电动机的温度与温升
电机温升
中小型电动机的温升——资料来自机械设计手册第三版并经整理发热与温升:电动机在运行过程中有能量损耗,可分为固定损耗和可变损耗。
固定损耗包括铁损和机械损耗,与负载大小无关,一般型电动机此项数值较小;可变损耗主要是铜损,是电机发热的主要热源,等于电流的平方乘以电阻。
损耗导致电机发热。
电机的温升:发热与散热达到平衡时电机温度与环境温度之差称为电动机的温升。
若以Q 代表单位时间内电动机的发热量;A代表电动机与环境温度相差1度时,单位时间内电动机的散热量,则温升稳定值∆T=Q/A达到温升稳定值所需的时间:理论上达到温升绝对稳定的时间是无限长的,实际上只能达到基本稳定。
所需要的时间与发热时间常数T有关。
若以C代表电机的热容量,即电动机温度升高1度所需的热量,则T=C/A (A的定义同上)T与电动机的构造和尺寸有关。
小型电动机(中心高80~315属于小型)一般为0.5小时左右,大型电动机(中心高大于630mm属于大型)一般为3~4小时。
电机的冷却时间常数为发热时间常数的2~3倍,采用强迫通风时,两者相等。
T并不就是温升的稳定时间。
温升按指数规律随时间的增加而逐渐趋于稳定值。
下表是根据公式计算出的温升与温升稳定值之比TB与时间的关系表列数据可以用来估计温升稳定值和大致达到温升稳定值所需的时间。
举例来说,如果某小型电动机的T=0.5小时,运行3xT=1.5小时的温升为35度,便可得到TB=0.95,则可以推算出温升稳定值为∆T=35/0.95=36.84度。
电机的绝缘等级与允许温升:电机的绝缘等级决定于所采用的材料的耐热等级。
若电机的主要部件采用不同耐热等级的绝缘材料,则其绝缘等级按绝缘材料的最低耐热等级考核。
一般用途的中小型电机常选用较低耐热等级的绝缘材料,如E级,B级;有特殊要求的如高温环境,频繁启动的电机,则采用较高耐热等级的绝缘材料,但有时为了提高电机的使用寿命与可靠性,往往也采用较高耐热等级的绝缘材料,但其温升按较低等级考核。
电动机的温升和极限容许温升
电动机的温升和极限容许温升电动机温度是指电动机各有些实习发热温度,它对电动机的绝缘材影响很大,温度过高会使绝缘老化缩短电动机寿数,乃至致使绝缘损坏.为使绝缘不致老化和损坏,对电动机绕组等各有些温度作了一不守时的绑缚,这个温度绑缚便是电动机的容许温度。
电动机的各部温度的凹凸还与外界条件有关,温升便是电动机温度比周围环境温度高出的数值。
θ=T2-T1式中θ-------温升
T1-------实习冷却状况下的绕组温度(即环境温度,室温不容许逾越40℃);
T2-------发热心况下绕组温度.
1。
第08章 电机的发热与冷却
电机的发热与冷却
• 电机的额定容量还与使用环境有关,若环境温度、冷却介质、 海拔和相对湿度等与规定的不同,则要对额定容量进行修正。 如在高海拔地区使用,空气稀薄,冷却能力差,则应该降低 电机的额定容量。
• 冷却方式对电机的额定容量影响很大,冷却能力越强,电机 各部件的温度越低,额定容量越大。
• 电机的额定容量还与工作制有关,同一台电机,若运行在不 同的工作制下,其额定容量不同。例如,长期运行时的温升 要高于短时运行,其额定容量要小于后者。
电机的发热与冷却
温度测量方法的不同,会造成测量结果的不同。在规定温升限
度的同时,还应规定相应的温度测量方法。
• 温度计法
该方法直接测量温度,非常简便,但只能测量电机各部分的 表面温度,无法得到内部的最高温度和平均温度。
• 电阻法
绕组的电阻R随温度t的升高而增大,满足以下规律
R
R0
T0 t T0 t0
电机的发热与冷却
在电机中,电机的底座和电机周围的空气通常都是不良导热 体,因此热传导主要发生在电机内部。 电机内的热源主要是绕组损耗和铁心损耗,绕组损耗所产生的 热量借助于热传导作用从绕组穿过绝缘传递到铁心中,与铁心 产生的热量一起被传导到电机表面。 可以看出,绕组热量的传导比铁心中热量的传导经过的材料 多,故绕组温度通常高于铁心温度。 将温度场中温度相同的点连接起来,就得到等温线或等温面。 各点热量传导的方向总是与该点温度的空间变化率最大的方向 一致,也就是与通过该点的等温线或等温面的法线方向一致。
是制造厂对电机在相应的变速范围内的变动负载(包括过载) 和各种条件的规定。 • 离散恒定负载工作制定额 • 等效负载定额 一种为试验目的而规定的定额。
电机的发热与冷却
电机温度与温升的概念及测量和计算
电机温度与温升的概念及测量和计算
电机绕组、轴承及其它部件,只有低于其最高允许工作温度下使用,才能保证其经济使用寿命和运行可靠性。
1.温升电机温升温升限度(1)某一点的温度与参考(或基准)温度之差称温升。
(2)什么叫电机温升。
电机某部件与周围介质温度之差,称电机该部件的温升。
(3)什么叫电机的温升限度。
