初一上册数学第二单元试卷及答案

合集下载

人教版(2024)数学七年级上册第二章 有理数的运算 单元测试(含答案)

人教版(2024)数学七年级上册第二章 有理数的运算 单元测试(含答案)

第二章 有理数的运算一、单选题1.徐州地铁1号线全长31900米,将31900用科学记数法表示为( )A .3.19×102B .0.319×103C .3.19×104D .0.319×1052.计算(−2)3+23等于( )A .0B .16C .32D .−323.武汉市某天凌晨的气温是−3℃,中午比凌晨上升了8℃,中午的气温是( )A .2℃B .3℃C .7℃D .5℃4.下列各对数中,数值相等的是( )A .−23与(−2)3B .−32与(−3)2C .(−1)2023与(−1)2024D .(−2)3与(−3)2 5.下列问题情境,不能用加法算式−2+8表示的是( )A .某日最低气温为−2℃,温差为8℃,该日最高气温B .用8元纸币购买2元文具后找回的零钱C .数轴上表示−2与8的两个点之间的距离D .水位先下降2cm ,再上升8cm 后的水位变化情况6.某粮店出售的三种品牌的面粉袋上分别标有质量为(50±0.2)kg ,(50±0.3)kg ,(50±0.4)kg 的字样,从中任意拿出两袋,则这两袋的质量最多相差与最少相差分别为( )A .0.8kg 和0.4kgB .0.6kg 和0.4kgC .0.8kg 和0kgD .0.8kg 和0.6kg 7.在简便运算时,把12×(−9991112)变形成最合适的形式是( ) A .12×(−1000+112)B .12×(−1000−112)C .12×(−999−1112)D .12×(−999+1112)8.在1,2,−2这三个数中,任意两数之商的最小值是( )A .12B .−12C .−1D .−29.规定a △b =a −2b ,则3△(−2)的值为( )A .7B .−5C .1D .−110.a ,b 两数在一条隐去原点的数轴上的位置如图所示,下列5个式子:℃a −b <0,℃a +b <0,℃ab <0,℃(a +1)(b +1)<0,℃(a −1)(b +1)<0中一定成立的有( )A.2个B.3个C.4个D.5个二、填空题11.将式子(−20)+(+3)−(−5)−(+7)省略括号和加号后变形正确的是.12.将13.549精确到十分位得.13.一潜艇所在的高度是−50m,一条鲨鱼在潜艇的上方20m处,那么鲨鱼所在的高度为m.14.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是米.15.如果x、y都是不为0的有理数且xy<0,则代数式x|x|+|y|y的值是.16.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.17.设非零数a是平方等于它本身的数,b是相反数等于它本身的数,c是绝对值最小的数,则a+b+c=.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.三、解答题19.计算.(1)12−(−6)+(−5)−15;(2)−113÷(−3)×(−13);(3)(−23+58−16)×(−24);(4)−14+16÷(−2)3×|−3−1|.20.阅读下面的解题过程:计算:(−15)÷(13−112−3)×6.解:原式=(−15)÷(−256)×6(第一步)=(−15)÷(−25)(第二步)=−35(第三步)回答:(1)上面解题过程中有两个错误,两处错误分别是第______,______步.(2)请写出正确的计算过程.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.出租车司机小李某天上午的营运都是在一条东西走向的大道上,规定向东为正,向西为负,这天上午小李的行车路程(单位:千米)如下:+3,−2,+15,−1,+12,−3,−2,−23.(1)当小李将最后一名乘客送到目的地时,车距出发地的距离是多少千米?在什么方向?(2)若每千米的营运额为7元,则小李这天上午的总营运额为多少元?(3)在(2)的条件下,如果营运成本为1.5元/千米,那么这天上午小李盈利多少元?参考答案:1.C2.A3.D4.A5.C6.C7.A8.D9.A10.C11.−20+3+5−712.13.513.−3014.250015.016.1817.118.1119.(1)−2(2)−427(3)5(4)−920.(1)二,三(2)108521.(1)不足5.5千克(2)389元22.(1)车在出发地西1千米处(2)427元(3)335.5元。

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案

人教版七年级数学上册《第二章有理数》单元检测卷带答案一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.133.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B04.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.1325.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.167.观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.18.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数且满足1<<3,则x+y的值.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是;(2)数轴上表示3和﹣6的两点之间的距离是.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是.(2)①若|x﹣(﹣1)|=3,则x=;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=时,|x+1|+|x﹣2|+|x﹣3|有最小值.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值在的范围时,|x|+|x﹣2|的最小值是;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.参考答案与试题解析一.选择题1.点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【解答】解:∵ab<0,a+b>0∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c∴a>b∴数b对应的点为点M故选:A.2.如图,在一个由6个圆圈组成的三角形里,把1到6这6个数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最大值是()A.9B.10C.12D.13【解答】解:三边之和是3s,等于1+2+…+6三个顶点的值.而三个顶点的值最大是4+5+6当三个顶点分别是4,5,6时可以构成符合题目的三角形.所以s最大为(1+2+3+4+5+6+4+5+6)÷3=12.故选:C.3.计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的对应关系如表:十六进制01234567十进制01234567十六进制89A B C D E F十进制89101112131415例如,用十六进制表示E+D=1B,用十进制表示也就是13+14=1×16+11,则用十六进制表示A×B=()A.6E B.72C.5F D.B0【解答】解:∵表格中A对应的十进制数为10,B对应的十进制数为11∴A×B=10×11由十进制表示为:10×11=6×16+14又表格中E对应的十进制为14∴用十六进制表示A×B=6E.故选:A.4.用十进制记数法表示正整数,如:365=300+60+5=3×102+6×101+5,用二进制记数法来表示正整数,如:5=4+1=1×22+0×21+1,记作:5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作:14=(1110)2,则(1010110)2表示数()A.60B.72C.86D.132【解答】解:(1010110)2=1×26+0×25+1×24+0×23+1×22+1×21+0×1=86.故选:C.5.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示.请帮张阿姨分析一下,选择一个最省钱的购买方案.此时,张阿姨购买这三件物品实际所付出的钱的总数为()原价(元)优惠方式欲购买的商品一件衣服420每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300付款时可以使用购物券,但不返购物券A.500元B.600元C.700元D.800元【解答】解:应该先买鞋子花280现金,因为鞋子不能使用购物券,返200购物券;再买衣服花220现金+200购物券,可返200购物券再加100现金买化妆品.所以共计280+220+100=600.故选:B.6.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是48,36,24;后轴上有四个齿轮,齿数分别是36,24,16,12.则这种变速车共有多少档不同的车速()A.4B.8C.12D.16【解答】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;∴主动轴上可以有3个变速∵后轴上有四个齿轮,齿数分别是36,24,16,12∴后轴上可以有4个变速∵变速比为2,1.5,1,3的有两组又∵前后齿轮数之比如果一致,则速度会相等∴共有3×4﹣4=8种变速故选:B.7.观察下列各式:31=332=933=2734=8135=24336=72937=218738=6561…用你发现的规律判断32004的末位数字是()A.3B.9C.7D.1【解答】解:设n为自然数,∵31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561…∴34n+1的个位数字是3,与31的个位数字相同34n+2的个位数字是9,与32的个位数字相同34n+3的个位数字是7,与33的个位数字相同34n的个位数字是1,与34的个位数字相同∴32004=3501×4的个位数字与34的个位数字相同,应为1.故选:D.8.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…推测330的个位数字是()A.1B.3C.7D.9【解答】解:30÷4=7 (2)所以推测330的个位数字是9.故选:D.二.填空题9.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c字母a b c d e f g h i j k l m序号0123456789101112字母n o p q r s t u v w x y z序号13141516171819202122232425按上述规定,将明文“maths”译成密文后是wkdrc.【解答】解:m、a、t、h、s分别对应的数字为12、0、19、7、18,它们分别加10除以26所得的余数为22、10、3、17、2,所对应的密文为wkdrc.故答案为:wkdrc.10.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:;按此方式,将二进制(1101)2换算成十进制数的结果是13.【解答】解:(1101)2=1×23+1×22+0×21+1×20=8+4+0+1=13.故答案为:13.11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”,而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为一天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据.已知二进位制与十进位制比较如下表:十进位制0123456…二进位制011011100101110…请将二进位制数10101010(二)写成十进位制数为170.【解答】解:10101010(二)=1×27+0×26+1×25+0×24+1×23+0×22+1×21+0×20=128+32+8+2=170.故答案为:170.12.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2,f(4)=3,…;(2)f()=2,f()=3,f()=4,f()=5,…利用以上规律计算:f(2009)﹣f()=﹣1.【解答】解:f(2009)﹣f()=2008﹣2009=﹣1.13.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是8.【解答】解:观察可得规律:2n的个位数字每4次一循环∵15÷4=3 (3)∴215的个位数字是8.故答案为:8.14.我们定义=ad﹣bc,例如=2×5﹣3×4=10﹣12=﹣2.若x、y均为整数,且满足1<<3,则x+y的值±15或±9.【解答】解:根据题意得:1<xy﹣12<3则13<xy<15因为x、y是整数,则x=±1时,y=±14;当x=±2时,y=±7当x=±3时,y的值不存在;当x=±4,±5,±6,±8,±9,±10,±11,±12,±13时,y的值不存在;当x=±14时,y=±1;当x=±7时,y=±2.则x+y=1+14=15,或x+y=﹣1﹣14=﹣15,或x+y=2+7=9,或x+y=﹣2﹣7=﹣9.故x+y=±15或±9.故答案为:±15或±9.三.解答题15.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|3﹣1|可以理解为数轴上表示3和1的两点之间的距离;|3+1|可以理解为数轴上表示3与﹣1的两点之间的距离.从“数”的角度看:数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示.根据以上阅读材料探索下列问题:(1)数轴上表示4和8的两点之间的距离是4;数轴上表示3和﹣6的两点之间的距离是9.(直接写出最终结果)(2)若数轴上表示的数x和﹣2的两点之间的距离是12,则x的值为10或﹣14;.(3)若x表示一个有理数,则|x+1|+|x﹣3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【解答】解:(1)根据题意可知,因为数轴上表示4和﹣3的两点之间的距离可用|4﹣(﹣3)|表示所以数轴上表示4和8的两点之间的距离是|8﹣4|=4,数轴上表示3和﹣6的两点之间的距离是|3﹣(﹣6)|=9.故答案为:4;9;(2)根据题意,得:|x﹣(﹣2)|=12∴|x+2|=12∴x+2=﹣12或x+2=12解得:x=﹣14或x=10故答案为:10或﹣14;(3)∵|x+1|+|x﹣3|表示x到﹣1和3的距离之和∴当x在﹣1和3之间时距离和最小,最小值为|﹣1﹣3|=4故|x+1|+|x﹣3|有最小值,最小值为4.16.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看作|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)数轴上表示4和﹣2的两点之间的距离是6.(2)①若|x﹣(﹣1)|=3,则x=2或﹣4;②若使x所表示的点到表示3和﹣2的点的距离之和为5,请列出所有符合条件的整数,并求出它们的积是多少.【拓展延伸】(3)当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值.【解答】解:(1)表示4和﹣2两点之间的距离是|4﹣(﹣2)|=6故答案为:6;(2)①∵|x﹣(﹣1)|=3∴x+1=3或x+1=﹣3解得:x=2或x=﹣4故答案为:2或﹣4;②∵使x所表示的点到表示3和﹣2的点的距离之和为5∴|x﹣3|+|x+2|=5∵3与﹣2的距离是5∴﹣2≤x≤3∵x是整数∴x的值为﹣2,﹣1,0,1,2,3∴所有符合条件的整数x的积为0;(3)解:∵|x+1|+|x﹣2|+|x﹣3|表示数轴上有理数x所对应的点到﹣1、2和3所对应的点的距离之和∴当x=2时,|x+1|+|x﹣2|+|x﹣3|有最小值4.故答案为:2.17.认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5,3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5,﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,A,B两点在数轴上分别表示有理数a,b,那么A,B两点之间的距离可表示为|a﹣b|.(1)如果A,B,C三点在数轴上分别表示有理数x,﹣2,1,那么点A到点B的距离与点A到点C的距离之和可表示为|x+2|+|x﹣1|(用含绝对值的式子表示);(2)利用数轴探究:①满足|x﹣3|+|x+1|=6的x的值是﹣2、4②设|x﹣3|+|x+1|=p,当x的取值在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的取值在不小于0且不大于2的范围时,|x|+|x﹣2|的最小值是2;(3)求|x﹣3|+|x﹣2|+|x+1|的最小值以及此时x的值;(4)若|x﹣3|+|x﹣2|+|x﹣1|+|x|≥a对任意有理数x都成立,求a的最大值.【解答】解:(1)A到B的距离与A到C的距离之和可表示为|x+2|+|x﹣1|.故答案为:|x+2|+|x﹣1|;(2)①满足|x﹣3|+|x+1|=6的x的所有值是﹣2、4.故答案为:﹣2,4;②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在不小于0且不大于2的范围时,|x|+|x﹣2|取得最小值,这个最小值是2;故答案为:4;不小于0且不大于2;2;4,2;(3)由分析可知当x=2时能同时满足要求,把x=2代入原式=1+0+3=4;(4)|x﹣3|+|x﹣2|+|x﹣1|+|x|=(|x﹣3|+|x|)+(|x﹣2|+|x﹣1|)要使|x﹣3|+|x|的值最小,x的值取0到3之间(包括0、3)的任意一个数,要使|x﹣2|+|x﹣1|的值最小,x取1到2之间(包括1、2)的任意一个数,显然当x取1到2之间(包括1、2)的任意一个数能同时满足要求,不妨取x=1代入原式,得|x﹣3|+|x﹣2|+|x﹣1|+|x|=2+1+0+1=4;方法二:当x取在1到2之间(包括1、2)时,|x﹣3|+|x﹣2|+|x﹣1|+|x|=﹣(x﹣3)﹣(x﹣2)+(x﹣1)+x+=﹣x+3﹣x+2+x﹣1+x=4.。

