有关圆锥曲线的经典结论
【智博教育原创专题】三大圆锥曲线经典结论
注重结论 巧妙应用之三大圆锥曲线经典结论【结论1】在椭圆22221(0)x y a b a b +=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a -(注:若椭圆焦点在y 轴上时,即0b a >>,则定值为22a b-)。
【证明】设原点为1122,(,),(,)O A x y B x y 是椭圆上的任意不同的两点,00(,)P x y 是弦AB 中点。
2211221202212022221221x y x x x a b y y y x y a b ⎧+=⎪+=⎧⎪⇒⎨⎨+=⎩⎪+=⎪⎩,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。
可转化为20122120y y y b x x x a-⋅=-,即22AB OP b k k a ⋅=-。
【结论2】双曲线22221(0,0)x y a b a b -=>>上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值22b a (注:若双曲线为焦点在y 轴上的形式,则定值为22a b)。
【证明】设原点为1122,(,),(,)O A x y B x y 是双曲线上的任意两个不同的点,00(,)P x y 是弦AB 的中点。
2211221202212022221221x y x x x a b y y y x y a b ⎧-=⎪+=⎧⎪⇒⎨⎨+=⎩⎪-=⎪⎩,由以上几式可得:1212121222()()()()0x x x x y y y y a b +-+--=。
可转化为20122120y y y b x x x a-⋅=-,即22AB OP b k k a ⋅=。
【结论3】抛物线22y px =上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为px (0x 为弦中点的横坐标)。
【证明】设原点为1122,(,),(,)O A x y B x y 为22y px =上任意两个不同的点,00(,)P x y 为弦AB 中点。
有关圆锥曲线的经典结论
一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.000(,)P x y 22221x y a b +=0P 00221x x y y a b +=6. 若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点000(,)P x y 22221x y a b +=弦P 1P 2的直线方程是.00221x x y ya b+=7. 椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点22221x y a b+=,则椭圆的焦点角形的面积为.12F PF γ∠=122tan2F PF S b γ∆=8. 椭圆(a >b >0)的焦半径公式:22221x y a b+=,( , ).10||MF a ex =+20||MF a ex =-1(,0)F c -2(,0)F c 00(,)M x y 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆的不平行于对称轴的弦,M 为AB 的中点,则22221x y a b +=),(00y x ,22OM AB b k k a ⋅=-即。
0202y a x b K AB -=12. 若在椭圆内,则被Po 所平分的中点弦的方程是000(,)P x y 22221x y a b+=. 2200002222x x y y x y a b a b+=+13. 若在椭圆内,则过Po 的弦中点的轨迹方程是000(,)P x y 22221x y a b+=. 22002222x x y yx y a b a b+=+二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若在双曲线(a >0,b >0)上,则过的双曲线的切线方程000(,)P x y 22221x y a b-=0P 是. 00221x x y ya b-=6. 若在双曲线(a >0,b >0)外 ,则过Po 作双曲线的两条切000(,)P x y 22221x y a b-=线切点为P 1、P 2,则切点弦P 1P 2的直线方程是.00221x x y ya b-=7. 双曲线(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意22221x y a b-=一点,则双曲线的焦点角形的面积为.12F PF γ∠=122t2F PF S b co γ∆=8. 双曲线(a >0,b >o )的焦半径公式:( ,22221x y a b-=1(,0)F c -2(,0)F c 当在右支上时,,.00(,)M x y 10||MF ex a =+20||MF ex a =-当在左支上时,,00(,)M x y 10||MF ex a =-+20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线(a >0,b >0)的不平行于对称轴的弦,M 为AB 的22221x y a b-=),(00y x 中点,则,即。
圆锥曲线经典性质总结及证明
圆锥曲线的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.(中位线)3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.(第二定义)4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.(求导)5. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.(结合4) 6. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.(余弦定理+面积公式+半角公式)7. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义)8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上根据第8条,证毕10. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
有关圆锥曲线的经典结论
有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=. 8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
有关圆锥曲线经典结论