电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极限,称温升限度。
电机温升限度,在国家标准GB755-65中作了明确规定。
根据统计我国各地的绝对最高温度一般在35~40℃之间,因此在标准中规定+40℃作为冷却介质的最高标准。
电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。
允许温升是指电动机的温度与周围环境温度相比升高的限度。
绝缘的温度等级A级E级B级F级H级
最高允许温度(℃)105 120 130 155 180
绕组温升限值(K)60 75 80 100 125
性能参考温度(℃)80 95 100 120 145。
温度与温升
温升就是电机温度比周围环境温度高出的数值.电机温度与温升的概念及测量和计算收藏此信息打印该信息添加:用户发布来源:未知电机绕组、轴承及其它部件,只有低于其最高允许工作温度下使用,才能保证其经济使用寿命和运行可靠性。
《电气时代》2001年第2期刊登的《温度与温升》值得学习和深思。
笔者愿借题再探讨有关认识。
电机的发热避免不了的想到了发热程度,涉及到电机发热程度的理论认识是:温升,温升限度、绝缘材料、绝缘结构,耐热等级等。
因此,要认识和理解上面几个名词的含义,才能更好地注意和修正电机的发热程序。
1.温升电机温升温升限度(1)某一点的温度与参考(或基准)温度之差称温升。
也可以称某一点温度与参考温度之差。
(2)什么叫电机温升。
电机某部件与周围介质温度之差,称电机该部件的温升。
(3)什么叫电机的温升限度。
电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极限,称温升限度。
电机温升限度,在国家标准GB755-65中作了明确规定,如附表所示。
在电机中一般都采用温升作为衡量电机发热标志,因为电机的功率是与一定温升相对应的。
因此,只有确定了温升限度才能使电机的额定功率获得确切的意义。
2.绝缘材料绝缘结构耐热等级(1)什么叫绝缘材料。
用来使器件在电气上绝缘的材料称绝缘材料。
(2)什么叫绝缘结构。
一种或几种绝缘材料的组合称绝缘结构。
(3)什么叫耐热等级。
表示绝缘结构的最高允许工作温度,并在这样的温度下它能在预定的使用期内维持其性能,在允许的范围内及其所分的等级耐热等级。
耐热等级分为Y级90℃、A级10℃、E级120℃、B级130℃、F级155℃、H级180℃和H级以上共七个等级。
从上所述,电机中不同耐热等级的绝缘材料有着不同的最高允许工作温度。
所谓最高允许工作温度是指:在此温度下长期使用时,绝缘材料的物理、机械、化学和电气性能不发生显著恶性变化,如超过此温度,则绝缘材料的性能发生质变,或引起快速老化。
因此,绝缘材料最高允许工作温度是根据它经济使用寿命确定的。
三相异步电动机的最高允许温度和最大允许温升
三相异步电动机的最高允许温度和最大允许温升
定期检查电动机的温升,是监视电动机运行状况的直接可靠的方法。
当电动机的电压过低、电动机过载运行、电动机两相运行、定子绕组短路时,都会使电动机的温度上升。
所谓温升是指电动机运行温度与环境温度(或冷却介质温度)的差值。
例如环境温度(即电动机未通电的冷态温度)为30℃,运行后电动机的温度为100℃,则温升为70℃。
温升值反映了电动机运行中的发热状况,是电动机的运行参数。
表1列出了各种绝缘等级的电动机不同部位的最高允许温度和最大允许温升。
表1 三相异步电动机的最高允许温度和最大允许温升
表1所列温升都是环境温度为40℃时的值。
若环境温度低于40℃时,可允许保持表内温升值不变。
但环境温度高于40℃时,应以最高允许温度为准,这时的允许温升应以允许温度减去环境温度。
例如,当环境温度为41℃时,B级绝缘定子绕组允许温升为110℃-41℃=69℃ (温度计法)
(1)对于中小型电动机,常用酒精温度计对温度进行测量。
测量时,可把温度计紧靠被测轴承表面或定子铁芯,读表上温度指示值。
测绕组温度时,可旋下吊襻,把温度计插入吊襻螺孔内(温度计底部用金属箔包住)。
读得的温度为绕组表面温度,再加上15℃就是绕组的实际温度。
(2)如果没有上述的温度计,可在确定电动机外壳不带电的情况下,用手背去触电动机外壳的温度。
若手能在外壳上停留而不觉得很烫说明电动机温升正常;若手不能停留,则说明电动机温升过热。
电机绕组温度与温升的国家规定允许标准
电机绕组温度与温升的国家规定允许标准电机绕组温度与温升的国家规定允许标准大家都知道衡量电机发热程度是用“温升”而不是用“温度”来衡量的,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。
下面就一些基本概念给出基本说明。