七年级上册数学第二单元测试卷【含答案】

七年级上册数学第二单元测试卷【含答案】

七年级上册数学第二单元测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 6/125. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘,其积一定是合数。

()2. 三角形的内角和等于180度。

()3. 任何偶数乘以偶数都是偶数。

()4. 分子和分母相同的分数是最简分数。

()5. 所有平行四边形的对角线都相等。

()三、填空题(每题1分,共5分)1. 17和______是互质数。

2. 三角形的内角和等于______度。

3. 5.6是______小数。

4. 分子和分母相同的分数等于______。

5. 平行四边形的对边______且______。

四、简答题(每题2分,共10分)1. 请写出5个质数。

2. 请写出5个偶数。

3. 请写出5个分数。

4. 请写出5个三角形。

5. 请写出5个平行四边形。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个三角形的底是6厘米,高是4厘米,求这个三角形的面积。

3. 一个平行四边形的底是8厘米,高是5厘米,求这个平行四边形的面积。

4. 一个圆的半径是10厘米,求这个圆的周长。

5. 一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。

六、分析题(每题5分,共10分)1. 请分析两个质数相乘,其积为什么一定是合数。

2. 请分析三角形的内角和为什么等于180度。

七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个正方形。

人教版七年级数学上册第二章单元测试题(含答案)

人教版七年级数学上册第二章单元测试题(含答案)

人教版七年级数学上册第二章单元测试题(含答案)一、单选题1.下列各组单项式中,属于同类项的是( )A .2x y 与22yxB .2ab 与2a b -C .4x -与4y -D .3ab 与3a b2.下列说法正确的是( )A .单项式2xy-的系数是-2 B .单项式23x y -与4x 是同类项 C .单项式2x yz -的次数是4D .多项式3221x x --是三次三项式3.下列各式中,正确的是( )A .325a a a +=B .235a b ab +=C .321ab ab -=D .22223a b a b a b -=-4.多项式245634a a a ---的最高次项为( )A .-4B .4C .44aD .44a -5.一台整式转化器原理如图,开始时输入关于x 的整式M ,当21M x =+时,第一次输出41x +,继续下去,则第3次输出的结果是( )A .161x +B .141x +C .121x +D .81x +6.已知单项式13a b x y -与436x y 是同类项,则代数式a+b 的值为( )A .5B .6C .7D .87.下列说法中正确的个数是( )⑴a 和0都是单项式.⑵多项式2223721a b a b ab -+-+的次数是3. ⑶单项式22π3a b -的系数为23-.⑷222x xy y +-可读作2x 、2xy 、2y -的和. A .1个B .2个C .3个D .4个8.将1,2,3,4,5,6六个数随机分成2组,每组各3个,分别用 1a , 2a , 3a 和 1b , 2b ,3b 表示,且 123a a a << , 123b b b >> ,设 112233m a b a b a b =-+-+- ,则 m 的可能值为( ). A .3B .39或C .9D .59或9.已知代数式x 2+ax -2y +7-(bx 2-2x +9y -1)的值与x 的取值无关,则a +b 的值为( )A .-1B .1C .-2D .210.多项式8x 2-3x+5与多项式3x 3+2mx 2-5x+7相加后,不含二次项,则常数m 的值是( )A .2B .-4C .-2D .-8二、填空题11.将多项式2233235x y xy x y -++-按字母y 降幂排列是 . 12.多项式2365a a --中的常数项是 .13.若42m a b -与325n a b +是同类项,则m n -+的值是 . 14.若单项式12m xy -与32n x y -的差是单项式,则m n -的值是 .15.如图,数轴上有三个点A 、B 、C ,表示的数分别是﹣4、﹣2、3,请回答:(1)若使C 、B 两点的距离与A 、B 两点的距离相等,则需将点C 向左移动 个单位(其中点C 不与点A 重合).(2)若在表示﹣1的点处有一只小青蛙,一步跳1个单位长.小青蛙第1次先向左跳1步,第2次再向右跳3步,然后第3次再向左跳5步,第4次再向右跳7步…按此规律继续跳下去,那么跳第99次时,应跳 步,落脚点表示的数是 .(3)若移动A 、B 、C 三点中的两个点,使三个点表示的数相同,移动方法有 种,其中移动所走的距离和最小的是 个单位;(4)若数轴上有个动点表示的数是x ,则|x+4|+|x+2|+|x-3|的最小值是 .16.把四张形状大小完全相同的小长方形卡片(如图①),卡片长为x ,宽为y ,不重叠地放在一个底面为长方形(宽为a )的盒子底部(如图②),盒底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是 (用只含b 的代数式表示).三、解答题17.先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.18.已知 22a b -=- ,求代数式 ()()22324232ab a b ab a b -+--+ 的值.19.先化简,再求值:()42424443a ab a ab a ---+,其中3a =-,2b =.20.已知有理数a 、b 、c 在数轴上对应的点如下图所示,化简:|||2|||b a a c c b --+-+21.设 ()()3254326356107133212ax x x x b x x x x x -+++=+-++- ,求a 与b 的值22.已知A=a 2-2ab+b 2,B=-a 2-3ab-b 2,求:2A-3B 。

七年级数学上册第二章单元测试题及答案

七年级数学上册第二章单元测试题及答案

七年级数学上册第二章单元测试题及答案一、填空题:1、|-222|=222,-(-222)=222,-1/(-2)=1/22、+1.2米表示水位上升1.2米3、距离为|-3.5-4.5|=84、a=-b+45、p点向左移动3个单位后为-7,再向右移动1个单位长度为-6,所以p点表示的数为-66、最大的负整数为-1,最小的正整数为1,它们的和为7、-1(2003+2004)=-20078、|x||y|=xy9、a的取值范围为a≤-1/210、a=±,b=±二、选择题:1、B。

2、C。

3、D。

4、C。

5、D。

6、A。

7、A。

8、D。

9、C。

10、D三、计算题:1、(-16)+(-6)+(-16)+8=-302、(-5.3)+(-3.2)-(-2.5)-4.8=-1.23、(-8)×(-25)×(-0.02)=44、|-1|÷|-10|2=1/205、(-1)÷(-10)=1/10四则运算题目:1、(-36+1557-)/(-3+1/2)2、(-3)*(-2)/(6+8-4/3)3、-2/(-4)-33/74、100/(-2)-(-2)/(-8/3)解答:1、(-36+1557-)/(-3+1/2) = (-.5)/(-5/2) = .62、(-3)*(-2)/(6+8-4/3) = 6/433、-2/(-4)-33/7 = 25/284、100/(-2)-(-2)/(-8/3) = -50-3/2 = -101/2改写后的解答:1、计算(-36+1557-)/(-3+1/2)的值。

首先将分母化为通分数,即(-3+1/2) = (-6/2+1/2) = -5/2,然后进行除法运算,得到(-36+1557-)/(-5/2) = (-.5)/(-5/2) = .6.2、计算(-3)*(-2)/(6+8-4/3)的值。

先将加减法运算进行化简,即6+8-4/3 = 18/3+24/3-4/3 = 38/3,然后进行乘除法运算,得到(-3)*(-2)/(38/3) = 6/43.3、计算-2/(-4)-33/7的值。

七年级上册数学第二单元测试卷附答案.doc

七年级上册数学第二单元测试卷附答案.doc

七年级上册数学第二单元测试卷附答案.doc七年级上册数学第二单元测试卷附答案一、选择题1、下列叙述正确的是( )(A)有理数中有的数. (B)零是整数中最小的数.(C)有理数中有绝对值最小的数. (D)若一个数的平方与立方结果相等,则这个数是0.2、下列近似数中,含有3个有效数字的是( )(A)5 430. (B)5.430×10 (C)0.543 0. (D)5.43万.3、已知两数相乘大与0,两数相加小于0,则这两数的符号为( )(A) 同正. (B)同负. (C)一正一负. (D)无法确定.4、若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( )(A)10. (B)-10. (C)6. (D)-6.5、算式( - - )×24的值为( )(A)-16. (B)16. (C)24. (D)-24.6、已知不为零的a,b两数互为相反数,则下列各数不是互为相反数的是( )(A)5 a与5 b. (B)a 与b . (C) 与 . (D)a 与b .7、按下面的按键顺序在某型号计算器上按键:显示结果为( )(A)56.25. (B)5.625. (C)0.562 5. (D)0.056 25.8.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80每立方米,那么这个月甲用户应交煤气费 ( )A.64元B.66元C.72元D.96元9. 3是3 的近似值,其中3 叫做真值,若某数由四舍五入得到的近似数是27,则下列各数中不可能是27的真值的是 ( )A.26.48B.26.53C.26.99D.27.0210.小华和小丽最近测了自己的身高,小华量得自己约1.6m,小丽测得自己的身高约为 1.60m,下列关于她俩身高的说法正确的是( )A.小华和小丽一样高B.小华比小丽高C.小华比小丽低D.无法确定谁高二、填空题11. - 的倒数是 ;- 的相反数是,- 的绝对值是 ;- 的平方是 .12、比较下列各组数的大小:(1) ; (2)- - ;(3) -2 (-2) ;(4)(-3) -3 .13、(1)近似数2.5万精确到位;有效数字分别是 ;(2)1纳米等于十亿分之一米,用科学记数法表示25米= 纳米.14.数轴上表示有理数-3.5与4.5两点的距离是 .。

浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)

浙教版数学七年级上册第二章 有理数的运算单元测试卷(含答案)

浙教版数学七年级上册第二章有理数的运算一、选择题1.下列各对数中,互为相反数的是( )A.+(﹣2)与﹣(+2)B.﹣(﹣3)与|﹣3|C.﹣32与(﹣3)2D.﹣23与(﹣2)32.已知数549039用四舍五入法后得到的是5.490×105,则所得近似数精确到( ).A.十位B.百位C.千分位D.万位3.两数相加,如果和小于任何一个加数,那么这两个数( )A.同为正数B.同为负数C.一正数一负数D.一个为0,一个为负数4.下列说法正确的是( )A.1是最小的自然数B.平方等于它本身的数只有1C.任何有理数都有倒数D.绝对值最小的数是05.用“▲”定义一种新运算:对于任何有理数a和b,规定a▲b=ab+b2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A.−4B.4C.−8D.86.有理数a,b在数轴上的对应点如图所示,则下列式子中错误的是( )A.ab>0B.a+b<0C.a﹣b<0D.b﹣a<07.一件衣服的进价为100元,商家提高80%进行标价,为了吸引顾客,商店进行打7折促销活动,商家出售这件衣服时,获得的利润是( )A.26元B.44元C.56元D.80元8.若x、y二者满足等式x2−3y=3x+y2,且x、y互为倒数,则代数式x2−3(x+y)+5−y2−4xy的值为( )A.1B.4C.5D.99.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .1202110.计算机利用的是二进制数,它共有两个数码0,1,将一个十进制数转化为二进制,只需将该数写为若干个2n 的数字之和,依次写出1或0的系数即可,如十进制数字19可以写为二进制数字10011,因为19=16+2+1=1×24+0×23+0×22+1×21+1×20,32可以写为二进制数字100000,因为32=32=1×25+0×24+0×23+0×22+0×21+0×20,则十进制数字70是二进制下的( )A .4位数B .5位数C .6位数D .7位数二、填空题11.2022年11月20日晚,卡塔尔世界杯正式开幕,仅两天时间,抖音世界杯总话题播放量高达21480000000次,其中数21480000000用科学记数法表示为  .12.计算(−1)2023÷(−1)2004=  .13.一个数的立方等于它本身,这个数是 14.如图所示的程序图,当输入﹣1时,输出的结果是  .15.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .16.如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即a =9+1+3+5+7+9=34;步骤2:计算前12位数字中奇数位数字的和b ,即b =6+0+2+4+6+8=26;步骤3:计算3a 与b 的和c ,即c =3×34+26=128;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即d =130;步骤5:计算d 与c 的差就是校验码X ,即X =130−128=2.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是 .三、解答题17.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 18.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,−3,+10,−8,−6,+12,−10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?19.已知a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,求代数式(−ab)2024−3(c+d)−n+m2的值.20.在一条不完整的数轴上从左到右有A,B,C三点,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以C为原点,写出点A,B所对应的数,计算p的值;(2)若p的值是﹣1,求出点A,B,C所对应的数;(3)在(2)的条件下,在数轴上表示|﹣0.5|、(﹣1)3和A,B,C所对应的数,并把这5个数进行大小比较,用“<”连接.21.现定义一种新运算“*”,对任意有理数a、b,规定a*b=ab+a﹣b,例如:1*2=1×2+1﹣2.(1)求2*(﹣3)的值;(2)求(﹣3)*[(﹣2)*5]的值.22.目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.一户居民一个月用电量(单位:度)电价(单位:元/度)第1档不超过180度的部分0.5第2档超过180度的部分0.7(1)若该市某户12月用电量为200度,该户应交电费 元;(2)若该市某户12月用电量为x度,请用含x的代数式分别表示0≤x≤180和x>180时该户12月应交电费多少元;(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?23.如图,已知数轴上有A,B两点,分别代表−40,20,两只电子蚂蚁甲,乙分别从A,B两点同时出发,甲沿线段AB以1个单位长度秒的速度向右运动,到达点B处时运动停止;乙沿BA方向以4个单位长度秒的速度向左运动.(1)A,B两点间的距离为 个单位长度;乙到达A点时共运动了 秒.(2)甲,乙在数轴上的哪个点相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲,乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.答案解析部分1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】D7.【答案】A8.【答案】A9.【答案】B10.【答案】D11.【答案】2.148×101012.【答案】−113.【答案】0或±114.【答案】715.【答案】0或4或﹣416.【答案】417.【答案】(1)解:如图所示(2)50(3)-818.【答案】(1)守门员最后回到了球门线的位置(2)12米(3)54米19.【答案】解:∵a、b互为倒数,c、d互为相反数,|m|=3,n是最大的负整数,∴ab=1,c+d=0,m2=9,n=−1,∴(−ab)2024−3(c+d)−n+m2=(−1)2024−3×0−(−1)+9=1−0+1+9=11.20.【答案】(1)解:若以C为原点,∵AB=2,BC=1,∴B表示﹣1,A表示﹣3,此时,p=(﹣3)+(﹣1)+0=﹣4;(2)解:设B对应的数为x,∵AB=2,BC=1,则A点表示的数为x﹣2,C表示的数为x+1,p=x+x+1+x﹣2=﹣1;x=0,则B点为原点,∴A表示﹣2,C表示1;(3)解:如图所示:故﹣2<(﹣1)3<0<|﹣0.5|<1.21.【答案】(1)解:2*(﹣3)=2×(﹣3)+2﹣(﹣3)=﹣6+2+3=﹣1;(2)解:(﹣3)*[(﹣2)*5]=(﹣3)*[(﹣2)×5+(﹣2)﹣5]=(﹣3)*(﹣17)=(﹣3)×(﹣17)+(﹣3)﹣(﹣17)=51﹣3+17=65.22.【答案】(1)104(2)解:当0≤x≤180时,该户12月应交电费为0.5x元;当x>180时,该户12月应交电费为0.5×180+0.7(x−180),=90+0.7x−126,=(0.7x−36)(元).(3)解:∵104<125,∴x>180,∴0.7x−36=125,∴x=230.答:该户12月用电量为230度.23.【答案】(1)60;15(2)解:60÷(4+1)=12,−40+12=−28.答:甲,乙在数轴上的−28点相遇(3)解:两种情况:相遇前,(60−10)÷(4+1)=10;相遇后,(60+10)÷(4+1)=14,答:10秒或14秒时,甲、乙相距10个单位长度;(4)解:乙到达A点需要15秒,甲位于−40+15=−25,乙追上甲需要25÷(1+4)=5(秒)此时相遇点的数是−25+5=−20,故甲,乙能在数轴上相遇,相遇点表示的数是−20.。

七年级上册数学第二章单元测试卷(含答案)

七年级上册数学第二章单元测试卷(含答案)

七年级上册数学第二章单元测试卷(含答案)知识要点一:单项式1.正确的说法是:C。

-x的系数是-1.2.正确的说法是:C。

x2-3xy2+2x2y3-1是五次多项式。

3.单项式-x2yz2的系数、次数分别是:C。

-1.5.4.单项式(-1)mabm的系数是(-1)m,次数是m+1.5.若单项式a4b-2m+1与-2am2bm+7是同类项,则m的值为:B。

2或-2.6.若-2axbx-y与5a2b5的和仍是单项式,则x=1,y=10.7.单项式-3x2yz37的系数是-3,次数是7.8.四次单项式(m-n)xm-3y的系数为-3,求m,n的值:m=4,n=1.9.如果单项式3a2b3m-4的次数与单项式1x3y23的次数相同,试求m的值:m=2.知识要点二:多项式11.多项式4x3-3x2y4+2m-7的项数与次数分别是:A。

4,9.12.如果m是三次多项式,n是三次多项式,那么m+n一定是:C。

三次多项式。

13.一个五次多项式,它任何一项的次数:D。

都不大于5.14.2a4-a3b2-5ab3+a2-1是次项式。

它的最高次项是a4,常数项是-1.把它按a的升幂排列是:a4-a3b2-5ab3+a2-1.15.如果多项式3xm-(n-1)x+1是关于x的二次二项式,则m=2,n=4.1.多项式-3xy+1/2x^2-5x的项分别是-3xy。

1/2x^2.-5x。

2.已知多项式-3/5x^2ym+1+x^2y^2-3y^2+8是六次四项式,单项式2x^2ny^5-m与该多项式的次数相同,求m,n的值。

由题可得2n+m+6=4,解得m=2-2n。

又因为单项式2x^2ny^5-m的次数为2n+5-m,与多项式的次数相同,代入可得2n+5-m=6,代入m=2-2n,解得n=1,m=0.3.当m为何值时,(m+2)xm^2y^2-3xy^3是六次二项式?由题可知该多项式的次数为6,即m+2+2=6,解得m=2.4.若k(k-1)x^2-kx+x+8是关于x的一次多项式,求k的值。