=1上,则过P的椭圆的切线方程是0+0=1.a2b2a2b2a2b2+22.★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭圆1.点P处的切线PT平分PF△1F在点P处的外角.22.PT平分PF△1F在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径2的圆,除去长轴的两个端点.3.以焦点弦PQ为直径的圆必与对应准线相离.4.以焦点半径PF为直径的圆必与以长轴为直径的圆内切.15.若P(x,y)在椭圆000x2y2xx y y +6.若P(x,y)在椭圆000x2y2+a2b2=1外,则过Po作椭圆的两条切线切点为P、P,则切点弦12P P的直线方程是xx yy=1.127.椭圆x2y2+a b2=1(a>b>0)的左右焦点分别为F,F,点P为椭圆上任意一点12∠F PF=γ,则椭圆的焦点角形的面积为S12∆F1PF2=b2tanγ8.椭圆x2y2+a2b2=1(a>b>0)的焦半径公式:|MF|=a+ex,|MF|=a-ex(F(-c,0),F(c,0)M(x,y)).10201200= 1 的不平行于对称轴的弦,M ( x , y ) 为 AB 的中点,则 kAB=-a 2 b2 a2+ 0 = 0 + 0 . = 1 内,则过 Po 的弦中点的轨迹方程是 = 0 + 0 .9. 设过椭圆焦点 F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,则 MF⊥NF.10. 过椭圆一个焦点 F 的直线与椭圆交于两点 P 、Q, A 、A 为椭圆长轴上的顶点,A P 和 A Q1212交于点 M ,A P 和 A Q 交于点 N ,则 MF⊥NF.2111. AB 是椭圆 x 2 y2 b2+ ⋅ k0 0 OM ,即 KAB=- b 2 xa 2y0 。
有关圆锥曲线的经典结论04625
有关圆锥曲线的经典结论04625★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群⾥是想让⼤家在⽇常学习过程中⾃我感悟使⽤,不要过分纠结于此!有关解析⼏何的经典结论⼀、椭圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外⾓.2.PT 平分△PF 1F 2在点P 处的外⾓,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线⽅程是00221x x y ya b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线⽅程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意⼀点12F PF γ∠=,则椭圆的焦点⾓形的⾯积为122tan 2F PF S b γ=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上⼀个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆⼀个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平⾏于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a=-,即0202y a x b K AB-=。
高中数学 有关圆锥曲线的经典结论
高中数学有关圆锥曲线的经典结论有关解析几何的经典结论一、椭圆1. 点P处的切线PT平分△PF1F2在点P处的外角.2. PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相离.4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切. x0xy0yx2y2+2=1. +=15. 若P在椭圆上,则过的椭圆的切线方程是(x,y)P0000a2ba2b2x2y26. 若P0(x0,y0)在椭圆2+2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点abxxyy弦P1P2的直线方程是02+02=1.abx2y27. 椭圆2+2=1 (a>b>0)的左右焦点分别为F1,F 2,点P 为椭圆上任意一点abγ∠F1PF2=γ,则椭圆的焦点角形的面积为S∆F1PF2=b2tan. 2x2y28. 椭圆2+2=1(a>b>0)的焦半径公式:ab|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0) , F2(c,0)M(x0,y0)).9. 设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF ⊥NF.10. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.x2y211. AB是椭圆2+2=1的不平行于对称轴的弦,M(x0,y0)为AB的中点,则abb2kOM⋅kAB=-2,ab2x0即KAB=-2。
ay0x2y2+=1内,则被Po所平分的中点弦的方程是12. 若P0(x0,y0)在椭圆a2b2x0xy0yx02y02+2=2+2. 2ababx2y2+2=1内,则过Po的弦中点的轨迹方程是13. 若P0(x0,y0)在椭圆2abx2y2x0xy0y+=2+2. a2b2ab二、双曲线1. 点P处的切线PT平分△PF1F2在点P处的内角.2. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ为直径的圆必与对应准线相交.4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)x2y25. 若P0(x0,y0)在双曲线2-2=1(a>0,b>0)上,则过P0的双曲线的切线方程abxxyy是02-02=1. abx2y26. 若P0(x0,y0)在双曲线2-2=1(a>0,b>0)外,则过Po 作双曲线的两条切abxxyy线切点为P1、P2,则切点弦P1P2的直线方程是02-02=1. abx2y27. 双曲线2-2=1(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意abγ2S=bcot一点∠F,则双曲线的焦点角形的面积为. PF=γ∆F1PF2122x2y28. 双曲线2-2=1(a>0,b>o)的焦半径公式:(F1(-c,0) , F2(c,0)ab当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0+a,|MF2|=-ex0-a9. 设过双曲线焦点F作直线与双曲线相交P、Q两点,A 为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N 两点,则MF⊥NF. 10. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF. x2y211. AB是双曲线2-2=1(a>0,b>0)的不平行于对称轴的弦,M(x0,y0)为ABabb2x0b2x0的中点,则KOM⋅KAB=2,即KAB=2。
有关圆锥曲线的经典结论
PF1F2中,记
F1PF2
PF1F2
F1F2P
,则有
sin
sin sin
22
5.若椭圆 令 占1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0
a b
vew.2 1时,可在椭圆上求一点P,使得PR是P到对应准线距离d与PF2的比
例中项.
