强油冷却式变压器油流带电分析正式版

强油冷却式变压器油流带电分析正式版
强油冷却式变压器油流带电分析正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.强油冷却式变压器油流带电分析正式版

强油冷却式变压器油流带电分析正式

下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。

由于变压器的容量和电压等级不断增大,对强油循环冷却要求的提高,绝缘结构的紧凑化,材料干燥度的增加,使得绝缘油流过油道时,就会在油纸界面上产生电荷分离,进而形成油道中局部电荷的积累,即出现油流带电现象。这种积聚达到一定程度,在油中产生浮云状的直流势差,产生闪络放电,破坏油道的绝缘性能,因此油流带电成为引起变压器故障的因素之一。

近些年来,国内运行中的500 kV变压器相继发生数起重大事故,据有关资料报

道,安徽洛河、山东潍坊的故障变压器就存在着明显的油流带电情况,部分500 kV 变压器在出厂实验时也发现有油流放电的迹象,甚至在个别运行中的220 kV变压器也曾有类似的油流放电现象出现。因此,油流带电问题应引起我们的高度关注。

1 油流带电的机理

变压器中的流体带电不同于其它的流体带电,因为变压器通常由液体和固体两种材料承担电力绝缘,而且,它的流体带电是在一封闭的系统内进行,也就是在一个气、水成分受控制的封闭循环系统内进行。

在变压器中油流带电,特别是紊流的影响已导致几起变压器烧毁事故,如洛

河电厂的变压器事件。紊流为什么起电呢?这是因为在紊流条件下,流速分量同流向垂直,如单管模型的流体带电表示电荷分布不规律。剩余电荷密度几乎均匀地分布于流体截面,电荷从管壁上激出。

2 影响油流带电的几个因素

从变压器的结构来看,可分为芯式与壳式。大亚湾核电站的主变为芯式结构,联变为壳式结构。有关资料表明:壳式结构的油流带电现象较多于芯式结构。

现将国内外资料中,有关影响油流带电的几个因素分述于下。

2.1 与流速及温度的关系

从泄漏电流与流速、油温的关系曲线可知,这里流速等于1Pu,表示最小流速。

在这个流速下油温达到50℃时才会发生静电放电。通常,由层流引起的流体电流同流速成正比,但在紊流条件下,流体电流同平均速度的7/4次方成正比,假若有旋涡产生,将会同平均流速的二次方成正比。但实际运行的变压器结构复杂,油流的局部偏差不可避免,即使在设计时考虑了油流情况,绕组泄漏电流仍对流速表现出有较大的依赖性,从2次方到4次方。

对油温的依赖关系方面,油温上升,雷诺数增加,流体由层流向紊流变化。当流速为一定值,导电率愈高即油温愈高,电流密度也愈大;反之,油温愈高松弛时间越短,泄漏电流就愈大。

此外,图3还说明,任何流速下模型

变压器均在50~60℃的油温时出现最大泄漏电流,油温更高或更低,绕组的泄漏电流均有所下降,泄漏电流最大时的油温一般在20~60℃。

因此,变压器发生油流放电故障时,其油的温度应在20~60℃范围内;也就是说变压器空载时,其油温在45~50℃,若在1Pu流速下,亦可能会发生静电放电。

2.2 绝缘材料的表面情况

各种不同的固体绝缘材料如牛皮纸、绝缘纤维板和棉布带都会用于变压器中,它们有不同的表面条件及电流密度。带电程度按表面粗糙程度随牛皮纸、纤维板、皱纹纸和棉布带的排列顺序依次加大。棉布带的允许带电程度大约是牛皮纸

和纤维板的10倍,同样,皱折牛皮纸使其表面起毛,则带电程度也增加约10倍。

此外,从微观的角度看,接触面增大,能导致大量静电电荷产生。这对壳式变压器绕组中的油道接触面来说,是带电的因素之一。

2.3 绝缘油的带电倾向

油流带电的基本因素之一是绝缘油有带电倾向。图4是两种绝缘油的差异,此外,还与最小流速有关。所以绝缘油的性质对油流带电影响较大。这对运行中的滤油、油质的质量要求,提出了更高的要求。

2.4 其它因素

2.4.1 励磁

静电带电强度随交流场强的增加而提高,当前对流动油和层压板系统的研究表明交流电场作用的增强大约可提高电荷密度5倍。

变压器流动油的介电强度随油的流速而变化,油的介电强度也随温度、水份、气泡的存在、杂质及微粒物质而变化。

此外,在运行的油/纸介质变压器系统中油和绝缘材料之间的水份是移动的。当变压器温度和压力发生变化时,水份便移至重新建立的平衡状态中,当水份留在或进入绝缘体的表面时,界面流体的导电性也相应地变化,这种情况同样会影响电荷的释放过程。

2.4.2 微粒物质

变压器油中由生产过程中带来的微粒物质除对前面提到的介质特性有影响外,还对静电带电活动有所影响。

2.4.3 电荷注入

已经证明上部流油电荷注入对下部流油的介质强度有所影响。

2.4.4 油嘴

已经证明,油嘴也能产生电荷。

3 变压器中局部放电的特征

静电放电发生时的油温大概会在绕组泄漏电流最大的地方出现,最小流速及各种油温下静电放电产生的绕组泄漏电流近似于常数,在5~8 礎。芯式变压器的静电放电主要在绕组底部附近产生。

