2018届九年级数学上学期期中试题 含答案
2018届九年级数学上学期期中试题新人教版及答案

2018届九年级数学上学期期中试题第Ⅰ卷(选择题)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列方程中是关于x 的一元二次方程的是A 、012=+xx B 、1322-=+x x x C 、2)2)(1(=--x xD 、0232=-y x2.用配方法解一元二次方程542=-x x 时,此方程可变形为A 、1)2(2=+xB 、1)2(2=-xC 、9)2(2=+xD 、9)2(2=-x3.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是 A 、m <1B 、m >﹣1C 、m >1D 、m <﹣14.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确的是A 、a <0B 、b 2﹣4ac <0C 、当﹣1<x <3时,y >0D 、12=-aby xO31- ABCA 'B '(4题) (5题) (7题)5.如图,将△ABC 绕点C 顺时针方向旋转40°,得△A ′B ′C ,若AC ⊥A ′B ′,则∠A 等于 A 、50°B 、60°C 、70°D 、80°6.已知点P (a ,1-)和Q (2,b )关于原点对称,则(a +b )2016的值为 A 、1-B 、1C 、2D 、07.如图,将△ABC 绕点C 顺时针旋转︒90后得到△C B A '',则点A 的对应点A '的坐标为A 、(0,2)B 、(0,3-)C 、(1-,0)D 、(3,0)8.如图,已知直线AB 切⊙O 于点A ,CD 为⊙O 的直径,若∠BAC =123°,则AD 所对的圆心角的度数为 A 、23°B 、33°C 、57°D 、66°9.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程A 、560(1+x )2=1850B 、560+560(1+x )2=1850C 、560(1+x )+560(1+x )2=1850D 、560+560(1+x )+560(1+x )2=185010.已知二次函数y =x 2﹣4x +m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣4x +m =0的两个实数根是A 、x 1=1,x 2=﹣1B 、x 1=1-,x 2=2C 、x 1=1-,x 2=0D 、x 1=1,x 2=3第Ⅱ卷(非选择题)90分二、填空题(本大题共5个小题,每小题3分,共15分)11.△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得△AB ′C ′,则△ABB ′是 三角形。
2018-2019学年度上学期期中九年级数学试卷及答案

2018-2019学年度上学期期中考试 九年级数学试题 (满分120分,时间120分钟)卷一(请将正确选项涂在答题卡上)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四1. 下列图形中,旋转60°后可以和原图形重合的是( ) A .正六边形 B .正五边形 C .正方形 D .正三角形 2.二次函数y =12x 2-4x +3的顶点坐标和对称轴分别是( )A .(1,2),x =1B .(-1,2), x =-1C .(-4,-5),x =-4D .(4,-5),x =43.抛物线y =x 2-2x +1与x 轴的交点个数是( ) A .0 B .1 C .2 D .34.将y =(2x -1)(x +2)+1化成y =a(x +m)2+n 的形式为( ) A .y =2(x +34)2-2516 B .y =2(x -34)2-178C .y =2(x +34)2-178D .y =2(x +34)2+1785.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( )A .先向左平移2个单位长度,再向上平移3个单位长度B .先向左平移2个单位长度,再向下平移3个单位长度C .先向右平移2个单位长度,再向下平移3个单位长度D .先向右平移2个单位长度,再向上平移3个单位长度6.设A(-4,y 1),B(-3,y 2),C(0,y 3)是抛物线y =(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 27.如图所示的桥拱是抛物线形,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面宽12 m ,这时水面离桥顶的高度为( )A .3 mB .2 6 mC .4 3 mD .9 m,(第8题图)),(第10题图))8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c<0;②a -b +c>1;③abc>0;④4a -2b +c<0;⑤c -a>1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤9.下列方程采用配方法求解较简便的是( ) A .3x 2+x -1=0 B .4x 2-4x -8=0 C .x 2-7x =0 D.()x -32=4x 210.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x ,y 应分别为( ) A .x =10,y =14 B .x =14,y =10 C .x =12,y =15 D .x =12,y =1211. 二次函数y =ax 2+bx +1(a ≠0)的图象的顶点在第一象限,且过点(-1,0).设t =a +b +1,则t 值的变化范围是( )A .0<t <1B .0<t <2C .1<t <2D .-1<t <112. 如图,O 是等边三角形的旋转中心,∠EOF =120°,∠EOF 绕点O 进行旋转,在旋转过程中,OE 与OF 与△ABC 的边构成的图形的面积( )A .等于△ABC 面积的13B .等于△ABC 面积的12 C .等于△ABC 面积的14 D .不能确定13. 点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是( )A.y 3>y 2>y 1B.y 3>y 1=y 2C.y 1>y 2>y 3D.y 1=y 2>y 314. 如图,△ABC 是等边三角形,四边形BDEF 是菱形,其中线段DF 的长与DB 相等,将菱形BDEF 绕点B 按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论. 