初一上册数学第二单元试卷及答案

初一上册数学第二单元试卷及答案

初一上册数学第二单元试卷及答案一、选择题(每小题3分,共30分)1.计算a+(-a)的结果是()A.2a B.0C.-a2D.-2a2.在代数式x2+5 ,-1,x2-3x+2,π,5x,x2+1x+1中,整式有()A.3个B.4个C.5个D.6个3.下列结论正确的是()A.x2y28的系数是8B.-23mnx的次数是1C.单项式a没有系数,也没有次数D.-x2y3是三次单项式,系数为-134.用式子表示“a的3倍与b的差的平方”,正确的是()A.(3a-b)2 B.3(a-b)2 C.3a-b2 D.(a-3b)25.下列说法正确的是()A.23与23xy是同类项B.x2与12x是同类项C.0.5x2y2与7x2y3是同类项D.5mn2与-4mn2是同类项6.计算2a-3(a-b)的结果是()A.-a-3b B.a-3b C.a+3b D.-a+3b7.下面各题去括号错误的是()A.x-6y-12=x-6y+12B.2m+-n+13a-b=2m-n+13a-bC.-12(4x-6y+3)=-2x+3y+3D.a+12b--13x+27=a+12b+13c-278.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-139.观察下列图形:图1它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()A.57个B.60个C.63个D.85个10.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出的第10个单项式是() A.-29x10 B.29x10 C.-29x9 D.2 9x9二、填空题(每小题3分,共24分)11.计算:2x-3x=________.12.多项式-m2n2+m3-2n-3是____次____项式,次项的系数为______,常数项是______.13.若单项式5x4y和25xnym是同类项,则m+n的值为________.14.三角形的三边长分别为3a,4a,5a,则这个三角形的周长是________.15.有a名男生和b名女生在社区做义工,他们为建花坛搬砖,男生每人搬了20块,女生每人搬了15块,这a 名男生和b名女生一共搬了________块砖(用含a、b的代数式表示).16.已知2a-3b2=5,则10-2a+3b2的值是________.17.煤气费的收费标准为:每月用气若不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某住户某个月用煤气x立方米(x>60),则该住户应交煤气费____________元.18.下面是按一定规律排列的一列数:23,-45,87,-169,…,那么第n个数是________.三、解答题(共66分)19.(10分)计算:(1)(8xy-3x2)-5xy-2(3xy-2x2);(2)-2x2-12[3y2-2(x2-3y2)+6].20.(12分)先化简,再求值.(1)-(x2+3x)+2(4x+x2),其中x=-2.(2)(3a2-ab+7)-(5ab-4a2+7),其中a=2,b=13.21.(8分)某工厂第一车间有x人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:(1)两个车间共有多少人?(2)调动后,第一车间的人数比第二车间多多少人?22.(8分)已知某船顺水航行2小时,逆水航行3小时.(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?23.(8分)某中学一宿舍楼前一块长为32x,宽为x的空地.学校向全校师生征集这块地的绿化设计方案并要求绿地面积不少于58x2,图2是学生小明的设计方案,阴影部分是绿地.试问小明的设计方案是否合乎要求?为什么?图224.(8分)学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=-2,b=2 012时,求(3a2b -2ab2)+4a-2(2a2b-3a)+2ab2+12a2b-1的值”.盈盈做后成对同桌说:“张老师给的条件b=2 012是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话请你计算说明盈盈的说法是否正确.25.(12分)如图3,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形剪成四个小正方形,如此循环进行下去.图3(1)填表:剪的次数1 2 3 4 5正方形的个数(2)如果剪了100次,共剪出多少个小正方形?(3)如果剪n次,共剪出多少个正方形?(4)观察图形,你还能得出什么规律?答案解析1.B【解析】a+(-a)=a-a=0.故选B.2.B 3.D 4.A 5.D6.D【解析】2a-3(a-b)=2a-3a+3b=-a+3b.故选D.7.C8.C9.B10.B11.-x【解析】原式=(2-3)x=-x.12.四四-1-313.5【解析】由题意可知,n=4,m=1,所以m+n=4+1=5.14.12a15.(20a+15b)16.517.(1.2x-24)18.(-1)n+12n2n-119.解:(1)原式=8xy-3x2-5xy-(6xy-4x2)=8xy-3x2-5xy-6xy+4x2=-3xy+x2;(2)原式=-2x2-12(3y2-2x2+6y2+6)=-2x2-12(9y2-2x2+6)=-2x2-92y2+x2-3=-x2-92y2-3.20.解:(1)-(x2+3x)+2(4x+x2)=-x2-3x+8x+2x2=x2+5x.当x=-2时,原式=(-2)2+5×(-2)=4-10=-6;(2)(3a2-ab+7)-(5ab-4a2+7)=3a2-ab+7-5ab+4a 2-7=7a2-6ab,把a=2,b=13代入7a2-6ab,得7a2-6ab=7×22-6×2×13=24.21.解:(1)由题意可知,第二车间的人数为45x-30人,所以两个车间共有x+45x-30=x+45x-30=95x-30人;(2)由题意可知,第一车间的的人数为(x+10)人,第二车间的人数为45x-40人,所以第一车间的人数为比第二车间多(x+10)-45x-40=x+10-45x+40=15x+50人.22.解:(1)由题意可得,顺水航行速度为(x+y)千米/时,逆水航行速度为(x-y)千米/时,则轮船共航行2(x+y)+3(x-y)=2x+2y+3x-3y=(5x-y)千米.(2)当x=60,y=5时,原式=5×60-5=300-5=295(千米).即轮船共航行295千米.23.解:绿色面积为:x&#8226;32x-12x&#8226;34x-12π&#8226;14x2=32x2-38x2-132πx2=36-π32x2.因为36-π32x2>58x2,所以小明的设计方案合乎要求.24.解:原式=3a2b-2ab2+4a-4a2b+6a+2ab2+a2b-1=10a-1.当a=-2时,原式=10×(-2)-1=21.因为化简后的结果中不再含有字母b,所以最后的结果与b的取值无关,因此说b=2 012这个条件是多余的.所以盈盈的说法是正确的.25.(1)47101316(2)剪100次,共剪出3×100+1=301个正方形.(3)剪n次,共剪出(3n+1)个小正方形.。

七年级上册数学第二单元试卷【含答案】

七年级上册数学第二单元试卷【含答案】

七年级上册数学第二单元试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 梯形D. 圆形二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。

()2. 任何一个三角形的内角和都是180度。

()3. 一个长方体的六个面都是长方形。

()4. 0是最小的自然数。

()5. 平行四边形的对边相等。

()三、填空题(每题1分,共5分)1. 1千米等于______米。

2. 一个三角形的两个内角分别是45度和90度,那么第三个内角是______度。

3. 5的立方是______。

4. 如果一个数的平方是64,那么这个数是______。

5. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的表面积是______平方厘米。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请解释三角形的内角和为什么是180度。

3. 请简述长方体的体积计算公式。

4. 请解释偶数和奇数的区别。

5. 请简述平行四边形的特征。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是12厘米、8厘米和6厘米,请计算它的体积。

2. 如果一个三角形的两个内角分别是30度和60度,请计算第三个内角的度数。

3. 请找出20以内的所有质数。

4. 请计算下列各数的平方根:25、36、49。

5. 请找出一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的表面积。

七年级上册数学第二单元试卷及答案

七年级上册数学第二单元试卷及答案

精心整理七年级上册数学第二单元试卷及答案一、选择题1、下列叙述正确的是()(A)(C)2(A 3(A)4、()(A 5(A )-16.(B )16.(C )24.(D )-24.6、已知不为零的a,b 两数互为相反数,则下列各数不是互为相反数的是()(A)5a与5b.(B)a与b.(C)与.(D)a与b.7、按下面的按键顺序在某型号计算器上按键:显示结果为()(A)56.25.(B)5.625.(C)0.5625.(D)0.05625.8.1.2A.649.3数是10.() A.高二、填空题11.-的倒数是;-的相反数是,-的绝对值是;-的平方是.12、比较下列各组数的大小:(1);(2)--;(3)-2(-2);(4)(-3)-3.13、(1)近似数2.5万精确到位;有效数字分别是;(2.14.15.(16.李明算||17如图长方形纸片,请你写出最后余下未贴部分的面积的表达式:.18.a是不为1的有理数,我们把称为a的差倒数.如:3的差倒数是=-,-1的差倒数是=.已知a1=2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,则a2010=。

三、解答题19、计算(1)(-18)÷2×÷(-16);(2)4+3×(-2)+3;(3)-6×(-)-7;(4)30÷(-).20.下表是某水站记录的潮汛期某河一周内的水位变化情况(正号表(1)(2)21.3天平是否已22.23.一辆汽车沿着一条南北方向的公路来回行驶.某一天早晨从A地出发,晚上到达8地.约定向北为正,向南为负,当天记录如下:(单位:千米)-18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5(1)问B地在A地何处,相距多少千米?(2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?24、股民小杨上星期五买进某公司股票1000股,每股27元,下表为(1(2(3额的25.,参考答案1.C2.D3.C4.B5.D6.A7.D8.A9.-;;;10.(1)(3)<(4)=11.(1)千,2,5(2)2.5×1012.1-13.(1)1(2)7(3)-55(4)90014.(1)(+2.20)+(+1.42)+(-0.80)=2.82(元),即上涨2.82元(2)27+2.20+1.42=30.62(元),27+2.20+1.42-0.80-2.52=27.3(3=28488 15.。

人教版七年级数学上册第二章测试题

人教版七年级数学上册第二章测试题

人教版七年级数学上册第二章测试题一、选择题(每题3分,共30分)1. 下列式子中,整式为()A. x + 1B. (1)/(x + 1)C. √(x + 1)D. (1)/(x^2)解析:整式为单项式和多项式的统称。

单项式是数或字母的乘积,多项式是几个单项式的和。

A选项x + 1是多项式,属于整式;B选项(1)/(x+1)分母中含有字母,是分式不是整式;C选项√(x + 1)是根式不是整式;D选项(1)/(x^2)分母中有字母,是分式不是整式。

所以答案是A。

2. 单项式-3π xy^2z^3的系数和次数分别是()A. - 3π,5B. -3,6C. -3π,6D. -3,5.解析:单项式的系数是指单项式中的数字因数,所以单项式-3π xy^2z^3的系数是-3π;单项式的次数是指单项式中所有字母的指数和,这里x的次数是1,y的次数是2,z的次数是3,所以次数为1+2 + 3=6。

所以答案是C。

3. 下面计算正确的是()A. 3a - 2a = 1B. 3a^2+2a = 5a^3C. 3a + 3b = 6abD. 2xy - 3yx=-xy解析:A选项,3a-2a=a,不是1;B选项,3a^2与2a不是同类项不能合并;C选项,3a与3b不是同类项不能合并;D选项,2xy和3yx是同类项,合并同类项时系数相减,字母和字母的指数不变,2xy-3yx=(2 - 3)xy=-xy。

所以答案是D。

4. 一个多项式与x^2-2x + 1的和是3x - 2,则这个多项式为()A. -x^2+5x - 3B. -x^2+x - 1C. x^2-5x + 3D. x^2-5x - 13解析:所求多项式等于和减去另一个多项式,即(3x - 2)-(x^2-2x + 1)=3x-2 -x^2+2x - 1=-x^2+(3x + 2x)-(2 + 1)=-x^2+5x - 3。

所以答案是A。

5. 化简-(a - b + c)的结果是()A. -a + b + cB. -a + b - cC. a - b + cD. a - b - c解析:去括号法则:括号前面是负号,去掉括号后括号里的各项都变号。

数学人教版七年级上册第二单元02测试试卷(含答案)

数学人教版七年级上册第二单元02测试试卷(含答案)