、x2y2
6.P为椭圆一221(a>b>0) 上任一点,F1,F2为二焦点,A为椭圆内一定点,
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
★说明:圆锥曲线我们并未学完, 有些内容(如焦半径公式), 将此资料发到群里是想让大家在日常学习过程中自我感悟 使用,不要过分纠结于此!
有关解析几何的经典结论
、椭 圆
点P处的切线PT平分△PFF2在点P处的外角.
PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径
过椭圆一个焦点F的直线与椭圆交于两点P、Q, A、A为椭圆长轴上的顶点,AP和A2Q
交于点M A2P和AQ交于点N贝UMFLNF.
2 2
AB是椭圆X?■y?1的不平行于对称轴的弦,M(x0, y0)为AB的中点,则a b
b2
2,
a
b2x°
20
a y
2 2
若P°(x°, y。)在椭圆牛 占1内,则被Po所平分的中点弦的方程是
以焦点弦PQ为直径的圆必与对应准线相交.
以焦点半径PFi为直径的圆必与以实轴为直径的圆
相切.(内切:P在右支;外切:
有关圆锥曲线的经典结论
一、椭圆1.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.2.以焦点弦PQ为直径的圆必与对应准线相离.3.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.4.设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.5.过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.二、双曲线1. PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.2. 以焦点弦PQ为直径的圆必与对应准线相交.3. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)4.设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.5.过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P 和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.椭圆与双曲线的对偶性质--(会推导的经典结论)椭圆1.椭圆22221x ya b+=(a>b>o)的两个顶点为1(,0)A a-,2(,0)A a,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是22221 x ya b-=.2.过椭圆22221x ya b+=(a>0, b>0)上任一点00(,)A x y任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且22BCb xka y=(常数).3.若P为椭圆22221x ya b+=(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22a c co a cαβ-=+. 1. 设椭圆22221x y a b +=(a >b >0)的两个焦点为F1、F2,P (异于长轴端点)为椭圆上任意一点,在△PF1F2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin sin sin cea αβγ==+.2. 若椭圆22221x y a b +=(a >b >0)的左、右焦点分别为F1、F2,左准线为L ,则当0<e1时,可在椭圆上求一点P ,使得PF1是P 到对应准线距离d 与PF2的比例中项.3. P 为椭圆22221x y a b +=(a >b >0)上任一点,F1,F2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P三点共线时,等号成立.4. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.5. 已知椭圆22221x y a b +=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQS ∆的最小值是2222a b a b +.6. 过椭圆22221x y a b +=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.7. 已知椭圆22221x y a b +=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<. 8. 设P 点是椭圆22221x y a b +=( a >b >0)上异于长轴端点的任一点,F1、F2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=. 9. 设A 、B 是椭圆22221x y a b +=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b a γ∆=-.10. 已知椭圆22221x y a b +=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.11. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.12. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.13. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).14. (注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)15. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 16. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.17. 双曲线22221x y a b -=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是22221x y a b +=. 18. 若P 为双曲线22221x y a b -=(a >0,b >0)右(或左)支上除顶点外的任一点,F1, F2是焦点, 12PF F α∠=, 21PF F β∠=,则t a n t 22c a co c a αβ-=+(或t a n t 22c a co c a βα-=+).19. 