20.(10分)如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC 即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.【点评】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水•珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数9292中位数93b众数c100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【解答】解:(1)a=(1﹣20%﹣10%﹣)×100=40,∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平方数,∴b==94;∵在七年级10名学生的竞赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×=468人,答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点评】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(10分)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数﹣“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.【分析】(1)根据题目中的新定义可以解答本题,注意各数位都不产生进位的自然数才是“纯数”;(2)根据题意可以推出不大于100的“纯数”的个数,本题得以解决.【解答】解:(1)2019不是“纯数”,2020是“纯数”,理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”;(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共三个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,共九个,当这个数是三位自然数是,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”的有13个.【点评】本题考查整式的加减、有理数的加法、新定义,解答本题的关键是明确题意,利用题目中的新定义解答.23.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式﹣﹣利用函数图象研究其性质一一运用函数解决问题“的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|=.结合上面经历的学习过程,现在来解决下面的问题在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质;(3)已知函y=x﹣3的图象如图所示,结合你所画的函数图象,直接写出不等式|kx﹣3|+b≤x﹣3的解集.【分析】(1)根据在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,可以求得该函数的表达式;(2)根据(1)中的表达式可以画出该函数的图象并写出它的一条性质;(3)根据图象可以直接写出所求不等式的解集.【解答】解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,得,∴这个函数的表达式是y=|x﹣3|﹣4;(2)∵y=|x﹣3|﹣4,∴y=,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣﹣1过点(0,﹣1)和点(﹣2,2);该函数的图象如右图所示,性质是当x>2时,y随x的增大而增大;(3)由函数图象可得,不等式|kx﹣3|+b≤x﹣3的解集是1≤x≤4.【点评】本题考查一次函数的应用、一元一次不等式与一次函数的关系,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【分析】(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有500×40%=200户参与活动一,80平方米住宅有250×20%=50户参与活动一;50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,列出方程求解即可.【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.【点评】本题是一元二次方程的综合应用题,数据较多,分析清楚题目中相关数据,根据等量关系列出方程是解题的关键.25.(10分)如图,在平行四边形ABCD中,点E在边BC上,连结AE,EM⊥AE,垂足为E,交CD于点M,AF⊥BC,垂足为F,BH⊥AE,垂足为H,交AF于点N,点P是AD上一点,连接CP.(1)若DP=2AP=4,CP=,CD=5,求△ACD的面积.(2)若AE=BN,AN=CE,求证:AD=CM+2CE.【分析】(1)作CG⊥AD于G,设PG=x,则DG=4﹣x,在Rt△PGC和Rt△DGC中,由勾股定理得出方程,解方程得出x=1,即PG=1,得出GC=4,求出AD=6,由三角形面积公式即可得出结果;(2)连接NE,证明△NBF≌△EAF得出BF=AF,NF=EF,再证明△ANE≌△ECM得出CM=NE,由NF=NE=MC,得出AF=MC+EC,即可得出结论.【解答】(1)解:作CG⊥AD于G,如图1所示:设PG=x,则DG=4﹣x,在Rt△PGC中,GC2=CP2﹣PG2=17﹣x,在Rt△DGC中,GC2=CD2﹣GD2=52﹣(4﹣x)2=9+8x﹣x2,∴17﹣x2=9+8x﹣x2,解得:x=1,即PG=1,∴GC=4,∵DP=2AP=4,∴AD=6,∴S△ACD=×AD×CG=×6×4=12;(2)证明:连接NE,如图2所示:∵AH⊥AE,AF⊥BC,AE⊥EM,∴∠AEB+∠NBF=∠AEB+∠EAF=∠AEB+∠MEC=90°,∴∠NBF=∠EAF=∠MEC,在△NBF和△EAF中,,∴△NBF≌△EAF(AAS),∴BF=AF,NF=EF,∴∠ABC=45°,∠ENF=45°,FC=AF=BF,∴∠ANE=∠BCD=135°,AD=BC=2AF,在△ANE和△ECM中,,∴△ANE≌△ECM(ASA),∴CM=NE,又∵NF=NE=MC,∴AF=MC+EC,∴AD=MC+2EC.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理、三角形面积公式等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.(8分)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G.在旋转过程中,是否存在一点G,使得∠Q'=∠Q'OG?若存在,请直接写出所有满足条件的点Q′的坐标;若不存在,请说明理由.【分析】(1)先确定点F的位置,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6),可得|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3,根据二次函数的性质得m==2时,NF取到最大值,此时MN取到最大值,此时HF=2,此时F(2,﹣2),在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,sin∠OCK=,直线KC的解析式为:y=,从而得到直线FJ的解析式为:y=联立解出点J(,)得FP+PC的最小值即为FJ的长,且|FJ|=最后得出|HF+FP+PC|min=;(2)由题意可得出点Q(0,﹣2),AQ=,应用“直角三角形斜边上的中线等于斜边上的一半”取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ,把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G,则用OG=GQ',分四种情况求解.【解答】解:(1)如图1∵抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),交y轴于点C∴令y=0解得:x1=﹣1,x2=3,令x=0,解得:y=﹣3,∴A(﹣1,0),B(3,0),C(0,﹣3)∵点D为抛物线的顶点,且==1,==﹣4∴点D的坐标为D(1,﹣4)∴直线BD的解析式为:y=2x﹣6,由题意,可设点N(m,m2﹣2m﹣3),则点F(m,2m﹣6)∴|NF|=(2m﹣6)﹣(m2﹣2m﹣3)=﹣m2+4m﹣3∴当m==2时,NF取到最大值,此时MN取到最大值,此时HF=2,此时,N(2,﹣3),F(2,﹣2),H(2,0)在x轴上找一点K(,0),连接CK,过点F作CK的垂线交CK于点J点,交y轴于点P,∴sin∠OCK=,直线KC的解析式为:y=,且点F(2,﹣2),∴PJ=PC,直线FJ的解析式为:y=∴点J(,)∴FP+PC的最小值即为FJ的长,且|FJ|=∴|HF+FP+PC|min=;(2)由(1)知,点P(0,),∵把点P向上平移个单位得到点Q∴点Q(0,﹣2)∴在Rt△AOQ中,∠AOG=90°,AQ=,取AQ的中点G,连接OG,则OG=GQ=AQ=,此时,∠AQO=∠GOQ把△AOQ绕点O顺时针旋转一定的角度α(0°<α<360°),得到△A′OQ′,其中边A′Q′交坐标轴于点G①如图2G点落在y轴的负半轴,则G(0,﹣),过点Q'作Q'I⊥x轴交x轴于点I,且∠GOQ'=∠Q'则∠IOQ'=∠OA'Q'=∠OAQ,∵sin∠OAQ===∴sin∠IOQ'===,解得:|IO|=∴在Rt△OIQ'中根据勾股定理可得|OI|=∴点Q'的坐标为Q'(,﹣);②如图3,当G点落在x轴的正半轴上时,同理可得Q'(,)③如图4当G点落在y轴的正半轴上时,同理可得Q'(﹣,)④如图5当G点落在x轴的负半轴上时,同理可得Q'(﹣,﹣)综上所述,所有满足条件的点Q′的坐标为:(,﹣),(,),(﹣,),(﹣,﹣)【点评】本题主要考查了二次函数图象与坐标轴的交点求法和与几何图形结合的综合能力的培养及直角三角形的中线性质.要会利用数形结合的思想把代数和几何图形结合起来,利用通过求点的坐标来表示线段的长度,从而求出线段之间的关系.。

重庆中考数学第25题(阅读理解)专题专训(学生版)

重庆中考数学第25题(阅读理解)专题专训(学生版)

