第九章 欧氏空间
高教线性代数第九章 欧氏空间课后习题答案
第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, nR 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j iij y x a,),(αααα,由于A 是正定矩阵,因此∑ji j iij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,,(,)ij i ji ja x xααα==∑,,(,)iji ji jay y βββ==∑,故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
第九章 欧氏空间与线性变换
(/ A α , / A β ) = (α , β ).
(c)/A保持长度不变 即对 的任意元 α 有 保持长度不变,即对 保持长度不变 即对V的任意元
(/ A α , / A α ) = (α , β )
(d) )/A把一组标准正交基变为一组标准正交基 把一组标准正交基变为一组标准正交基. 把一组标准正交基变为一组标准正交基 (e) )/A在一组标准正交基下的矩阵是正交矩阵 在一组标准正交基下的矩阵是正交矩阵. 在一组标准正交基下的矩阵是正交矩阵 (2)欧氏空间的一个变换 若它保持内积不变 则它 欧氏空间的一个变换,若它保持内积不变 欧氏空间的一个变换 若它保持内积不变,则它 是正交变换. 是正交变换 (3)正交变换的逆和积是正交变换 正交变换的逆和积是正交变换. 正交变换的逆和积是正交变换 (4)/A的特征根的模等于 的特征根的模等于1. 的特征根的模等于 3.对称变换 对称变换 (1)欧氏空间 的线性变换 是对称变换当且仅当 欧氏空间V的线性变换 欧氏空间 的线性变换/A是对称变换当且仅当 对任意的 α , β ∈ V 有 (/ A α , β ) = (α , / A β ) ,当且仅当 当且仅当 在一组标准正交基下的矩阵为对称矩阵. 在一组标准正交基下的矩阵为对称矩阵
(1)设线性变换 在一组标准正交基下的矩阵为 设线性变换/A在一组标准正交基下的矩阵为 设线性变换 在一组标准正交基下的矩阵为A, 则/A的共轭变换在这组基下的矩阵为 A / . 的共轭变换在这组基下的矩阵为 (2)共轭变换满足 *)*=/A,(/A+/B)*=/A*+/B*, 共轭变换满足(/A 共轭变换满足 (/A/B)*=/B*/A*,(k/A)*= k /A*. (3)设酉空间 的子空间 是线性变换 的不变子 设酉空间V的子空间 是线性变换/A的不变子 设酉空间 的子空间W是线性变换 空间,则 的正交补 的正交补W 的不变子空间. 空间 则W的正交补 ⊥是/A*的不变子空间 (4)若/AX= λ X,则/A*X= 若 则 (5)若线性变换 特征根为 λ1 , λ 2 , L , λ n ,则/A* 若线性变换/A特征根为 若线性变换 则 的特征根为 λ , λ , L , λ .
高等代数课件(北大版)第九章-欧式空间§9
中向量 Y 使 B 到它的距离 ( Y B ) 比到
L (1 ,2 , ,s)中其它向量的距离都短.
§9.7 向量到子空间的距离 数学与计算科学学院
设 C B Y B A X ,
为此必 C L (1 ,2 , ,s )
这等价于 ( C , 1 ) ( C , 2 ) ( C , s ) 0 , (4)
第九章 欧氏空间
§1 定义与基本性质 §2 标准正交基 §3 同构 §4 正交变换 §5 子空间
§6 对称矩阵的标准形 §7 向量到子空间的
距离─最小二乘法 §8酉空间介绍 小结与习题
2024/10/23
数学与计算科学学院
§9.7 向量到子空间的距离
一、向量到子空间的距离 二、最小二乘法
§9.7 向量到子空间的距离 数学与计算科学学院
§9.7 向量到子空间的距离 数学与计算科学学院
即为
1 0 6 . 7 5 a 2 7 . 3 b 1 9 . 6 7 5 0 2 7 . 3 a 7 b 5 . 1 2 0 解得 a 1 .0 5 , b 4 .8 1(取三位有效数字).
§9.7 向量到子空间的距离 数学与计算科学学院
可能无解, 即任意 x1,x2, ,xn都可能使
n
ai1x1ai2x2 ainxnbi 2
i 1
不等于零.
(2)
§9.7 向量到子空间的距离 数学与计算科学学院
设法找实数组 x10,x02,
,x0 使(2)最小, n
这样的 x10,x02,
,x0 为方程组(1)的最小二乘解, n
此问题叫最小二乘法问题.
最小二乘法的表示:
设
n
n
高等代数考研复习[欧氏空间]
即 ( , ) 0, 则称 与 正交,记为 .
非零向量组 1, 2 , , n如果满足 (i , j ) 0,(i j).
实数
称为向量 的长度,记为 0
1的向量称为单位向量.如果 长度为
则
称为
的单位化向量.长度有以下性质:
a) | | 0 当且仅当 0 时取等号; b) | k | k | |; c)
| || | | | .
夹角:欧氏空间V中向量 , 的夹角 , 定
(1 ,1 ) (1 , 2 ) ( , ) ( , ) 2 2 2 1 ( m ,1 ) ( m , 2 ) (1 , m ) ( 2 , m ) ( m , m )
则称 1, 2 , , n 是正交向量组. a)正交向量组一定是线性无关的; b) 若1, 2 , , n 是正交组,则
| 1 2 n || 1 | | 2 | | n | .
2 2 2 | | | | | | . c) 如果 , 则
为基 1, 2 , , n 的度量矩阵.