4 结论与建议

对于油流带电的测试方法,可以实测电荷量。该方法在制造厂生产时是有条件进行的,但对现场或已投运的变压器就很难办到了。在现场就只能以色谱分析、超声测量作为主要手段,而辅以局放进行监控。

因此,建议:

(1)对于新设计变压器

在型式试验时,做油流带电试验。

做空载全电压试验,油泵全开12 h以上。试验前后做色谱试验,中间每隔2 h 取油样进行分析,以观察气体成分的增量。C2H2量应为“0”,H2的增量不应超过10%。

试验过程中,用超声仪(带磁带录

波)监测下列部位:进油口、有载开关引线处、变压器油箱上部。

(2)对于现场安装与即将投运的变压器在冲击合闸试验前,增加空载全电压试验,油泵全开12 h以上。

(3)对于未投运的变压器

在冲击合闸试验前,加做以下3项试验:

①不加压,全油泵启动试验。在高压绕组的中性点(各相分开)用静电电压表测量电压值。如有油流带电,一般有10 000 V及以上电压指示。启动试验从开始到结束,时间应不少于2~3 h。

②分油泵启动试验。

③空载全电压试验,油泵全开12 h以

上。

此外,还应加强对油质和滤油速度的控制,以及变压油的水份和气体含量的控制。

——此位置可填写公司或团队名字——

1000kV特高压变压器油流带电抑制研究

1000kV特高压变压器油流带电抑制研究 发表时间:2016-04-15T15:07:26.093Z 来源:《工程建设标准化》2015年12月供稿作者:刘凤展 [导读] 江苏省电力公司检修分公司扬州运维分部电力输送的路径长度及电力损耗等决定必须依靠超特高压变压器来充分提供输电的效率和质量保证。 (江苏省电力公司检修分公司扬州运维分部,扬州,225001) 【摘要】经济的发展和社会的进步需要稳定可靠的电力能源支撑,我国地形地质的特点决定东部地区经济发展速度快且用电负荷大,西部地区经济发展较为落后但水电资源丰富,因此国家制定西电东输政策实现电力的输送,但电力输送的路径长度及电力损耗等决定必须依靠超特高压变压器来充分提供输电的效率和质量保证。本文分析1000KV特高压变压器的油流带电原因和危害,分析可靠的抑制手段和措施,保障输电的可靠稳定。 【关键词】1000KV特高压变压器;油流带电;抑制措施 变压器利用电磁感应原理来改变交流电压的装置,是电力系统中的关键设备,其性能的可靠性和安全性直接关系电力系统的安全稳定运行,变压器的设计和制造、应用能力代表电力装备行业的综合技术水平。1000KV的特高压变压器是对电磁环境、技术要求高的特种变压器,科研费用高昂和内部结构的复杂性要求利用严格的质量控制措施和使用规范进行使用,采用科学的合理的手段检测油流带电现象并积极采取措施抑制,保障设备的安全可靠运行。 一、油流带电的形成和危害 1、油流带电的形成机理 油流带电是指在强迫油循环的特高压变压器内部,由于变压器油流过经过特殊干燥处理的绝缘材料(绝缘纸及绝缘纸板)表面时,温度极高的油流与绝缘油道和冷却管道经过摩擦或水分原因产生了电荷分离现象,形成空间电荷后在变压器油或绝缘纸板上以相应的能级进行积聚,当空间电荷的电位迅速升高使该处局部静电场强超过介质的耐受程度时,就会导致发生局部放电或沿面爬电、放电,在放电效应严重时造成绝缘系统的破坏,损害变压器。 2、危害 变压器油和绝缘纸板在相对状况下是绝缘性能较好的材料,容易形成局部静电电荷的积累或分离现象,变压器内油流带电产生的静电放电容易发生在空间电荷密集区域,通常情况下位于绕组上部油道出口和绕组下部油道入口附近,这些部位的工频场强很弱,放电完全取决于空间电荷积聚所产生的静电电位和介质的耐受程度,在耐受程度被突破后,高静电场与正常运行电压造成的交流电场强度不断的叠加就会导致沿绝缘静电放电、爬电放电或表面闪络,发展成为贯穿性击穿,将使固体绝缘受到损伤,使变压器油质劣化或变质,进一步促使放电能量的加强,常在固体绝缘表面形成碳迹,降低了有效的绝缘性能或彻底损失等,引起严重的变压器事故。 二、油流带电的原因 1、油流的流速 经过科学实验和有效数据信息的分析,确定变压器油流速度是对带电现象产生最重要的影响因素,油流速度越大则其带电倾向越为严重,根据油流特性及变压器的运行原理设计相关的油流通过层压纸管进行模拟实验,在实验数据的有效综合分析后得出,纸管的入油口和出油口油流速度在管形变作用下油流不稳定,造成静电电流的增加;1000KV特高压变压器的运行需要迫使油循环速度满足运行机制,因此造成油流状态的不稳定,同时变压器内部结构的复杂性造成油流的转向及通过能力受阻力影响较大,因此造成油流速度与设计的平均流速差异,造成带电现象严重。 2、油温与油的电导率 经过科学实验表明,变压器油流的温度影响与油流带电现象相关的电参数、力学及电化学等数据因素,各类影响因素在油流温度的作用下发生相关的物理或化学反应,其中静电荷的产生和缓和两种相反作用的竞争影响温度特性曲线的变化及极值的出现,部分研究人员认为,带电量随温度变化而发生相应的变化,并且在相关实体模拟试验中表明,由于油流带电,测得绕组的泄漏电流同油温的关系密切。 3、固体绝缘材料的影响 1000KV特高压变压器内固体绝缘材料表面的粗燥程度决定其对电荷的有效吸附能力,通过棉布带与牛皮纸对电荷吸附能力的有效测试,确定10倍于牛皮纸表面粗糙程度的棉布带,其电荷密度也基本10倍于牛皮纸,同时相应的油电荷密度也提高了同样的数量级。由此可见,绝缘材料的表面粗糙度越大,其吸附电荷的能力越强。而当绝缘材料的表面发生放电现象时,表面材质在电荷的作用下发生密度和品质、粗糙度的相应改变,发生毛刺现象会对电荷的集聚效应增加,导致油流带电量的相应增加。 4、油的种类 变压器油是符合变压器工作原理的专业用油,但由于现阶段技术的局限性,变压器油仍具有一定的带电性能,而其带电性能也是影响油流带电的重要因素,科学实验表明,不同品类的变压器油其带电性能和固有电荷密度是存在差异的,其中电荷密度高的变压器油是富含有极化混合物,为降低变压器油的电荷密度,在大量实验验证下,可以按照相关操作程序对变压器油进行精炼处理。 5、交流电场强度的影响 科学研究表明,1000KV特高压变压器油流带电程度与交流电场的强度具有正比例关系,即强度越大的交流电场影响下的带电程度越高。但在低电场强度下,由于交流电场的扩散使进入油中的正离子发生大幅度的振动,造成视在分布的变宽也可以说是变压器油中正离子的长度扩大超过实际长度而引起的流动电流的增大。在较高的电场强度下,交流电场的电射作用可使固体绝缘材料和油之间界面上的静电荷迅速增加并产生电荷的分离。 三、特高压变压器中抑制油流带电的措施 1、改进变压器的绝缘结构 由于产生电荷、发生静电放电的主要部位是在高、低压绕组的油道入口附近以及绕组底部外侧绝缘件等部位,因此在这些部位的表面