1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。
所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。
根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。
如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。
所以电机在运行中,温度是影响绕组使用寿命的主要因素之一。
2 温升温升是电机与环境的温度差,是由电机发热引起的。
运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。
这些都会使电机温度升高。
另一方面电机也会散热。
当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。
当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。
但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。
3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。
(1) 当气温下降时,正常电机的温升会稍许减少。
这是因为绕组电阻R下降,铜耗减少。
温度每降1℃,R约降0.4%。
(2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。
这是因为绕组铜损随气温上升而增加。
所以气温变化对大型电机和封闭电机影响较大。
电动机温度不能超过多少度
电动机温度不能超过多少度电机正常运行的温度不宜超过多少度?一般来说,电机机身温度以不超过摄氏80度为好。
当超过该温度时,电机内绕组温度也已经比较高,且肯定会超过80°同时,机身温度也会传输到电机轴伸端,影响电机轴承的润滑等。
电动机温度超过多少会烧坏?一般来说电机绝缘等级如果是A级,环境温度40℃,那么电机的外壳温度应该小于60℃。
电机各部位的温度限度1、与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即A级为60°C,E级为75°C,B级为80°C,F级为100°C,H 级为125℃。
2、滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。
因温度太高会使油质发生变化和破坏油膜。
3、机壳温度实践中往往以不烫手为准。
4、鼠笼转子表面杂散损耗很大,温度较高,一般以不危及邻近绝缘为限。
可预先刷上不可逆变色漆来估计。
电机的温度与温升衡量电机发热程度是用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。
下面就一些基本概念进行讨论。
1、绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃>及180℃以上。
性能参考温度(°C)A80E95B1OOF120H145绝缘材料根据热稳定性可分为如下7个等级:1、Y级,90度,棉花2、A级,105度3、E级,120度4、B级,130度,云母5、F级,155度,环氧树脂6、H级,180度,硅橡胶7、C级,180度以上常用的B级电机,其内部的绝缘材料往往是F级的,而铜线可能使用H级甚至更高的,来提高其质量。
一般为提高使用寿命,往往规定高级绝缘要求,低一级来考核。
比如,常见的F级绝缘的油泵电机,做B级来考核,即其温升不能超过120度(留10度作为余量,以避免工艺不稳定造成个别电机温升超差)。
最新电机绕组温度与温升的国家规定允许标准-精选.pdf
电机绕组温度与温升的国家规定允许标准大家都知道衡量电机发热程度是用“温升”而不是用“温度”来衡量的,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。
下面就一些基本概念给出基本说明。
1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。
所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。
根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。
如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。
所以电机在运行中,温度是影响绕组使用寿命的主要因素之一。
2 温升温升是电机与环境的温度差,是由电机发热引起的。