设双曲线22221x y a b -=(a >0,b >0)的两个焦点为F1、F2,P (异于长轴端点)为双曲线上任意一点,在△PF1F2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )cea αγβ==±-.20. 若双曲线22221x y a b -=(a >0,b >0)的左、右焦点分别为F1、F2,左准线为L ,则当1<e1时,可在双曲线上求一点P ,使得PF1是P 到对应准线距离d 与PF2的比例中项.21. P 为双曲线22221x y a b -=(a >0,b >0)上任一点,F1,F2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P三点共线且P 和2,A F 在y轴同侧时,等号成立.22. 双曲线22221x y a b -=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A a B b C -≤.23. 已知双曲线22221x y a b -=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥.24. (1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQS ∆的最小值是2222a b b a -.25. 过双曲线22221x y a b -=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.26. 已知双曲线22221x y a b -=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a +≥或220a b x a +≤-. 27. 设P 点是双曲线22221x y a b -=(a >0,b >0)上异于实轴端点的任一点,F1、F2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2) 122cot 2PF F S b γ∆=. 28. 设A 、B 是双曲线22221x y a b -=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-. 29. (2) 2tan tan 1e αβ=-.(3)22222cot PABa b S b a γ∆=+.30. 已知双曲线22221x y a b -=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.31. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.32. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.33. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).34. (注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).35. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 36. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.圆锥曲线中的一些定点、定值、定比等结论结论1:设椭圆221122111(0)x y a b a b +=>>和双曲线222222221(0,0)x y a b a b -=>>共焦点1(,0)F c -,2(,0)F c ,P 是两曲线的一个交点,经过点P 的椭圆和双曲线的斜率分别为1k ,2k ,则121k k =-. 结论2:设抛物线22(0)y px p =>和椭圆22221(0)x y a b a b+=>>共焦点(,0)(0)F c c >,P 是两曲线的一个交点,椭圆的离心率是e ,经过点P 的两曲线切线的斜率为1k 和2k ,则2121(1)2k k e =-.(试选此题证明)结论3:设抛物线22(0)y px p =>和双曲线22221(0,0)x y a b a b-=>>共焦点(,0)(0)F c c >,P是两曲线的一个交点,双曲线的离心率是e ,经过点P 的两曲线切线的斜率为1k 和2k ,则2121(1)2k k e =-.结论4:抛物线的两条弦平行的充要条件是这两条弦的中点连线平行(或重合)于该抛物线对称轴.(试证明)结论5:椭圆与双曲线的两条平行弦的中点连线经过椭圆的中心.(试证明)结论6:过椭圆22221(0)x y a b a b +=>>的右顶点M (a ,0)作直线MA 与直线MB 交该椭圆于A ,B 两点,若MA ⊥MB ,则直线必过定点2222()(,0)a a b a b -+.(试证明)结论7:过椭圆22221(0)x y a b a b +=>>上的任意定点M (x 0, y 0)作直线MA 与直线MB 交椭圆于A ,B 两点,若MA ⊥MB ,则直线必过定点2222002222(,)a b b a x y a b a b --++.结论8:过椭圆22221(0)x y a b a b+=>>上的任意定点M (x 0, y 0)作直线MA 与直线MB 交椭圆于A ,B 两点,若k M A ·k MB =m 22()b m a ≠,则直线必过定点2222002222(,)a b b a x y a b a b --++.结论9:直线AB 与抛物线22(0)y px p =>相交于点A 和B ,若OA ⊥OB ,则此直线必过定点(2,0)p .结论10:直线与抛物线22(0)y px p =>交于A ,B 两点,M 是其顶点,当k M A ·k MB =m (0)m ≠时,直线恒过定点2(,0)pm-.(试用三种方法证明) 结论11:过抛物线22(0)y px p =>的任意定点M (x 0, y 0)作直线AM 与MB 交双曲线于A ,B 两点,当k M A ·k MB =m (0)m ≠时,直线AB 恒过定点002(,)px y m-+-. 结论12:已知抛物线22(0)y px p =>过点F (m ,0) (0)m ≠的直线交抛物线于点M 、N ,交y 轴于点P ,若 ,PM MF PN NF λμ==,则1λμ+=-.(试用三种方法证明)结论13:已知抛物线y 2=2px (p >0),过点M (0, m )(m ≠0)的直线与抛物线相交于不同的两点A 、B ,与x 轴相交于C (c ,0), 求证:|MC |2=|MA |·|MB |.