吉林省长春市双阳区八年级数学上册 第13章 全等三角形复习题(3、4)华东师大版
八年级数学上册第13章全等三角形单元综合测试含解析华东师大版
第13章全等三角形一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH 其中,正确的结论有()A.1个B.2个C.3个D.4个2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F 分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF=.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.7.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的序号).三、解答题8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D 作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.9.如图,∠1=∠2,∠3=∠4,求证:AC=AD.10.如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.11.如图,△ABC和△EFD分别在线段AE的两侧,点C,D在线段AE上,AC=DE,AB∥EF,AB=EF.求证:BC=FD.12.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE ⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.13.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.14.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.15.如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.16.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N 分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.17.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.18.我们把两组邻边相等的四边形叫做“筝形".如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.第13章全等三角形参考答案与试题解析一、选择题1.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【专题】压轴题.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【解答】解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【点评】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.2.如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正确的个数是()A.1 B.2 C.3 D.4【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan∠ABE=tan ∠EAG=,得到AG=BG,GE=AG,于是得到BG=4EG,故②正确;根据AD∥BC,求出S△BDE=S△CDE,推出S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确;【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,在△BAE和△CDE中∵,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,∵在△ADH和△CDH中,,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故①正确;∵tan∠ABE=tan∠EAG=,∴AG=BG,GE=AG,∴BG=4EG,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角.二、填空题3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3.【考点】全等三角形的判定与性质.【分析】由已知条件易证△ABE≌△ACD,再根据全等三角形的性质得出结论.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.【点评】本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.4.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F 分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF 时,AE+AF=.【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故答案为:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.5.如图,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是90°.【考点】全等三角形的判定与性质;正方形的性质.【专题】压轴题.【分析】根据全等三角形的判定与性质,可得∠ODA与∠BAE的关系,根据余角的性质,可得∠ODA与∠OAD的关系,根据直角三角形的判定,可得答案.【解答】解:由ABCD是正方形,得AD=AB,∠DAB=∠B=90°.在△ABE和△DAF中,∴△ABE≌△DAF,∴∠BAE=∠ADF.∵∠BAE+∠EAD=90°,∴∠OAD+∠ADO=90°,∴∠AOD=90°,故答案为:90°.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,余角的性质,直角三角形的判定.6.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=4cm.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22。