运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。
这些都会使电机温度升高。
另一方面电机也会散热。
当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。
当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。
但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。
3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。
(1) 当气温下降时,正常电机的温升会稍许减少。
这是因为绕组电阻R下降,铜耗减少。
温度每降1℃,R约降0.4%。
(2) 对自冷电机,环境温度每增10℃,则温升增加 1.5~3℃。
这是因为绕组铜损随气温上升而增加。
所以气温变化对大型电机和封闭电机影响较大。
电机温度与温升的概念 理解及测量与计算
电机温度与温升的概念理解及测量与计算/ 2011年06月13日08:36 中国电机网生意社2011年06月13日讯电机的发热避免不了的想到了发热程度,涉及到电机发热程度的理论认识是:温升,温升限度、绝缘材料、绝缘结构,耐热等级等。
因此,要认识和理解上面几个名词的含义,才能更好地注意和修正电机的发热程序。
1.温升电机温升温升限度(1)某一点的温度与参考(或基准)温度之差称温升。
也可以称某一点温度与参考温度之差。
(2)什么叫电机温升。
电机某部件与周围介质温度之差,称电机该部件的温升。
(3)什么叫电机的温升限度。
电机在额定负载下长期运行达到热稳定状态时,电机各部件温升的允许极限,称温升限度。
电机温升限度,在国家标准GB755-65中作了明确规定,如附表所示。
在电机中一般都采用温升作为衡量电机发热标志,因为电机的功率是与一定温升相对应的。
因此,只有确定了温升限度才能使电机的额定功率获得确切的意义。
2.绝缘材料绝缘结构耐热等级(1)什么叫绝缘材料。
用来使器件在电气上绝缘的材料称绝缘材料。
(2)什么叫绝缘结构。
一种或几种绝缘材料的组合称绝缘结构。
(3)什么叫耐热等级。
表示绝缘结构的最高允许工作温度,并在这样的温度下它能在预定的使用期内维持其性能,在允许的范围内及其所分的等级耐热等级。
耐热等级分为Y级90℃、A级10℃、E级120℃、B级130℃、F级155℃、H级180℃和H级以上共七个等级。
从上所述,电机中不同耐热等级的绝缘材料有着不同的最高允许工作温度。
所谓最高允许工作温度是指:在此温度下长期使用时,绝缘材料的物理、机械、化学和电气性能不发生显著恶性变化,如超过此温度,则绝缘材料的性能发生质变,或引起快速老化。
因此,绝缘材料最高允许工作温度是根据它经济使用寿命确定的。
从附表中可以看到,温升限度基本上取决于绝缘材料的等级,但也和温度的测量方法、被测部的传热和散热条件有关,取决于绝缘材料的最高允许工作温度。
电机的温度与温升
电机的温度与温升是电机工作过程中的一个重要参数,决定着电机的性能和稳定性。
温度和温升直接影响着电机的绝缘系统、冷却系统和电机的寿命。
首先,我们需要了解电机的工作原理和造成温升的因素。
电机的工作原理是将电能转化为机械能,通过电场和磁场的作用产生转矩,驱动负载工作。
在这个过程中,电机会产生一定的热量。
造成电机温升的主要因素有以下几个:1. 电流:电机的电流大小直接影响着温升。
电流越大,电机内部的电阻损耗就越大,产生的热量也就越多,导致温升较大。
2. 负载:电机的负载大小也会影响温升。
负载越大,电机需要提供的功率也就越大,从而产生更多的热量。
3. 散热:电机的散热条件对温升也有很大影响。
如果散热条件不好,电机内部的热量很难及时散发出去,从而导致电机的温度升高。
4. 环境温度:环境温度也会对电机的温升产生一定影响。
如果环境温度已经比较高,电机本身的温度升高会更快。
了解了造成电机温升的因素后,我们可以进一步探讨电机的温度和温升的问题。
电机的温度是指电机工作时的实际温度。
在电机正常工作时,会有一个热平衡状态,即电机内部的热量产生与散发的速度相等,从而使得电机的温度保持在一个相对稳定的范围内。
这个温度通常由电机的绝缘材料和工作条件决定。
电机温升是指电机在工作过程中温度的增加。
温升包括局部温升和整体温升两个方面。
局部温升是指电机不同部分的温升差异,通常是由于电机有些部分对散热不利,或者电机局部产生了更多的热量。
整体温升是指整个电机的温升情况,是电机表面温度和环境温度之间的差值。
电机的温度和温升是电机运行状态的重要指标。
通常,电机的温度过高会导致电机绝缘系统老化加速,绝缘性能下降,可能导致绝缘击穿甚至引发事故。