2) 度量矩阵的性质
a) 设 , 在n维欧氏空间V的基 1, 2 , , n 下的 坐标分别为 X ( x1, x2 , , xn ), Y ( y1, y2 , , yn ), 则 ( , ) X AY , 其中A是基 1, 2 , , n 的度量矩 阵.特别当 1, 2 , , n 是标准正交基时,A=E,则
高等代数考研复习
第九章 欧氏空间
图形学欧氏空间具体概念
(α , β ) ≤ α β
三、欧氏空间中向量的夹角(续) 欧氏空间中向量的夹角(
〈α , β 〉 = arc cos (α , β )
α β
( 0 ≤ 〈α , β 〉 ≤ π )
(α , β ) = 0
定义: 为欧氏空间中两个向量, 定义:设 α、β为欧氏空间中两个向量,若内积
正交或互相垂直, 则称 α 与 β 正交或互相垂直,记作 α ⊥ β . 注: ① 零向量与任意向量正交 零向量与任意向量正交.
3) 非零向量 α 的单位化: α α . 的单位化:
1
三、欧氏空间中向量的夹角
1. 柯西-布涅柯夫斯基不等式 柯西- 对欧氏空间V中任意两个向量 α、β 对欧氏空间V
线性相关时等号成立. 当且仅当 α、β 线性相关时等号成立. 2. 欧氏空间中两非零向量的夹角 定义: 为欧氏空间, 中任意两非零向量, 夹角定义为 α 定义: 设V为欧氏空间, 、β 为V中任意两非零向量,α、β 的夹角定义为 ,有
π α ⊥ β ⇔ 〈α , β 〉 = 即 cos〈α , β 〉 .= 0 , ② 2
3. 勾股定理 为欧氏空间, 设V为欧氏空间,∀α , β ∈ V , α ⊥ β ⇔ α + β 2 = α 2 + β 为欧氏空间 推广:若欧氏空间V中向量 两两正交, 推广:若欧氏空间 中向量 α 1 ,α 2 ,⋯ ,α m 两两正交, 即 (α i ,α j ) = 0, i ≠ j , i , j = 1, 2,⋯ , m 2 2 2 2 α1 + α 2 + ⋯ + α m = α1 + α 2 + ⋯ + α m . 则
高等代数【北大版】9
| 1 | 2,
|
3
|
3
4 10
,
| 2 |
2, 6
|
4
|
5
4 14
.
§9.2 标准正交基
于是得 R[ x]4的标准正交基
1
|
1
1
| 1
2 ,
2
2
|
1
2
|
2
6 x
2
3
|
1
3
| 3
10 4
14 (5x3 3x) 4
§9.2 标准正交基
4.标准正交基间的基变换
设 1, 2 , , n与 1,2 , ,n 是 n 维欧氏空间V中的
1. 定义
设 A (aij ) Rnn , 若A满足 则称A为正交矩阵.
AA E
2. 简单性质
1)A为正交矩阵 A 1. 2)由标准正交基到标准正交基的过渡矩阵是正交
矩阵.
§9.2 标准正交基
3)设 1, 2 , , n 是标准正交基,A为正交矩阵,若 (1,2 , ,n ) (1, 2 , , n ) A
(6)
§9.2 标准正交基
由公式(3), 有
(i , j ) a1i1 j a2i 2 j
aninj
1 0
i i
j j
, (7)
把A按列分块为 A A1, A2, , An
由(7)有
A1
AA
A2
A1
,
A2
,
An
, An En
(8)
§9.2 标准正交基
三、正交矩阵
注:
① 由正交基的每个向量单位化, 可得到一组标准 正交基.
第09章 欧式空间
= α s−1
−
(α s−1, ε1 ) (ε1,ε1 )
ε
1
−⋯
−
(α s−1 (ε s−2
,ε ,ε
s −2 s−2
) )
ε
s
−2
,ε s
= αs
−
s −1 k=1
(α s (εk
− εk ) ,εk )
ε
k
① L(ε1 ,⋯,ε s ) = L (α1 ,⋯,αs ) ⇔ ε1,⋯,ε s 与 α1,⋯, αs 等价
α = (ε1,⋯,ε n ) X = (η1,⋯,ηn ) X , X = T X , β = (ε1,⋯,ε n)Y = (η1,⋯,η n)Y ,Y = T Y
(α, β )在基 ε1,⋯,ε n ,η1,⋯,ηn下的度量矩阵分别为 G, G
(α ,
β)
=
X
'GY
=
X
'
T
'GT Y
=
X
'
GY
∴G = T 'GT 即 G~G
⎧R欧式空间
线性空间定义度量性质后 ⎪⎪C酉空间
⎨⎪思维时空空间 ⎪⎩辛空间
三维几何空间 R3
R
2
:设
� a
=
(a1
,
a2
),
� b
=
(b1,
b2)
�� a ⋅b = a1b1 + a2b2 ∈R
� a 的长度:
� a
=
a2 + a2 =
�� a⋅a
1
2
�� a,b
的夹角:
<
�� a, b
>= ar
第九章 欧氏空间复习资料
第九章 欧氏空间一. 内容概述1.欧氏空间的定义设V 是实数域R 上一个向量空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,它具有以下性质:1) ),(),(αββα=;2) ),(),(βαβαk k =; 3) ),(),(),(γβγαγβα+=+; 4) 0),(≥αα,当且仅当0=α时, 0),(=αα这里γβα,,是V 任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间. 常见的欧氏空间举例:例1 在线性空间nR 中,对于向量 ),,,(,),,,(2121n n b b b a a a ==βα, 定义内积.),(2211n n b a b a b a +++= βα (1) 则内积(1)适合定义中的条件,这样nR 就成为一个欧几里得空间.仍用来表示这个欧几里得空间.在3=n 时,(1)式就是几何空间中的向量的内积在直角坐标系中的坐标表达式. 例2 在n R 里, 对于向量 ),,,(,),,,(2121n n b b b a a a ==βα定义内积.2),(2211n n b na b a b a +++= βα 则内积(1)适合定义中的条件,这样n R 就也成为一个欧几里得空间.对同一个线性空间可以引入不同的内积,使得它作成不同的欧几里得空间.例 3 在闭区间],[b a 上的所有实连续函数所成的空间),(b a C 中,对于函数)(),(x g x f 定义内积⎰=b a dx x g x f x g x f )()())(),((. (2)对于内积(2),),(b a C 构成一个欧几里得空间.例4 设R m n ⨯为一切m n ⨯矩阵所成的线性空间.