数学人教版7年级上册第2单元单元专题卷02一、单选题1.计算18(2)(2-÷-⨯-的结果是( )A .8B .8-C .2D .2-2.计算()162⎛⎫-÷-⎪⎝⎭的结果是( )A .12B .3C .3-D .12-3.有一个数字键“4”坏了的计算器,用这个计算器计算2425⨯时,下列按键方案中( )合适.A .3825⨯⨯B .6425⨯⨯C .25251⨯-D .22325⨯⨯⨯4.下列各数中,倒数等于本身的是( )A .2-B .1-C .12D .25.2020-的倒数的相反数是( )A .2020B .12020C .12020-D .2020±6.2-的倒数是( )A .2B .12C .2-D .12-7.计算()()20241-⨯-的结果为( )A .2024B .2024-C .12024D .12024-8.数轴上表示a 、b 两数的点分别在原点左、右两侧,下列结论一定正确的是( )A .0a b +>B .0a b ->C .0ab <D .0a b ÷>9.汽车油箱中有汽油20L ,行驶的平均耗油量为0.1L/km ,则汽车最多能行驶( )A .100kmB .200kmC .300kmD .400km10.下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③数a 、b 互为相反数,它们的积一定为负;④四个有理数相乘,若有三个负因数,则积为负.A .1个B .2个C .3个D .4个11.如图,一个拧紧瓶盖的瓶子里装有一些水,根据图中数据,可以算出瓶中水的体积占瓶子容积的( )A .49B .12C .59D .4512.要使―3□1的运算结果最小,则“□”内应填入的运算符号为( )A .+B .-C .⨯D .÷13.如果00<+>,ab a b ,那么( )A .00a b >>,B .00a b <<,C .a ,b 异号且负数的绝对值较小D .a ,b 异号且负数的绝对值较大14.12024-的倒数是( )A .12024-B .12024C .2024-D .202415.若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .416.计算32333222n m +++=⨯⨯个个( )A .32n m B .32nmC .32mn D .23n m 17.式子12345中的,,,是数字1,2,3,4,5中间的四个位置,在这些位置上添加“+”“-”“⨯”“÷”符号后得到一个算式,若不添加符号,则相邻数字自然组合为一个多位数.如:在添加“⨯”,在添加“+”,,不添加符号,得到的算式为:12345⨯+,结果为239.下列说法:①添加“⨯”“÷”两个运算符号,得到的算式有10种不同的结果;②存在一种添加“+”“-”“⨯”“÷”四个符号的算式,其结果为315;③只添加“+”“-”“⨯”三个符号,得到的算式中,结果最大为170.其中正确的个数是( )A .0B .1C .2D .318.下列计算正确的是( )A .733.5384⎛⎫-÷⨯-=- ⎪⎝⎭B .12323-÷⨯=-C .556(4)64-÷-⨯=D .11113065⎛⎫-÷÷=- ⎪⎝⎭19.从和为55的10个不同的非零自然数中,取出3个数后,余下的数之和是55的711,则取出的3个数的积最大等于( )A .280B .270C .252D .216二、填空题20.毛主席在《七律・长征》中守道“更喜岷山千里雪,三军过后尽开颜.”《七律・长征》等于1935年9月下旬,10月定稿.1934年10月,中国工农红军从江西瑞金出发,他们跋山涉水,翻过连绵起伏的五岭,突破了乌江天险,四渡赤水,越过乌蒙山,巧渡金沙江,飞夺泸定桥,爬雪山,过草地,最后翻过岷山,历经十一个省,于1936年10月到达陕北,是人类史上一个伟大的事件.岷山,自中国甘肃省南部延伸至四川省西北部的一褶皱山脉,全长约一千里.某幅地图上,测量得长征的路线全长近似于岷山全长的25倍,由此估计长征的路线全长大约为 里.21.如果0abc ->,且b 、c 异号,则a0.(用“>”号或“<”号填空)22.定义一种运算:2m n mn m n *=-+;则()25-*=.23.《九章算术》是我国古代第一部数学专著,不仅最早提到分数问题,也首先记录了“盈不足”等问题,在第七章“盈不足”中有这样一个问题:“今有蒲生一日,长三尺.蒲生日自半”.其意思是“有蒲这种植物,蒲第一日长了3尺,以后蒲每日生长的长度是前一日生长的长度的一半”.根据题意,第三日蒲生长的长度为尺.24.根据工信部组织修订的《电动自行车安全技术规范》强制性国家标准,电动自行车最高设计车速不超过25公里/小时.已知张老师家距学校5千米,在不违反交通规则的情况下,张老师骑电动自行车从家到学校所需时间至少有 分钟.25.商店一周共亏损840元,平均每天的利润是元.(记盈利额为正数,亏损额为负数.)26.把335165778591,,,,,六个数分为两组,每组三个数,使两组的积相等,则这两组数之和的差为27.已知0x y z ++=,0xyz ≠,则xyzy z z x x y +++++的值是.28.车间里有五台车床同时出现故障.已知第一台至第五台修复的时间如下表:车床代号A B C D E 修复时间(分钟)83111617若每台车床停产一分钟造成经济损失10元,修复后即可投入生产.(1)若只有一名修理工,且一名修理工每次只能修理一台机床,则下列三个修复车床的顺序:①D B E A C →→→→;②D A C E B →→→→;③C A E B D →→→→中,经济损失最少的是(填序号);(2)如果由两名修理工同时修复车床,且每台机床只由一名修理工修理,则最少经济损失为元.29.A ,B 两个港口相距24千米,水由A 流向B ,水流速度是4千米/时,甲、乙两船同时由A 向B 行驶,各自不停地在A ,B 之间往返航行.已知甲在静水中的速度是20千米/时,乙在静水中的速度是16千米/时.(1)甲往返一趟所需时间是 小时,乙往返一趟所需时间是 小时;(2)出发后航行 小时,甲、乙两船恰好首次同时回到A 港口.三、解答题30.水果店将售价80元/千克的草莓配上售价35元/千克的葡萄,搭配成水果拼盘.现在把0.5千克草莓和1千克葡萄搭配后,每千克至少卖多少钱才不会亏本?31.2018年至2022年底,中国高铁运营里程超过4.2万公里,位居世界第一位.高铁的票价是按“票价=全程票价×实际乘车里程数总里程数”的方法计算,已知A 站至G 站全程票价为800元,沿途各站的里程数如图.根据这些信息,请你解决以下问题.(1)A 站至F 站的票价是多少元?(2)王叔叔从D 站上车,购买了一张160元的票,他在哪一站下车?请说明理由.32.对于有理数a ,b ,定义新运算“ ”,规则如下:4a b ab a b =--+ ,如353535411=⨯--+= .(1)求()34- 的值.(2)请你判断交换律在“ ”运算中是否成立?并给出证明.33.简便计算()()15480.125484884-⨯+⨯+-⨯34.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)5+2-5-15+10-16+9-(1)写出该厂星期一生产工艺品的数量;(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量;(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.35.若a ,b ,c 为有理数,且1||||||a b c a b c ++=-,求||abcabc 的值.36.小艾同学的父亲是一名交警,假期某天早上,小艾随父亲乘交通巡逻车从恒隆出发,在红旗路上巡视,中午到达学校门口,如果规定向东行驶为正,向西行驶为负,行驶记录如下.单位:km .第一次第二次第三次第四次第五次第六次第七次+1.50.8-+0.6+1.20.4-0.5+1-(1)巡逻车在巡逻过程中,第 次离恒隆最远.(2)学校在恒隆哪个方向,与恒隆相距多少千米?(3)若每千米耗油0.2升,每升汽油需6元,问这半天交通巡逻车所需汽油费多少元?参考答案1.D 2.A 3.A 4.B 5.C 6.D 7.A 8.C 9.B 10.A 11.B 12.B 13.C 14.D 15.B16.C 17.B18.C19.A20.2500021.>22.13-23.3424.1225.120-26.1627.1±28.(1)②(2)104029.(1)2.5,3.2(2)8030.解:()800.5351 1.575 1.550⨯+⨯÷=÷=(元),答:每千克至少卖50元才不会亏本.31.(1)解:依题意,∵已知A 站至G 站全程票价为800元,且A 站至G 站的里程数为2000公里∴16008006402000⨯=(元);(2)解:80020000.4÷=(元);∵王叔叔从D 站上车,购买了一张160元的票∴1600.4400÷=(公里)结合图形,与D 站相距400公里的有B 站和E 站所以王叔叔可能在B 站下车,也可能在E 站下车.32.(1)()()()3434344123447-=⨯----+=--++=- (2)交换律在“ ”运算中成立证明如下:4a b ab a b =--+ 44b a ba b a ab a b =--+=--+ a b b a ∴= 即交换律在“ ”运算中成立.33.解:()()15480.125484884-⨯+⨯+-⨯()15480.12584⎛⎫=-⨯-+ ⎪⎝⎭()11548884⎛⎫=-⨯-+ ⎪⎝⎭()5484=-⨯60=-34.(1)平均每天生产300个,超产记为正,减产记为负,周一的产量为:300+5=305个;答:该厂星期一生产工艺品的数量为305个.(2)由表格可知:星期六产量最高为()300++16=316(个),星期五产量最低为()300+-10=290(个),则产量最多的一天比产量最少的一天多生产316290=26-(个);答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)根据题意得一周生产的工艺品为:()()()()()()()3007++5+2+5++15+10++16+9=2100+10=2110⎡⎤⨯----⎣⎦(个)答:服装厂这一周共生产工艺品2110个;(4)()()5+15+16502+5+10+980⨯-⨯,=36502680⨯-⨯=280-(元)则该工艺厂在这一周应付出的工资总额为:211060280=126320⨯-,答:该工艺厂在这一周应付出的工资总额为126320元.35.解:a 、b 、c 为三个不为0的有理数,且||||||1a b c a b c++=-,a ∴、b 、c 中负数有2个,正数有1个,0abc ∴>,∴1||abc abcabc abc==.36.(1)解:0 1.5 1.5+=,1.50.80.7-=,0.70.6 1.3+=,1.3 1.2 2.5+=,2.50.4 2.1-=,2.10.5 2.6+=,2.61 1.6-=,∵2.6最大,∴第六次离恒隆最远,故答案为:六;(2)解:∵0 1.50.80.6 1.20.40.51 1.6+-++-+-=,∴学校在恒隆东面,与恒隆相距1.6千米;(3)解:小艾和父亲巡逻所走路程:1.50.80.6 1.20.40.51 1.50.80.6 1.20.40.516+-+++-++-=++++++=千米,巡逻车所需汽油费:0.2667.2⨯⨯=元,答:交通巡逻车所需汽油费为7.2元.。

七年级上册数学第二单元测试卷

七年级上册数学第二单元测试卷

七年级上册数学第二单元测试卷一、选择题(每题1分,共5分)1.下列哪个数是负数?A.-5B.0C.3D.8答案:A2.下列哪个数是正数?A.-7B.0C.2D.-4答案:C3.下列哪个数是偶数?A.3B.5C.8D.11答案:C4.下列哪个数是奇数?A.4B.6C.9D.12答案:C5.下列哪个数是质数?A.2B.4C.6D.8答案:A二、判断题(每题1分,共5分)1.整数包括正整数、负整数和0。

()答案:√2.负数比正数大。

()答案:×3.0是最小的自然数。

()答案:√4.所有的偶数都是2的倍数。

()答案:√5.所有的奇数都不是2的倍数。

()答案:√三、填空题(每题1分,共5分)1.最大的负整数是。

2.最小的正整数是。

3.既是偶数又是质数的数是。

4.既是奇数又是合数的数是。

5.0是数。

四、简答题(每题2分,共10分)1.请写出前五个正整数。

2.请写出前五个负整数。

3.请写出前五个偶数。

4.请写出前五个奇数。

5.请写出前五个质数。

五、应用题(每题2分,共10分)1.一个数比另一个数小3,这两个数的和是5,求这两个数。

2.一个数是另一个数的3倍,这两个数的差是8,求这两个数。

3.一个数是另一个数的2倍,这两个数的和是10,求这两个数。

4.一个数是另一个数的4倍,这两个数的差是12,求这两个数。

5.一个数是另一个数的5倍,这两个数的和是30,求这两个数。

六、分析题(每题5分,共10分)1.请分析整数、自然数、正整数之间的关系。

2.请分析偶数、奇数、质数、合数之间的关系。

七、实践操作题(每题5分,共10分)1.请用图形表示出前五个正整数。

2.请用图形表示出前五个负整数。

八、专业设计题(每题2分,共10分)1.设计一个程序,输入一个整数,输出这个整数的绝对值。

2.设计一个程序,输入一个整数,输出这个整数的平方。

3.设计一个程序,输入一个整数,输出这个整数的立方。

4.设计一个程序,输入一个整数,输出这个整数的阶乘。

七年级上册数学第二章试卷【含答案】

七年级上册数学第二章试卷【含答案】

七年级上册数学第二章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2、5、8,那么第四项是?A. 7B. 10C. 11D. 12答案:B3. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D4. 下列哪个数是奇数?A. 50B. 51C. 52D. 53答案:B5. 下列哪个数既是偶数又是质数?A. 2B. 3C. 4D. 5答案:A二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。