结论14:已知椭圆22221(0)x y a b a b+=>>,过点F (m ,0)的直线交椭圆于点M 、N ,交y 轴于点P ,若,PM MF λ= PN NF μ=,则2222a m a λμ+=-.特别地,当F 为焦点时,222a bλμ+=-.(试证明)结论15:已知双曲线22221(0,0)x y a b a b-=>>,过点F (m ,0)的直线交椭圆于点M 、N ,交y 轴于点P ,若,P M M F λ= P N N F μ= ,则2222a m a λμ+=-.特别地,当F 为焦点时,222a b λμ+=. 结论16:A 、B 是椭圆22221(0)x y a b a b+=>>上的两点,且OA ⊥OB ,则22221111||||O A O B a b +=+.(试证明) 结论17:A 、B 是双曲线22221(0,0)x y a b a b-=>>上的两点,且OA ⊥OB ,则22221111||||O A O B a b +=-. 结论18:设12,,,nP P P 是椭圆22221(0)x y a b a b +=>>上的n 个点,且122311n n n POP P OP P OP P OP -∠=∠==∠=∠ ,则222221211111()2nn OP OP OP a b +++=+ .(试用极坐标方法证明)结论19:若M 、N 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,P 是椭圆上不同于M 、N 的任意一点,且,PM PN k k 存在,则22PM PN b k k a⋅=-.(试用点差法证明和函数与方程思想证明)结论20:若M 、N 是双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,P 是双曲线上不同于M 、N 的任意一点,且,PM PN k k 存在,则22PM PNb k k a⋅=. 结论21:直线AB 与椭圆22221(0)x y a b a b+=>>交于A 、B 两点,M 是AB 的中点,且直线AB 、OM 的斜率存在,证明:22OM ABb k k a⋅=-.结论22:直线AB 与双曲线22221(0,0)x y a b a b-=>>交于A 、B 两点,M 是AB 的中点,且直线AB 、OM 的斜率存在,证明:22OM ABb k k a⋅=. 结论23:过双曲线22221(0,0)x y a b a b-=>>上任意一点P 作双曲线的渐近线的平行线,分别交渐近线于点M 、N ,则224a b PM PN -⋅= .(试证明)结论24:设双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP (O 为坐标原点)分别交于Q 和R 两点.若,OR OP OQ OP λμ==,则1λμ=.结论25:设双曲线22221(0,0)x y a b a b-=>>的右顶点为A ,P 是双曲线上异于顶点的一个动点,从A 引双曲线的两条渐近线的平行线与直线OP (O 为坐标原点)分别交于Q 和R 两点.则2OR OQ OP ⋅= .(试证明23条)结论26:过双曲线22221(0,0)x y a b a b -=>>上任意一点P 作双曲线的渐近线的垂线,垂足分别为M 、N ,则22224()a b b a PM PN c -⋅= .结论27:过双曲线22221(0,0)x y a b a b-=>>上一点P 作双曲线的切线交两条渐近线分别于M 、N ,O 为坐标原点,则22OM ON a b ⋅=-.结论28:过抛物线22(0)y px p =>的焦点F 作一直线交抛物线于A 、B 两点,O 为坐标原点,则2||AOBS AB ∆=38p .结论29:过x 轴上一点A (-m ,0)(m >0)引动直线与抛物线22(0)y px p =>相交于M 、N 两点,过点M 、N 分别作抛物线的切线,则两条切线的交点的轨迹方程是x =m (y y ><.(试证明)结论30:过x 轴上一点2(,0)(0)a A a m m >>引一条动直线与椭圆22221(0)x y a b a b+=>>相交于M 、N 两点,过点M 、N 分别作椭圆的切线,则两条切线的交点轨迹方程是x =m (y y ><.结论31:过x 轴上一点2(,0)()a A m a m >引一条动直线与双曲线22221(0,0)x y a b a b-=>>相交于M 、N 两点,过点M 、N 分别作双曲线的切线,则两条切线的交点轨迹方程是x =m (y y ><.结论32:过直线x =m (y y ><上一点引抛物线22(0)y px p =>的两条切线,切点分别为M 、N ,则M 、N 的连线过定点(-m ,0). (试证明)结论33:过直线x =m (y y ><(a >m >0)上一点引椭圆22221(0)x y a b a b +=>>的两条切线,切点分别为M 、N ,则M 、N 的连线过定点2(,0)a m .结论34:过直线x =m (y y <()m a >上一点引双曲线22221(0,0)x y a b a b -=>>的两条切线,切点分别为M 、N ,则M 、N 的连线过定点2(,0)a m. 结论35:抛物线22(0)y px p =>的焦点为F ,过焦点F 作两条互相垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M 、N ,则线段MN 恒过定点3(,0)2pT ,且以AB ,CD 为直径的两圆公共弦中点的轨迹是以OT 为直径的圆. (试证明)结论36:椭圆22221(0)x y a b a b +=>>的焦点F (c ,0)(或F (-c ,0)),过焦点F 作两条互相垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M 、N ,则线段MN 恒过定点222(,0)a cT a b +或(222(,0)a c T a b -+),且以AB ,CD 为直径的两圆公共弦中点的轨迹是过定点为T 的圆.。
圆锥曲线经典性质总结及证明