华师大版八年级上册数学第13章 全等三角形含答案(全优)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=∠90°2、如图,在中,的平分线与的外角平分线交于点,连接,则的值是()A.1B.C.D.3、如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD 的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是( )A.2B.2C.D.44、如图所示,在四边形ABCD中,,AC=1,,直线MN为线段AD的垂直平分线,P为MN上的一个动点,则PC+PD的最小值为()A.1B.C.D.35、已知实数满足,则以的值为两边的等腰三角形的周长是()A.10B.8或10C.8D.以上都不对6、在下列各组条件中,不能说明的是()A.AB=DE,∠B=∠E,∠C=∠FB.AB=DE,∠A=∠D,∠B=∠E C.AC=DF,BC=EF,∠A=∠D D.AB=DE,BC=EF,AC=ED7、如图,⊙O的半径为2,点A的坐标为(2,2 ),直线AB为⊙O的切线,B 为切点,则B点的坐标为()A.(- )B.(- ,1)C.(- )D.(-1, )8、已知等腰三角形的周长为17 cm,其中一边长为5cm,则该等腰三角形的底边长为()A.6 cm或5cmB.7cm或5cmC.5cmD.7 cm9、如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A. AC=ADB. AB⊥ EBC. BC=DED.∠ A=∠ EBC10、下列结论不正确的是()A.两个锐角对应相等的两个直角三角形全等B.一锐角和斜边对应相等的两个直角三角形角形全等C.一直角边和一锐角对应相等的两个直角三角形全等D.两条直角边对应相等的两个直角三角形全等11、如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A.D是BC中点B.AD平分∠BACC.AB=2BDD.∠B=∠C12、如图,点D、E分别是AB、AC上的点,BE交CD于点O,BO=CO,DO=EO,AB=AC,AD=AE则图中有___________对全等三角形( )A.2对B.3对C.4对D.5对13、如图,在Rt△ABC中,∠B=90°,BC=3,AB=4,点D,E分别是AB,AC 的中点,CF平分Rt△ABC的一个外角∠ACM,交DE的延长线于点F,则DF的长为()A.4B.5C.5.5D.614、如图,在□ABCD中,O是AC,BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长20厘米,则△CDE的周长为()A.6厘米B.8厘米C.10厘米D.12厘米15、如图,已知△ABC ,∠ABC=2∠C ,以B为圆心任意长为半径作弧,交BA、BC于点E、F ,分别以E、F为圆心,以大于EF的长为半径作弧,两弧交于点P ,作射线BP交AC于点,则下列说法不正确的是()A.∠ ADB=∠ ABCB. AB= BDC. AC= AD+ BDD.∠ ABD=∠ BCD二、填空题(共10题,共计30分)16、已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△A BC的边BC 的延长线于点E,那么线段DE的长等于________ .17、如图所示,线段AB与直线a所夹锐角为30°,AB=,在直线a上有一动点C,当△ABC为等腰三角形时,则线段AC的长________ 。
华师大版八年级上册数学第13章 全等三角形含答案(必刷题)
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、对于下列各组条件,不能判定的一组是()A. ∠A=∠A′,∠B=∠B′,AB=A′B′B. ∠A=∠A′,AB=A′B′,AC=A′C′C. ∠A=∠A′,AB=A′B′,BC=B′C′ D. AB=A′B′,AC=A′C′,BC=B′C′2、如图,OP平分∠BOA,∠BOA=45°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4B.2C.2D.23、下列命题中,真命题的个数有()①如果直线a∥b,b∥c,那么a∥c;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④比正实数小的一定是负实数;⑤两条直线平行,同旁内角相等;⑥立方根等于它本身的数是﹣1,0,1.A.1个B.2个C.3个D.4个4、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.5、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S=7,DE=2,△ABCAB=4,则AC长是()A.3B.4C.6D.56、如图,桌面上竖直放置一等腰直角三角板ABC,若测得斜边AB在桌面上的投影DE为8cm,且点B距离桌面的高度为3cm,则点A距离桌面的高度为()A.6.5cmB.5cmC.9.5cmD.11cm7、下列四个命题:①对角线互相垂直的平行四边形是正方形;②,则m≥1;③过弦的中点的直线必经过圆心;④圆的切线垂直于经过切点的半径;⑤圆的两条平行弦所夹的弧相等;其中正确的命题有()个.A.1B.2C.3D.48、如图所示,在△ABC中,∠BAC=130°,AB的垂直平分线ME交BC于点M,交AB于点E,AC的垂直平分线NF交BC于点N,交AC于点F,则∠MAN为()A.80°B.70°C.60°D.50°9、如图,在四边形ABCD中,∠A=90°,AD=4,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.10B.12C.20D.无法确定10、如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是()A.7B.8C.9D.1011、如图,OD平分∠AOB,DE⊥AO于点E,DE=4,点F是射线OB上的任意一点,则DF的长度不可能是()A.3B.4C.5D.612、如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0B.C.D.113、用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°14、下列命题中,是真命题的是()A.长度相等的两条弧是等弧B.顺次连结平行四边形四边中点所组成的图形是菱形C.正八边形既是轴对称图形又是中心对称图形D.三角形的内心到这个三角形三个顶点的距离相等15、如图,已知,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. B. C. D.二、填空题(共10题,共计30分)16、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)17、如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,若DN=1,BM=2,那么MN=________.证明:DN2+BM2=MN2.18、如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=________.19、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=60° ,AB=16cm,则∠C′=________ °,A′B′=________cm.20、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1, S2,S 3, S4,则S1+S2+S3+S4=________.21、已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=________22、如图,线段AC与BD交于点O,且OA=OC, 请添加一个条件,使△OAB△OCD,这个条件是________.23、如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是________.24、如图,两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ________度。