重庆中考数学第25题专题专训2501.材料1:若一个正整数的各个数位上的数字之和能被3整除,则这个数就能被3整除;反之也成立.材料2:两位数m和三位数n,它们各个数位上的数字都不为0,将数m 任意一个数位上的数字作为一个新的两位数的十位数字,将数n任意一个数位上的数字作为该新的两位数的个位数字,按照这种方式产生的所有新的两位数的和记为F(m,n),例如:F(12,345)=13+14=15+23+24+25=114;F(11,369)=13+16+19+13+16+19=96.(1)填空:F(16,123)= ;(2)求证:当n能被3整除时,F(m,n)一定能被6整除;(3)若一个两位数s=21x+y,一个三位数t=121x+y+199(其中1≤x≤4,1≤y≤5,且x、y均为整数),交换三位数t的百位数字和个位数字得到新数t′,当t′与s的个位数字的3倍的和能被11整除时,称这样的两个数s和t为“珊瑚数对”,求所有“珊瑚数对”中F(s,t)的最大值.2502.任意一个正整数n,都可以表示为:n=a×b×c(a≤b≤c,a,b,c均为正整数),在n的所有表示结果中,如果|2b﹣(a+c)|最小,我们就称a ×b×c是n的“阶梯三分法”,并规定:F(n)=,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)==2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p是立方数,求证:对于任意一个立方数m,总有F(m)=2.(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.2503.对于一个各个数位上的数字均不为零的三位正整数n,如果它的百位数字、十位数字、个位数字是由依次增加相同的非零数字组成,则称这个三位数为“递增数”,记为D(n),把这个“递增数”的百位数字与个位数字交换位置后,得到321,即E(123)=321,规定F(n)=,如F(123)==1.(1)计算:F(159),F(246);(2)若D(s)是百位数字为1的数,D(t)是个位数字为9的数,且满足F (s)+F(t)=5,记k=,求k的最大值.2504.有一个n位自然数能被x整除,依次轮换个位数字得到的新数能被x+1整除,再依次轮换个位数字得到的新数能被x 0+2整除,按此规律轮换后,能被x+3整除,…,能被x0+n﹣1整除,则称这个n位数是x的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中a=2,求这个三位自然数.2505.已知,我们把任意形如:的五位自然数(其中c=a+b,1≤a≤9,1≤b≤9)称之为喜马拉雅数,例如:在32523自然数中,3=2=5,所以32523就是一个喜马拉雅数.并规定:能被自然数整除n的最大的喜马拉雅数记为F(n),能被自然数n整除的最小的喜马拉雅数记为I(n).(1)求证:任意一个喜马拉雅数都能被3整除;(2)求F(3)+I(8)的值.2506.对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y ≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.2507.先阅读下列材料,然后解后面的问题.材料:一个三位自然数(百位数字为a,十位数字为b,个位数字为c),若满足a+c=b,则称这个三位数为“欢喜数”,并规定F()=ac.如374,因为它的百位上数字3与个位数字4之和等于十位上的数字7,所以374是“欢喜数”,∴F(374)=3×4=12.(1)对于“欢喜数”,若满足b能被9整除,求证:“欢喜数”能被99整除;(2)已知有两个十位数字相同的“欢喜数”m,n(m>n),若F(m)﹣F(n)=3,求m﹣n的值.2507.当一个多位数的位数为偶数时,在其中间插入一位数k,(0≤k≤9,且k 为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729 中间插入数字6可得435729的一个关联数4356729,其中435729=729+435 ×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)现有一个4位数2316,中间插入数字m(0≤m≤9,且m为3的倍数),得其关联数,求证:所得的2316的关联数与原数10倍的差一定能被3整除;(2)一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数.2509.根据阅读材料,解决问题.数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.(1)计算:G(125),G(746);(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.2510.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)直接写出:最小的“和平数”是,最大的“和平数”是;(2)求个位上的数字是千位上的数字的两倍且百位上的数字与十位上的数字之和是12的倍数的所有“和平数”;(2)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”求证:任意的一组“相关和平数”之和是1111的倍数.2511.对任意一个正整数m,如果m=n(n+1),其中n是正整数,则称m为“优数”,n为m的最优拆分点,例如:72=8×(8+1),则72是一个“优数”,8为72的最优拆分点.(1)请写出一个“优数”,它的最优拆分点是;(2)求证:若“优数”m是5的倍数,则m一定是10的倍数;(3)把“优数”p的2倍与“优数”q的3倍的差记为D(p,q),例如:20=4×5,6=2×3,则D(20,6)=2×20﹣3×6=22.若“优数”p的最优拆分点为t+4,“优数”q的最优拆分点为t,当D(p,q)=76时,求t的值并判断它是否为“优数”.2512.一个整数能表示成a 2+b 2(a 、b 是正整数)的形式,则称这个数为“丰利数”.如2是“丰利数”,因为2=12+12,再如,M=x 2+2xy+2y 2=(x+y )2+y 2 (x+y ,y 是正整数),所以M 也是“丰利数”.(1)请你写一个最小的三位“丰利数”是 ,并判断20 “丰数”.(填是或不是);(2)已知S=x 2+y 2+2x ﹣6y+k (x 、y 是整数,k 是常数),要使S 为“丰利数”,试求出符合条件的一个k 值(10≤k <200),并说明理由.2513.我们知道,任意一个正整数n 都可以进行这样的分解:n=p ×q (p 、q 是正整数,且p ≤q ),在n 的所有这种分解中,如果p ,q 两因数之差的绝 对值最小,我们就称p ×q 是n 的最佳分解.并规定:()qpF n =,例如12 可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4 是12的最佳分解,所以F (12)=.(1)如果一个正整数m 是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m ,总有F (m )=1; (2)如果一个两位正整数t ,t=10x+y (1≤x ≤y ≤9,x ,y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得 的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”; (3)在(2)所得“吉祥数”中,求F (t )的最大值.2514.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.2515.若一个两位正整数m的个位数为8,则称m为“好数”.(1)求证:对任意“好数”m,m2﹣64一定为20的倍数;(2)若m=p2﹣q2,且p,q为正整数,则称数对(p,q)为“友好数对”,规定:H(m)=,例如68=182﹣162,称数对(18,16)为“友好数对”,则H(68)==,求小于50的“好数”中,所有“友好数对”的H(m)的最大值.2515.任意一个正整数都可以进行这样的分解:n=p ×q (p 、q 是正整数,且p≤q ),正整数的所有这种分解中,如果p 、q 两因数之差的绝对值最小, 我们就称p ×q 是正整数的最佳分解.并规定:()qpF n =.例如24可以 分解成1×24,2×12,3×8或4×6,因为24﹣1>12﹣2>8﹣3>6﹣4, 所以4×6是24的最佳分解,所以F (24)=. (1)求F (18)的值;(2)如果一个两位正整数,t=10x+y (1≤x ≤y ≤9,x 、y 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得 的差记为m ,交换其个位上的数与十位上的数得到的新数加上原来的 两位正整数所得的和记为n ,若mn 为4752,那么我们称这个数为“最 美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求F (t )的最大值.2517.阅读下列材料,解决问题材料一:如果一个正整数的个位数字等于除个位数字之外的其他各位数字之和,则称这个数为“刀塔数”,比如:因1+2=3,所以123是“刀塔数”,同理,55,1315也是“刀塔数”.材料二:形如的三位数叫“王者数”,其中x﹣2,x,x+2分别是这个数的百位数字,十位数字,个位数字.例如:135,468均为“王者数”问题:(1)已知a既是“刀塔数”又是“王者数”,若数b(b>0)使10a+b 为一个“刀塔数”,求b的最小值;(2)已知一个五位“刀塔数”与一个“王者数”的和能被3整除,且c﹣a+d﹣b=4,证明.2518.一个形如的五位自然数,(其中a表示该数的万位上的数字,b表示该数的千位上的数字,c表示该数的百位上的数字,d表示该位数的十位上的数字,e表示该数的个位上的数字,且a≠0,b≠0),若有a=e,b=d 且c=a+b,则把该自然数叫做“对称数”,例如在自然数12321中,3=2+1,则12321是一个“对称数”,同时规定,若该“对称数”的前两位数与后两位数的平方差是693的奇数倍,则称该“对称数”为“智慧对称数”,如在对称数43734中432﹣342=693,则43734是一个“智慧对称数”.(1)将一个“对称数”的个位上与十位上的数字交换位置,同时,将千位上与万位上的数字交换位置称交换前后的这两个“对称数”为一组“相关对称数”.例如:12321与21312为一组“相关对称数”.求证:任意的一组“相关对称数”之和是最小“对称数”的倍数;(2)求出所有的“智慧对称数”中最大的“智慧对称数”.2519.我们知道:一个整数的个位数是偶数,则它一定能被2整除;一个整数的各位数字之和能被3整除,则它一定能被3整除.若一个整数既能被2 整除又能被3整除,那么这个整数一定能被6整除.数字6象征顺利、吉祥,我们规定,能被6整除的四位正整数(千位数字为a,百位数字为b,十位数字为c,个位数字为d)是“吉祥数”.请解答下面几个问题:(1)已知是“吉祥数”,则x= .(2)若正整数是“吉祥数”,试说明:d+4(a+b+c)能被2整除.(3)小明完成第(2)问后认为:四位正整数是“吉祥数”,那么d+4(a+b+c)也能被6整除.你认为他说得对吗?请说明理由.2520.阅读理解:有一个n位自然数(n,n1,n2,n3,…nn是正整数,n≥2,1≤n1,n2,n3,…nn<9),若交换不同数位上的数字得到一新数则叫这个n位自然数的一个“轮换数”,如:,均是的一个“轮换数”;36是63的一个“轮换数”,243是324的一个“轮换数”.(1)写出213的所有轮换数.(2)证明:任何一个3位自然数与它所有轮换数的和是111的倍数.(3)试求:4213与它所有轮换数的和.2521.对任意一个正整数m,如果m=k(k+1),其中k是正整数,则称m为“矩数”,k 为m的最佳拆分点.例如,56=7×(7+1),则56是一个“矩数”,7为56的最佳拆分点.(1)求证:若“矩数”m是3的倍数,则m一定是6的倍数;(2)把“矩数”p与“矩数”q的差记为 D(p,q),其中p>q,D(p,q)>0.例如,20=4×5,6=2×3,则 D(20,6)=20﹣6=14.若“矩数”p的最佳拆分点为t,“矩数”q的最佳拆分点为s,当 D(p,q)=30时,求的最大值.2522.人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正约数)之和相等,我们称这两个数为“亲和数”.