内积定义为()()3,B A B A t r '=则称R mn ⨯为R 上的欧氏空间,2.欧氏空间的内积的主要性质:1)定义中条件1)表明内积是对称的. ),(),(),(),()2αββααββαk k k k ==='),(),(),(),(),(),()3γαβααγαβαγβγβα+=+=+=+' 定义2 非负实数),(αα称为向量α的长度,记为α.显然,向量的长度一般是正数,只有零向量的长度才是零,这样定义的长度符合熟知的性质:αα||k k = (3)这里V R k ∈∈α,.长度为1的向量叫做单位向量.如果,0≠α由(3)式,向量αα1就是一个单位向量.用向量α的长度去除向量α,得到一个与α成比例的单位向量,通常称为把α单位化.柯西-布涅柯夫斯基不等式:即对于任意的向量βα,有βαβα≤),( (5)当且仅当βα,线性相关时,等式才成立.对于例1的空间nR ,(5)式就是 .22221222212211n n n n b b b a a a b a b a b a ++++++≤+++ 对于例2的空间),(b a C ,(5)式就是()()212212)()()()(⎰⎰⎰≤b a ba ba dx x g dx x f dx x g x f 定义3 如果向量βα,的内积为零,即0),(=βα那么βα,称为正交或互相垂直,记为βα⊥. 设V 是一个n 维欧几里得空间,在V 中取一组基n εεε,,,21 ,对于V 中任意两个向量n n x x x εεεα+++= 2211, n n y y y εεεβ+++= 2211, 由内积的性质得∑∑===++++++=n i nj ji j i n n n n y x y y y x x x 1122112211),(,),(εεεεεεεεβα 设),,2,1,(),(n j i a j i ij==εε (8)显然 .ji ij a a =于是∑∑===n i nj j i ij y x a 11),(βα (9)利用矩阵,),(βα还可以写成AY X '=),(βα, (10)其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n y y y Y x x x X 2121, 分别是βα,的坐标,而矩阵nn ij a A )(=称为基n εεε,,,21 的度量矩阵.3. 标准正交基定义4 欧氏空间V 的一组非零的向量,如果它们两两正交,就称为一个正交向量组. 按定义,由单个非零向量所成的向量组也是正交向量组.正交向量组是线性无关的.这个结果说明,在n 维欧氏空间中,两两正交的非零向量不能超过n 个.定义6 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基;由单位向量组成的正交基称为标准正交基组.定理:正交向量组是线性无关的.定义 n 组实数矩阵A 称为正交矩阵,如果E A A ='(即A A '=-1)例2 考虑定义在闭区间]2,0[π上一切连续函数所作成的欧氏空间]2,0[πC .函数组 .,sin ,cos ,,sin ,cos ,1 nx nx x x 构成]2,0[πC 的一个正交组.例3 欧氏空间nR 的基 ))(0,,0,1,0,,0( i i =ε(其中n i,,2,1 =) 是n R 的一个标准正交基.定理:正交矩阵的乘积是正交矩阵, 正交矩阵的逆是正交矩阵.掌握施密特正交化的方法实对称矩阵的标准形(对角化问题).引理1:设A 是实对称矩阵,则A 的特征值皆为实数.引理2: 设A 是实对称矩阵,则R n 中属于A 的不同特征值的特征向量必正交.引理3:实对称矩阵的k 重特征值一定有k 个线性无关的特征向量。
第九章欧氏空间综合练习题解答
第九章 欧氏空间(综合练习)一、选择题1. 设σ是欧氏空间V 的线性变换,那么σ不是正交变换的充分必要条件是( A ) A. σ保持非零向量的夹角; B. σ保持内积;C. σ保持向量的长度;D. σ把标准正交基映射为标准正交基. 2.下列命题正确的是( C ) .A. 线性变换保持向量长度不变;B. 对称变换保持向量的内积不变;C.正交变换保持向量夹角不变;D.线性变换保持向量的线性无关性. 3.欧氏空间3R 中的标准正交基是( A ).A. ();;0,1,0; B. ()1111,,0;,;0,0,12222⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭;C. ();;0,0,0; D. ()()()1,1,1;1,1,1;1,1,1---.4.欧氏空间中不同基下的度量矩阵是( A ).A .合同的;B .相似的;C .相等的;D .正交的. 5. n 维欧氏空间V 中,下列命题不成立的是( C ). A . V ∈βα,,若α⊥,则222βαβα+=+;B .V ∈βα,,若βα与线性相关,则)(,2ββααβα,),()(=; C .若()()γβγαβα=⇒=,,; D .若V ∈∀β,都有()0,=βα,则0=α. 6. A 是n 级正交矩阵,则下列结论错误的是( D ).A. 11-=或A ;B. A A '=-1;C.A 的列向量组是n R 的一个标准正交组;D.A 的特征值必为实数. 7.在3R 中,与向量()()1,2,1,1,1,121==a a 都正交的单位向量为( C ).A . ()1,0,1;B .()2,0,2- ;C .⎪⎭⎫ ⎝⎛-21,0,21 ;D .⎪⎭⎫ ⎝⎛21,0,21;β8.V 是欧氏空间,γβα,,是V 中的向量,则下列结论正确的是( C ).A .若),(),(γαβα=,则γβ=;B .若βα=, 则 ;C .若1),(=αα,则1=α;D .若0),(>βα,则 βα=. 9.V 是欧氏空间,V ∈γβα,,,则下列结论不成立的是( D ). A .βαβα≤),(; B . βαβα+≤+; C .βγγαβα-+-≤-; D .222βαβα+=+.10.对于n 阶实对称矩阵A ,以下结论正确的是( B )。
高等代数-欧几里得空间
2) (, ) (, ) (, )
s
s
推广: ( , i ) ( , i )
i 1
i 1
3) (0, ) 0
§9.1 定义与基本性质
二、欧氏空间中向量的长度
1. 引入长度概念的可能性
1)在 R3向量 的长度(模) . 2) 欧氏空间V中, ,V , (, ) 0
使得 有意义.