华师大版八年级上册数学第13章 全等三角形 含答案
华师大版八年级上册数学第13章全等三角形含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD中,点P在AC上,PE⊥AB,PF⊥BC,垂足分别为E、F,EF=3,则PD的长为()A.1.5B.2C.2.5D.32、下列各图中a、b、c为△ABC的边长,根据图中标注数据,判断甲、乙、丙、丁四个三角形和如图△ABC不一定全等的是()A. B. C. D.3、如图,已知与的角平分线相交于点,若,设,则的度数是()A. B. C. D.4、下列说法正确的是( )A. 表示的积B.任何有理数的偶次方都是正数C.一个数的平方是,这个数一定是D. 与互为相反数5、用一条长为16cm的细绳围成一个等腰三角形,若其中有一边的长为4cm,则该等腰三角形的腰长为()A.4cmB.6cmC.4cm或6cmD.4cm或8cm6、如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF 是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④7、△ABC是一个任意三角形,用直尺和圆规作出∠A,∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.点O到△ABC的三边距离一定相等C.∠C的平分线一定经过点OD.点O到△ABC三顶点的距离一定相等8、下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法 B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100 C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62 D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖9、工人师傅常用角尺平分任意角,做法如下:如图,∠AOB是一个任意角,在OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点P的射线OP便是∠AOB的平分线,师傅这么做的依据是( )A.SASB.SSSC.角平分线逆定理D.AAS10、如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°11、在下列各式:①a-b=b-a ;②(a-b)2=(b-a)2;③(a-b)2=-(b-a)2;④(a-b)3=(b-a)3;⑤(a+b)(a-b)=(-a-b)(-a+b) 中,正确的有()A.1个B.2个C.3个D.4个12、若∠AOB=90º,∠BOC=40º,则∠AOB的平分线与∠BOC 的平分线的夹角等于()A.65ºB.25ºC.65º或25ºD.60º或20º13、用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.(SAS)B.(SSS)C.(AAS)D.(A SA)14、如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于AB长为半径作弧,两弧分别交于M,N两点,过M,N两点的直线交AC于点E,若AC=8,BC=6,则AE的长为()A.2B.3C.D.15、如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.16二、填空题(共10题,共计30分)16、如图,等边中,,点D、点E分别在和上,且,连接、交于点F,则的最小值为________.17、等腰三角形一腰上的高与另一腰的夹角为40°,则等腰三角形顶角的度数是________18、如图,中,平分,,,若的面积等于3,则的面积为________.19、如图,将等腰Rt△GAE绕点A顺时针旋转60°得到△DAB,其中∠GAE=∠DAB=90°,GE与AD交于点M,过点D作DC∥AB交AE于点C.已知AF平分∠GAM,EH⊥AE交DC于点H,连接FH交DM于点N,若AC=2 ,则MN的值为________.20、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,从三角板的刻度可知AB=20cm,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________cm.21、如图,CD是线段AB的垂直平分线,若AC=2cm,BD=4cm,则四边形ACBD的周长是________cm.22、如图,已知,请你添加一个条件,使得,你添加的条件是________.(不添加任何字母和辅助线)23、如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=________.24、如果等腰三角形的有一个角是80°,那么顶角是________度.25、如图,上午8时,一条船从A处测得灯塔C在北偏西30°,以15海里/时的速度向正北航行,9时30分到达B处,测得灯塔C在北偏西60°,那么当船继续航行,________时________分测得灯塔C在正西方向.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?28、阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如图:请你回答:(1)作图第一步为什么要大于AB的长?(2)小芸的作图是否正确?请说明理由.29、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.30、如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、D5、B6、C7、D8、A9、B10、B11、B12、C13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
吉林省长春市双阳区八年级数学上册 第13章 全等三角形复习题(3、4)(新版)华东师大版
1 / 2
全等三角形
一.填空题:
1. 判定两个三角形全等的方法有 , , 和 ; 2判定两个三角形全等的目的是 ;
3.如图:(1)AD=AE, ∠1=∠2, BD=CE, 则有△ABD ≌△ ,理由是 ;
4.如图:(2)△ABC 和△DEF 中,如果AB=DE, BC=EF, 只需找出∠ =∠ ,就可以得出△ABC ≌△DEF.