例如:18的约数有1、2、3、6、9、18,它的真因数之和1+2+3+6+9=21;51的约数有1、3、17、51,它的真因数之和1+3+17=21,所以18和51为“亲和数”.数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.(1)6的“亲和数”为25 ;将一个四位的“两头蛇数”去掉两头,得到一个两位数,它恰好是这个“两头蛇数”的约数,求满足条件的“两头蛇数”.(2)已知两个“亲和数”的真因数之和都等于15,且这两个“亲和数”中较大的数能将一个正中间数位(百位)上的数为4的五位“两头蛇数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的“两头蛇数”.2523.一个形如的五位自然数(其中c表示该数万位和个位上的数字,b 表示千位和十位上的数字,a表示百位上的数字.且c≠0),若有a+c=b,则把该自然数叫做“M数”,例如在自然数25352中,3+2=5,则25352 是一个“M数”,同时规定:与各数位数字之和的差能被自然数n整除的最大“M数”记为P<>,与各数位数字之和的差能被自然数n整除的最小“M数”记为Q<>.(1)求证:若4c+3a能被9整除,则任意一个“M数”都能被9整数;(2)若“M数”与它各数位数字之和的差能被7整除,请求出P<>和Q<>.2524.阅读下列材料,解决后面两个问题:一个能被17整除的自然数我们称为“灵动数”.“灵动数”的特征是:若把一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的整倍数(包括0),则原数能被17整除.如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾、倍大、相减、验差”的过程,直到能清楚判断为止.例如:判断1675282能不能被17整除. 167528﹣2×5=167518,16751﹣8 ×5=16711,1671﹣1×5=1666,166﹣6×5=136,到这里如果你仍然观察不出来,就继续…6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30﹣13=17,17÷17=1;所以1675282能被17整除.(1)请用上述方法判断7242和2098754 是否是“灵动数”,并说明理由;(2)已知一个四位整数可表示为,其中个位上的数字为n,十位上的数字为m,0≤m≤9,0≤n≤9且m,n为整数.若这个数能被51整除,请求出这个数.2525.若一个正整数,它的各位数字是左右对称的,则称这个数是谋略数,如22,797,12321都是谋略数.最小的谋略数是11,没有最大的谋略数,因为数位是无穷的.有一种产生谋略数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个谋略数.如:16的逆序数为61,16+61=77,77是一个谋略数;37的逆序数为73,37+73=110,110的逆序数为11,110+11=121,121是谋略数.(1)请你根据以上材料,直接写出57 产生的第一个谋略数;(2)若将任意一个四位谋略数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位谋略数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位谋略数共有多少个?2526.如果一个自然数若能表示为两个自然数的平方差,则称这个自然数为“智慧数”.例:16=52﹣32,16就是一个“智慧数”,小明和小王对自然数中的”智慧数”进行了如下探索:小明的方法是一个一个找出来的:0=02﹣02,1=12﹣02,3=22﹣12,4=22﹣02,5=32﹣22,7=42﹣32,8=32﹣12,9=52﹣42,11=62﹣52,…小王认为小明的方法太麻烦,他想到:设k是自然数,由于(k+1)2﹣k2= (k+1+k)(k+1﹣k)=2k+1.所以,自然数中所有奇数都是“智慧数”.问题:(1)根据上述方法,自然数中第10个“智慧数”是;(2)他们发现0,4,8是“智慧数”,由此猜测4k(k为正整数)都是“智慧数”,请你参考小王的办法证明4k(k为正整数)都是“智慧数”.2527.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.(1)请判断:2561 (填“是”或“不是”)“和平数”.(2)直接写出:最小的“和平数”是,最大的“和平数”是;(3)如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.2528.阅读下列材料,回答问题.正整数m(m≥2)可分解成两个正整数的和,即m=s+t(s、t是正整数,且s≤t),在m的所有这些加和中,若s、t 两加数之差的绝对值最小,称s+r为m的最美加和,并规定F(m)=7s﹣6t,如7=1+6=2+5=3+4,因为6﹣1>5﹣2>4﹣3,所以3+4为7的最美加和,所以F(7)=7×3﹣6×4=﹣3.(1)F(8)= ,F(9)= :(2)对任意的正整数n(n≥2),用含n的代数式分别表示出n为奇数,偶数时的F(n):(3)若一个三位正整数q是7的倍数,且满足各位数字之和为7,称这个数q为“潜力数“,求所有“潜力数”中F(q)的最大值.2529.阅读理解:把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.(1)请写出一个六位连接数,它(填“能”或“不能”)被13整除.(2)是否任意六位连接数,都能被13整除,请说明理由.(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?2530、一个三位正整数N,各个数位上的数字互不相同都不为0,若从它的百位、十位、个位上的数字任意选择两个数字组成两位数.所有这些两位数的和等于这个三位数本身.则称这样的三位数N为“友好数”.例如:132.选择百位数字1和十位数字3所组成的两位数为:13和31.选择百位数字1和个位数字2所组成的两位数为:12和21.选择十位数字3和个位数字2所组成的两位数为:32和23.因为13+31+12+21+32+23=132,所以132是“友好数”.一个三位正整数,若它的十位数字等于百位数字与个位数字的和.则称这样的三位数为“和平数“,(1)判断123是不是“友好数“?请说明理由.(2)一个三位数,如果百位上的数字为x,十位上的数字为y,个位上的数字为z,则把这个三位数记作,三位数可用多项式表示为100x+10y+z,比如三位数523可用多项式表示为:5×100+2×10+3.证明:当一个“和平数”是“友好数”时,则z=2x.2531.材料一:一个大于1的正整数,若被N除余1,被(N﹣1)除余1,被(N ﹣2)除余1…,被3除余1,被2除余1,那么称这个正整数为“明N礼”数(N取最大),例如:73(被5除余3)被4除余1,被3除余1,被2 除余1,那么73为“明四礼”数.材料二:设N,(N﹣1),(N﹣2),…3,2的最小公倍数为k,那么“明N 礼”数可以表示为kn+1,(n为正整数),例如:6,5,4,3,2的最小公倍数为60,那么“明六礼”数可以表示为60n+1.(n为正整数)(1)17 “明三礼”数(填“是”或“不是”);721是“明礼”数;(2)求出最小的三位“明三礼”数;(3)一个“明三礼”数与“明四礼”数的和为32,求出这两个数.2532.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.2533.对于任意一个自然数N,将其各个数位上的数字相加得到一个数,我们把这一过程称为一次操作,把这个得到的数进行同样的操作,不断进行下去,最终会得到一个一位数K,我们把K称为N的“中子数”,并记f(x)=K,例如,163→1+6+3=10→1+0=1,∴f(163)=1(1)计算:f(2018888)= ;(2)易知:任意两个自然数M和N,如果各个数位上的数字之和相等,则f(M)=f(N),此时我们称M、N是“特别有缘数”,例如163和28即为“特别有缘数”,若已知一个三位数和一个两位数是“特别有缘数”,请证明它们的差一定能被9整除;(3)有一个三位自然数L=,已知f(L)=6,而且x、y、z都是偶数,我们规定i=y2+xz,请求出i取最大值时的自然数L.2534.我们知道,任意一个大于1的正整数n都可以进行这样的分解:n=x+y(x、y是正整数,且x≤y),在n的所有这种分解中,如果x、y两数的乘积最大,我们就称x+y是n的最佳分解,并规定在最佳分解时:F(n)=xy.例如6可以分解成1+5,2+4或3+3,因为1×5<2×4<3×3,所以3+3是6的最佳分解,所以F(6)=3×3=9.(1)计算:F(8).(2)设两位正整数t=l0a+b(1≤a≤9,0≤b≤9,a、b为整数),数t′十位上的数等于数t十位上的数与t个位上的数之和,数t′个位上的数等于数t十位上的数与t个位上的数之差,若t′﹣t=9,且F(t)能被2整除,求两位正整数t.2535、定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6整除);又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…(1)我们发现,3和6,4和12,5和20,6和30…,都是两个数的祖冲之数组;由此猜测n和n(n﹣1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想.(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.2535.在一个m (m ≥3,m 为整数)位的正整数中,若从左到右第n (n ≤m ,n为正整数)位上的数字与从右到左第n 位上的数字之和都等于同一个常数 k (k 为正整数),则称这样的数为“对称等和数”.例如在正整数3186 中,因为3+6=1+8=9,所以3186是“对称等和数”,其中k=9.再如在正 整数53697中,因为5+7=3+9=6+6=12,所以53697是“对称等和数”, 其中k=12.(1)已知在一个能被11整除的四位“对称等和数”中k=4.设这个四位“对称等和数”的千位上的数字为s (1≤s ≤9,s 为整数),百位上的数字 为t (0≤t ≤9,t 为整数),是整数,求这个四位“对称等和数”;(2)已知数A ,数B ,数C 都是三位“对称等和数”.A=(1≤a ≤9,a 为整数),设数B 十位上的数字为x (0≤x ≤9,x 为整数),数C 十位上 的数字为y (0≤y ≤9,y 为整数),若A+B+C=1800,求证:y=﹣x+15.2537.任意一个正整数m 都可以表示为:m=a 2×b(a 、b 均为正整数) ,在m 所有表示的结果中,当b a -最小时,规定Q(m)=ab 2,例如:108=12×108=22×27=32×12=62×3,因为1081->272->123->36-,所以Q(m)= 3=1.2538.一个正偶数去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数为“魅力数”,把这个商叫做的魅力系数,记这个商为.如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记.(1)计算:;(2)若都是“魅力数”,其中,是整数,规定:.当时,求的值2539.一个两位正整数,如果满足各数位上的数字互不相同均不为0,那么称为“启航数”,将的两位数位上的数字对调得到一个新数′,把′放在后面组成第一个四位数,把放在′的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为,例如时,(1)计算若为“启航数”,是一个完全平方数,求的值;(2)为“启航数”,其中,且为整数.并规定:,若能被7整除,且,求的最大值.2540.对任意一个三位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“陌生数”,将一个“陌生数”的三个数位上的数字交换顺序,可以得到个不相同的新的“陌生数”,把这个“陌生数”,的和与111的商记为,例如,可以得到,,,,这个新三位数,这个三位数的和为123+132+213+231+312+321=1332,¸,所以().(1)计算:,;(2)若,都是“陌生数”,其中,(,,,都是正整数),规定:,当除以余时,求的最大值.。