圆锥曲线的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.(椭圆的光学性质)2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.(中位线)3. 以焦点弦PQ 为直径的圆必与对应准线相离.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.(第二定义)4. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b+=.(求导)5. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.(结合4)6. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.(余弦定理+面积公式+半角公式)7. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).(第二定义)8. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF9. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. MN 其实就在准线上,下面证明他在准线上根据第8条,证毕10. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。
有关圆锥曲线的经典结论【范本模板】
有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角。
2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=。
8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF 。
10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF 。
11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角。
高中数学_有关圆锥曲线的经典结论
有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
圆锥曲线的一些经典结论
圆锥曲线的一些经典结论1. 圆锥曲线有四种类型:椭圆、抛物线、双曲线和圆。
2. 椭圆:椭圆是圆锥曲线的一种,它由离心率小于1的点构成。
椭圆具有两个焦点和一个长轴和短轴。
3. 抛物线:抛物线是圆锥曲线的一种,它具有一个焦点和一个直线作为其轴线。
所有的点到焦点的距离都等于其到轴线的距离。
4. 双曲线:双曲线是圆锥曲线的一种,它由离心率大于1的点构成。
双曲线具有两个焦点和两个分离的曲线枝。
5. 圆:圆是圆锥曲线的一种特殊情况,它的离心率为零,所有的点到圆心的距离相等。
6. 圆锥曲线的方程:圆锥曲线可以通过方程来表示。
例如,椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心点,a 和b分别是长轴和短轴的长度。
7. 长轴和短轴:圆锥曲线具有两个轴,它们都通过曲线的中心点。
长轴是椭圆或双曲线的主轴,它的长度是贯穿曲线的最长距离。
短轴是与长轴垂直的轴,它的长度是贯穿曲线的最短距离。
8. 离心率:离心率是一个非常重要的指标,用来描述圆锥曲线的形状。
离心率通常用字母e表示,可以通过离心率的定义公式e =c/a来计算,其中c是焦点离中心的距离,a是长轴的长度。
9. 集点定理:集点定理是圆锥曲线研究的基本定理之一。
它表明,对于一个椭圆或双曲线,所有点到两个焦点的距离之和是常数,等于长轴的长度。
10. 曲率:曲率是描述曲线弯曲程度的属性。
圆锥曲线的曲率在不同点上有不同的值,它可以通过曲线的方程来计算。
这些是圆锥曲线的一些经典结论,它们是圆锥曲线理论的基础,可以应用在许多科学和工程领域,如天文学、物理学和工程学等。
有关圆锥曲线的经典结论04625
★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1.点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3.以焦点弦PQ 为直径的圆必与对应准线相离.4.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9.设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x ya b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 二、双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
12. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0),则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b-=-. 13. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0),则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b-=-. 椭圆与双曲线的对偶性质--(会推导的经典结论)椭 圆1. 椭圆22221x y a b+=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b-=.2. 过椭圆22221x y a b+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BC b x k a y =(常数).3. 若P 为椭圆22221x y a b+=(a >b >0)上异于长轴端点的任一点,F 1, F 2是焦点,12PF F α∠=, 21PF F β∠=,则tan t 22a c co a c αβ-=+. 4. 设椭圆22221x y a b+=(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记12F PF α∠=, 12PF F β∠=,12F F P γ∠=,则有sin sin sin ce aαβγ==+.5. 若椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当0<e 1时,可在椭圆上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为椭圆22221x y a b+=(a >b >0)上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF -≤+≤+,当且仅当2,,A F P 三点共线时,等号成立.7. 椭圆220022()()1x x y y a b --+=与直线0Ax By C ++=有公共点的充要条件是2222200()A a B b Ax By C +≥++.8. 已知椭圆22221x y a b+=(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ ⊥.