()答案:×2. 任何两个偶数相加的和都是偶数。

()答案:√3. 任何两个质数相加的和都是偶数。

()答案:×4. 任何两个合数相加的和都是偶数。

()答案:×5. 任何两个相同的数相加的和都是偶数。

()答案:√三、填空题(每题1分,共5分)1. 2的倍数是_________数。

答案:偶2. 3的倍数是_________数。

答案:奇3. 4的倍数是_________数。

答案:偶4. 5的倍数是_________数。

答案:奇5. 6的倍数是_________数。

答案:偶四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

答案:质数是只有1和它本身两个因数的数,合数是除了1和它本身还有其他因数的数。

2. 请简述偶数和奇数的区别。

答案:偶数是2的倍数,奇数不是2的倍数。

3. 请简述等差数列的定义。

答案:等差数列是每一项与它前一项的差都相等的数列。

4. 请简述等比数列的定义。

答案:等比数列是每一项与它前一项的比都相等的数列。

5. 请简述因数和倍数的定义。

答案:因数是能整除某个数的数,倍数是某个数的整数倍。

五、应用题(每题2分,共10分)1. 一个数既是3的倍数又是4的倍数,这个数最小是多少?答案:122. 一个数既是5的倍数又是6的倍数,这个数最小是多少?答案:303. 一个数既是7的倍数又是8的倍数,这个数最小是多少?答案:564. 一个数既是9的倍数又是10的倍数,这个数最小是多少?答案:905. 一个数既是11的倍数又是12的倍数,这个数最小是多少?答案:132六、分析题(每题5分,共10分)1. 小明有10个苹果,他每天吃掉一个,请问第几天他吃完所有的苹果?答案:第10天2. 小红有15个橘子,她每天吃掉两个,请问第几天她吃完所有的橘子?答案:第8天七、实践操作题(每题5分,共10分)1. 请用纸和剪刀制作一个正方形。

人教版2024新版七年级数学上册第二章《综合练:有理数的乘方》测试题及答案

人教版2024新版七年级数学上册第二章《综合练:有理数的乘方》测试题及答案

数学试题 第1页(共6页) 数学试题 第2页(共6页)人教版2024新版七年级数学上册《第2章 综合练:有理数的乘方》测试题及答案(满分:100分 时间:60分钟)一、 选择题(每题3分,共30分) 1.23的结果等于( )A.9B.-9C.5D.6 2.下列语句中出现的数,是近似数的是( ) A.七(2)班有40人 B.一星期有7天 C.一本书共有180页 D.小华的身高为1.6m3.用四舍五入法将130 542精确到千位,正确的是( ) A.131 000 B.0.131×610 C.1.31×510 D.13.1×4104.在-(-5),2(5)--,-|-5|,3(5)-中,正数有( ) A.1个 B.2个 C.3个 D.4个5.某自动控制器的芯片,可植入2 020 000 000粒晶体管,这个数2 020 000 000用科学记数法可表示为( )A.0.202×1010B.2.02×910C.20.2×810D.2.02×810 6.下列各组的两个数中,运算后结果相等的是( ) A.223(3)--与 B.3553与 C.337(7)--与D.333344⎛⎫--⎪⎝⎭与7.一个数的平方等于它本身,这个数是( ) A.1 B.0 C.0或1 D.1或-18.与算式333222++的运算结果相等的是( ) A.32 B.92 C.3×32 D.3×69.数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A.42 B.49 C.67 D.7710.观察下列等式:01271,77,749===, 347343,72401==,5716807,,=根据其中的规律可得01220197777++++的结果的个位数字是( )A.0B.1C.7D.8 二、填空题(每题3分,共24分)11.计算:23122⎛⎫⨯= ⎪⎝⎭________. 12.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149 600 000千米,用科学记数法表示1个天文单位是_________千米.13.4.24 970≈__________(精确到百分位);近似数6.34万精确到_________位.14.把下列用科学记数法表示的数的原数填在横线上: (1)62.1610⨯=__________; (2)37.12310-⨯=__________. 15.已知2(4)|2|0a b ++-=,则b a 的值是_______. 16.已知,a b互为相反数且a≠0,,c d互为倒数,则202320222022()()a a b cd b ⎛⎫+-+-= ⎪⎝⎭________.数学试题 第3页(共6页) 数学试题 第4页(共6页)17.2323113,(2),,32⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭的大小顺序是_____>_____>_____>______.18.阅读材料:若b a N =,则log a b N =,称b 为以a 为底N 的对数,例如328=,则322log log 238==.根据材料填空:3log 9=________. 三、解答题(共46分)19.(6分)按括号里的要求,对下列各数取近似数:(1)0.83284(精确到千分位);(2)2346.46m (精确到1m ); (3)28.3万亿(精确到万亿位).20.(7分)小明和小刚测量同一根木棒,小明测得长是0.80m ,小刚测得长是0.8m ,问两人测量的结果是否相同?为什么?21.(16分)计算:(1)322(3)(2)+-⨯-;(2)23320221129(1)23⎛⎫⎛⎫-÷-+⨯--- ⎪⎪⎝⎭⎝⎭; (3)2332122(3)22(2)433⎛⎫⎛⎫-÷⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭; (4)43212333(3)(5)335⎡⎤⎛⎫÷-⨯-⨯--- ⎪⎢⎥⎝⎭⎣⎦.22.(8分)已知2|1|4,(2)4x y +=+=,求x y +的值.23.(9分)观察下列三行数: -3,9,-27,81,-243,…① 1,13,-23,85,-239,…② 1,-3,9,-27,81,…③(1)第①行数是按什么规律排列的?(2)第②行数、第③行数与第①行数有什么关系?(3)第②行、第③行中第6个数之和与第①行中第6个数之差是多少?参考答案一、1.答案:A 2.答案:D 3.答案:C 4.答案:A 5.答案:B 6.答案:C 7.答案:C 8.答案:C 9.答案:C 10.答案:A解析:因为01234571,77,7497343,72401,716807,,======,所以个位数字4个数一循环, 所以(2019+1)÷4=505, 又因为1+7+9+3=20, 所以01220197777++++的结果的个位数字是0.11.答案:2 12.答案:1.496×810 13.答案:4.25;百数学试题 第5页(共6页) 数学试题 第6页(共6页)14.答案:(1)2 160 000(2)-7 123 15.答案:16 16.答案:217.答案:233211;;(2);332⎛⎫⎛⎫---- ⎪⎪⎝⎭⎝⎭18.答案:2三、19.答案:见解析 解析:(1)0.832 84≈0.833. (2)2 346.46m≈2 346m. (3)28.3万亿≈28万亿. 20.答案:见解析解析:不同.小明测得0.80m ,精确到百分位.小刚测得0.8m ,精确到十分位.因为两人测量结果精确度不同,所以两人测量结果不一样. 21.答案:见解析解析:(1)原式=8+(-3)×4 =8-12 =-4.(2)原式=11891427⎛⎫-÷+⨯-- ⎪⎝⎭ =13213⎛⎫-+-- ⎪⎝⎭=1333-.(3)原式=942 2784493⎛⎫-÷⨯++⨯- ⎪⎝⎭=4812893⎛⎫-⨯++- ⎪⎝⎭=168833⎛⎫-++- ⎪⎝⎭=0.(4)原式=410333(27)25325⎡⎤⎛⎫⨯-⨯-⨯-- ⎪⎢⎥⎝⎭⎣⎦ =81+81-25 =137.22.答案:见解析解析:因为2|1|4,(2)4x y +=+=,所以x +1=4或x +1=-4,y +2=2或y +2=-2, 所以x =3或x =-5,y =0或y =-4. 当x =3,y =0时,x y +=3+0=3; 当x =3,y =-4时,x y +=3-4=-1; 当x =-5,y =0时,x y +=-5+0=-5; 当x =-5,y =-4时,x y +=-5-4=-9. 综上所述x y +的值为3或-1或-5或-9. 23.答案:见解析解析:(1)第①行数是按23,(3)--,345(3),(3),(3)---排列的.(2)第②行数是第①行对应数加4得到的, 第③行数是第①行对应数乘13-得到的.(3)第①行、第②行、第③行的第6个数分别为66(3),(3)4--+,61(3)()3-⨯-,故所求结果为6661(3)4(3)()(3)2393-++-⨯---=-.。

人教版数学七年级上册第二单元测试试卷(含答案)

人教版数学七年级上册第二单元测试试卷(含答案)