重庆中考数学题特殊数字类——阅读理解专题

重庆中考数学题特殊数字类——阅读理解专题

年重庆中考数学题特殊数字类——阅读理解专题————————————————————————————————作者:————————————————————————————————日期:重庆中考数学——阅读理解专题1.设a ,b 是整数,且0≠b ,如果存在整数c ,使得bc a =,则称b 整除a ,记作|b a . 例如:Θ818⨯=,∴1|8;Θ155⨯-=-,∴5|5--;Θ5210⨯=,∴2|10. (1)若|6n ,且n 为正整数,则n 的值为 ;(2)若7|21k +,且k 为整数,满足⎪⎩⎪⎨⎧≤≥-53134k k ,求k 的值.2.若整数a 能被整数b 整除,则一定存在整数n ,使得n ba=,即bn a =。

例如若整数a 能被整数3整除,则一定存在整数n ,使得n a=3,即n a 3=。

(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除。

例如:将数字306371分解为306和371,因为371-306=65,65是13的倍数,,所以306371能被13整除。

请你证明任意一个四位数都满足上述规律。

(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,……,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除。

3.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,……如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:1011031132332222222=+→=+→=+→,1011003113079979449077022222222222=+→=++→=+→=+→=+→,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数” . .5.若一个整数能表示成22b a +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为22125+=.再如,2222)(22y y x y xy x M ++=++=(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知k y x y x S +-++=124422(x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.7、对于实数x ,y 我们定义一种新运算()L x y ax by =+,(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为()L x y ,,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1) 若()3L x y x y =+,,则(21)L =,___________,31()22L =,___________; (2) 已知(2)1L -=-1,,1()232L =1,. ①____________a b ==,;②若正格线性数(2)L m m -,,求满足50(2)100L m m <-<,的正格数对有多少个;③若正格线性数()76L x y =,,满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗,若有,请找出;若没有,请说明理由.8.若一个正整数,它的各位数字是左右对称的,则称这个数是对称数,如22,797,12321都是对称数.最小的对称数是11,没有最大的对称数,因为数位是无穷的.(1)有一种产生对称数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个对称数.如:17的逆序数为71,17+71=88,88是一个对称数;39的逆序数为93,39+93=132,132的逆序数为231,132+231=363,363是一个对称数.请你根据以上材料,求以687产生的第一个对称数;(2)若将任意一个四位对称数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位对称数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位对称数共有多少个?9、.有一个n 位自然数abcd gh L 能被0x 整除,依次轮换个位数字得到的新数bcd gha L 能被01x +整除,再依次轮换个位数字得到的新数cd ghab L 能被02x +整除,按此规律轮换后,d ghabc L 能被03x +整除,…,habc g L 能被01x n +-整除,则称这个n 位数abcd gh L 是0x 的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数abc 是3的一个“轮换数”,其中2a =,求这个三位自然数abc .10.如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如:223-516=,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索:小明的方法是一个一个找出来的:220-00=,220-11=,221-23=, 220-24=,222-35=,223-47=, 221-38=,224-59=,225-611=,....小王认为小明的方法太麻烦,他想到:设k 是自然数,由于12)1)(1)122+=-+++=-+k k k k k k k ((. 所以,自然数中所有奇数都是智慧数.问题: (1) 根据上述方法,自然数中第12个智慧数是______(2) 他们发现0,4,8是智慧数,由此猜测4k(3≥k 且k 为正整数)都是智慧数,请你参考小王的办法证明4k (3≥k 且k 为正整数)都是智慧数.(3) 他们还发现2,6,10都不是智慧数,由此猜测4k+2(k 为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由.11.进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制。