③ ( , ) R.
§9.1 定义与基本性质
例1.在 Rn 中,对于向量
a1,a2, ,an , b1,b2, ,bn
1)定义 ( , ) a1b1 a2b2 anbn
(1)
易证 ( , ) 满足定义中的性质 1 ~ 4 .
所以, ( , ) 为内积. 这样Rn 对于内积 ( , ) 就成为一个欧氏空间.
2. 向量长度的定义
,V , ( , ) 称为向量 的长度. 特别地,当 1时,称 为单位向量.
§9.1 定义与基本性质
3. 向量长度的简单性质
1) 0; 0 0
2) k k
3)非零向量 的单位化:
1.
(3)
§9.1 定义与基本性质
三、欧氏空间中向量的夹角
1. 引入夹角概念的可能性与困难
注:
① 零向量与任意向量正交.
②
, ,
2
即 cos, 0
.
§9.1 定义与基本性质
5. 勾股定理
设V为欧氏空间, , V
2 2 2
证: 2 , , 2, ,
2 2 2
( , ) 0
.
§9.1 定义与基本性质
推广:若欧氏空间V中向量1,2 , ,m 两两正交,
当 n 3 时,1)即为几何空间 R3中内积在直角 坐标系下的表达式 . ( , )即 .
习题解答 第九章 欧氏空间(定稿)
当且仅当 与 线性相关时,等号成立. 2. 标准正交基
定义 6 称欧氏空间 V 中一组两两正交的非零向量组1,2 , ,m 为一个正交向量组. 定义 7 设1,2,L ,n 是 n 维欧氏空间 V 中的一组基,若它们两两正交,则称 1,2,L ,n 为 V 的一组正交基;若正交基中的向量1,2,L ,n 都为单位向量,则称为标
n
( A, A) 0 ai2j 0 A 0 i, j1
此即证V是欧式空间。
(1)证:Eij是(i, j)元为1,其余一元皆为0的n阶方阵,那么可证 B11 E11, B12 E12 E21,L , B1n E1n En1 B22 E22 , B2n E2n En2 ,L , Bnn Enn 为V的一组基,于是
故○1 成立,且
V =S (S )
故S和(S)是同一子空间S的正交补,由正交补的唯一性,即证 ○2 .
4.设 是欧式空间V的线性变换,设 是V的一个变换,且, V ,都有(( ), )=(,( )). 证明:
(1) 是V的线性变换 (2)的值域 Im 等于的核ker的正交补。
四、典型题解析
例1.设A, B是n阶实对称阵,定义
(A, B) trAB
○1
证明:所有n阶实对称阵V 关于( A, B)成一欧式空间。 (1)求V的维数。 (2)求使trA=0的空间S的维数。 (3)求S的维数。
证 首先可证V {A Rnn | A A}是R上的一个线性空间。 再证○1 是V 的内积,从而得证V 是关于内积○1 的欧式空间. 事实上A,B,CV ,k R,有
欧氏空间——精选推荐
第九章 欧氏空间9.1 基本内容与基本结论9.1.1 基本内容 1.欧几里得空间设V 是实数域R 上一线性空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,它具有以下性质:(1) ),(),(αββα=; (2) ),(),(βαβαk k =; (3) ),(),(),(γβγαγβα+=+;(4) 0),(≥αα,当且仅当0=α时,0),(=αα。
这里α,β,γ是V 中任意的向量,k 是任意实数,这样的线性空间称为欧几里得空间。
2.酉空间设V 是复数域C 上一线性空间,在V 上定义了一个二元复函数,称为内积,记作),(βα,它具有以下性质:(5) ),(),(αββα=,这里),(),(αβαβ是的共轭复数; (6) ),(),(βαβαk k =; (7) ),(),(),(γβγαγβα+=+;(8) 0),(≥αα,当且仅当0=α时,0),(=αα。
这里α,β,γ是V 中任意的向量,k 是任意复数,这样的线性空间称为酉空间。
3.向量的长度非负实数),(αα称为向量α的长度,记为α。
4.向量的夹角非零向量α,β的夹角〉〈βα,规定为 βαβαβα),(arccos ,=〉〈,πβα≤〉〈≤,0。
5.向量的正交如果向量α,β的内积为零,即0),(=βα,那么称α,β正交,记为βα⊥。
6.基的度量矩阵n εεε,,,21 是n 维欧氏空间V 的一组基,令n j i j i ij ,,2,1,),,( ==εεα,称nn ij a A )(=为基n εεε,,,21 的度量矩阵。
7.正交向量组欧氏空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。
8.正交基,标准正交基在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。
9.正交矩阵、酉矩阵n 级实矩阵称A 为正交矩阵,如果E A A T =。
n 级复矩阵称A 为酉矩阵,如果E A A T =。
第九章_欧氏空间