变压器冷却器冷却工作原理1

变压器冷却器冷却工作原理 1、变压器常用的冷却方式有以下几种: ①、油浸自冷(ONAN); ②、油浸风冷(ONAF); ③、强迫油循环风冷(OFAF); ④、强迫油循环水冷(OFWF); ⑤、强迫导向油循环风冷(ODAF); ⑥、强迫导向油循环水冷(ODWF)。 ⑦、自然风冷式(ONAF); 2、按变压器选用导则的要求,冷却方式的选择推荐如下: ①、油浸自冷 31500kVA及以下、35kV及以下的产品; 50000kVA及以下、110kV产品。 ②、油浸风冷 12500kVA~63000kVA、35kV~110kV产品; 75000kVA以下、110kV产品; 40000kVA及以下、220kV产品。 ③、强迫油循环风冷 50000~90000kVA、220kV产品。 ④、强迫油循环水冷 一般水力发电厂的升压变220kV及以上、60MVA及以上产品采用。 ⑤、强迫导向油循环风冷或水冷(ODAF或ODWF) 75000kVA及以上、110kV产品; 120000kVA及以上、220kV产品; 330kV级及500kV级产品。 选用强油风冷冷却方式时,当油泵与风扇失去供电电源时,变压器不能长时间运行。即使空载也不能长时间运行。因此,应选择两个独立电源供冷却器使用。 3、变压器冷却器强迫油循环冷却工作原理 主变压器使用强迫油循环冷却方式,其工作原理是把变压器中的油,利用油泵打入冷却