甲:线段AF 与线段CD 的长度总相等;乙:直线AF 和直线CD 所夹的锐角的度数不变. 那么,你认为( )A .甲、乙都对B .乙对甲不对C .甲对乙不对D .甲、乙都不对15. 如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b),则点A ′的坐标为( ).A . (-b ,a) B. (b ,a) C. (-b ,-a) D. (b ,-a)16. 平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y =-16x 2+13x +32,绳子甩到最高处时刚好通过站在点(2,0)处跳绳的学生小明的头顶,则小明的身高为( )m .A.1.6B.1.5C.1.4 D1.314题图 15题图12题图2018-2019学年度上学期期中考试九年级数学试题卷二2分.把答案写在题中横线上)17.如图,把抛物线y=12x2平移得到抛物线m. 抛物线m经过点A(-6,0)和原点(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.(第17题图) (第19题图)18.在二次函数y=2则m的值为.19.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB,则点P与点P′之间的距离为,∠APB=.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. (本题8分)(1)用公式法解方程x2-3x-7=0.(2)解方程:4x(2x-1)=3(2x-1)21. (本题7分)如图,已知△ABC的顶点A,B,C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).(1)作出△ABC关于原点O中心对称的图形△A’B’C’;(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.22.(本题8分)如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.(1)画出旋转后的三角形;(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.23. (9分)如图,一个二次函数的图象经过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.24. (10分)已知关于x的函数y=ax2+x+1(a为常数).(1)若函数的图象与x轴恰有一个交点,求a的值;(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.25. (本题12分)感知:如图①,在△ABC 中,∠C =90°,AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合).连接AD ,将AD 绕着点D 逆时针旋转90°,得到DE ,连接BE ,过点D 作DF ∥AC 交AB 于点F ,可知△ADF ≌△EDB ,则∠ABE 的大小为________.并说明理由.探究:如图②,在△ABC 中,∠C =α(0°<α<90°),AC =BC ,D 是边BC 上一点(点D 不与点B ,C 重合),连接AD ,将AD 绕着点D 逆时针旋转α,得到DE ,连接BE ,求证:∠ABE =α. 应用:设图②中的α=60°,AC =2.当△ABE 是直角三角形时,AE =________.并说明理由.26. (本题12分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y 1与投资成本x 成正比例关系,种植花卉的利润y 2与投资成本x 的平方成正比例关系,并得到了表格中的数据:(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户计划用8万元资金投入种植花卉和树木,设他投入种植花卉金额m 万元,种植花卉和树木共获利润w 万元,求出w 与m 之间的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万元,在(2)的条件下,直接写出投资种植花卉的金额m 的范围.。
最新人教版2018年秋季九年级数学上期中测试题(含答案)(完整资料).doc

此文档下载后即可编辑芜湖希望教育 九年级数学(上册)期中试题满分:150分 时间:120分钟姓名: 得分:一、选择题(3分×10=30分)1.下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0A .①②B .①②④⑤C .①③④D .①④⑤2.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫⎝⎛0,21 C.(-1,5) D.(3,4) 3.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个4.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( )① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴 交点的横坐标.A.①②③④B.①②③C. ①②D.①5.方程(x-3)2=(x-3)的根为( ) A .3 B .4 C .4或3 D .-4或36.如果代数式x 2+4x+4的值是16,则x 的值一定是( )A .-2B .C .2,-6D .30,-347.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( )A .1B .-1C .2D .-28.从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( )A .100cm 2B .121cm 2C .144cm 2D .169cm 29.方程x 2+3x-6=0与x 2-6x+3=0所有根的乘积等于( ) A .-18 B .18 C .-3D .310.三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或D . 二、填空题(3分×10=30分)11.二次函数)()(32+-=xy 的图象的顶点坐标是(1,-2). 12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小.13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 .14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 .15.x 2-10x+________=(x-________)2.16.