第九章 欧氏空间一. 内容概述1. 欧氏空间的定义设V 是实数域R 上的一个线性空间.如果V ∈∀βα.,定义了一个二元实函数.记作()()R ∈βαβα,,,称为内积,且满足1)()()2;,,αββα=)()()()()()(),0,)4;,,,)3;,,≥+=+=ααγβγαγβαβαβαk k 当且仅当0=α时,().0,=αα其中γβα,,是V 中任意向量,k 为任意实数,则称V 为欧几里空间,简称欧氏空间.常见的欧氏空间有: (1)在(){}R x x x x R inn∈=|,,21里定义内积为()()1,2211y x yx y x nn +++= βα其中()().,,,,,11y y x x nn==βα则称Rn为R 上的欧氏空间.(2)设[]b a C ,为定义在[]b a ,上所有连续实函数所成的线性空间.内积定义为()()()()2,dx x g x f g f ba ⎰=(3)设Rmn ⨯为一切m n ⨯矩阵所成的线性空间.内积定义为()()3,B A B A t r '=则称Rmn ⨯为R上的欧氏空间,2. 欧氏空间的内积的主要性质: 1)()()()()()()())4;0,00,)3;,,,)2;,,==+=+=βαγαβαγβαβαβαk k 设εεεn ,,,21 为V的一组基,,,22112211εεεεεεβαnnn n y y y x x x +++=+++=则()Ay x '=βα,其中()()()()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=εεεεεεεεn n n nn n A y x y y y x x x11112121,.3. 向量的长度,角,柯西-不涅柯夫斯基不等式().,βαβα≤4. 标准正交基 施密特正交化的方法正交向量组是线性无关的.正交基.标准正交基.格拉姆矩阵()()()()⎪⎪⎪⎭⎫⎝⎛=∈αααααααααααn n n nm G V V111121.,,,.度量矩阵.εεεn V ,,,.21 一组基G=()()()()⎪⎪⎪⎭⎫⎝⎛εεεεεεεεn n n n1111 5. 同构.6. 正交变换的定义及其等价的四个命题欧氏空间V 的线性变换A 称为正交变换,如果它保持向量的内积不变即对于任意的V ∈βα,,都有(βαA A ,)()βα,=.设A 是欧氏空间V 的一个线性变换,于是下面四个命题相互等价的: 1)A 是正交变换;2)A 保持向量的长度不变,即对于.,ααα=A ∈V3)如果εεεn ,,,21是标准正交基,那么εεεn A A A ,,,21 也是标准正交基4)A 在任一组标准正交基下的矩阵是正交矩阵,正交矩阵的乘积是正交矩阵, 正交矩阵的逆是正交矩阵. 正交变换的分类,第一类(旋转)|A|=1第二类的|A|=-1. 7. 向量与空间的正交, 空间与空间的正交.正交补. 8. 对称变换;, 对称矩阵的标准形.四个引理:1)设A 是实对称矩阵,则A 的特征值皆为实数.2) 设A 是实对称矩阵,A 定义为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x n A 21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛x x x n A 21.则对任意R n∈βα,有()()βαβαA A ,,=或βααβA A '='3) 设A 是实对称矩阵,则Rn中属于A 的不同特征值的特征向量必正交.4.设是A 对称变换,V 是A 一子空间,则也是A 一子空间。
第九章 欧氏空间
= ( , ) + ( , ) .
3 ) ( , 0 ) = (0 , ) = 0;
4) ( ki i , l j j ) ki l j ( i , j );
i 1 j 1 i 1 j 1
s
n
s
n
5 ) | ( , ) | | | | |,当且仅当 , 线性相
关时,等号才成立.
2 长度、夹角与正交
(1) 设V是欧氏空间,对任意V,非负实数 ( , ) 称为向量 的长度,记为 | |. 即| | 度为1的向量称为单位向量. 如果≠0,则
( , ) ,长
1 | |
是单位
向量,称为将单位化.
(2) 非零向量 , 的夹角 < , > 规定为
为 V1 . 如果V1 V2 ,且V=V1 + V2 ,则称V2为V1的
正交补,记为V1.
(2) 正交子空间有下列结果: 1) 设V是欧氏空间, , i , j V,则
L(1 , 2 , … , t) 等价于 j (j=1, 2, ..., t);
L(1 , 2 , … , s) L(1 , 2 , … , t)等价于i j
第九章
欧氏空间
内 容 摘 要
1 内积和欧几里得空间
(1) 设 V 是实数域 R 上一个线性空间,如果对V中 任意两个元素 , 有一个确定的实数( , )与它们对应, 且满足:
1) ( , ) = ( , );
2) (k , ) = k( , );
3) ( + , ) = ( , ) + ( , ) ; 4) ( , ) 0,当且仅当 = 0 时 ( , ) = 0 .