器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风作冷却介质,把热量带走。 4、桂平巡维中心管辖下的变压器冷却器冷却方式 220kV社步站2号主变压器使用强迫油循环冷却方式,1号主变压器的冷却方式采用自然风冷式(ONAF);110kV祥和站、110kV西山站、110kV木乐站、110kV金垌站、110 kV蒙圩站、110kV麻垌站、110kV石龙站的主变压器冷却方式都是采用自然风冷式(ONA F); 5、变压器的冷却装置应符合以下要求: a.按制造厂的规定安装全部冷却装置; b.强油循环的冷却系统必须有两个独立的工作电源并能自动切换。当工作电源发生故障时,应自动投入备用电源并发出音响及灯光信号; c.强油循环变压器,当切除故障冷却器时应发出音响及灯光信号,并自动(水冷的可手动)投入备用冷却器; d.风扇、水泵及油泵的附属电动机应有过负荷、短路及断相保护;应有监视油泵电机旋转方向的装置; e.水冷却器的油泵应装在冷却器的进油侧,并保证在任何情况下冷却器中的油压大于水压约0.05MPa(制造厂另有规定者除外)。冷却器出水侧应有放水旋塞; f.强油循环水冷却的变压器,各冷却器的潜油泵出口应装逆止阀; g.强油循环冷却的变压器,应能按温度和(或)负载控制冷却器的投切。 油浸式变压器顶层油温一般不应超过制造厂有规定的按制造厂规定。当冷却介质温度较低时,顶层油温也相应降低。自然循环冷却变压器的顶层油温一般不宜经常超过85℃。 6、220kV社步站主变压器运行的冷却器有关规定 a)主变压器在运行中,,主变绕组温度不得超过105℃,上层油温不得超过85℃; b)1号主变的冷却器是按温度和负荷启动的, 油温60℃以下自然风冷。1号主变有2组冷却器,第1组有1、3、5、7、9、11共6台冷却器,第2组有2、4、6、8、10、12共6台冷却器,第1、2组冷却器均置“自动”。当油温达到60℃或75%额定负荷 时,第一组风冷启动, 当油温降到50℃时,第一组风冷停运;当绕温达到75℃时,第 二组风冷启动,当油温降到65℃时,第二组风冷停运。 c)2号主变的冷却器是强油风冷运行。2号主变应设置工作冷却器3台,辅助冷却器1台。2号主变在55℃以下时,“工作冷却器”投入运行,当2号主变油温达到55℃ 或超过负荷75%额定负荷时,辅助冷却器应自动投入运行。当“运行”或“辅助冷 却器”发生故障时,“备用冷却器”应自动投入运行。2号主变当冷却器故障切除全 部冷却器时,在额定负荷下允许运行时间为20分钟。若油位温度尚未达到75℃, 则允许上升到75℃,但最长运行时间不得超过1小时。 d)如果主变负荷恒定,则2号主变在不同的负荷时应投冷却台数如下: 2号主变压器负荷情况与应设入冷却器台数表

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器实验报告

专业:电子信息工程: 实验报告 课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验

实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N 以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏

变压器油的电气性能影响因素

浅谈变压器油的电气性能影响因素 【摘要】影响油浸式变压器电气性能的因素较多,其中对变压器耐压强度有较大影响的主要因素包括变压器油中含水量、含气量、杂质、温度、流速等。文章通过分析这些影响因素对变压器油的耐压强度的影响趋势,说明变压器电压等级越高,油中含水量、含气量及杂质等的控制要求越严格。采用先进的工艺方法来对变压器油脱水、脱气或采用粗精装置去除油中杂质,可以使油达到各电压等级要求。 【关键词】变压器油;耐压强度;油中杂质;温度;流速 1.影响变压器电气性能的各种因素分析 1.1油的含水量 水分在变压器油中以3种形式存在:沉积、溶解和结合。油中含水量越小,工频击穿电压越高。当含水量大于200×10-6时击穿电压不变,因为此时多余水沉于油的底部,不会影响油试验时的击穿电压值。 当油中含水量为(300~400)×10-6时,含水量超过饱和溶解量,水沉积到底部,油的耐压值与饱和溶解量时的耐压值一样。油中含水量对油的介损指标(tgδ)及固体绝缘电性能的影响也很大,随着含水量增大,tgδ值迅速上升。水分增加,油浸纸击穿电压值呈曲线迅速下降,当含水量为3%时,其耐电强度约下降10%。对于500kv变压器出厂时绝缘纸含水量控制在0.5%以下。

在一般情况下,变压器运行时,油温升高,油中含水量增加而纸中含水量降低,即纸中含水向油中扩散;运行温度降低,扩散方向相反。因此,较高油温的变压器在低温环境下退出运行时或当油含水量过高退出运行时,油的含水一部分向纸中扩散,另外,由于油温降低,油中含水量大于饱和溶解量,多余的水分会从油中析出而沉于油箱底或者沉在冷却器底部。当变压器重新投入运行时,冷却器底部的水会由油泵导入变压器线圈,同时水向变压器的高场强区移动,造成潜在危险。这种情况必须引起变压器运行部门注意,对油的含水量必须控制在符合要求的数值之内。 降低油的含水量对提高变压器运行安全及减缓油老化有重要作用。为了降低油的含水量,可以采取对油进行真空加热法处理,油温加热到60~70℃,抽高真空,将油中的含水量降下来。 1.2油中杂质 纯净油的击穿场强很高,当油中存在杂质和水分时,油的击穿电压明显下降。变压器中有大量的绝缘材料,而油中含有纤维杂质,其中含有水分的纤维更易导电。介电系数大,容易沿电场方向排列成杂质小桥。沿小桥的泄漏电流大,发热多,易引起水分汽化,从而使气泡扩大,击穿就会在这些小桥和气泡中发生。电场越均匀,杂质对击穿电压的影响越大,击穿电压的分散性也越大。在不均匀电场中,杂质对耐压及冲击电压的影响较小,这是因为场强最高处发生局部放电时,油发生扰动致使杂质不易形成小桥,同时,在冲