人教版数学7年级上册第2单元·时间:120分钟 满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)下列代数式中,不是单项式的是( )A .a 2B .2aC .a 2D .a +22.(3分)在下列单项式23xy 2,13πrh ,5x ,1中,次数是0的是( )A .23xy 2B .13πrh C .5x D .13.(3分)多项式12x 6y 2―2x 3y 4+3的次数和项数分别为( )A .7,2B .8,3C .8,2D .7,34.(3分)多项式x 2﹣2x 2y +3y 2各项系数和是( )A .1B .2C .5D .65.(3分)下列计算正确的是( )A .2ab ﹣ab =abB .2ab +ab =2a 2b 2C .4a 3b 2﹣2a =2a 2bD .﹣2ab 2﹣a 2b =﹣3a 2b 26.(3分)对于式子a bc +b ca+c ab 的描述,正确的是( )A .该代数式的值必大于0B .该代数式的值必小于0C .该代数式的值可能为0D .该代数式的值不能为07.(3分)若3x ﹣2y ﹣7=0,则6x ﹣4y ﹣6的值为( )A .20B .8C .﹣8D .﹣208.(3分)设(x ﹣1)3=ax 3+bx 2+cx +d ,则a ﹣b +c ﹣d 的值为( )A .2B .8C .﹣2D .﹣89.(3分)下列添括号正确的是( )A .﹣b ﹣c =﹣(b ﹣c )B .﹣2x +6y =﹣2(x ﹣6y )C .a ﹣b =+(a ﹣b )D .x ﹣y ﹣1=x ﹣(y ﹣1)10.(3分)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100﹣x)元C.8(100﹣x)元D.(100﹣8x)元二、填空题(共5小题,满分15分,每小题3分)11.(3分)单项式―34πx2y的系数是 .12.(3分)若13x2y a+3与0.4x1﹣b y4是同类项,则a= ,b= .13.(3分)在春季绿化活动中,榕榕栽种了一棵小树,栽种后测得树高约2.1米,预估今后每年长0.3米,则n年后的树高为 米.14.(3分)已知两个单项式2x3y m与﹣2x n y2的和为0,则m+n的值是 .15.(3分)已知有理数x、y满足|x﹣3|+(2y+4)2=0,则代数式x+y的值为 .三、解答题(共8小题,满分75分)16.(9分)先化简,再求值:(6a2﹣2ab)﹣2(3a2+4ab),其中a=1,b=﹣2.17.(9分)已知x=12,求(2x2―12+3x)―4(x―x2+12)的值.18.(9分)已知a2﹣2a+1=0,求代数式a(a﹣4)+(a+1)(a﹣1)+1的值.19.(9分)下面是一道例题及其解答过程的一部分,其中A是关于m的多项式.请写出多项式A,并将该例题的解答过程补充完整.例:先去括号,再合并同类项:m(A)﹣6(m+1).解:m(A)﹣6(m+1)=m2+6m﹣6m﹣6= .20.(9分)某演习场中有南北两个演习区,南演习区有一个长方形方队,方队每排有(3a﹣b)名队员,共有(3a+b)排;北演习区有一个正方形方队,方队每排有(a+b)名队员,共有(a+b)排,其中a>b>0.(1)南演习区队员比北演习区多几名?(2)当a=6,b=2时,演习场上共有多少名队员?21.(10分)已知A=x3﹣x2y﹣y2(x﹣y).(1)当x=y时,求A的值.(2)当x>0,y>0,且x≠y时,试说明A的值是正数.22.(10分)近日,教育部正式印发《义务教育课程方案》,将劳动从原来的综合实践活动课程中完全独立出来,并在今年9月份开学开始正式施行.某学校率先行动,在校园开辟了劳动教育基地,培养学生劳动品质.已知该劳动教育基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a﹣b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排,其中a>b>0.(1)该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?(用含a、b的代数式表示并化简)(2)当a=5,b=2时,求该劳动教育基地这两块实验田一共种植了多少株豌豆幼苗?23.(10分)已知:整式A=(2x﹣3)+(3x+5).(1)化简整式A;(2)若2A+B=5x+6,①求整式B;②在“A□B”的“□”内,填入“+,﹣,×,÷”中的一个运算符号,经过计算发现,结果是不含一次项的整式,请你写出一个符合要求的算式,并计算出结果.参考答案一、选择题(共10小题,满分30分,每小题3分)1.D;2.D;3.B;4.B;5.A;6.D;7.B;8.B;9.C;10.C;二、填空题(共5小题,满分15分,每小题3分)11.―3 4π12.1;﹣113.0.3n+2.114.515.1;三、解答题(共8小题,满分75分)16.解:(6a2﹣2ab)﹣2(3a2+4ab)=6a2﹣2ab﹣6a2﹣8ab=﹣10ab.当a=1,b=﹣2时,原式=﹣10×1×(﹣2)=20.17.解:原式=2x2―12+3x―4x+4x2―2=6x2―x―5 2;∵x=1 2;∴6x2―x―52=6×14―12―52=―32.18.解:a(a﹣4)+(a+1)(a﹣1)+1=a2﹣4a+a2﹣1+1=2a2﹣4a=2(a2﹣2a),∵a2﹣2a+1=0,∴a2﹣2a=﹣1,∴原式=2×(﹣1)=﹣2.19.解:由题知,m(A)﹣6(m+1)=m2+6m﹣6m﹣6=m2﹣6,∵m2+6m=m(m+6),∴A为:m+6,故答案为:m2﹣6.20.解:(1)根据题意得:(3a﹣b)(3a+b)﹣(a+b)2=9a2﹣b2﹣a2﹣2ab﹣b2=8a2﹣2ab﹣2b2,答:南演习区队员比北演习区多(8a2﹣2ab﹣2b2)名;(2)(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab,当a=6,b=2时,10a2+2ab=10×62+2×6×2=10×36+24=360+24=384,答:演习场上共有384名队员.21.解:(1)将x=y代入A=x3﹣x2y﹣y2(x﹣y)中得:A=x3﹣x2•x﹣x2(x﹣x)=0,则A的值为0;(2)A=x3﹣x2y﹣y2(x﹣y)=x2(x﹣y)﹣y2(x﹣y)=(x﹣y)(x2﹣y2)=(x﹣y)(x﹣y)(x+y)=(x﹣y)2(x+y);∵x>0,y>0,且x≠y,∴x+y>0,(x﹣y)2≠0,∴A的值是正数.22.解:(1)由题意得,(3a﹣b)(3a+b)+(a+b)2=9a2﹣b2+a2+2ab+b2=10a2+2ab.(2)当a=5,b=2时,原式=10×52+2×5×2=270.答:该劳动教育基地这两块实验田一共种植了270株豌豆幼苗.23.解:(1)A=(2x﹣3)+(3x+5)=2x﹣3+3x+5=5x+2;(2)①∵2A+B=5x+6,∴B=5x+6﹣2A=(5x+6)﹣2×(5x+2)=5x+6﹣10x﹣4=﹣5x+2;②∵A+B=(5x+2)+(﹣5x+2)=4,是不含一次项的整式,A﹣B=(5x+2)﹣(﹣5x+2)=10x,是含有一次项的整式,A×B=(5x+2)(﹣5x+2)=4﹣25x2,是不含一次项的整式,A÷B=(5x+2)÷(﹣5x+2)=―5x25x2是分式,不是整式,所以A和B相加或相乘时不含一次项,结果分别是:4和4﹣25x2.。

人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]

人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]

人教版2024年《数学》七年级上册第2章检测试卷与参考答案[4卷]一、选择题本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的。

1.单项式的系数和次数依次是( )A .-2,2B .-,4C .-,2D .-,5【答案】D 【解析】单项式的系数为,次数为2+1+2=5,故答案为:D.2.下列代数式中:,,,,,0,整式有( )个A .3个B .4个C .5个D .6个【答案】B【解析】是整式,共4个.故选B.3.多项式3x 3﹣2x 2y 2+x+3是( )A .三次四项式B .四次四项式C .三次三项式D .四次三项式222x yz -121212222x yz -12-1x 2x y +213a b x y π-54yx 212,,,03πx yx y a b -+【答案】B【解析】根据多项式的定义,多项式3x 3−2x 2y 2+x+3有4项,最高项的指数是4,因此是四次四项式.故答案选B.4.计算3a -2a 的结果正确的是()A .1B .aC .-aD .-5a【答案】B【解析】将同类项的系数相加减作为结果的系数,字母和字母的指数不变.原式=3a -2a=(3-2)a=a.5.下列每组单项式中是同类项的是( )A .2xy 与﹣yx B .3x 2y 与﹣2xy 2C .与﹣2xy D .xy 与yz【答案】A 【解析】A 选项:2xy 与﹣yx 含字母相同,并且相同字母的指数也相同,所以是同类项,故是正确的;B 选项:3x 2y 与-2xy 2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的;C 选项:-与﹣2xy 所含字母不同,所以不是同类项,故是错误的;D 选项:xy 与yz 所含字母不同,所以不是同类项,故是错误的;故选A .1312x 1312x6.已知,那么的结果为( )A .B .C .D .【答案】A【解析】原式=-3+x -y ,因为x -y =,所以原式=-3+=-,故选A.7.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( )A .甲B .乙C .丙D .一样【答案】C【解析】设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ;乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x (1﹣30%)=70%x=0.7x ;故到丙超市合算.故选C .8.某两位数,十位上的数字为a,个位上的数字为b,则这个两位数可表示为 ()A .abB .a+bC .10a+bD .10b+a【答案】C【解析】根据题意,这个两位数可表示为10a+b ,故选C .1x y 2-=()3x y --+52-529292-1212529.某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】据3月份的产值是万元,用把4月份的产值表示出来(1-10%),从而得出5月份产值列出式子1-10%)(1+15%).故选B .10.若一个整式减去a 2-2b 2等于a 2+2b 2,则这个整式是()A .2b 2B .-2b 2C .2a 2D .-2a 2【答案】C【解析】根据题意则有这个整式为:(a 2-2b 2)+(a 2+2b 2)= a 2-2b 2+a 2+2b 2=2 a 2,故选B.11.观察如图所示图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4nD .4n -4【答案】C 【解析】根据给出的3个图形可以知道:第1个图形中三角形的个数是4,a a a a第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n .故选C .12.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定【答案】A 【解析】设重叠部分的面积为x .由题意得,m=7﹣x ,n=3﹣x ,所以m ﹣n=(7﹣x )﹣(3﹣x )=4,故选A .13.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:,空格的地方被墨水弄脏了,请问空格中的一项是( )A .+2abB .+3abC .+4abD .-ab()()2222223355a ab b a ab b a +---++=26b -【答案】A【解析】依题意,空格中的一项是:(2a 2+3ab-b 2)-(-3a 2+ab+5b 2)-(5a 2-6b 2) =2a 2+3ab-b 2+3a 2-ab-5b 2-5a 2+6b 2=2ab . 故选A.14.关于x 的多项式3x 3+2mx 2﹣5x+7与多项式8x 2﹣3x+5相加后不含二次项,则常数m 的值为( )A .2B .﹣4C .﹣2D .﹣8【答案】B【解析】因为关于x 的多项式3x 3+2mx 2-5x+7与多项式8x 2-3x+5相加后不含二次项,所以2m+8=0,解得m=-4.故选B.二、填空题本题共4个小题;每个小题3分,共12分,把正确答案填在横线上。

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)1.(3分)(2024九下·唐河模拟)中原熟,天下足.处于中原的河南一直是我国重要的粮食大省,最近几年粮食总产量更是连续突破1300亿斤,为保证国家粮食安全做出了突出贡献.数据“1300亿”用科学记数法表示为()A.1.3×1011B.1.3×1010C.0.13×1012D.0.13×10102.(3分)(2017九下·莒县开学考)已知P=210×3×58,则P可用科学记数法表示为()A.12×108B.1.2×109C.1.2×108D.12×1093.(3分)(2023七上·石家庄月考)下列各组中互为相反数的是()A.−2与−12B.|−2|和2C.−2.5与|−2|D.−12与|−1 2|4.(3分)(2024九下·哈尔滨模拟)某冰箱冷藏室的温度是5℃,冷冻室的温度是−20℃,则冷藏室比冷冻室温度高()A.15℃B.−15℃C.−25℃D.25℃5.(3分)(2023七上·天河期中)两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数6.(3分)(2024七上·长安月考)下图是某地十二月份某一天的天气预报,则该天的温差是()A.7℃B.8℃C.−7℃D.13℃7.(3分)(2024七上·孟村期末)已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.a>b B.ab<0C.b−a>0D.a+b>08.(3分)(2023七上·上思期中)若|x|=−x,则x是()A.正数B.负数C.正数或零D.负数或零9.(3分)(2022·泗县模拟)第七次全国人口普查数据显示,全国人口共141178万人,比第六次人口普查增加7206万人.数据“7206万”用科学记数法表示正确的是()A.0.7206×108B.7.206×106C.7.206×107D.72.06×107 10.(3分)(2017七上·下城期中)下列计算正确的是().A.(−3)−(−5)=−8B.−32=−9C.√−4=−2D.√9=±3二、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2023七上·襄州期中)定义一种新运算,对于任意有理数a和b,规定a▲b=-a+b,如:2▲(-1)=-2+(-1)=-3,则-3▲4的值为12.(3分)(2023七上·淮安期中)比较大小:−|−2|−(−3)(用“>”、“<”、“=”填空)13.(3分)(2024·福田一模)如图1,“幻方”源于我国古代夏禹时期的“洛书”。

人教版初一数学上册《第二章单元测试》(详尽答案版)

人教版初一数学上册《第二章单元测试》(详尽答案版)