若关于x 的一元二次方程(m+3)x 2+5x+m 2+2m-3=0有一个根为0,则m=______,•另一根为________.17.方程x 2-3x-10=0的两根之比为_______.18.已知方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC•的第三边长为________.19.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.20.某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.三、解答题(共90分)21.用适当的方法解下列方程(每小题4分,共16分)(1)(3x-1)2=(x+1)2(2)2x2+x-12=0(3)用配方法解方程:x2-4x+1=0 (4)用换元法解方程:(x2+x)2+(x2+x)=622.(12分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,。
2018九年级数学上期中试题(含答案)

一、选择题(每小题3分,共计24分)1.方程x2-4x+3=0中二次项系数、一次项系数和常数项分别是()A.1,4,3 B.2,-4,3 C.1,-4,3 D.2,-4,32.二次函数y=x2-2x+1与x轴的交点个数是()A.0 B.1 C.2D.33.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A.70° B.50° C.40° D.35°4.到三角形三条边距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点第3题图C.三条高的交点 D.三边的垂直平分线的交点5.某型号的手机连续两次降阶,每台手机售价由原来的3600元降到2500元,设平均每次降价的百分率为x,则列出方程正确的是()A.2500(1+x)2=3600 B.3600(1-x)2=2500C.3600 (1-2x) = 2500 D.3600(1-x2)=25006.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c,为常数)的一个解x的范围是()5.1 5.2 5.3 5.4A.5.1<x<5.2 B.5.2<x<5.3 C.5.3<x<5.4 D.5.4<x<5.57.在Rt△ABC中,∠C=90°,AC=6,BC=8,则这个三角形的外接圆的半径是()A.10 B.5 C.4 D.38.抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.第II卷主观题部分二、填空题(每小题3分,共计30分)9.当m=_______时,关于x的方程2xm-2 =5是一元二次方程.10.函数y=6(x+1)2+3的顶点坐标是___________.11.关于x的一元二次方程x2+mx-6=0的一个根的值为3,则另一个根的值是_____.12.已知关于x的一元二次方程x2﹣2 x+k=0有两个相等的实数根,则k值为_____.13.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CAD=_______°.第13题图第14题图第18题图14.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5 cm,小圆的半径为3 cm,则弦AB的长为_______cm.15.在平面直角坐标系中,将二次函数y=2x2的图像向右平移1个单位长度,再向上平移3个单位长度,所得图像的函数关系式是____________________.16.已知抛物线y=ax2+bx+c=0(a≠0)与x轴交于A,B两点,若点A的坐标为(-1,0),抛物线的对称轴为直线x=2,则线段AB的长为__________.17.圆锥的侧面展开图的面积为,母线长为6,则圆锥的底面半径为________.18.如图,将边长为()cm的正方形绕其中心旋转45°,则两个正方形公共部分(图中阴影部分)的面积为___________cm2.三、解答题(共计86分)19.解方程(本题满分10分)(1) (x+1)2-9=0 (2)(x-4)2+2(x-4)=020.(本题满分8分)已知关于x的方程x2+4x+3-a=0.(1)若此方程有两个不相等的实数根,求a的取值范围;(2)在(1)的条件下,当a取满足条件的最小整数,求此时方程的解.21.(本题满分6分)如图,AB是半圆的直径,点D是AC︵的中点,∠ABC=50°,求∠BAD 的度数.22.(本题满分8分)已知:如图,AB是⊙O的直径,M、N分别为AO、BO的中点,CM⊥AB,DN⊥AB,垂足分别为M、N,连接OC、OD.求证:AC=BD.23. (本题满分8分)已知二次函数y1=x2-2x-3的图像与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点D的坐标,并在下面直角坐标系中画出该二次函数的大致图像;(2)设一次函数y2=kx+b(k≠0)的图像经过B、D两点,请直接写出满足y1≤y2的x的取值范围.24.(本题满分8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个,但售价不能超过70元.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少元?25.(本题满分8分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE,连接OC.(1)求证:DE是⊙O的切线;(2)若⊙O半径为4,∠D=30°,求图中阴影部分的面积(结果用含π和根号的式子表示).26.(本题满分8分)如图,用18米长的木方条做一个有一条横档的矩形窗子,窗子的宽AB 不能超过2米. 为使透进的光线最多,则窗子的长、宽应各为多少米?27.(本题满分10分)如图,抛物线与x轴交于A、B(A在B左侧)两点,一次函数y=-x+4与坐标轴分别交于点C、D,与抛物线交于点M、N,其中点M的横坐标是 .(1)求出点C、D的坐标;(2)求抛物线的表达式以及点A、B的坐标;(3)在平面内存在动点P(P不与A,B重合),满足∠APB为直角,动点P到直线CD的距离是否有最小值,如果有,请直接写出这个最小值的结果;如果没有,请说明理由。
2018九年级上数学期中考试试卷(含答案)

一、选择题(本大题共12小题,每小题3分,共36分)
1.下列各图中,不是中心对称图形的是()
A.①③ B.②④ C.②③ D.①④
2.方程x2﹣4=0的解为()
A.2 B.﹣2 C.±2 D.4