第九章欧氏空间习题答案
第九章欧氏空间习题答案一、填空题1、 0;2、 ,;3、 ;4、 ;5、 ;6、 ;7、 ,;8、 ;9、 ;10、 线性变换在某基下得矩阵;11、 0,;12、 它们得维数相同;13、 ,1;14、 ;15、 正交;16、 ;17、 正定得。
二、判断题15 ××√√√ 610 √×√√√ 1115 √√√×√ 1620 √√×√×三、选择题15 CDBCC 610 CACB(BD) 1115 BDAAA 1618 ABB四、计算题1. 由,故特征值为。
当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为。
则令,为正交阵,有。
2. (1),由于二次型正定,则,即。
(2)当时,则。
由,特征值为。
故标准形为。
3. 二次型矩阵为。
由于正交变换得到得标准形为,则得特征值为,故,可得。
当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为;当时,有,则基础解系为,单位化为。
则令,为正交阵,有。
4. 设属于特征值得特征向量为,则,即,基础解系为,。
把,单位化为,。
单位化为。
令,为正交阵,有。
进一步得到。
5. 当时,则22200011(cos ,cos )cos cos cos()cos()02()2()||jx kx jx kxdx j k x j k x j k j k πππ==+--=+-⎰22200011(sin ,sin )sin sin cos()cos()02()2()||jx kx jx kxdx j k x j k x j k j k πππ==-++-=+-⎰22200011(sin ,cos )sin cos sin()()02()2()||jx kx jx kxdx j k x sin j k x j k j k πππ==-++-=+-⎰故对于任何整数,该集合均为正交向量组。
第九章 欧式空间(第一讲)
2
( , )
2
( , )
2
2
,
即
( , )
2
2
2
.
开方便得
( , )
.
综合ⅰ,ⅱ便知定理成立. 基于定理1.1的结果,又可以给出欧氏空间中两向量夹 角的定义.
定义1.3 对于欧氏空间中两个非零向量α, β ,定义α与 β的夹角为
累次应用以上两条及欧氏空间定义中的条件2)3)即可得 到3)式.
性质2 对于欧氏空间中任意向量α ,总有(α ,0)= (0,α)=0. 证明 由
( , 0) ( , 0 0) ( , 0) ( , 0)
即得(α ,0)=0.再由内积的交换律又知(0,α)= (α ,0)=0 . 特别,有(0,0)=0 .再结合欧氏空间定义中的第4) 条规定,便得如下结论:内积空间中向量α为零向量的充 分必要条件是(α ,α )=0 ,也就是说,零向量是内积空 间中与自身的内积为0的唯一向量.
即对欧氏空间中任一组向量我们看到殴氏空间在向量的长度夹角正交等方面与我们已熟知的普通几何空间确有许多相像之处
线性代数
机动
目录
上页
下页
返回
结束
第九章
欧氏空间*
通过上两章的学习,我们对线性空间有了比较深入的 了解.线性空间是涉及一个集合、一个数域、两种运算、 八个条件的一个整体概念.它包含着丰富的内容,有着广 泛的应用.在这一章里将讨论一类特殊发线性空间—欧氏 空间.我们还将发现,欧氏空间与人们熟悉的几何空间有 许多相似的结果.通常的实向量内积、长度、夹角、距离 等概念都可以平行地在欧氏空间上建立起来,并得到类似 的相应结果.
第九章 欧氏空间
第九章 欧几里得空间§1定义与基本性质一、向量的内积定义 1 设V 是实数域R 上一个向量空间,在V 上定义了一个二元实函数,称为内积,记作),(βα,它具有以下性质:1)),(),(αββα=;2) ),(),(βαβαk k =;3) ),(),(),(γβγαγβα+=+;4) 0),(≥αα,当且仅当0=α时, 0),(=αα 这里γβα,,是V 任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间.例1 在线性空间n R 中,对于向量 ),,,(,),,,(2121n n b b b a a a ==βα, 定义内积.),(2211n n b a b a b a +++= βα (1)则内积(1)适合定义中的条件,这样nR 就成为一个欧几里得空间.仍用n R 来表示这个欧几里得空间.在3=n 时,(1)式就是几何空间中的向量的内积在直角坐标系中的坐标表达式.例2 在n R 里, 对于向量 ),,,(,),,,(2121n n b b b a a a ==βα,定义内积.2),(2211n n b na b a b a +++= βα则内积(1)适合定义中的条件,这样n R 就也成为一个欧几里得空间.仍n R 用来表示这个欧几里得空间。
对同一个线性空间可以引入不同的内积,使得它作成欧几里德空间,但应该认为它们是不同的欧几里德空间.例 3 在闭区间],[b a 上的所有实连续函数所成的空间),(b a C 中,对于函数)(),(x g x f 定义内积 ⎰=ba dx x g x f x g x f )()())(),(( (2)对于内积(2),),(b a C 构成一个欧几里得空间. 同样地,线性空间n x R x R ][],[对于内积(2)也构成欧几里得空间.例4 令H 是一切平方和收敛的实数列:+∞<=∑∞=1221),,,,(n nn x x x x ξ所成的集合,则H 是一个欧几里得空间,通常称为希尔伯特(Hilbert)空间(内积定义类似于例1,这是无穷维空间).二、欧几里得空间的基本性质1)定义中条件1)表明内积是对称的.),(),(),(),()2αββααββαk k k k ==='.),(),(),(),(),(),()3γαβααγαβαγβγβα+=+=+=+'定义2 非负实数),(αα称为向量α的长度,记为α.显然,向量的长度一般是正数,只有零向量的长度才是零,这样定义的长度符合熟知的性质: αα||k k = (3)这里V R k ∈∈α,.长度为1的向量叫做单位向量.如果,0≠α由(3)式,向量αα1就是一个单位向量.用向量α的长度去除向量α,得到一个与α成比例的单位向量,通常称为把α单位化.柯西-布涅柯夫斯基不等式:即对于任意的向量βα,有βαβα≤),( (5)当且仅当βα,线性相关时,等式才成立.证明:由0),(≥++βαβαt t 对于任意实数t 成立,给出简单证明。
高等代数课件(北大版)第九章-欧式空间9.5
(i ,0) (i ,1 2 s ) (i ,i ) 0 由内积的正定性,可知 i 0, i 1,2, , s.