另外,电机温度过高还会影响电机的磁特性,引起电机的效率下降和损耗增加,降低电机的工作效率和寿命。
为了保证电机的正常运行和提高电机寿命,必须合理控制电机的温度和温升,采取一些措施来降低电机的温度:1. 选择合适的电机:根据负载需求选择电机的额定功率和转速,合理匹配电机与负载。
电机绕组温度与温升的国家规定允许标准[详]
电机绕组温度与温升的国家规定允许标准大家都知道衡量电机发热程度是用“温升”而不是用“温度”来衡量的,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。
下面就一些基本概念给出基本说明。
1 绝缘材料的绝缘等级绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。
所谓绝缘材料的极限工作温度,系指电机在设计预期寿命,运行时绕组绝缘中最热点的温度。
根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。
如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。
所以电机在运行中,温度是影响绕组使用寿命的主要因素之一。
2 温升温升是电机与环境的温度差,是由电机发热引起的。
运行中的电机铁芯处在交变磁场中会产生铁损,绕组通电后会产生铜损,还有其它杂散损耗等。
这些都会使电机温度升高。
另一方面电机也会散热。
当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。
当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。
但这时的温差即温升已比以前增大了,所以说温升是电机设计及运行中的一项重要指标,标志着电机的发热程度,在运行中,如电机温升突然增大,说明电机有故障,或风道阻塞或负荷太重。
3 温升与气温等因素的关系对于正常运行的电机,理论上在额定负荷下其温升应与环境温度的高低无关,但实际上还是受环境温度等因素影响的。
(1) 当气温下降时,正常电机的温升会稍许减少。
这是因为绕组电阻R下降,铜耗减少。
温度每降1℃,R约降0.4%。
(2) 对自冷电机,环境温度每增10℃,则温升增加1.5~3℃。
这是因为绕组铜损随气温上升而增加。
所以气温变化对大型电机和封闭电机影响较大。
电机的温度与温升
电机的温度与温升电机温升是指电机工作时产生的热量使电机温度升高的现象。
电机的温度与温升是电机设计和运行中非常重要的参数,因为电机的温度升高可能会导致电机过热,进而损坏电机工作效率、减少使用寿命甚至引发事故。
一、电机的温度与温升原因电机的温度升高主要由以下几个原因造成:1. 磁场损耗:电机在工作时会产生磁场,而磁场的产生与磁铁和线圈的能量转化有关,一部分电能会转化为磁能,而剩余的一部分电能会转化为热能,使电机温度升高。
2. 电阻损耗:电机在工作过程中,电流通过导线或电绕组时会产生电阻,电阻会使电能转化为热能并发热,从而导致电机温度升高。
3. 摩擦损耗:电机的机械部件(如轴承、齿轮等)在运转时会产生摩擦,摩擦会使机械能转化为热能,从而使电机温度升高。
4. 冷却不良:当电机运行时,若冷却条件不良,无法有效地将热量散发出去,就会导致电机温度升高。
二、电机的温度与温升的影响电机的温度升高会对电机的性能和寿命产生重要影响。
1. 功率损失:电机温度升高会导致功率损失增加,降低电机的工作效率。
一般来说,电机在高温下的效率要低于在低温下的效率。
2. 电绕组的绝缘老化:电机温度升高会使电绕组的绝缘老化加速,导致电机绝缘损坏,增加继电保护动作的可能性,甚至引发火灾。
3. 机械部件的热膨胀:电机温度升高会导致机械部件的热膨胀,增加轴承的摩擦,使轴承磨损加剧,导致电机噪音增加、振动加大。
4. 使用寿命的缩短:过高的温度升高会导致电机的使用寿命缩短。
电机部件在高温下承受的热应力大,容易出现松动、变形等问题,从而缩短电机的寿命。
三、控制电机温度与温升的方法控制电机温度与温升是确保电机正常运行和延长使用寿命的重要措施,可以采取以下措施:1. 选择合适的冷却方法:根据电机的使用环境和功率大小,选择合适的冷却方法,如自然风冷却、强制风冷却、水冷却等方式,提高电机的散热效果。
2. 提高电机的绝缘等级:选择具有较高绝缘等级的电机,提高绝缘材料的耐高温性能,延长电机的使用寿命。
电机的发热与温升课件
测量位置
通常在电机的表面、轴承 和绕组等关键部位进行温 度测量。
电机温升的限制
电动机的安全运行
为了确保电机缘材料损坏或性
能下降。
绝缘材料耐热等级
电机的绝缘材料有一定的耐热 等级,温升应不超过该等级规 定的最高限值。
寿命影响