3.若x=1是方程ax2+bx+c=0的解,则()
A.a+b+c=1 B.a﹣b+c=0 C.a+b+c=0 D.a﹣b﹣c=0
4.已知点P(b,2)与点Q(3,2a)关于原点对称点,则a,b的值分别是()A.﹣1,3 B.1,﹣3 C.﹣1,﹣3 D.1,3
5.抛物线y=x2﹣3的顶点坐标、对称轴是()
A.(0,3),x=3 B.(0,﹣3),x=0 C.(3,0),x=3 D.(3,0),x=0
6.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()
A.(﹣1,﹣1) B.(1,﹣1) C.(﹣1,1) D.(1,1)
7.关于x的一元二次方程mx2﹣2x+1=0有两个相等实数根,则m的值为()A.﹣1 B.2 C.﹣2 D.1
8.下列描述抛物线y=(1﹣x)(x+2)的开口方向及其最值情况正确的是()A.开口向上,y有最大值 B.开口向上,y有最小值
C.开口向下,y有最大值 D.开口向下,y有最小值
9.用配方法解下列方程时,配方有错误的是()
A.x2﹣2x﹣99=0化为(x﹣1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2﹣7t﹣4=0化为(t﹣)2= D.3x2﹣4x﹣2=0化为(x﹣)2=。
人教版2018年秋九年级数学上册期中试卷(含答案解析)

人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。
一、选择题(共30分)1.方程(x+2)^2=4的根是()A。
x1=4,x2=-4B。
x1=0,x2=-4C。
x1=0,x2=2D。
x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。
2,-3B。
-2,-3C。
2,-5D。
-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。
(x-3)^2=0B。
3(x-1)^2=0C。
(x-1)^2=0D。
(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。
800(1+a%)^2=578B。
800(1-a%)^2=578C。
800(1-2a%)=578D。
800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。
y=3(x+2)^2+3B。
y=3(x+2)^2-3C。
y=3(x-2)^2+3D。
y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。
某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。
2018年秋季学期九年级数学上期中试题卷加答案

2018年秋季学期九年级数学上期中试题卷加答案数学试题卷一、单选题(共10 题,每题 4 分,共40 分)1.下列说法正确的是( )A.同圆或等圆中弧相等,则它们所对的圆心角也相等B.0°的圆心角所对的弦是直径C.平分弦的直径垂直于这条弦D.三点确定一个圆2.向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y ax2 bx .若此炮弹在第7 秒与第14 秒时的高度相等,则在下列哪一个时间的高度是最高的?( )A.第8 秒B.第10 秒C.第12 秒D.第15 秒3.若将函数y 2x2 的图象向上平移5 个单位,再向右平行移动 1 个单位,得到的抛物线是( )A.y 2x 5 2 1C.y 2x 1 2 5B.y 2x 5 2 1D.y 2x 1 2 54.一个布袋里装有 4 个只有颜色不同的球,其中 3 个红球,1 个白球.从布袋里摸出 1 个球,记下颜色后放回,搅匀,再摸出 1 个球,则两次摸到的球都是红球的概率是( )5.已知二次函数y ax2 bx c 的图象如图所示,有以下结论:①a+b+c<0;②a-b+c>1;③abc>0;④4a-2b+c<0;⑤c-a>1.其中正确的结论的个数是( )A.2 个B.3 个C.4 个D.5 个6.如图,AB 是半圆O 的直径,点C 在半圆O 上,把半圆沿弦AC 折叠,AC 恰好经过点O,则BC 与AC 的关系是( )A.BC 1 AC2B.BC 1 AC3C.BC ACD.不能确定7.如图,Rt△ABC 中,∠ACB=90°,CA=CB=2,以AB 的中点 D 为圆心DC 为半径,作圆心角为90°的扇形DEF,则图中阴影部分的面积为( )A. 2 2B. 1 2C.π-2 D.π-18.已知二次函数y=﹣x2+x+6 及一次函数y=﹣x+m,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=﹣x+m 与新图象有4 个交点时,m 的取值范围是( )A.25 m 3 4B.25 m 2 4C.﹣2<m<3 D.﹣6<m<﹣29.已知如图,抛物线y x2 2x 3 交x 轴于A、B 两点,顶点为C,CH⊥AB 交x 轴于H,在CH 右侧的抛物线上有一点P,已知PQ⊥AC,垂足为Q,当∠ACH=∠CPQ 时,此时CP 的长为( )10.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图 1 中C)按某种规律组成的一个大正方形,现有25×25 格式的正方形如图1,角上是三个7×7 的 A 型大黑白相间正方形,中间右下一个5×5 的 B 型黑白相间正方形,除这4 个正方形外,若其他的小正方形白色块数y 与黑色块数x 正好满足如图 2 所示的函数图象,则该25×25 格式的二维码共有多少块黑色的 C 型小正方形( )A.153 B.218 C.100 D.216二、填空题(共 6 题,每题 5 分,共30 分)11..如图,四个函数的图像中,分别对应的是:①y ax2 ;②y bx2 ;③y cx2 ;④y dx2 .则a、b、c、d 的大小关系为.第11 题图第13 题图12.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.13.如图,C 为半圆内一点,O 为圆心,直径AB 长为2cm,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为cm2.(结果保留π)14.平行于x 轴的直线l 分别与一次函数y=﹣x+3 和二次函数y=x2﹣2x﹣3 的图象交于A(x1,y1),B(x2,y2),C(x3,y3)三点,且x1<x2<x3,设m=x1+x2+x3,则m 的取值范围是.15.