二.选择题:
1.如图:(3)AB=AC, ∠1=∠2,则∠的根据是( );
(A )SSA (B)SAS (C) AAS (D)ASA.
2.如图:(4)AC 是∠BAD 的平分线,CA 是∠BCD 的平分线,则判定△ABC ≌△ADC 的根据是( ).
(A )AAA (B)SAS (C) SSS (D)ASA 或AAS.
(1) (2) (3)
(4) 全等三角形期复习(4)
证明题:
1.如图:OA=OD, OB=OC,求证:△ABO ≌△DCO.
E D B A
F E D C B A 2
1C
D B A
D C
B A
O C D B
A
2 / 2
2.如图:点D 在AB 上,点E 在AC 上, AB=AC, AD=AE, 求证:∠B=∠C.
(本资料素材和资料部分来自网络,供参考。
请预览后才下载,期待您的好评与关注!)
O
E D C
B A。
吉林省长春市双阳区八年级数学上册 第13章 全等三角形复习题(7、8)(无答案)(新版)华东师大版
全等三角形 一. 知识回顾:
1. 同底数幂相乘,底数 ,指数 ;
2.计算
22333232⨯+⨯; 3.
4.分解因式:
(1) xy x 1263+; (2)b x 8222-; (3)xy y x x 181224223+-; 二新知识巩固:(不写作法,保留作图痕迹)
1.已知,线段a.
2.已知,∠1和∠2.
求作:线段AB=2a.
求
作:∠AOB=∠1-∠2.
1.已知,线段a 和b.
求作:线段AB=b-2a.
全等三角形期复习
一.知识回顾: 1.请你把命题“对顶角相等”改写成“如果--------,那么--------”的形式是 a 21b
a
2 ,
2.请你把1题中改写后的命题的逆命题写出来: ;
3.线段的垂直平分线上的点到这条线段的两个端点的距离 .
4.和一条线段的两个端点的 的点在这条线的垂直平分线上. 二解答题:
1. 如图,已知,BC=4,BD=2,AB=5,
AD ⊥BC,求AC 的长. 2.如图.在△ABC 中,已知点D 在BC 上,且BD+AD=BC. 求证:点D 在BC 的垂直平分线上
D C
B A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选
全等三角形
一.填空题:
1. 判定两个三角形全等的方法有 , , 和 ; 2判定两个三角形全等的目的是 ;
3.如图:(1)AD=AE, ∠1=∠2, BD=CE, 则有△ABD ≌△ ,理由是 ;
4.如图:(2)△ABC 和△DEF 中,如果AB=DE, BC=EF, 只需找出∠ =∠ ,就可以得出△ABC ≌△DEF.
二.选择题:
1.如图:(3)AB=AC, ∠1=∠2,则∠的根据是( );
(A )SSA (B)SAS (C) AAS (D)ASA.
2.如图:(4)AC 是∠BAD 的平分线,CA 是∠BCD 的平分线,则判定△ABC ≌△A DC 的根据是( ).
(A )AAA (B)SAS (C) SSS (D)ASA 或AAS.
(1) (2) (3)
(4)
全等三角形期复习(4)
证明题:
1.如图:OA=OD, OB=OC,求证:△ABO ≌△DCO.
21
E D B A
F E D C B A 2
1C
D B A
D C
B A
O C D
B
A
精选
2.如图:点D 在AB 上,点E 在AC 上, AB=AC, AD=AE, 求证:∠B=∠C.
如有侵权请联系告知删除,感谢你们的配合! 如有侵权请联系告知删除,感谢你们的配合!
O
E
D C B A。