中考数学解答重难专题专题三 第25题综合与实践

中考数学解答重难专题专题三  第25题综合与实践

5. 请你在图①中过点P作一条直线平分平行四边形ABCD的面积;在图②中过点M
作一条直线平分矩形ABCD的面积;在图③中作出两条直线(要求其中一条直线必
须过点 N)四等分正方形ABCD的面积.
解:作图如解图①,直线PO为所要求作的直线;
第5题图
作图如解图②,直线MO为所要求作的直线;作
图如解图③,直线NO,QO为所要求作的直线.
4. 如图,在矩形ABCD中,AB=3,AD=4,连接AC,O是
AC的中点,M是AD上一点,且MD=1,P是BC上一动点, 则PM-PO的最大值为___2_13____.
(4)异侧线段差最大值问题
第4题图
问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.
解决思路:将异侧点转化为同侧即可解决.
,2∠DAB=45°,则△OEF
(2)利用垂线段最短及轴对称性质
问题:点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N,使得 PMN转化在同一条直线上,想到作点P 关于OB的对称点P′,即求P′N+MN的最小值,因此只要P′M⊥OA.利用垂线段最 短求解.
12. 在△ABC中,∠BAC=120°,AB=2,AC=4,以BC为边在BC的下方作 等边△PBC,则AP的值为___6_____.
第12题图
第13题图
13. 如图,在△ABE中,BE=,AE=2,以AB为边向三角形外作正方形ABCD, 连接DE.则DE的最大值为___3___2__.
(2)费马点问题
2.求线段AP的最大值问题
当上图中AP取最大值时,利用旋转可得AP=A′P,AB=A′C=a,且AC=b,因 为等腰△APA′中,∠APA′=α为定值,所以AA′取最大值时,AP也取得最大值, 而AA′≤AC+A′C=AB+AC=a+b,所以A、C、A′三点共线时,AA′取得最大 值为a+b,再在等腰△APA′中计算AP最大值即可.

2019重庆中考数学试卷(含答案)

2019重庆中考数学试卷(含答案)

重庆市2019年初中学业水平暨高中招生考试试卷数 学(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.认题的答案书写在答题卡上,不得在试题卷上直接作答; 2.作答前认真阅绪答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签牛笔完成; 4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()02≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫⎝⎛--a b ac a b 44,22,对称轴为a b 2x -= 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为DC B A 、、、的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑. 1.下列各数中,比1-小的数是( )A .2B .1C .0D .-22.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A .B .C .D .3.如图,△ABO ∽△CDO ,若6=BO ,3=DO ,2=CD ,则AB 的长是( )A .2B .3C .4D .54.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,BC 与⊙O 交于点D ,连结OD .若︒=∠50C ,则∠AOD 的度数为( ) A.︒40B .︒50C .︒80D .︒1005.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形3题图4题图2题图C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形6.估计()123+623⨯的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其23的钱给乙.则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则可建立方程组为()A.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩8.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,9.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数(0,0)ky k xx=>>的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16 B.20 C.32 D.409题图8题图10题图12题图10.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:24的山坡AB上发现有一棵占树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为()(参考数据:sin48°≈0.73,cos8°≈0.67,tan48°≈1.11)A.17.0米B.21.9米C.23.3米D.33.3米11.若关于x的一元一次不等式组11(42)42 3122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.612.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC′沿BD翻折,得到△BDC',DC与AB交于点E,连结AC',若AD=AC=2,BD=3则点D到BC的距离为()A.233B.7213C.7D.13二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.计算:=+1-213-)()(π.14.今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为.15.一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)17.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是米.16题图17题图20题图18.在精准扶贫的过程中,某驻村服务队结合当地高山地形,决定在该村种植中药材川香、贝母、黄连增加经济收人,经过一段时间,该村已种植的川香、贝母、黄连面积之比4:3:5,是根据中药材市场对川香、贝母、黄连的需求量,将在该村余下土地上继续种植这三种中药材,经测算需将余下土地面积的169种植黄连,则黄连种植总面积将达到这三种中药材种植总面积的4019.为使川香种植总面积与贝母种植总面积之比达到3:4,则该村还需种植贝母的面积与该村种植这三种中药材的总面积之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.计算:(1))2(2y x y y x +-+)( (2)292492--÷--+a a a a a )(20.如图,在△ABC 中,AB =AC ,D 是BC 边上的中点,连结AD ,BE 平分∠ABC 交AC 于点E ,过点E作EF ∥BC 交AB 于点F .(1)若∠C =36°,求∠BAD 的度数.(2)若点E 在边AB 上,EF //AC 叫AD 的延长线于点F .求证:FB =FE .21.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心秩首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94八年抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数92 92中位数93 b纵数c100方差52 50.421题图根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?22.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义;对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.321-=x y 23.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面经历的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象井写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.24.某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费. (1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加%2a ,每户物管费将会减少%103a ;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加%6a ,每户物管费将会减少%41a .这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少%185a ,求a 的值.25.如图,在平行四边形ABCD 中,点E 在边BC 上,连结AE ,EM ⊥AE ,垂足为E ,交CD 于点M ,AF ⊥BC ,垂足为F ,BH ⊥AE ,垂足为H ,交AF 于点N ,点P 显AD 上一点,连接CP . (1)若DP =2AP =4,CP =17,CD =5,求△ACD 的面积. (2)若AE =BN ,AN =CE ,求证:AD =2CM +2CE .四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程成或推理步骤,画出必要的图形(包括辅助线),请将解作过程书写在答题卡中对应的位置上.26.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+13PC的最小值;(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个22单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度α(0°<α<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得OGQQ''∠=∠?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2。

重庆市2019年中考数学专题训练 第25题(2)

重庆市2019年中考数学专题训练 第25题(2)

阅读理解专题(二)1.一个个位不为零的四位自然数n ,如果千位与十位上的数字之和等于百位与个位上的数字之和,则称n 为“隐等数”.将这个“隐等数”反序排列(即千位与个位对调,百位与十位对调)得到一个新数m ,记2()33n m D n -=. (1)请任意写出一个“隐等数”n ,并计算()D n 的值;(2)若某个“隐等数”n 的千位与十位上的数字之和为6,()D n 为正数,且()D n 能表示为两个连续偶数的平方差,求满足条件的所有“隐等数”n .解:(1)答案为n 的千位与个位的差.如:n =1243,m =3421,D (1243)=21243342133- =-2 (2)设“隐等数”n 的千位、百位、十位、个位分别为d c b a 、、、,即abcd n =,则6=+=+d b c a ,c b d a -=-,()()()()1089101001000108933)(2a dbc c bd a dcba abcd m n n D -+-+-+-=-=-= ()()()d a d a c b d a -=-=-+-=10891089108990999; ∵)(n D 为正数,且)(n D 能表示为两个连续偶数的平方差,∴可设()()22222)(k k n D -+=(k 为自然数),∴()d a k k n D -=+=+=12448)(,即d a -为4的奇数倍,∵1≤a ≤9,1≤d ≤9,且d a 、为整数,)(n D >0,∴0<d a -≤8,∴4=-d a ,即4+=d a , 又∵d ≥1,∴ a ≥5.∵6a c +=,0≤c ≤9,∴a ≤6.∴5≤a ≤6, ∴65或=a ,又∵6=+=+d b c a ,4=-d a ,∴b =5,c =1,d =1或b =4,c =0,d =2,∴64025511或=n .变式:对于任意一个四位正整数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“守望数”,将n的个位数字调到千位可以得到一个新的四位数,不断重复此操作可得到三个不同的新四位数,把这三个新数与原数n的和与1111的商记为F(n),例如:1234不断将个位调至千位得到数字:4123,3412,2341,三个新数与原数的和为11110,11110÷1111=10,F(1234)=10.(1)F(1359);F(6178);(2)s、t都为“守望数”,其中s=1000x+432,t=1560+y(1≤x≤y≤9,x,y为整数),P=F(s+t),当F(s)+F(t)是两相邻奇数的平方差时,求P的最大值.2. 任意一个四位数n 可以看作由前两位数字和后两位数字组成,交换这两个两位数得到一个新的四位数m ,记()99n m f n -=.如1234n =,则3412m =,()1234341212342299f -==-. (1)直接写出(1111)f = ,(5025)f = ,并求证:对任意一个四位数n ,()f n 均为整数.(2)若120010s a b =++,100010014t b a =++(15,15a b ≤≤≤≤,a 、b 均为整数),当()()f s f t +是一个完全平方数时,求满足条件s 的最大值.解:(1)0 25 证明:设abcd n =,则cdab m =,()为整数,d c b a d c b a d c b a ba d c d cb a n f --+∴--+=--+=----+++=1010101099999909999099101001000101001000 ∴对于任意一个四位数()n f n ,均为整数(2)()()()29299101410129910400100014100100099121001000101200141001000,101200--=-+-=++---=----+++---++=+∴++=++=a b b a ab b a a b a b b a b a t f s f a b t b a s ()()12353,51,32,43,51,42,51629252923,40,51,51=============∴=--=--=-=-≤-≤∴≤≤≤≤最大时,当或或或或是完全平方数或时,或当S a b a b a b a b a b a b a b a b a b a b a b b a。