变压器强油循环强风冷却器控制回路的改造

变压器强油循环强风冷却器控制回路的改造 摘要:通过分析事故原因,指出大型变压器冷却器控制回路存在的重大设计缺陷,并提出了具体改造方案,可供设计、制造、安装、运行等部门参考。 关键词:变压器冷却器控制回路改造 目前,大型变压器的冷却一般采用强迫油循环风冷却方式,并广泛采用了强油循环强风冷却器这类变压器的主要附件,虽经各生产厂家多次改进,但是在实际运行维护过程中发现,冷却器控制回路的设计仍存在着很多缺陷。若不及时对上述控制回路进行改造,就会影响冷却系统的可靠性,加快变压器绝缘油的老化速度,甚至威胁电网的安全稳定运行。 保定市冷却器厂生产的变压器冷却器已在全国普遍使用,下面以该厂最新设计生产的XKWFP-6型强油循环强风冷却器总控制箱为例进行分析,并提出改造方案,供各位同行参考。 1 防止更换接触器和空气开关时造成的短路 变压器冷却器在运行过程中,接在冷却器电源小母线上的接触器和空气开关容易损坏。因为小母线不能停电,所以只能带电更换损坏设备。由于总控制箱内空间小,电源相间距离近,因此更换设备时极易造成相间短路,甚至使小母线烧断,两段电源均投不上,造成变压器被迫停电。

如图1所示,厂家设计的小母线只有一段,如果将小母线分段,并按图中虚线框所示,加装分段刀闸DK,就可以有效地避免短路事故的发生。正常运行时,合上DK,当某接触器(如1JC)或某空气开关(如1ZK)损坏时,先断开本段电源(Ⅰ段电源),再拉开DK,可以使已损坏的设备与工作电源隔离,即可在不带电的情况下予以更换。这样既可有效地防止事故的发生,又确保一半的冷却器继续正常运行。选择DK时,应校核其容量。 图1 总控制箱电源接线的改造 2 防止工作电源交流接触器失磁造成主变开关跳闸 1997年9月27日,我局220 kV飞凤山变电站1号主变冷却器总控制箱内工作电源(Ⅰ段)交流接触器1JC线圈烧毁。由于厂家设计未考虑到交流接触器线圈烧毁(或该回路断线)的可能性,因此主控制室无任何信号,冷却器亦不能自动切换至备用电源(Ⅱ段),致使冷却器失去电源。冷却器全停20min后,由于主变顶层油温未达到75℃,因此主变冷却器全停保护没有出口。60min后,冷却器全停延时跳闸回路出口,使1号主变三侧开关跳闸。如图2所示,时间继电器1BSJ 整定为20 min,2BSJ整定为60 min。

变压器油流静电是什么

变压器油流静电是什么?(1) 油在变压器中强迫流动时,由于固体绝缘表面形成的极性分离,油带走了大量带正电的氢离子,而固体绝缘上因留下过多的电子使其带负电。 变压器运行中铁心和外壳接地,靠近这一部位的油中正电荷可从铁心和外壳泄漏到地;不断留在绕组绝缘上的负电荷,则可通过绕组导体泄漏。没有泄漏的正负电荷,部分在流动过程中被中和,有一部分可能形成积聚的空间电荷。由于电荷的产生速率和泄漏不同,有些变压器可能不易形成空间电荷,而有的变压器的空间电荷在不断地形成和消失。空间电荷的消失过程又分两种情况:一种是空间电荷使该处直流电位提高,促使泄漏电流增加,在动态下形成稍有波动的泄漏电流源;另一种是空间电荷电位迅速升高使该处局部场强超过介质的耐受强度,致使发生放电,形成脉冲电流。由此说明,绕组中性点和铁心对地泄漏电流静电电压可在一定程度上反映变压器油流带电情况。 油流静电放电特性 如前所述,如果产生的电荷与泄漏、中和的电荷达到基本平衡时,积聚的空间电荷产生的局部静电场叠加上交流电场分量还没有超过该处介质的耐受强度,就不会引起放电,正如大多数的强油循环变压器尚未出现油流带电引发的静电放电现象一样;反之,若局部场强超过该处介质的耐受强度,则

会发生放电。 变压器内因上述油流带电过程产生的静电放电且有不同一般交流电压下局部放电的特点。它有两种放电形式,一种是在变压器内某些空间电荷积聚处外施交流电压形民的交流电场很弱,此处放电因完全取决于空间电荷产生的静电电位和介质耐受强度,而且有直流电压下放电的特点。这种放电重复率低,从开始放电到引发事故的时间较长。一般可通过对变压器油中气体分析,发现乙炔等含量增加。 另一种情况是,空间电荷积聚处工作场强较高,交直流电场的叠加作用,因直流分量降低了放电起始电压,使静电放电能引发工频电场下的连续放电,放电重复率高,且有交流放电的特点。该放电从起始到引发事故所需时间较短,往往是还未来得及从色谱分析发现明显的放电迹旬,很快就发生了甚为严重的事故。由此,可以看到上述两种放电对变压器构成的威胁是不同的。实际情况中,上述两种放电形式并不是绝对的,可能同时存在于同一台变压器中。 尽管影响变压器油流带电及静电放电的因素是复杂的,作用方式也是多咱多样的,但油流带电基本过程以及静电放电形成原因都是相似的。人们提出了针对油流静电的试验方法。当变压器内的油流带电过程尚未发展为静电放电时,为了了解变压器内静电积聚程度以及评估由此造成的潜在危险,一般在变压器不充电情况下开启油泵,测量绕组中性点和铁心