温升过高会加速电机的老化过 程,影响电机的使用寿命。
异步电机的新发展
节能环保
异步电机采用高效能的设计和材料,能够降低能耗和减少对环境 的影响。
可靠性高
异步电机结构简单、维护方便,具有较高的可靠性。
应用广泛
异步电机适用于各种不同的应用场景,如工业自动化、家用电器等 。
06
案例分析
案例一:某型号电机的温升问题分析
总结词:电机过热
详细描述:某型号电机在长时间运行后出现异常温升,经检测发现是电机内部线圈绝缘层老 化导致。
铁芯损耗
磁场的交变引发铁芯的磁滞和 涡流现象,产生铁芯损耗并转
化为热量。
机械损失
轴承摩擦、通风摩擦等机械损 失也会转化为热量。
负载变化
电机负载的变化会影响发热量 ,负载增加时发热量相应增加
。
温升的定义与测量
01
02
03
温升
电机温度与周围环境温度 之差。
测量方法
采用温度传感器(如热电 偶、红外测温仪)测量电 机表面温度,并与环境温 度进行比较。
常情况并进行处理。
定期对电机进行维护和保养,如 清理灰尘、更换润滑油等,可以 保持电机的良好运行状态,降低
温升。
05
新型电机技术及其发展
永磁同步电机
高效能
永磁同步电机采用高性能的永磁 材料,具有较高的转矩密度和效
电机温升原因及解决方法详解
电机温升原因及解决方法详解什么是电机温升?电机由常温(其各部分温度与环境温度相同)开始运行,温度不断升高,当其高出环境温度后,一方面继续吸收热量缓慢升温。
另一方面开始向周围散发热量。
当电机处于热量平衡装态,温度不再升高时,电机的温度与环境温度之差称之为电机温升。
既:温升=电机温度-环境温度; 用K为单位。
此外,电机中绝缘材料的寿命与运行温度有密切的关系,为确保电机的安全、合理使用,需要监视与测量电机的绕组、铁芯等其他部分的温度;按照国家标准规定,不同的绝缘等级的电机绕组有不同的允许温升,如下表所示:若超过规定值,如E级绝缘的电机,温升每增加5℃,电机的寿命将降低一半。
因此电机的温度温升试验对改进电机的设计和制造工艺有着重大的影响,同时对提高电机的品质起到决定性的作用。
电机的温度温升该怎么测试呢?常用的有三种方法,电阻法、温度计法、埋置检温计法。
电机温升原因1.电气原因电源的质量,电压是否太高或太低,三相电压是否平衡(原则上不能超过额定值的5%),是否缺相。
电力电源线和开关的触点是否松动。
如有必要,可以将交流电压表并联在电动机端子上,以进行运行监视,以查看电压是否为水平。
稳定性好,是否有起伏,跳动现象,进而是发现电机故障的原因。
2.电机本身的原因。
检查电机冷却风扇是否正常,风扇叶片是否损坏,风扇叶片与轴之间的键或顶线是否松散,丢失。
风扇盖是否关闭或损坏。
电机是否有异常声音:有必要检查电机定子和转子是否有划痕,轴承是否损坏以及润滑剂是否干燥。
另一个罕见的故障是鼠笼式异步电动机的转子是否有裂纹。
3.使用和环境因素。
首先确定电机是否过载,驱动的设备是否异常,操作是否违反规定。
在北方的冬天,如果环境温度太低,很容易由于润滑油凝结而造成过载!环境温度是否过高,对于在温暖环境中使用的设备,请务必检查电动机的温度。
对于常温环境下的电动机,请注意:电动机的通风散热条件是否良好,恶化。
例如:杂物阻塞风扇的进气口,电动机上的大量灰尘或内部绕组.......所有这些都可能导致电机过热高。
关于电动机温升问题的技术说明要点
关于电动机温升问题的技术说明要点一、说到电动机的有关温升问题,首先解释一下有关电动机的绝缘等级、允许温升和性能参考温度等名词术语。
1、电动机的绝缘等级是指其所用绝缘材料的耐热等级,从低到高常见的分A、E、B、F、H 级。
绕组温升限值(允许温升)是指电动机的温度与周围环境温度相比升高的限度。
2、性能参考温度,是指在此最高温度下,对应绝缘级别能有效保证电机可靠运行,不置影响电机性能。
3、最高允许工作温度(极限工作温度)是指电机在设计预期寿命内运行时,绕组绝缘材料允许最高点的工作温度。
如果运行温度超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。
其对应经验值关系如下表:(因内部绕组绝缘材料无法准确测量,存在测量误差,实际说明:衡量电机发热程度是用“温升”而不是用“温度”,其单位为K(开尔文),K是一个变量的单位,而℃是一个常量的单位。
二、造成电动机温升过高的原因是多方面的,电源、电动机本身、负载以及工作环境和通风散热情况都会导致电动机过热。
主要原因归纳如下:1.电源质量(1)电源电压高于规定范围(+10%),使铁芯磁通密度过大,铁耗增加而过热;也使励磁电流加大,导致绕组温升增高。
(2)电源电压过低(-5%),在负载不变情况下,三相绕组电流增大而过热。
(3)三相电源缺相,电动机缺相运行而过热。
(4)三相电压不平衡超过规定(5%),从而引起三相电源不平衡,电机额外发热。