2019重庆中考数学第25题几何题专题训练

2019重庆中考数学第25题几何题专题训练

2019重庆中考数学第28题专题训练(含答案)1、西南大学附属中学校2018-2019学年初2019级初三下第二次月考在菱形ABCD中,∠ABC=60°,BD为菱形的一条对角线.(1)如图1,过A作AE⊥BC于点E,交BD于点F,若EF=2,求菱形ABCD的面积;(2)如图2,M为菱形ABCD外一点,过A作AN⊥BM交BM的延长线于点M,连接AM,DM,AG⊥DM于点G,且∠AMN=∠AMD,求证:. DM BM=2、已知ABCD中,点P为AD上一点,连CP,交对角线BD于点E,使∠EPD=∠EDP,过点E作EH⊥BC于点H,点F为EH上一点,连接DF、CF,且DFC∆是等边三角形.(1)若13,5,BD DC FH EH====求DP的长度;(2)求证:+.DE EF=A3、如图,已知ABCD 中,E 为AD 上一点,连接BE ,CE ,BF 平分EBC ∠交CD 于F.且FH 为EC 的直平分线, 060CBE ∠=.(1)若BF=12,FC=8,求AD 的长度; (2)求证:.BC BE +=A4、如图,在ABCD 中,点M 是对角线AC 、BD 的交点,AC ⊥CD,AC=CD ,点E 为线段MD 上一点,且满足AE ⊥CE,过点C 作CF ⊥B D 交AE 于点F ,交BD 于点G 。

(1)如图,若EM=2,求CG;(2)求证:CF+EM=BM6、在ABCD 中,AE ⊥BC 于点E,F 为AB 边上一点,连接CF,交AE 于点G ,CF=CB=AE(1)若22AB =,7BC =,求CE 的长;(2)求证:.BE AG GC +=7、在ABCD 中,以边A D 为边在平行四边形内作等边△A DE ,连接B E . (1)如图1,若点E 在对角线BD 上,且︒=∠75DAB ,6=AB ,求B E 的长; (2)如图2,若点F 是B E 的中点,且C F ⊥B E .过点E 作MN ∥CF ,分别交AB 、CD 于点M 、N ,求证:EN CN DN +=ABDEDABEFM24题图124题图28、重庆南开(融侨)中学2018-2019学年度初2019届九年级(下)半期如图1,在ABCD中,E为AD上一点,连接BE、CB,满足BC=BE=CE。

最新2021重庆中考数学第25题几何专题训练2

最新2021重庆中考数学第25题几何专题训练2

GF EDCBA M 证明题1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD ⊥BC ,垂足是D ,AE 平分∠BAD ,交BC 于点E .在△ABC 外有一点F ,使FA ⊥AE ,FC ⊥BC . 〔1〕求证:BE=CF ;〔2〕在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME ⊥BC ;②DE=DN .2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。

求证:〔1〕AF =CG ;〔2〕CF =2DE3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC 。

〔1〕求证:OE=OF ;〔2〕假设BC=23,求AB 的长。

4.,如图,在▱ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2.〔1〕假设CF=2,AE=3,求BE 的长; 〔2〕求证:∠CEG=∠AGE .5.如图1,在△ABC 中,∠ACB=90°,∠BAC=60°,点E 角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的线段,两垂线交于点D ,连接DB ,点F 是BD 的中点,DH ⊥AC ,垂足为H ,连接EF ,HF 。

〔1〕如图1,假设点H 是AC 的中点,AC=23,求AB ,BD 的长。

〔2〕如图1,求证:HF=EF 。

〔3〕如图2,连接CF ,CE ,猜测:△CEF 是否是等边三角形?假设是,请证明;假设不是,请说明理由。

6.如图1,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连结BE . 〔1〕假设AF 是△ABE 的中线,且AF =5,AE =6,连结DF ,求DF 的长; 〔2〕假设AF 是△ABE 的高,延长AF 交BC 于点G .①如图2,假设点E 是AC 边的中点,连结EG ,求证:AG +EG =BE ;②如图3,假设点E 是AC 边上的动点,连结DF .当点E 在AC 边上(不含端点)运动时,∠DFG 的大小是否改变,如果不变,请求出∠DFG 的度数;如果要变,请说明理由.7.在△ABC 中,AB=AC ,∠A=60°,点D 是线段BC 的中点,∠EDF=120°,DE 与线段AB 相交于点E ,DF 与线段AC 〔或AC 的延长线〕相交于点F.〔1〕如图1,假设DF ⊥AC ,垂足为F ,AB=4,求BE 的长;〔2〕如图2,将〔1〕中的∠EDF 绕点D 顺时针旋转一定的角度,DF 扔与线段AC 相交于点F.求证:1CF 2BE AB +=; 〔3〕如图3,将〔2〕中的∠EDF 继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN ⊥AC 于点N ,假设DN=FN ,求证:3()BE CF BE CF +=-.ABF DCE 25题图1 BAF DCEG25题图2 ABF DCEG25题图38.在四边形ABCD中,180ABC ADC∠+∠=︒,AB=BC.〔1〕如图1,假设90BAD∠=︒,AD=2,求CD的长度;〔2〕如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:1902PBQ ADC∠=︒-∠;〔3〕如图3,假设点Q运动到DC的延长线上,点P也运动到DA的延长线上时,仍然满足PQ=AP+CQ,那么〔2〕中的结论是否成立?假设成立,请给出证明过程,假设不成立,请写出PBQ∠与ADC∠的数量关系,并给出证明过程.9.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.〔1〕如图1,当E是线段AC的中点,且AB=2时,求△ABC的面积;〔2〕如图2,当点E不是线段AC的中点时,求证:BE=EF;〔3〕如图3,当点E是线段AC延长线上的任意一点时,〔2〕中的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.10.如图1,在菱形ABCD中,∠ABC=60°,假设点E在AB的延长线上,EF∥AD,EF=BE,点P是DE的中点,连接FP并延长交AD于点G.〔1〕过D作DH⊥AB,垂足为H,假设DH=BE=14AB,求DG的长;〔2〕连接CP,求证:CP⊥FP;〔3〕如图2,在菱形ABCD中,∠ABC=60°,假设点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第〔2〕问的结论成立吗?假设成立,求出PFCP的值;假设不成立,请说明理由.图1DABCADBCPQ图2ADBCPQ图3G11.如图1,ABC ∆中,BE AC ⊥于点E ,AD BC ⊥于点D ,连接DE . 〔1〕假设AB BC =,1DE =,3BE =,求ABC ∆的周长;〔2〕如图2,假设AB BC =,AD BD =,ADB ∠的角平分线DF 交BE 于点F ,求证:2BF DE =;〔3〕如图3,假设AB BC ≠,AD BD =,将ADC ∆沿着AC 翻折得到AGC ∆,连接DG 、EG ,请猜测线段AE 、BE 、DG 之间的数量关系,并证明你的结论。

2019重庆初中毕业暨高中招生考试数学试题(解析版)

2019重庆初中毕业暨高中招生考试数学试题(解析版)

2019 重庆初中毕业暨高中招生考试数学试题(分析版)注意事项:认真阅读理解,联合历年的真题,总结经验,查找不足!重在审题,多思虑,多理解!不论是单项选择、多项选择仍是阐述题,最重要的就是看清题意。