变压器油的标准

变压器油的标准: 变压器绝缘油的常规试验项目(物理--化学性质的项目) 1》在20/40℃时℃比重不超过0.895(新油)。 2》在50℃时粘度(思格勒)不超过1.8(新油)。 3》闪光点(℃)不低于135(运行中的油不比新油降低5℃以上)。 4》凝固点(℃)不高于-25(在月平均最低气温不低于-10℃的地区,如无凝固点为-25℃的绝缘油时,允许使用凝固点为-10℃的油)。 5》机械混合物无。 6》游离碳无。 7》灰分不超过(%)0.005(运行中的油0.01)。 8》活性硫无。 9》酸价(KOH毫克/克油)不超过0.05(运行中的油0.4)。 10》钠试验的等级为2。 11》安定性:<1>氧化后的酸价不大于0.35。<2>氧化后沉淀物含量(%)0.1。12》电气绝缘强度(标准间隙的击穿电压)不低于(KV):<1>用于35KV及以上的变压器(40)。<2>用于6~35KV的变压器(30)。<3>用于6KV以下的变压器(25)。13》溶解于水的酸或殓无。 14》水分无。 15》在+5℃时的透明度(盛于试管内)透明。 16》tgδ和体积电阻(如果浸油后的变压器tgδ和C2/C50值增高则应进行测量)tgδ不超过(%)在20℃时为1(运行中为2),在70℃时为4(运行中为7),体积电阻(无规定值但应与最低值进行比较)。 绝缘油和SF6 气体gb50150 20.0.1 绝缘油的试验项目及标准,应符合表20.0.1 的规定。

20.0.2 新油验收及充油电气设备的绝缘油试验分类,应符合表20.0.2 的规定。 表20.0.2 电气设备绝缘油试验分类

20.0.3 绝缘油当需要进行混合时,在混合前,应按混油的实际使用比例先取混油样进行分析,其结果应符合表 20.0.1 中第8、11项的规定。混油后还应按表20.0.2 中的规定进行绝缘油的试验。 20.0.4 SF6新气到货后,充入设备前应按国家标准《工业六氟化硫》GB12022 验收,对气瓶的抽检率为10%,其他每瓶只测定含水量。 20.0.5 SF6气体在充入电气设备24h后方可进行试验。

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表内接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,

变压器油的击穿电压

变压器油的击穿电压 将电压施加于绝缘油时,随着电压增加,通过油的电流剧增,使之完全丧失所固有的绝缘性能而变成导体,这种现象称为绝缘油的击穿。绝缘油发生击穿时的临界电压值,称为击穿电压,此时的电场强度,称为油的绝缘强度,表明绝缘油抵抗电场的能力。击穿电压U (kV)和绝缘强度E (kV/cm)的关系为 E=U/d (2-26) 式中d-电极间距离(cm)。 纯净绝缘油与通常含有杂质的绝缘油具有不同的击穿机理。 前者的击穿是由于游离所引起,可用气体电介质击穿的机理来解释,即在高电场强度下,油分子碰撞游离成正离子和电子,进而形成了电子崩。电子崩向阳极发展,而积累的正电荷则聚集在阴极附近,最后形成一个具有高电导的通道,导致绝缘油的击穿。 通常绝缘油总是或多或少含有杂质,在这种情况下,杂质是造成绝缘油击穿的主要原因。油中水滴、纤维和其他机械杂质的介电系数ε比油的要大得多(纤维的ε=7,水的ε=80,而变压器油的ε≈2.3),因此在电场作用下,杂质将被吸引到电场强度较大的区域,在电极间构成杂质“小桥”,从而使油的击穿强度降低。如杂质足够多,则还能构成贯通电极间隙的“小桥”,流过较大的泄漏电流,使之强烈发热,并使油和水局部沸腾和气化,结果击穿就沿此“气桥”而发生。

下面分别分析影响绝缘油击穿电压的各主要因素。 (1)测量绝缘油击穿强度时采用的电极材料、电极形状和电极面积对油的绝缘强度有影响。根据试验数据得知,在同样的试验条件下,不同电极材料测量的同种油样绝缘强度的排列顺序为Fe<黄铜

变压器油的性能要求

1、外观 应是清澈透明,无悬浮物和底部沉淀物,一般是淡黄色。 2、密度 密度与油品的组成以及水的存在量均有关。对于绝缘油来说控制其密度在某种意义上也控制了油品中水的存在量,特别是对于防止在寒冷地区工作的变压器在冬季暂时停用期不出现浮冰的现象更有实际意义。如果绝缘油中水分过多在气温低时会在电极上冰结晶,但当气温生高时,粘附在电极上冰结晶会融化增加导电性,从而会出现放电的危险,为此应对绝缘油控制密度,一般要求在20℃密度不大于895kg/m3,与水的密度保持较大差距。 3、运动粘度 变压器油除了起绝缘作用外,还起着散热的作用。因此,要求油的粘度适当,粘度过小工作安全性降低,粘度过大影响传热。尤其在寒冷地区较低温度下油的粘度不能过大,仍然具有循环对流和传热能力,才能使设备正常运行,或停止运行后在启用时能顺利安全启动。 4、倾点 倾点(或凝点)在一定程度上反映绝缘油的低温性,根据我国气候条件,变压器油按凝点分10、25,、45三种牌号,实际测定中多采用倾点。通常凝点低的油可以代替凝点高的油,反之则不行,国外一般规定变压器油凝点应低于最低使用气温6℃,我国则规定添加降凝剂的开关用油凝点比使用气温低5℃。 5、闪点 闪点是保证绝缘油在储存和使用过程中安全的一项指标,同时,闪点对运行油的监督是必不可少的项目。闪点降低表示油中有挥发性可燃气体产生;这些可燃气体往往是由于电器设备局部过热,电弧放电造成绝缘油在高温下热裂解而产生的。通过闪点的测定可以及时发现设备的故障。同时对新充入设备及检修处理后的变压器油来说,测定闪点也可防止或发现是否混入了轻质馏分的油品,从而保障设备的安全运行。 6、酸值与水溶性酸碱 油中所含酸性产物会使油的导电性增高,降低油的绝缘性能,在运行温度较高时(如