(5)电源频率过低,导致电机转速降低,出力不足,但负载不变,绕组电流增加,电动机过热。
2.电动机本身(1)误将Δ形接成丫形或丫形接成Δ形,电机绕组过热。
(2)绕组相间、匝间短路或接地,导致绕组电流增大,三相电流不平衡。
(3)绕组并联支路中某些支路断线,造成三相电流不平衡,未断线支路绕组过载发热。
(4)定、转子相擦发热。
(5)鼠笼转子导条断裂,或绕线型转子绕组断线。
电机出力不足而发热。
(6)电机轴承过热。
3.负载(1)电动机长期过载。
(2)电动机起动过于频繁,起动时间过长。
电机的温度与温升
电机的温度与温升电机是一种将电能转换成机械能的装置,在工业和家用电器中被广泛使用。
然而,在电机工作过程中,会产生大量的热量。
这些热量会导致电机温度升高,而温度的升高又会对电机的性能和寿命产生一定的影响。
因此,电机的温度与温升是电机设计和运行中非常重要的参数。
一、电机温度与温升的原因:电机的温度升高是由以下几个因素引起的:1. 电阻损耗:电机的骨架和线圈会有一定的电阻,当通过电流时,会由于电流通过导致电阻产生的热量,这部分热量会导致电机温度升高。
2. 铁心损耗:电机中的铁芯在工作过程中,会因为铁磁材料的磁化和消磁而产生磁滞损耗和涡流损耗。
这些损耗都会以热量的形式产生,导致电机温度升高。
3. 机械摩擦和空气阻力:电机在运行过程中,由于轴承的旋转摩擦和风扇的运转,都会产生一定的摩擦力和阻力,使得电机温度升高。
4. 轴向热传导:电机支撑结构和机壳都会对电机的温升产生一定的影响,因为这些部件会通过热传导的方式将电机内部产生的热量传递到外界环境,使得电机温度升高。
以上几个因素都会对电机的温度产生影响,因此在电机设计和运行过程中,需要考虑如何有效地降低电机的温升。
二、电机温度与温升的影响因素:电机的温度升高对电机的性能和寿命都有一定的影响,以下是电机温度与温升的几个主要影响因素:1.电机绝缘性能:电机温度升高会使得绝缘材料的性能下降,绝缘材料的介电强度和耐热性都会受到影响。
当电机温度过高时,可能会导致绝缘材料的击穿或老化,从而造成电机故障。
2. 功率输出:由于电机内部损耗和热量产生,电机的温度升高会导致电机的效率下降,从而使得功率输出也会受到影响。
3. 寿命:电机的温度升高会加速电机零部件的老化和劣化,从而降低电机的寿命。
4. 运行可靠性:电机的温度升高会导致电机在运行过程中出现故障的概率增加,因此温度升高也会影响电机的运行可靠性。
以上几个因素都说明了电机的温度与温升对电机性能和寿命的重要影响,因此在电机设计和运行过程中,需要合理地控制电机的温度升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动机的温度与温升
一到夏季,电工们为电动机过热而烦恼。
但大家都知道衡量电动机发热程度是用“温升”而不是用“温度” 。
一些初学者为此在实践中提出了各种问题。
例如一台A 级绝缘的电动机,温升限度为50℃,那么:
1、当气温为15℃而绕组温度为80℃时,电动机能否继续运行?一种回答是,当然行:理由是:虽然温升超过了50℃达65℃,但绕组温度并未超过A 组绝缘的最高允许工作温度90℃。
而另一种回答是不行,因为温升超过了。
2、当气温为45℃(如夏季露天或高温车间)而电动机绕组温度为95℃ 时。
电动机能否继续运行?同样有两种意见:一说不行,而另一说可以。
后者理由是铭牌上不是说温升限度为50℃ 吗?并未超过此值。
类似上述问题的产生都是由于对温升、温度、绝缘的耐热及发热与散热的平衡等没有明确的概念所致。
一、绝缘材料的耐热等级
绝缘材料按耐热能力分为Y、A、E、B、F、H、C 7 个等级,其极限工作温度分别为90、105、120 、130、155、180、及180℃以上。
所谓绝缘材料的极限工作温度,系指电动机在设计预期寿命内,运行时绕组绝缘中最热点的温度。
根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10 年,但在实际情况下环境温度和温升均不会长期达设计
值,因此一般寿命在15~20 年。
如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命严重缩短。
所以电动机在运行中,温度是寿命的主要因素之一。
二、温升温升是电动机与环境的温度差,是由电动机发热引起的。
运行中的电动机铁心处在交变磁场中会产生铁损。
绕组通电后会产生铜损。
还有其他杂散损耗等。
这些都会使电动机温度升高。
另一方面电动机也会散热,当发热与散热相等时即达到平衡状态,温度不再上升而稳定在一个水平上。
当发热增加或散热减少时就会破坏平衡,使温度继续上升,扩大温差,则增加散热,在另一个较高的温度下达到新的平衡。