在平面直角坐标系,对于点P(x,y)和Q(x,y′),给出如下定义:若y y x 0,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点( ﹣1 ,3) 的“可控变点”为点( ﹣1 ,﹣3) .点( ﹣5 ,﹣2) 的“可控变点”坐标为;若点P 在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是﹣16≤y′≤16,实数 a 的取值范围为.16.某电商销售一款夏季时装,进价40 元/件,售价110 元/件,每天销售20 件,每销售一件需缴纳电商平台推广费用 a 元(a>0).未来30 天,这款时装将开展“每天降价 1元”的夏令促销活动,即从第 1 天起每天的单价均比前一天降 1 元.通过市场调研发现,该时装单价每降 1 元,每天销量增加 4 件.在这30 天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为.三、解答题(共8 题,共80 分)17.(8 分)某居民小区一处圆柱形的输水管破裂,维修人员为更新管道,需确定管道圆形截面的半径,如图所示是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求:保留作图痕迹,标出圆心O);(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.18.(8 分)已知抛物线y ax2 bx c 与x 轴交于点A(1,0),B(3,0),且过点C(0,-3) (1)求抛物线的表达式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x 上,并写出平移后抛物线的表达式.19.(8 分)如图,已知AB 是⊙O 的弦,OB=2,∠B=30°,C 是弦AB 上任意一点(不与点A、B 重合),连接CO 并延长CO 交⊙O 于点D,连接AD.(1)弦长AB 等于(结果保留根号);(2)当∠D=20°时,求∠BOD 的度数.20.(10 分)随着通讯技术迅猛发展,人与人之间的沟通方式更加多样、便捷.李老师组织数学兴趣小组的同学们开展了“你最喜欢的沟通方式”问卷调查活动,并在全校范围内随机调查了部分学生(每人必选且只选一种),将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)在扇形统计图中,表示“微信”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)寒假中的某一天,张明和李响都想从“电话”、“微信”、“QQ”三种沟通方式选一种方式与李老师联系,请用列表或画树状图的方法求出张明和李响两名同学恰好选中同一种沟通方式的概率.21.(10 分)已知在△ABC 中,AB=AC,以AB 为直径的⊙O 分别交AC 于D,BC 于E,连接ED.(1)求证:ED=EC;(2)若CD=3,EC 2,求AB 的长.22.(10 分)若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD 中,若AC=BD,AC⊥BD,则称四边形ABCD 为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O 的内接四边形ABCD 是“奇妙四边形”,若⊙O 的半径为6,∠BCD=60°.“奇妙四边形”ABCD 的面积为;(3)如图3,已知⊙O 的内接四边形ABCD 是“奇妙四边形”作OM⊥BC 于M.请猜测OM 与AD 的数量关系,并证明你的结论.23.(12 分)某商家销售一款商品,进价每件80 元,售价每件145 元,每天销售40 件,每销售一件需支付给商场管理费 5 元,未来一个月(按30 天计算),这款商品将开展“每天降价 1 元”的促销活动,即从第一天开始每天的单价均比前一天降低 1 元,通过市场调查发现,该商品单价每降 1 元,每天销售量增加 2 件,设第x 天(1≤x≤30 且x 为整数)的销售量为y 件.(1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?24.(14 分)如图,在平面直角坐标系xOy 中,已知A,B 两点的坐标分别为(-4,0),(4,0),C(m,0)是线段AB 上一点(与A,B 点不重合),抛物线L1:y ax2 b x c(a<0)经过点A,C,顶点为D,抛物线L2:y ax2 b x c (a<0)经过点C,B,顶点为E,AD,BE 的延长线相交于点F.(1)若 a 1 ,m=-1,求抛物线L ,L 的解析式;2 1 2(2)若a=-1,AF⊥BF,求m 的值;(3)是否存在这样的实数a(a<0),无论m 取何值,直线AF 与BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.。
2018年秋人教版九年级上册数学期中检测试卷(有答案)[精品]
![2018年秋人教版九年级上册数学期中检测试卷(有答案)[精品]](https://img.taocdn.com/s3/m/7d0a3dbca58da0116c17498e.png)
期中检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列标志中,是中心对称图形的是2.把方程2-12+33=0化成(+m)2=n的形式,则m,n的值是A.6,3B.-6,-3C.-6,3D.6,-33.已知点A(-2,3)与点B(+4,y-5)关于原点对称,则y的值是A.2B.C.4D.84.已知关于的一元二次方程(m+3)2+5+m2-9=0有一个解是0,则m的值为A.-3B.3C.±3D.不确定5.一个三角形的两边长为3和8,第三边的长是方程(-9)-13(-9)=0的根,则这个三角形的周长是A.20B.20或24C.9和13D.246.二次函数y=a2+bc+c的图象如图所示,则下列判断中错误的是A.图象的对称轴是直线=-1B.当>-1时,y随的增大而减小C.当-3<<1时,y<0D.一元二次方程a2+b+c=0的两个根是-3,17.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是A.15°B.20°C.30°D.25°8.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则企业停产的月份为A.2月和12月B.2月至12月C.1月D.1月、2月和12月9.已知关于的方程2+(1-)-1=0,下列说法正确的是A.当≠0时,方程总有两个不相等的实数解B.当=0时,方程无解C.当=-1时,方程有两个相等的实数解D.当=1时,方程有一个实数解10.