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

强油风冷主变压器冷却器全停事故分析与处理

强油风冷主变压器冷却器全停事故分析与处理 强迫油循环风冷主变压器冷却器全停是电力系统中非常严重的事故,如果处理不及时或不得当将造成主变压器停运导致大面积停电的严重后果。造成冷却器全停事故的原因很多,文章探讨了相关的判断与处理方法。 标签:强迫油循环;冷却器;全停事故;处理 前言本文探讨的课题是变电站日常工作中经常遇到的问题,鉴于各级电力系统的情况千差万别,另外由于本人的专业技术水平有限,许多论点可能有失偏颇或不切实际,不妥和错误之处在所难免,敬请批评指正。 随着社会的不断发展进步,电力系统在国民经济中起到了越来越重要的作用,在社会发展和建设中具有举足轻重的地位。为了保证持续、稳定、可靠的供电,电力系统自身也在不断地发展和建设中,目前投运的变电站逐渐向高电压、大容量发展,而随着变电容量的增加,电力系统中最重要的设备之一——变压器的散热问题对系统的安全稳定运行提出了更高要求。 电力系统中,电压等级在110kv及以下、容量较小的变压器一般采用油浸自冷或油浸风冷的冷却方式。油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷卻。加装风冷后可使变压器的容量增加30%~35%。由于这种变压器体积较小,常规的冷却方式已能够满足要求。但对于220kv及以上电压等级的大容量变压器来说,油浸风冷方式已远不能满足散热的要求,所以要采用强迫油循环风冷或水冷的散热方式。强迫油循环冷却方式,是把变压器中的油,利用油泵打入油冷却器后再返回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若把油的循环速度比自然对流时提高3倍,则变压器可增加容量30%。强油循环变压器的构造与普通的油浸风冷变压器是完全不同的,它的散热面是平的,不象普通变压器内部为了加强散热有许多皱折,如果没有冷却系统,变压器内部的热量只有很少一部分能够散发出去,大部分热量聚集在主压器内部,温度上升很快,在很短时间内就会造成变压器的损坏。因此,这种主变压器对冷却系统的可靠运行提出了更高的要求,一方面冷却系统必须长期不间断地运行,同时必须有能够自动切换的备用冷却器及两组独立电源,在工作冷却器或电源故障时备用冷却器或另一组电源能够随时自动投入运行,保证冷却系统不间断地运行。变压器冷却器全停的相关继电保护中对此也有规定,冷却器全停经油温控制(75℃)20分钟跳闸,不经油温控制60分钟跳闸。因此在处理此类事故的过程中一定要动作迅速,在保护动作前恢复冷却器的运转,防止造成事故跳闸。 1 冷却器全停事故的处理原则及步骤 1.1 正确判断冷却器全停的原因:电源回路、控制回路、冷却器本身等出现

大型变压器油流带电现象(含测量方法)

大型变压器油流带电现象 一、油流带电现象 在强迫油循环的大型电力变压器中,由于变压器油流过绝缘纸及绝缘纸板的表面时,会发生油流带静电现象,简称油流带电。油流带电现象国内外均有发生,惕1989年报导,美国曾有12台大型变压器因油流带电现象而损坏。我国曾于1992年对国产大型变压器质量进行过调查,调查结果表明,油流带电引发的静电放电是威胁国内大型变压器安全运行的重要因素之一。东北电力科学院和沈阳变压器厂曾在制造厂内和电力系统中对500kV大型变压器进行油流带电的测试,在40台次的测试中,发现6台次(其中电力系统中的2台次,出厂试验4台次)由于油流带电引起变压器内部放电,其具体情况如表1--39所示。 表11-39 油流引起变压器内部放电的情况

鉴于以上所述,大型变压器的油流带电现象已引起国内外电力部门和变压器制造业的广泛关注。日本、美国、法国、瑞典、英国和波兰等很多国家早在70年代就投入大量人力、物力对油流带电问题开展研究。近些年来,油流带电问题也引起我国的重视、变压器制造业、电力部门和有关高等偏校都在认真进行研究。 油流带电机理 关于油流带电的机理目前尚有争论,现有的研究结果认为可以从油流的流动作用和交流电场的电动作用两方面来认识。 就油流的流动作用而言,比较普遍的看法是,变压器的固体绝缘材料(如绝缘纸和纸板)的化学组成是纤维素和木质素,其中纤维素带有羟基(-OH),木质素带有羟基、醛基(-CHO)和竣基(-COOH)。在变压器油的不断流动下,油与绝缘纸板发生摩擦,使得这些基团发生电子云的偏移,即 这样,纤维素和木质素分子就被-Hδ+的正电性所覆盖,绝缘纸板表面就如同覆盖着一层正极性的氢原子。带正电性的-Hδ+对油中负离子具有较强的亲合作用,进而吸附油中负离子,并在油一纸界面上形成仍电层。当变压器油以一定速度流动时,偶电层的电荷发生分离,