但这时的温差即温升已比前增大了。
所以说温升是电动机设计及运行中的一项重要指标,标志着电动机的发热程度。
在运行中,如电动机温升突然增大,说明电动机有故障,风道阻塞或负荷太重。
三、温升与气温等因素的关系
由于各地各时的环境温度不相同,因此必须规定标准的环境温度。
我国早期设计的电动机均采用35℃,而从1965 年后设计的J2、JO2和Y 系列电动机则用40℃。
对于正常运行的电动机,在额定负荷下其温升应与环境温度的高低无关,且当环境温度低于40℃(或35℃)时,其运行温升也不允许超出铭牌额定值。
如一台正在运行的A 级绝缘电动机,当环境温度降到10℃时,并不意味着温升允许扩大到80℃。
有人认为只要绕组温度不超过规定的90℃即可。
这不全对,如负荷未增加,而温升达到
80℃,这说明电动机本身出了故障。
那么,额定负载下运行的电动机温
升是否与气温等因素毫无关系呢:不! 是稍有影响的。
1、气温下降时,正常电动机的温升会稍许减少。
这是因为绕组电阻R下降,铜耗减少。
温度每降1℃,R约降0.4%。
2、自冷电动机的环境温度每增10℃,则温升增1.5 ~3℃。
这是因为绕组铜损随气温上升而增加。
气温变化对大型电动机和封闭电动机影响较大。
3、空气湿度升高10%,因导热改善,温升可降0.07 ~0.38 ℃,平均为0,19 ℃。
4、海拔以1000m为标准,每升100m,温升增加温升极限值的1%。
四、极限工作温度与最高工作温度细心人会看出矛盾:为什么一会儿说A 级的极限工作温度为105℃,一会儿又说A 级的最高允许工作温度是90℃呢?这与测量方法有关。
不同的测量方法,其反映出的数值不同,含义也不一样。
1、温度计法其测结果反映的是绕组绝缘的局部表面温度。
这个数字平均比绕组绝缘的实际最高温度即“最热点”低15℃左右。
该法最简单,在中、小电动机现场应用最广。
对低电阻绕组,此法比电阻法准确。
由于水银温度计在交变磁场中会因涡流损耗发热,故在交流电动机中使用酒精温度计。
2、电阻法其测量结果反映的是整个绕组铜线温度的平均值。
该数比实际最高温度按不同的绝缘等级降低5~15℃。
该法是测出导体的冷态及热态电阻,按有关公式算出平均温升。
3、埋置检测温度计试验时将铜或铂电阻温度计或热电偶埋置在绕组、铁
心或其他需要测量预期温度最高的部件里。
其测量结果反映出测温元件接触处的温度。
大型电动机常采用此法来监视电动机的运行温度。
在100~200℃范围内铜或铂电阻温度计较准确,而热电偶不常用。
另外,封闭扇冷式电动机用电阻法测得的温度比温度计法测得的高0~15%;防护式高10%~2 0%。
而电阻法与预埋铜电阻检温计相差± 5%。
综上所述,各种测量方法所测量到的温度与实际最高温度都有差值,不能真正反映出绝缘材料的实际最高温度,因此需将绝缘材料的“极限工作温度”减去此差值才是“最高允许工作温度” 。
五、电动机各部位的温度限度
1、与绕组级接触的铁心温升(度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即A级为60℃,E级为75℃,B级为80℃,F 级为100℃,H 级为125℃。
对于封闭式电动机,温度计可插入机座的吊环螺孔与铁心接解。
2、滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80。
因温度太高会使油质发生变化和破坏油膜。
温度计应插近滚珠轴承外圈或滑动轴承下轴瓦。
如测轴承盖温度,其值比外圈低15%~25%。
如测油池上层油温,其值比轴瓦低15℃。
3、机壳温度实践中往往以不烫手为准。
4、鼠笼转子表面杂散损耗很大,温度较高,一般以不危及邻近绝缘
为限。
可预先刷上不可逆变色漆来估计。
六、故障的排除当发生下列任一种情况时,说明电动机有故障:1、温度超过最高工作温度。
2、温升超过规定或温升虽然未超过规定,但在低负荷时温升突然增大。
这两类故障的判断和排除方法是:1、在额定负荷下温升未超过温升限度,仅由于环境温度超过40℃而使电动机温度超过最大允许工作温度。
这种现象说明电动机本身是正常的。
解决的办法是用人工方法使环境温度下降,如办不到,则必须减负荷运行。
2、在额定负载下温升超出铭牌规定。
不管什么情况,均属有故障,必须停机检查,特别对温升突然变大更要注意。
其外部原因有:电网电压太低或线路压降太大(超过10%),负载太重(超过10%),电动机与机械配合不当;内部原因有;单相运行、匝间短路、相间短路、定子接地、风扇损坏或未紧固、风道阻塞、轴承损坏,定转子相擦、电动机与电缆接头发热(特别是铜铝或铝铝连接)、电动机受腐蚀或受潮等。
此外,从理论上讲电动机均可正反转,但有些电动机的风扇有方向性,如反了,温升会超出许多。
总之,必须针对各种具体情况,排除故障。