如图,直线y=+b(≠0)与抛物线y=a2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论①抛物线y=a2(a≠0)的图象的顶点一定是原点;②>0时,直线y=+b(≠0)与抛物线y=a2(a≠0)的函数值都随着的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<<2时,a2+<b,其中正确的结论是A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如果关于的一元二次方程2(-4)-2+6=0没有实数根,那么的最小整数值是2.12.小颖用几何画板软件探索方程a2+b+c=0的实数根,作出了如图所示的图象,观察得一个近似根为1=-4.5,则方程的另一个近似根为2= 2.5.(精确到0.1)13.如图,一个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45°,AC1=4米,点D2的坐标为(-13,-1.69),则桥架的拱高OH= 7.24米.14.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A的坐标是(4n+1,).2n+1三、(本大题共2小题,每小题8分,满分16分)15.按要求解方程.(1)2+3+1=0(公式法);解1=-,2=--.(2)(-3)2+4(-3)=0(因式分解法).解1=3,2=.16.已知y=(m-2)+3+6是二次函数,求m的值,并判断此抛物线的开口方向,写出对称轴及顶点坐标.解∵y=(m-2)+3+6是二次函数,∴m-2≠0且m2-m=2,解得m=-1.将m=-1代入,得y=-32+3+6.抛物线开口向下,对称轴为=-,将=代入得y=,-×∴抛物线的顶点坐标为.四、(本大题共2小题,每小题8分,满分16分)17.如图,四边形ABCD是正方形,E,F分别是DC和CB延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证△ADE≌△ABF;(2)填空△ABF可以由△ADE绕旋转中心点,按顺时针方向旋转度得到;(3)若BC=8,DE=6,求△AEF的面积.解(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABF=90°.又∵DE=BF,∴△ADE≌△ABF(SAS).(2)A,90.(3)S△AEF=50.18.为打造“文化太湖,书香圣地”,太湖中学的学生积极开展“图书飘扬”活动,让全体师生创美好,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.解(1)由题意,得5月份借阅了名著类书籍的人数是1000×(1+10%)=1100(人),则6月份借阅了名著类书籍的人数为1100+340=1440(人).(2)设平均增长率为.1000(1+)2=1440,解得=0.2.答从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=-2+b+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数图象的对称轴与轴交于点C ,连接BA ,BC ,求△ABC 的面积和周长. 解(1)二次函数的解析式是y=-2+4-6.(2)∵对称轴=-=4,∴C 点的坐标是(4,0),∴AC=2,OB=6,AB=2 ,BC=2 ,∴S △ABC =AC ·OB=×2×6=6,△ABC 的周长=AC+AB+BC=2+2 +2 .20.设a ,b ,c 是△ABC 的三条边,关于的方程2+ +c-a=0有两个相等的实数根,方程3c+2b=2a 的根为=0. (1)试判断△ABC 的形状;(2)若a ,b 为方程2+m-3m=0的两个根,求m 的值. 解(1)∵2+ +c-a=0有两个相等的实数根,∴Δ=( )2-4× -=0,整理得a+b-2c=0①,又∵3c+2b=2a 的根为=0,∴a=b ②,把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形;(2)a ,b 是方程2+m-3m=0的两个根,∴方程2+m-3m=0有两个相等的实数根∴Δ=m 2-4×(-3m )=0,即m 2+12m=0,∴m 1=0,m 2=-12.当m=0时,原方程的解为=0(不符合题意,舍去),∴m=-12.六、(本题满分12分)21.中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为米. (1)若苗圃园的面积为72平方米,求;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出的取值范围. 解(1)根据题意得(30-2)=72,解得=3,=12,∵30-2≤18,∴=12.(2)设苗圃园的面积为y,∴y=(30-2)=-22+30,∵a=-2<0,∴苗圃园的面积y有最大值,∴当=时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤≤11,∴当=11时,y最小=88平方米.(3)由题意得-22+30≥100,∵30-2≤18,解得6≤≤10.七、(本题满分12分)22.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.解(1)如图1,延长EB交DG于点H,∵四边形ABCD和四边形AEFG为正方形,∴在Rt△ADG和Rt△ABE中,∠∠∴Rt△ADG≌Rt△ABE,∴∠AGD=∠AEB,∵∠HBG=∠EBA,∴∠HGB+∠HBG=90°,∴DG⊥BE;(2)如图2,过点A作AP⊥BD交BD于点P,∵四边形ABCD和四边形AEFG为正方形,∴在△DAG和△BAE中,∠∠∴△DAG≌△BAE(SAS),∴DG=BE,∵∠APD=90°,∴AP=DP=.∵AG=2,∴PG=-,∴DG=DP+PG=,∵DG=BE,∴BE=.八、(本题满分14分)23.抛物线与轴交于A,B两点(点B在点A的右侧),且A,B两点的坐标分别为(-2,0),(8,0),与y轴交于点C(0,-4),连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是轴上的一个动点,设点P的坐标为(m,0),过点P 作轴的垂线L交抛物线于点Q,交BD于点M.(1)求抛物线的解析式;(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?(3)位于第四象限内的抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出N点的坐标,及△BCN面积的最大值;若不存在,请说明理由.解(1)设抛物线的解析式为y=a2+b+c,根据题意得,-∴抛物线解析式为y=2--4.