(1)22221111||||OP OQ a b +=+;(2)|OP|2+|OQ|2的最大值为22224a b a b +;(3)OPQS ∆的最小值是2222a b a b +. 9. 过椭圆22221x y a b+=(a >b >0)的右焦点F 作直线交该椭圆右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知椭圆22221x y a b+=( a >b >0) ,A 、B 、是椭圆上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则22220a b a b x a a ---<<. 11. 设P 点是椭圆22221x y a b+=( a >b >0)上异于长轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=+.(2) 122tan 2PF F S b γ∆=.12. 设A 、B 是椭圆22221x y a b+=( a >b >0)的长轴两端点,P 是椭圆上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是椭圆的半焦距离心率,则有(1)22222|cos |||s ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PAB a b S b aγ∆=-. 13. 已知椭圆22221x y a b+=( a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC x ⊥轴,则直线AC 经过线段EF 的中点.14. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.) 17. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e. 18. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.双曲线1. 双曲线22221x y a b-=(a >0,b >0)的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b+=.2. 过双曲线22221x y a b-=(a >0,b >o )上任一点00(,)A x y 任意作两条倾斜角互补的直线交双曲线于B,C 两点,则直线BC 有定向且2020BC b x k a y =-(常数).3. 若P 为双曲线22221x y a b-=(a >0,b >0)右(或左)支上除顶点外的任一点,F 1,F 2是焦点, 12PF F α∠=, 21PF F β∠=,则tan t 22c a co c a αβ-=+(或tan t 22c a co c a βα-=+). 4. 设双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为双曲线上任意一点,在△PF 1F 2中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.5. 若双曲线22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1、F 2,左准线为L ,则当1<e 1时,可在双曲线上求一点P ,使得PF 1是P 到对应准线距离d 与PF 2的比例中项.6. P 为双曲线22221x y a b-=(a >0,b >0)上任一点,F 1,F 2为二焦点,A 为双曲线内一定点,则21||2||||AF a PA PF -≤+,当且仅当2,,A F P 三点共线且P 和2,A F 在y 轴同侧时,等号成立.7. 双曲线22221x y a b -=(a >0,b >0)与直线0Ax By C ++=有公共点的充要条件是22222A aB bC -≤.8. 已知双曲线22221x y a b-=(b >a >0),O 为坐标原点,P 、Q 为双曲线上两动点,且OP OQ ⊥. (1)22221111||||OP OQ a b +=-;(2)|OP|2+|OQ|2的最小值为22224a b b a -;(3)OPQS ∆的最小值是2222a b b a -. 9. 过双曲线22221x y a b-=(a >0,b >0)的右焦点F 作直线交该双曲线的右支于M,N 两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =. 10. 已知双曲线22221x y a b-=(a >0,b >0),A 、B 是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点0(,0)P x , 则220a b x a+≥或220a b x a +≤-.11. 设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2)122cot 2PF F S b γ∆=.12. 设A 、B 是双曲线22221x y a b-=(a >0,b >0)的长轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,c 、e 分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-.(2) 2tan tan 1e αβ=-.(3) 22222cot PABa b S b a γ∆=+. 13. 已知双曲线22221x y a b-=(a >0,b >0)的右准线l 与x 轴相交于点E ,过双曲线右焦点F 的直线与双曲线相交于A 、B 两点,点C 在右准线l 上,且BC x⊥轴,则直线AC 经过线段EF 的中点.14. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.15. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.16. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).17. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e. 18. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.其他常用公式:1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:212122111AB kx x y y k =+-=+- 2、直线的一般式方程:任何直线均可写成(A,B 不同时为0)的形式。