A.a5人教版初一数学上册第2章单元测试题一、选择题(每题3分,计24分)1.下列各式中不是单项式的是()13B.-C.0D.3a2.甲数比乙数的2倍大3,若乙数为x,则甲数为()A.2x-3B.2x+3C.11x-3D.x+3 223.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3B.m=2,n=3C.m=-3,n=2D.m=3,n=24.已知A=a3-2ab2+1,B=a3+ab2-3a2b,则A+B=()A.2a3-3ab2-3a2b+1B.2a3+ab2-3a2b+1C.2a3+ab2-3a2b+1D.2a3-ab2-3a2b+15.从减去的一半,应当得到().A. B. C. D.6.减去-3m等于5m2-3m-5的式子是()A.5(m2-1)B.5m2-6m-5C.5(m2+1)D.-(5m2+6m-5)7.在排成每行七天的日历表中取下一个3⨯3方块.若所有日期数之和为189,则n的值为()A.21B.11C.15D.98.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真地复习老师讲的内容,他突然发现一道题(-x2+3xy-1131y2)-(-x2+4x y-y2)=-x2 2222+_____________+y2空格的地方被钢笔水弄污了,那么空格中的一项是()A.-7x y B.7x y C.-x y D.xy二、填空题(每题4分,计32分)9.单项式-πr2的系数是,次数是.10.当x=5,y=4时,式子x-y2的值是.11.按下列要求,将多项式x3-5x2-4x+9的后两项用()括起来.54••要求括号前面带有“—”号,则x3—5x2—4x+9=___________________12.把(x—y)看作一个整体,合并同类项:(x—y)+2(x—y)—(x—y)=_____________.13.一根铁丝的长为5a+4b,剪下一部分围成一个长为a宽为b的长方形,则这根铁丝还剩下_____________________.14.用语言说出式子a+b2的意义:______________________________________15.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为.16.小明在求一个多项式减去x2—3x+5时,误认为加上x2—3x+5,得到的答案是5x2—2x+4,则正确的答案是_______________.三、解答题(共28分)17.(6分)化简:(1)3x2+2x y-4y2-(3xy-4y2+3x2);(2)4(x2-5x)-5(2x2+3x).18.(6分)如图所示,在下面由火柴棒拼出的一系列的图形中,第n个图形由n个正方形组成.n=1n=2n=3n=4(1)第2个图形中,火柴棒的根数是________;(2)第3个图形中,火柴棒的根数是________;(3)第4个图形中,火柴棒的根数是_______;(4)第n个图形中,火柴棒的根数是________.19.(8分)有这样一道题:“当a=2009,b=—2010时,求多项式7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2010的值.”小明说:本题中a=2009,b=—2010是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.20.8分)一个三角形一边长为a+b,另一边长比这条边大•,•第三边长比这条边小a—b.(b(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.四、拓广探索(共16分)21.(8分)有一串单项式:x,-2x2,3x3,-4x4,……,-10x10,……(1)请你写出第100个单项式;(2)请你写出第n个单项式.22.(8分)如图所示,请你探索正方形的个数与等腰三角形的个数之间的关系.正方形个数1234…n等腰三角形个数(1)照这样的画法,如果画15个正方形,可以得_______个等腰三角形;(2)若要得到152个等腰三角形,应画_______个正方形;2.1-2.2测试B1.(7分)已知x2—xy=21,xy-y2=—12,分别求式子x2-y2与x2—2xy+y2的值.2.(7分)同一时刻的北京时间、巴黎时间、东京时间如图所示.(1)设北京时间为a(7<a<23),分别用代数式表示同一时刻的巴黎时间和东京时间;(2)2001年7月13日,北京时间22:08,国际奥委会主席萨马兰奇宣布,北京获得2008年第29届夏季奥运会的主办权.问这一时刻贩巴黎时间、东京时间分别为几时?3.(8分)按照下列步骤做一做:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数;(3)求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?4.(8分)有一包长方体的东西,用三种不同的方法打包,哪一种方法使用的绳子最短?哪一种方法使用的绳子最长?(a+b>2c)参考答案一、选择题1.D2.B3.B4.D5.D6.C7.A8.C二、填空题9.-π,210.311.x3—5x2—(4x—9)12.3(x—y)13.3a+2b14.a与b的平方的和15.m=a+n—116.3x2+4x—6三、解答题17.(1)原式=3x2+2x y-4y2-3xy+4y2-3x2=-x y;(2)原式=4x2-20x-10x2-15x=-6x2-35x.18.(1)7;(2)10;(3)13;(4)3n+119.∵7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2010=(7+3-1)a3+(-6+6)a3b+(3-3)a2b+2010=2010.∴a=2009,b=—2010是多余的条件,故小明的观点正确.20.(1)三角形的周长为:(a+b)+(a+b+b)+(a+b-a+b)=2a+5b;(2)当a=5,b=3时,周长为:25.四、拓广探索21.(1)—100x100;(2)(—1)n+1x n.22.0,4,8,12,4(n—1)(1)56;(2)4(n—1)=152,n=39.2.1-2.2测试B参考答案1.x2-y2=(x2-xy)+(xy-y2)=21—12=9,x2-2xy+y2=(x2-xy)—(xy-y2)=21+12=33.2.(1)巴黎时间为a+5,东京时间为a+1;(2)巴黎时间为3:08,东京时间为23:08.3.(1)24;(2)42;(3)42—24=18;是9的倍数.设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a,交换后的两位数为10a+b.10b+a-(10a+b)=10b+a-10a-b=9b-9a=9(b-a)4.第(1)种方法的绳子长为4a+4b+8c,第(2)种方法的绳子长为4a+4b+4c,第(3)种方法的绳子长为6a+6b+4c,从而第(3)种方法绳子最长,第(2)种方法绳子最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上册数学第二单元试卷及答案
一、选择题(每小题3分,共30分)
1.计算a+(-a)的结果是()
A.2a B.0C.-a2D.-2a
2.在代数式x2+5 ,-1,x2-3x+2,π,5x,x2+1x+1中,整式有()
A.3个B.4个C.5个D.6个
3.下列结论正确的是()
A.x2y28的系数是8
B.-23mnx的次数是1
C.单项式a没有系数,也没有次数
D.-x2y3是三次单项式,系数为-13
4.用式子表示“a的3倍与b的差的平方”,正确的是()
A.(3a-b)2 B.3(a-b)2 C.3a-b2 D.(a-3b)2
5.下列说法正确的是()
A.23与23xy是同类项
B.x2与12x是同类项
C.0.5x2y2与7x2y3是同类项D.5mn2与-4mn2是同类项
6.计算2a-3(a-b)的结果是()
A.-a-3b B.a-3b C.a+3b D.-a+3b
7.下面各题去括号错误的是()
A.x-6y-12=x-6y+12
B.2m+-n+13a-b=2m-n+13a-b
C.-12(4x-6y+3)=-2x+3y+3
D.a+12b--13x+27=a+12b+13c-27
8.一个多项式与x2-2x+1的和是3x-2,则这个多项式为()
A.x2-5x+3 B.-x2+x-1
C.-x2+5x-3 D.x2-5x-13
9.观察下列图形:
图1
它们是按一定的规律排列的,依照此规律,第20个图形中的“★”有()
A.57个B.60个
C.63个D.85个
10.观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出的第10个单项式是() A.-29x10 B.29x10 C.-29x9 D.2 9x9
二、填空题(每小题3分,共24分)
11.计算:2x-3x=________.
12.多项式-m2n2+m3-2n-3是____次____项式,次项的系数为______,常数项是______.
13.若单项式5x4y和25xnym是同类项,则m+n的值为________.
14.三角形的三边长分别为3a,4a,5a,则这个三角形的周长是________.
15.有a名男生和b名女生在社区做义工,他们为建花坛搬砖,男生每人搬了20块,女生每人搬了15块,这a 名男生和b名女生一共搬了________块砖(用含a、b的代数式表示).
16.已知2a-3b2=5,则10-2a+3b2的值是________.
17.煤气费的收费标准为:每月用气若不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某住户某个月用煤气x立方米(x>60),则该住户应交煤气费____________元.18.下面是按一定规律排列的一列数:23,-45,87,-169,…,那么第n个数是________.
三、解答题(共66分)
19.(10分)计算:
(1)(8xy-3x2)-5xy-2(3xy-2x2);
(2)-2x2-12[3y2-2(x2-3y2)+6].
20.(12分)先化简,再求值.
(1)-(x2+3x)+2(4x+x2),其中x=-2.
(2)(3a2-ab+7)-(5ab-4a2+7),其中a=2,b=13.
21.(8分)某工厂第一车间有x人,第二车间比第一车间人数的45少30人,如果从第二车间调出10人到第一车间,那么:
(1)两个车间共有多少人?
(2)调动后,第一车间的人数比第二车间多多少人?
22.(8分)已知某船顺水航行2小时,逆水航行3小时.
(1)已知轮船在静水中前进的速度是x千米/时,水流的速度是y千米/时,则轮船共航行多少千米?
(2)轮船在静水中前进的速度是60千米/时,水流的速度是5千米/时,则轮船共航行多少千米?
23.(8分)某中学一宿舍楼前一块长为32x,宽为x的空地.学校向全校师生征集这块地的绿化设计方案并要求绿地面积不少于58x2,图2是学生小明的设计方案,阴影部分是绿地.试问小明的设计方案是否合乎要求?为什么?
图2
24.(8分)学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=-2,b=2 012时,求(3a2b -2ab2)+4a-2(2a2b-3a)+2ab2+12a2b-1的值”.盈盈做后成对同桌说:“张老师给的条件b=2 012是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话请你计算说明盈盈的说法是否正确.
25.(12分)如图3,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一个小正方形剪成四个小正方形,如此循环进行下去.
图3
(1)填表:
剪的次数1 2 3 4 5
正方形的个数
(2)如果剪了100次,共剪出多少个小正方形?
(3)如果剪n次,共剪出多少个正方形?
(4)观察图形,你还能得出什么规律?
答案解析
1.B【解析】a+(-a)=a-a=0.故选B.
2.B 3.D 4.A 5.D
6.D【解析】2a-3(a-b)=2a-3a+3b=-a+3b.故选D.
7.C8.C9.B10.B
11.-x【解析】原式=(2-3)x=-x.
12.四四-1-3
13.5【解析】由题意可知,n=4,m=1,所以m+n=4+1=5.
14.12a
15.(20a+15b)
16.5
17.(1.2x-24)
18.(-1)n+12n2n-1
19.解:(1)原式=8xy-3x2-5xy-(6xy-4x2)
=8xy-3x2-5xy-6xy+4x2=-3xy+x2;
(2)原式=-2x2-12(3y2-2x2+6y2+6)
=-2x2-12(9y2-2x2+6)
=-2x2-92y2+x2-3
=-x2-92y2-3.
20.解:(1)-(x2+3x)+2(4x+x2)
=-x2-3x+8x+2x2=x2+5x.
当x=-2时,
原式=(-2)2+5×(-2)=4-10=-6;
(2)(3a2-ab+7)-(5ab-4a2+7)=3a2-ab+7-5ab+4a 2-7=7a2-6ab,
把a=2,b=13代入7a2-6ab,得7a2-6ab=7×22-6×2×13=24.
21.解:(1)由题意可知,第二车间的人数为45x-30人,所以两个车间共有x+45x-30=x+45x-30=95x-30人;
(2)由题意可知,第一车间的的人数为(x+10)人,第二车间的人数为45x-40人,所以第一车间的人数为比第二车间多(x+10)-45x-40=x+10-45x+40=15x+50人.
22.解:(1)由题意可得,顺水航行速度为(x+y)千米/时,逆水航行速度为(x-y)千米/时,则轮船共航行2(x+y)+3(x-y)
=2x+2y+3x-3y=(5x-y)千米.
(2)当x=60,y=5时,
原式=5×60-5=300-5=295(千米).
即轮船共航行295千米.
23.解:绿色面积为:x&#8226;32x-12x&#8226;34x-12π&#8226;14x2
=32x2-38x2-132πx2=36-π32x2.
因为36-π32x2>58x2,所以小明的设计方案合乎要求.
24.解:原式=3a2b-2ab2+4a-4a2b+6a+2ab2+a2b-1=10a-1.当a=-2时,原式=10×(-2)-1=21.
因为化简后的结果中不再含有字母b,所以最后的结果与b的取值无关,因此说b=2 012这个条件是多余的.所以盈盈的说法是正确的.
25.(1)47101316
(2)剪100次,共剪出3×100+1=301个正方形.
(3)剪n次,共剪出(3n+1)个小正方形.。

相关文档
最新文档