(2)∵C(0,-4),∴由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=+b',则解得=-,b'=4.∴直线BD的解析式为y=-+4.∵l⊥轴,∴点M的坐标为-,点Q的坐标为--.如图,当MQ=DC时,四边形CQMD 是平行四边形,∴---=4-(-4).化简得m2-4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.(3)存在,理由当过点N平行于直线BC的直线与抛物线只有一个交点时,△BCN的面积最大.∵B(8,0),C(0,-4),∴BC=4.直线BC解析式为y=-4,设过点N平行于直线BC的直线L解析是为y=+n①,∵抛物线解析式为y=2--4②,联立①②得,2-8-4(n+4)=0,③∴Δ=64+16(n+4)=0,∴n=-8,∴直线L解析式为y=-8,将n=-8代入③中得,2-8+16=0∴=4,∴y=-6,∴N(4,-6),如图,过点N作NG⊥AB,∴S△BCN =S四边形OCNG+S△MNG-S△OBC=(4+6)×4+(8-4)×6-×8×6=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届九年级数学上学期期中试题一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且只有一个是正确的,请将正确选项的字母填涂在答题卡相应的位置上. 1.下列图形中既是轴对称图形,又是中心对称图形的是A B C D 2.方程230x x -=的解是3⋅A 3,021==⋅x x B 3,021-==⋅x x C 3,121==⋅x x D3.抛物线122-=x y 的顶点坐标是)1,2(-⋅A )2,1(-⋅B )0,1(-⋅C )1,0(-⋅D4.如图,⊙O 的弦8AB =, OM AB ⊥于M ,且3OM =,则⊙O 的半径等于8⋅A 4⋅B 10⋅C 5⋅D5.关于x 的一元二次方程025)2(22=-++-m m x x m 的常数项为0,则m 的值为1⋅A 2⋅B 20或⋅C 0⋅D6.2017年某市人民政府投入1000万元用于改造乡村小学班班通工程建设,计划到2019年再追加投资210万元,如果每年的平均增长率相同,那么该市这两年该项投入的平均增长率为10⋅A % 8⋅B % 21.1⋅C % 1.12⋅D %7.如图, ,,A B C 三点在⊙O 上,且∠ACB =50︒,则∠AOB 等于130A ︒⋅ 100B ︒⋅ 50C ︒⋅ 40D ︒⋅8.若βα,是方程0201722=-+x x 的两个实数根,则βαα++32的值为2017⋅A 0⋅B 2015⋅C 2016⋅D9.如图所示的桥拱是抛物线形,其函数的表达式为241x y -=,当水位线在AB 位置时,水面宽m 12,这时水面离桥顶的高度为m A 3⋅ m B 62⋅ m C 34⋅ m D 9⋅10.已知二次函数962--=x kx y 的图象与x 轴有两个交点,则k 的取值范围为1->⋅k A 01≠->⋅k k B 且 1-≥⋅k C 1-<⋅k D11.二次函数c bx ax y ++=2的图象如图所示,对称轴是直线1-=x ,有以下结论:①0>abc ;②24b ac <;③02=+b a ;④2>+-c b a .其中正确的结论的个数是1⋅A 2⋅B 3⋅C 4⋅D12.在平面直角坐标系中,点A 的坐标为)2,1(--,将OA 绕原点O 逆时针旋转90得到A O ',点A '的坐标为),(b a ,则b a -等于3⋅A 1-⋅B 3-⋅C 1⋅D二、填空题(每小题3分,共12分) 13.当=m ▲ .关于x 的方程22+2210m m xx -+-=()是一元二次方程.14.已知关于x 的方程022=+-m x x 有两个相等的实数根,则m 的值是 ▲ .. 15.点)3,5(-P 关于原点的对称点的坐标为 ▲ .16.若点P 到⊙O 圆周上的最大距离为cm 8,最小距离为cm 2,则⊙O 的半径为 ▲ ..三、(每小题6分,共18分) 17.解方程:x x x 7210322+=+.18.()()223243x x -=-19.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的关系式,并指出当x 为何值时,y 随x 的增大而增大.四、(每小题7分,共14分)20.如图,ABC ∆三个顶点的坐标分别为)4,2(A ,)1,1(B ,)3,4(C . (1)请画出ABC ∆关于原点对称的111C B A ∆,并写出111,,C B A 的坐标;(2)请画出ABC ∆绕点B 逆时针旋转90后的222C B A ∆21.某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?五、(每小题8分,共16分)22.如图,BAC ∠的平分线交ABC ∆的外接圆于点D ,ABC ∠的平分线交AD 于点E . (1)求证:DB DE =;(2)若90=∠BAC ,5=BD ,求ABC ∆外接圆的半径.23.已知关于x 的一元二次方程()241210x m x m +++-=,(1)求证:不论m 为任何实数,方程有两个不相等的实数根; (2)设方程的两根分别为1x ,2x ,且满足121112x x +=-,求m 的值.六、(每小题12分,共24分)24.如图,点D 为⊙O 上一点,点C 在直径BA 的延长线上,且CBD CDA ∠=∠. (1)判断直线CD 和⊙O 的位置关系,并说明理由.(2)过点B 作⊙O 的切线BE 交直线CD 于点E ,若2=AC ,⊙O 的半径是3,求BE 的长.25.已知二次函数2y x bx c =-++的图象过点A (3,0)、C (-1,0). (1)求二次函数的解析式;(2)如图,二次函数的图象与y 轴交于点B ,二次函数图象的对称轴与直线AB 交于点P ,求P 点的坐标;(3)在第一象限内的抛物线上有一点Q ,当QAB ∆的面积最大时,求点Q 的坐标.2017年秋泸县九年级期中考试数学试题参考答案一、选择题:二、填空题:13.2 14.1 15.(﹣5,3). 16.5cm 或3cm三、17.解:原方程变形为:01072=+-x x ,…………………………1分 分解因式,得0)5)(2(=--x x ,…………………………………………3分 ∴02=-x 或05=-x ,…………………………………………………5分 即原方程的根为:21=x ,52=x .………………………………………6分 18.解:移项得:(3x −2)²−4(3−x )²=0…………………………1分 分解因式得:[(3x −2)+2(3−x )][(3x −2)−2(3−x )]=0,……………………3分 可得x +4=0或5x −8=0,…………………………………………………………………5分 解得:x ₁=−4,x ₂=85.