在阐述题中,问题大多拥有委婉性,特别是历年真题部分,在给考生较大发挥空间的同时也大大增添了考试难度。

考生要认真阅读题目中供给的有限资料,明确观察重点,最大限度的发掘资猜中的有效信息,建议考生答题时用笔将重点勾勒出来,方便频频细读。

只有经过认真斟酌,推测命题老师的企图,踊跃联想知识点,剖析答题角度,才能够将考点锁定,明确题意。

一、选择题〔本大题 10 个小题,每题 4 分,共 40 分〕在每个小题的下边,都给出了代号为A、B、 C、D 的四个答案,此中只有一个是正确的,请将答题卡上题号右边正确答案所对应的方框涂黑〔或将正确答案的代号填人答题卷中对应的表格内〕.1、〔 2018 重庆〕在﹣ 3,﹣ 1, 0, 2 这四个数中,最小的数是〔〕A、﹣ 3B、﹣ 1C、 0D、 2考点:有理数大小比较。

解答:解:这四个数在数轴上的地点以下列图:由数轴的特色可知,这四个数中最小的数是﹣3、应选 A、2、〔 2018 重庆〕以下列图形中,是轴对称图形的是〔〕A、B、C、D、考点:轴对称图形。

解答:解: A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误、应选 B、3、〔 2018 重庆〕计算ab 2的结果是〔〕A、 2abB、a2bC、a2b 2 D、ab2考点:幂的乘方与积的乘方。

解答:解:原式 =a2b2、应选 C、4、〔 2018 重庆〕:如图, OA,OB是⊙ O的两条半径,且OA⊥ OB,点 C 在⊙ O上,那么∠ACB的度数为〔〕A、 45°B、35°C、 25°D、 20°考点:圆周角定理。

2019重庆中考数学

2019重庆中考数学

2019重庆中考数学一、选择题1. 解方程3(x−2)+5=2(x+1),求x的值。

解:首先进行同类项的合并,得到3x−6+5=2x+2。

进一步化简,得到3x−1=2x+2。

再进一步移项,得到x=3。

2. 计算 $\\frac{3}{4} \\times \\frac{8}{9} \\div \\frac{5}{6}$ 的值。

解:我们先进行除法运算,得到 $\\frac{3}{4} \\times \\frac{8}{9} \\times\\frac{6}{5}$。

然后进行乘法运算,得到 $\\frac{3 \\times 8 \\times 6}{4 \\times 9 \\times 5}$。

进一步计算,得到 $\\frac{144}{180}$。

最后化简为最简分数,得到 $\\frac{4}{5}$。

二、填空题1. 已知直线y=2x+b与 $y = -\\frac{1}{2}x + 5$ 交于点(−3,1),求b的值。

解:由已知条件可得到以下方程组:$1 = 2 \\times (-3) + b$$1 = -\\frac{1}{2} \\times (-3) + 5$化简方程,得到以下结果:b=72. 一个等差数列中,首项为 7,公差为 5,第 18 项为多少?解:等差数列的通项公式为 $a_n = a_1 + (n-1) \\cdot d$,其中a n表示第n项,a1表示首项,d表示公差。

根据已知条件可得到以下结果:$a_{18} = 7 + (18 - 1) \\times 5$计算结果为a18=94。

三、解答题1. 一块长方形的地板长 8 米,宽 6 米,小朋友用方格纸铺成一个正方形地毯,每个小方格边长 1 米,问最多可以铺多少个小方格?解:地板的面积为 $8 \\times 6 = 48$ 平方米,而正方形地毯的面积为边长的平方。