§9.5 子空间
二、子空间的正交补
1.定义:
如果欧氏空间V的子空间 V1,V2 满足 V1 V2 , 并且 V1 V2 V , 则称 V2 为 V1 的正交补.
但一般地,子空间W的余子空间未必是其正交补.
§9.5 子空间
3.内射影
设W是欧氏空间V的子空间,由 V W W ,
对 V , 有唯一的 1 W , 2 W , 使 1 2
称 1 为 在子空间W上的内射影.
§9.5 子空间
(1,1 ) 0 由此可得 1 0, 即有 V3
同理可证 V3 V2 , V2 V3 .
§9.5 子空间
V2 V3 . 唯一性得证.
注:① 子空间W的正交补记为 W . 即
W V W
② n 维欧氏空间V的子空间W满足: i) (W ) W ii) dimW dimW dimV n iii) W W V ⅳ) W的正交补 W 必是W的余子空间.
V1 V2 ( , ) 0 0.
③ 当 V1 且 V1 时,必有 0.
§9.5 子空间
2.两两正交的子空间的和必是直和.
证明:设子空间 V1,V2 , ,Vs 两两正交, 要证明 V1 V2 Vs , 只须证:
V1 V2 Vs 中零向量分解式唯一.
设 1 2 s 0, i Vi , i 1, 2, , s
2.n 维欧氏空间V的每个子空间 V1 都有唯一正交补.
证明:当 V1 {0} 时,V就是 V1 的唯一正交补. 当 V1 {0} 时,V1 也是有限维欧氏空间.
取 V1 的一组正交基 1, 2 , , m ,
高等代数课件(北大版)第九章 欧式空间§9.2
1 , 2 ,, m , 1 , 2 ,, k
成为一组正交基. 现在来看 n m k 1 ( 1) 的情形. 因为 m n ,
所以必有向量 不能被 1 , 2 ,, m 线性表出,
作向量
m1 k11 k2 2 km m ( 0)
1
1
( 3 , 1 ) ( 3 , 2 ) 3 3 1 2 ( 1 , 1 ) ( 2 , 2 )
2 ( 3 , 1 ) x dx , 1 3
1 2
( 1 , 1 ) dx 2,
1
1
( 3 , 2 ) x dx 0,
数学与计算科学学院
一、正交向量组
定义:
设V为欧氏空间,非零向量 1 , 2 ,, m V , 如果它们两两正交,则称之为正交向量组.
注:
① 若 0, 则 是正交向量组. ② 正交向量组必是线性无关向量组.
§9.2 标准正交基
数学与计算科学学院
证:设非零向量 1 , 2 ,, m V 两两正交.
tii 0, i 1,2,, n
§9.2 标准正交基
数学与计算科学学院
② Schmidt正交化过程:
1 先把线性无关的向量组 1 ,, m
化成正交向量组 1 , 2 ,, m .
( 2 , 1 ) 1 1 , 2 2 1 , ( 1 , 1 ) j 1 ( j , i ) j j i , j 2,3,, m; i 1 ( i , i )
( 4 , 1 ) x dx 0,
变成单位正交的向量组. 解:令
1 1 (1,1,0,0) ( 2 , 1 ) 1 1 2 2 1 ( , ,1,0) ( 1 , 1 ) 2 2 1 1 1 ( 3 , 1 ) ( 3 , 2 ) 3 3 1 2 ( , , ,1) 3 3 3 ( 1 , 1 ) ( 2 , 2 ) ( 4 , 3 ) ( 4 , 1 ) ( 4 , 2 ) 4 4 1 2 3 ( 1 , 1 ) (2 , 2 ) (3 , 3 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 欧氏空间练习题
1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立:
(1)2222||2||2||||ηξηξηξ+=-++; (2).||4
1
||41,22ηξηξηξ--+=
在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量
)0,,0,1,0,,0()
( i i =ε,n i ,,2,1 =
的夹角.
3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量
)
4,5,2,3()2,2,1,1()
0,4,1,2(=--=-=γβα 中每一个正交.
4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形.
5.设ηξ,是一个欧氏空间里彼此正交的向量.证明:
222||||||ηξηξ+=+(勾股定理)
6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明:如果β与i α正交,n i ,,2,1 =,那么0=β. 7.设n ααα,,,21 是欧氏空间的n 个向量. 行列式
>
<><><>
<><><>
<><>
<=
n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121
叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要
n ααα,,,21 线性相关.
8.设βα,是欧氏空间两个线性无关的向量,满足以下条件:
><><ααβα,,2和>
<>
<βββα,,2都是0≤的整数.
证明: βα,的夹角只可能是
6
54
3,32,2π
π
ππ或
. 9.证明:对于任意实数n a a a ,,,21 ,
2
3322211
(||n
n
i i
a a a a n a
++++≤∑= ). 10.已知
)0,1,2,0(1=α,)0,0,1,1(2-=α,
)1,0,2,1(3-=α,)1,0,0,1(4=α
是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基.
11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组.