变压器油分析报告

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日 期 2009年08月18 日 样品名称#25变压器油分析日 期 2009年08月19 日 分析项目水分、介质损耗因数、击穿电压、 色谱 报告日 期 2009年08月21 日 采样地点#1主变依据标准 外状 水溶性酸(pH值) 酸值,mgKOH/g 闪点(闭口),℃ 水分,mg/L 10.5 GB/T7600 界面张力(25℃),mN/m 介质损耗因数(90℃)0.093 击穿电压,kV 52 体积电阻率(90℃) Ω·cm 油中溶解气体组分含量 色谱分析 如下 破乳化时间 备注 色谱:甲烷:17.90 乙烯:1.65 乙烷:2.58 乙炔:0.00 氢 气:174.32 一氧化碳:1437.09 二氧化碳:5178.93 总烃:22.13 分析意见:氢含量超过注意值! 建议缩短周期,跟踪分析! 其他结果合格。 审核试验张颖、罗燕贞、王静

洛阳阳光热电有限公司变压器油检验报告 样品状态运行油采样日期2009年08月18 日 样品名称#25变压器油分析日期2009年08月19 日 分析项目介质损耗因数、击穿电压、 色谱 报告日期 2009年08月21 日 采样地点#1高厂变依据标准外状 水溶性酸(pH 值) 酸值, mgKOH/g 闪点(闭 口),℃ 水分,mg/L 界面张力 (25℃), mN/m 介质损耗因 数(90℃) 0.069 击穿电压,kV 54 体积电阻率 (90℃) Ω·cm 油中溶解气 体组分含量 色谱分析 如下 破乳化时间 备注色谱:甲烷:10.88 乙烯:1.71 乙烷:2.32 乙炔:0.00 氢气:62.79 一氧化碳:811.07 二氧化碳:2915.03 总烃:14.91 分析意见:含量未发现异常! 其他结果合格。 审核试验张颖、罗燕贞、王静

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

变压器强油循环风冷却器改造方案

变压器强油循环风冷却器的改造 谢封生

变压器强油循环风冷却器的改造 根据我公司变压器现场运行情况以及上级文件要求,总结近几年对冷却器的现场改造经验,对变压器强油循环风冷却器的改造既要满足变压器的诸多技术要求,又要满足现场安全运行要求,以达到安全可靠、降耗节能、降低噪音、减少维护量、杜绝渗漏及提高变压器运行效率的目的。 强油循环从20世纪90年代开始,迎来了变压器大规模的改造工程,现根据我公司变压器运行情况及变压器冷却器行业最新产品发展趋势,借鉴同行相关专业的经验及理论学习,对本公司的变压器强油风冷却器的改造提出相关的经验,达到预期效果及相关文件的要求。 1.首先是现阶段变压器强油循环风冷却器在运行时存在的问题及改造后达到了什么标准 1.1冷却管老化,传热导热性能降低,特别是原冷却管多为钢、铝或钢铝复合管,由于热胀冷缩和轧片及管径长时间户外运行,影响结合处的可靠性。 改造后将采用引进德国、加拿大技术生产的铝轧翅片管,克服了原复合管的问题,并且耐老化,抗腐蚀,重量轻,传热系数稳定。 1.2原复合管采用的是焊接结构,因焊接时易产生飞溅,飞溅物如在清理时没有清理干净,在变压器长期运行中容易随变压器油进入到变压器中,这是绝对不被允许的。 改造后将采用整体轧翅管、二次胀接技术及特别工艺方案,上下集油盒采用全封闭结构,可确保无渗漏且内部不产生焊渣等异物,可

解决上述问题。 1.3旧的冷却为多回路(主要为三回路)。 改造后的冷却器是单回路,铝翅片管两端在端板上胀接,因两端板是钢板材料,两种材料在温度变化的情况下,它们的热胀冷缩系数不一样,易产生内应力,故在冷却器上安装自动调节装置。 1.4原冷却器由于采用三回路,冷却器油流大,油泵扬程高,选用的是4级泵(1500r/min)。 改造后将改为单回路后,采用6级泵(1000r/min以下)(电力行业规定要求6级及6级以上的泵方可使用),油泵转速降低,提高了油泵的寿命及安全性。 1.5原冷却器为120kW以下,风机转速为1500r/min,噪音高、寿命短。 改造后将采用大直径风机,选用6~12极之间的风机,噪音低,寿命长。 1.6原油流继电器不能很好的反映油路系统的情况,并且密封不好,易渗漏。 改造后将选用引进技术生产的油流继电器,能正确反映油泵的正反转及蝶阀是否打开,微动开关采用进口件,运行实践证明,改造过的冷却器油流继电器的事故明显减少。 1.7原总控箱线路控制已不能满足现代科技的飞速发展,特别是通信及保护功能的要求已非常落后,主要电器元件已不能更好的满足变压器的需要。

相关文档
最新文档