所以我们要求的是一个正方形地毯的边长。

从题目中可以看出,正方形地毯的边长必须是方格边长的倍数。

押中考数学第25-26题(解答压轴题:函数探究)考前预测

押中考数学第25-26题(解答压轴题:函数探究)考前预测

押中考数学第25-26题(解答压轴题:函数探究)专题诠释:函数探究,历年作为中考数学的压轴题出现,难度大,综合性强。

但是这道题本身的难度跨度也比较大,一般第一问较简单,然后逐渐变难。

因此,这种题的策略就是先把基础题做对,逐渐攻克中等题和难题,尽量拿到更多的分数!知识点一:一次函数探究〖押题冲关〗1.(2023·天津西青·统考一模)在平面直角坐标系中,O为原点,△DOE是等腰直角三角形,∠ODE=90°,DO=DE=3,点D在x轴的负半轴上,点E在第二象限,矩形ABCO的顶点B(4,2),点C在x轴的正半轴上,点A在y轴的正半轴上.将△DOE沿x轴向右平移,得到△D′O′E′,点D,O,E的对应点分别为D′,O′,E′.(1)如图1,当E′O′经过点A时,求点E′的坐标;(2)设OO′=t,△D′O′E′与矩形ABCO重叠部分的面积为S;①如图②,当△D′O′E′与矩形ABCO重叠部分为五边形时,D′E′与AB相交于点M,E′O′分别与A B,BC交于点N,P,试用含有t的式子表示S,并直接写出t的取值范围;的所有t的值.②请直接写出满足S=722.(2023·陕西宝鸡·统考二模)太白山国家森林公园位于秦岭主峰太白山北麓的陕西省宝鸡市眉县境内,公园以森林景观为主体,苍山奇峰为骨架,清溪碧潭为脉络,文物古迹点缀其间,自然景观与人文景观浑然一体,是中国西部不可多得的自然风光旅游区,被誉为中国西部的一颗绿色明珠.小明一家准备去离家200千米的该景区自驾游,如图是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)他们出发半小时时,离家______千米;(2)出发1小时后,在服务区等候另一家人一同前往,然后,以匀速直达目的地.①求BC所在直线的函数解析式;②出发3小时时,他们距终点还有多少千米?3.(2023·黑龙江哈尔滨·统考三模)如图1,平面直角坐标系中,点O为坐标原点,直线y=−x+b与x轴交于点A,与y轴交于点C,过点C作直线BC⊥AC,交x轴于点B,且线段AB=8.(1)求直线BC的解析式;(2)如图2,点D是线段AC上一点,点E在BD的延长线上,连接CE,AE,若∠CED=45°,求证:AE⊥BE;(3)如图3,在(2)的条件下,点G为第四象限内一点,且点E的横坐标小于点G的横坐标,连接AG,OG,且∠AGO=150°,连接EG交x轴于点F,使EG=AE.点M为第二象限内一点,连接MG交x轴于点P,交y轴于点N,连接OM,使OM=AG,若PF=√6FG,∠AGP+∠M=180°,求点N的坐标.4.(2023·江苏徐州·统考一模)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地,两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.(1)甲、乙何时相遇?相遇时甲的速度为多少?(2)求乙到达目的地时,两人之间的距离;(3)求出线段AB所表示的函数关系式.5.(2023·陕西西安·统考二模)如图,已知直线l:y=kx+b与x轴、y轴分别交于A,B两点,且OA=2OB=8,x轴上一点C的坐标为(6,0),P是直线l上一点.(1)求直线l的函数表达式;(2)连接OP和CP,当点P的横坐标为2时,求△COP的面积.知识点二:二次函数探究〖押题冲关〗1.(2023·四川成都·统考二模)如图1,已知一次函数y=−x+3的图象与y轴,x轴相交于点A,B,抛物线y=−x2+bx+c与y轴交于点C,顶点M在直线AB上,设点M横坐标为m.(1)如图2,当m=3时,求此时抛物线y=−x2+bx+c的函数表达式;(2)求当m为何值时,点C的纵坐标最大;(3)如图3,当m=0时,此时的抛物线y=−x2+bx+c与直线y=kx+2相交于D,E两点,连接AD,AE并延长,分别与x轴交于P,Q两点.试探究OP⋅OQ是否为定值?若是,请求出该定值;若不是,请说明理由.2.(2023·湖北恩施·统考一模)已知直线y=x−1与x轴交于点A,过x轴上A,C两点的抛物线y=ax2+bx+3与y轴交于点B,与直线y=x−1交于D且OB=OC,(1)直接写出A,B,C三点的坐标;(2)求抛物线的解析式;(3)若点M是抛物线对称轴l上一动点,当△CDM的周长最小时,求△CDM的面积;(4)点P是抛物线上一动点(点P不与B,C重合),连接AP,DP,若△ADP的面积等于3,求点P的坐标.x+b与抛物线y=ax2交于A,B两点,3.(2023·广西崇左·统考二模)如图1,直线y=−12与y轴交于点C,其中点A的坐标为(−4,8).(1)求a,b的值.(2)将点A绕点C逆时针旋转90°得到点D.①判断点D是否在抛物线上,并说明理由.②如图2,将直线AB向下平移,交抛物线于E,F两点(点E在点F的左侧),点G在线段OC 上.若△GEF∽△DBA,求出点G的坐标.x+c(a≠0)与x轴交于A(−2,0),4.(2023·四川南充·统考一模)如图1,抛物线y=ax2+23B两点,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若点D是第一象限内抛物线上的一点,AD与BC交于点E,且AE=5DE,求点D的坐标;若(3)如图2,已知点M(0,1),抛物线上是否存在点P,使锐角∠MBP满足tan∠MBP=12存在,求出点P的坐标;若不存在,说明理由.5.(2023·四川成都·统考二模)如图,Rt△ABC的顶点A(−1,0),B(4,0),直角顶点C在y 轴的正半轴上,抛物线y=ax2+bx+c经过A、B、C三点.(1)求抛物线的解析式;(2)动点P从点A出发以2个单位/s的速度沿AB向点B运动,动点Q从点C出发以√5个单位/s的速度沿CB向点B运动,当其中一点到达终点时,另一点也停止运动,连接CP、PQ,当△CPQ的面积最大时,求点P的坐标及最大面积;(3)如图2,过原点的直线与抛物线交于点E、F(点E在点F的左侧),点G(0,4),若设直线GE的解析式为y=mx+4,直线GF的解析式为y=nx+4,试探究:m+n是否为定值?若是,请求出定值;若不是,请说明理由.x2+bx−3的6.(2023·江苏常州·统考二模)如图,在平面直角坐标系中,二次函数y=−13图像与x轴交于点A和点B(9,0),与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且cos∠AQB=3,点M在y轴正半轴,∠MBO=45°,线段MQ是5否存在最大值,如果存在,直接写出最大值;如果不存在,请说明理由.7.(2023·广东汕尾·统考二模)如图,抛物线y=−x2+3x+4与x轴交于A、B两点(点A 在点B左侧),与y轴交于点C,连接AC、BC,点E为线段BC上的一点,直线AE与抛物线交于点H.(1)直接写出A、B、C三点的坐标,并求出直线BC的表达式;(2)连接HB、HC,求△HBC面积的最大值;(3)若点P为抛物线上一动点,试判断在平面内是否存在一点Q,使得以B、C、P、Q为顶点的四边形是以BC为边的矩形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.8.(2023·辽宁本溪·统考一模)如图,抛物线y=ax2+bx+3经过点A(−1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图①,若点E是直线BC上方抛物线上的点,EG⊥x轴于点G,交BC于点F,当tan∠CEF=2时,求点E的坐标;(3)如图②,点P(m,0)在线段OB上,点Q线段CB上,且BQ=√2OP.以PQ为边作矩形PQNM,使点M在y轴上,直接写出当m为何值时,恰好有矩形PQNM的顶点落在抛物线上.9.(2023·四川成都·统考二模)如图1,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于点A(−1,0),B(4,0),与y轴交于点C,直线BC的函数表达式为y=x+m,直线x=1与x轴交于点D,P为该直线上一动点,连接PB,将PB绕P顺时针旋转一定角度得到PQ.(1)求二次函数与直线BC的函数表达式.(2)如图1,若点Q恰好落在抛物线位于第四象限的图像上,连接AQ交BC于点E,连接AC,CQ,当△CEQ与△ACE的面积之比最大时,求点P的坐标.(3)如图2,若∠BPQ=90°,在点P运动过程中,当点Q落在抛物线上时,求点Q的坐标,连接BQ,DQ,请直接写出△BDQ周长的最小值.10.(2023·山西晋中·统考一模)综合与探究.如图1,在平面直角坐标系中,已知二次函数y=−23x2+43x+2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)点P是二次函数图象上的一个动点,请问是否存在点P使∠PCB=∠ABC?若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线l,交x轴于点D.若点M是二次函数图象上一动点,且点M始终位于x轴上方,作直线AM,BM,分别交l于点E,F,在点M的运动过程中,DE+DF的值是否为定值?若是,请直接写出该定值;若不是,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018重庆中考数学第25题专题训练一
整除有关的问题
1、重庆实验外国语学校2018级初三上期期末
25. 对于一个各数位上的数字均不为0且互不相等的三位自然数p ,将它各个数位上的数字分别3倍后再取其个位数,得到三个新的数字,再将这三个新数字重新组合成不同的三位数xyz ,当()xz xy -的值最小时,称此时的xyz 为自自然数p 的“冬至数”,并规定()()
2x z y p K +-=.例如:p =235时,其各个数位上数字分别3倍后的三个个位数分别是6、9、5,重新组合后的数为为695、659、569、596、965、956,因为(6×5-6×9)的值最小,所以659是235的“冬至数”,此时()()1006
952=+-=p K (1)求K (145)和K (746);
(2)若s ,t 都是各数位上的数字均不为0且互不相等的三位自然数,s 的个位数字为1,十位数字是个位数字的2倍,t 的十位数字是百位数字的2倍,s 的百位数字与:的个位数字相同.若(s +t )能被4整除,(s -t )能被11整除,求
()()
t K s K 的最大值.
2、重庆八中2018级初三上期期末
25.一个三位自然数是s ,将它任意两个数位的数字对调后得到一个首位不为0的新三位自然数's ('s 可以与s 相同),设xyz s =',在's 所有的可能情况中,当z y x -+3最大时,我们称此时的's 是s 的“梦想数”,并规定()2
223z y x s P -+=.例如125按上述方法可得到新数有:217、172、721,因为,
,,,20122121672022112732ππ=-+=-+=-+ 所以172是172的“梦想数”,此时,()14427311272
22=-⨯+=P . (1)求512的“梦想数”及()512P 的值;
(2)设三位自然数,ab s 1=交换其个位与十位上的数字得到新数's ,若4887'729=+s s ,且()s P 能被7
整除,求s 的值.
5、重庆一中2018级初三上期期末
25.若一个三位自然m=xyz(x,y,z为整数,且1≤x≤9,O≤y、z≤9)满足y=2x-z,则称m为“无问西东数”,交换m的百位数字与十位数字得新数n=yxz,则称n.m的“无问东西数”,规定F(m,n)=sm+n(s,t均为非零
常数),记I(m)=F(m,n).如m=111为“无问西东数”,其“无问东西数”n=111;再如m=102为“无问西东数其无河东西数”n=12.已知I(l11)=ll,I(102)=-78.
(1)记最大“无问西东数”为p,则I(P)=______,并求证:任意一个“无问西东数”
与其各个数位上数字之和能被3整数
(2)已知一个三位自然数h=100a+10b+3c(其中a,b,c为整数,且1≤a≤9,0≤b≤7,0≤c≤9)是“无问西东数”,且被8除余1,求I(h)的最小值.
6、重庆南开中学2018级初三上期期末
25.一个自然数从左到右各数位上数字和另一个自然数从右到左各数位上的数字完全相同,则称一个数是
另一个数的镜反数,即:若A=),(其中0a 0a a a a a n 1n
1-n 21≠≠⋯⋯则它的镜反数F(A)=121-n n a a a a ⋯⋯· 例如:F(13062)=26031
(1)若M 是一个四位数,求证M+F(M)能被11整除;
(2)已知任意四位数P 均可唯一分解为P=100a+b 2+c 的形式(其中a ,b ,c 均为非
负整数,0≤b≤9且c <2b+1),规定G(P)=
b 2a
c -a +.例如:2018=100×20+18=100×20+42+2,所以G(2018)=14
942202-20=⨯+.若N 是一个四位数,其中千位比百位大1,十位比个位小1,且存在大于1的整数k ,使得F(N)=k 2N ,求G(N)的最大值.
课后练习:1.
2.
3.
4.。

相关文档
最新文档