12.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即
><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 13.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令
},2,1,10,|{1n i x x V K n
i i i i =≤≤=∈=∑=γξξ
K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少?
14.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:
∑=≤m
i i
1
22||,ξα
.
15.设V 是一个n 维欧氏空间.证明
)(i 如果W 是V 的一个子空间,那么W W =⊥⊥)(.
)(ii 如果21,W W 都是V 的子空间,且21W W ⊆,那么⊥⊥⊆12W W )(iii 如果21,W W 都是V 的子空间,那么⊥⊥⊥+=+2121)(W W W W
16.证明,3R 中向量),,(000z y x 到平面
}0|),,{(3=++∈=cz by ax R z y x W
的最短距离等于
2
2
2
000||c
b a cz by ax ++++.
17.证明,实系数线性方程组
∑===n
j i j ij
n i b x a
1
,,2,1,
有解的充分且必要条件是向量n n R b b b ∈=),,,(21 β与齐次线性方程组
∑===n
j j ji
n i x a
1
,,2,1,0
的解空间正交.
18.令α是n 维欧氏空间V 的一个非零向量.令
}0,|{
>=<∈=αξξαV P . αP 称为垂直于α的超平面,它是V 的一个1-n 维子空间.V 中有两个向量ξ,η说是位于αP 的同侧,如果><><αηαξ,,与同时为正或同时为负.证明,V 中一组位于超平面αP 同侧,且两两夹角都2
π
≥
的非零向量一定线性无关.
[提示:设},,,{21r βββ 是满足题设条件的一组向量.则)(0,j i j i ≠>≤<ββ,并且不妨设)1(0,r i i ≤≤>><αβ.如果∑==r
i i i c 10β,那么适当编号,可设
0,,,0,,,121≤≥+r s s c c c c c ,)1(r s ≤≤,令∑∑+==-==r
s j j j s i i i c c 1
1
ββγ,证明0=γ.由
此推出0=i c )1(r i ≤≤.] 19.设U 是一个正交矩阵.证明:
)(i U 的行列式等于1或-1; )(ii U 的特征根的模等于1; )(iii 如果λ是U 的一个特征根,那么
λ
1
也是U 的一个特征根;
)(iv U 的伴随矩阵*U 也是正交矩阵.
20.设02
cos
≠θ
,且
⎪⎪⎪⎭
⎫
⎝⎛-=θθθθ
cos sin 0sin cos 00
01U . 证明,U I +可逆,并且
⎪⎪⎪⎭
⎫
⎝⎛-=+--010*******tan ))((1
θU I U I
21.证明:如果一个上三角形矩阵
⎪⎪⎪
⎪⎪⎪
⎭⎫
⎝
⎛=nn n n n a a a a a a a a a a A 00
000
033322322113
1211
是正交矩阵,那么A 一定是对角形矩阵,且主对角线上元素ij a 是1或-1.
22.证明:n 维欧氏空间的两个正交变换的乘积是一个正交变换;一个正交变换的逆变换还是一个正交变换.
23.设σ是n 维欧氏空间V 的一个正交变换.证明:如果V 的一个子空间W 在σ之下不变,那么W 的正交补⊥W 也在σ下不变.
24.设σ是欧氏空间V 到自身的一个映射,对ηξ,有,)(),(ηησξσ=证明σ是
V 的一个线性变换,因而是一个正交变换. 25.设U 是一个三阶正交矩阵,且1det =U .证明:
)(i U 有一个特征根等于1; )(ii U 的特征多项式有形状
1)(23-+-=tx tx x x f
这里31≤≤-t .
26.设},,,{21n ααα 和},,,{21n βββ 是n 维欧氏空间V 的两个规范正交基.
)(i 证明:存在V 的一个正交变换σ,使n i i i ,,2,1,)( ==βασ.
)(ii 如果V 的一个正交变换τ使得11)(βατ=,那么)(,),(2n ατατ 所生成的子空
间与由n ββ,,2 所生成的子空间重合.
27.设σ是n 维欧氏空间V 的一个线性变换.证明,如果σ满足下列三个条件的任意两个,那么它必然满足第三个:)(i σ是正交变换;)(ii σ是对称变换;)(iii ισ=2是单位变换.
28.设σ是n 维欧氏空间V 的一个对称变换,且σσ=2.证明,存在V 的一个规范正交基,使得σ关于这个基的矩阵有形状
⎪⎪⎪⎪
⎪⎪⎪⎪⎭
⎫ ⎝⎛000101
29.证明:两个对称变换的和还是一个对称变换.两个对称变换的乘积是不是对称变换?找出两个对称变换的乘积是对称变换的一个充要条件.
30.n 维欧氏空间V 的一个线性变换σ说是斜对称的,如果对于任意向量V ∈βα,,
)(,),(βσβασ-=.
证明:
)(i 斜对称变换关于V 的任意规范正交基的矩阵都是斜对称的实矩阵(满足条
件A A -='的矩阵叫做斜对称矩阵)
)(ii 反之,如果线性变换σ关于V 的某一规范正交基的矩阵是斜对称的,那么
σ一定是斜对称线性变换.
)(iii 斜对称实矩阵的特征根或者是零,或者是纯虚数.
31.令A 是一个斜对称实矩阵.证明,A I +可逆,并且1))((-+-=A I A I U 是一个正交矩阵.
32.对于下列对称矩阵A,各求出一个正交矩阵U,使得AU U '是对角形式:
)(i ⎪
⎪⎪⎭
⎫ ⎝⎛--=51081022
8211A ; )(ii ⎪⎪⎪
⎭⎫ ⎝⎛----=114441784817A。