…………………………………………………………………6分 19.解:根据题意得y =a (x ﹣2)2,……………………………………………………2分 把(1,﹣3)代入得a =﹣3,……………………………………………………………3分 所以二次函数解析式为y =﹣3(x ﹣2)2,………………………………………………4分 因为抛物线的对称轴为直线x =2,抛物线开口向下,………………………………………5分 所以当x <2时,y 随x 的增大而增大.……………………………………………………6分四、20.解:(1)如下图:△A 1B 1C 1为所求三角形,A 1的坐标为(-2,-4)、B 1的坐标为(-1,-1)、C 1的坐标为(-4,-3);……………………………………………………3分……………………………………………………5分(2)如下图:△A 2B 2C 2为所求三角形.…………………………………………………7分21.解:设降价x 元后销售这款工艺品每天能盈利3000元.…………………………1分 根据题意可得: ()()80405053000x x --+= .…………………………………………3分 解这个方程得: 121020x x ==,(不合题意,舍去)……………………………… …5分 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去) ………………………………… …6分 答:此时销售单价应定为75元.………………………………………………………… …7分五、(1)证明:∵AD 平分∠BAC ,BE 平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,.………………………………………1分∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,…………………………………………………………2分 ∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,……………………3分 ∴∠DBE=∠DEB,∴DE=DB;……………………………………………………………………4分(2)解:连接CD ,如图所示:………………………………………………………………5分 由(1)得:,∴CD=BD=5,………………………………………………………………………………6分 ∵∠BAC=90°, ∴BC 是直径, ∴∠BDC=90°, ∴BC==5,………………………………………………………………7分∴△ABC 外接圆的半径2252521=⨯=r .……………………………………………8分 分分分)证明:(3.............................................................................05162..............................................................4818161............................).........12(4)14(1.23222>+=+-++=--+=∆m m m m m m , ∴不论m 为任何实数,方程总有两个不相等的实数根……………………4分 (2) ∵121112x x +=-,即121212x x x x +=-,……………………………………………5分 ∴由根与系数的关系可得4121m m ---=-12,……………………………………………7分解得 m=−12,经检验得出m=−12是原方程的根,即m 的值为−12.………………………8分六.24.解:(1)直线CD 和⊙O 的位置关系是相切………………………………………1分 理由是:连接OD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,………………………2分 ∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,……………………………………………3分 ∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,……………………………………………………4分 已知D 为⊙O 的一点,∴直线CD 是⊙O 的切线,即直线CD 和⊙O 的位置关系是相切;…………………………………………………5分 (2)∵AC=2,⊙O 的半径是3,………………………………………………………6分 ∴OC=2+3=5,OD=3,在Rt△CDO 中,由勾股定理得:CD=4,…………………………………………………7分 ∵CE 切⊙O 于D ,EB 切⊙O 于B , ∴DE=EB,∠CBE=90°, 设DE=EB=x ,在Rt△CBE 中,由勾股定理得:CE 2=BE 2+BC 2,…………………………………9分 则(4+x )2=x 2+(5+3)2,………………………………………………………………10分 解得:x=6,即BE=6.……………………………………………………………………………12分25.解:(1)把点A (3,0)、C (-1,0)代入2y x bx c -=++中, 得10,{930b c b c ---+=++= 解得2,{ 3b c ==…………………………………………………2分∴抛物线的解析式为223y x x -=++…………………………………………………3分. (2)在223y x x -=++中,当x =0时y =3,∴B (0,3),…………………………4分 设直线AB 的解析式为y kx b =+,∴330b k b ⎧⎨⎩=+=,∴13k b -⎧⎨⎩==,…………………………………………………………5分∴直线AB 的解析式为3y x -=+,当x =1时,y =2,∴P (1,2).…………………………………………………………6分 (3)设Q (m , 223m m -++),△QAB 的面积为S ,……………………………7分 连接QA ,QB ,OQ ,则S =S S S OBQ OAQ OAB - +……………………………………8分 =()211123?222OB m OA m m OA OB ⨯⨯--+++ 又∵3OA OB ==, ∴S =()2132332m m m ⨯⨯--++ 23327228m ⎛⎫-- ⎪⎝⎭=+=()2332m m -- …………………………………………………………………………10分 ∴当32m =时S 最大,此时223m m -++=154,…………………………………………………………11分∴Q (32, 154).…………………………………………………………12分。