同步练习:第22章一元二次方程 复习题

合集下载

(数学试卷九年级)第22章一元二次方程复习练习题

(数学试卷九年级)第22章一元二次方程复习练习题

一元二次方程复习
A组
1.已知三个连续奇数的平方和是371,求这三个奇数.
2.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100
平方米.求原正方形广场的边长.(精确到0.1米)
3.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠
深多2米,下底比渠深多0.4米.求灌溉渠横截面的上下底长和灌溉渠的深度.
4.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)
5.求出习题22.1中第3(2)题所列方程的解的近似值.(精确到0.1米)
B组
6.解下列方程
(1)(y+3)(1-3y)=1+2y2;
(2)(x-7)(x+3)+(x-1)(x+5)=38;
(3)(3x+5)2-5(3x+5)+4=0;(4)x2+ax-2a2=0.(a为已知常数)
7.(1)已知关于x的方程2x2-mx-m2=0有一个根是1,求m的值;
(2)已知关于x的方程(2x-m)(mx+1)=(3x+1)(mx-1)有一个根是0,求另一个根和m的值.
8.学校原有一块面积为1500平方米的长方形操场,现围绕操场开辟了一圈绿化带,
结果使操场的面积增加了150平方米.求现在操场的长和宽.
C组
9.先用配方法说明:不论x取何值,代数x2-5x+7的值总大于0.再求出当x取何
值时,代数式x2-5x+7的值最小?最小值是多少?
10.说明不论m取何值,关于x的方程(x-1)(x-2)=m2总有两个不相等的实根.。

22 一元二次方程同步练习

22 一元二次方程同步练习

22.1一元二次方程(第1课时)1.填空:(1)把5x2-1=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把4x2=81化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(3)把x(x+2)=15化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(4)把(3x-2)(x+1)=8x-3化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .2.填空:(1)一个一元二次方程,它的二次项系数为2,一次项系数为3,常数项为-5,这个一元二次方程是;(2)一个一元二次方程,它的二次项系数为1,一次项系数为-3,常数项为3,这个一元二次方程是;(3)一个一元二次方程,它的二次项系数为5,一次项系数为-1,常数项为0,这个一元二次方程是;(4)一个一元二次方程,它的二次项系数为1,一次项系数为0,常数项为-6,这个一元二次方程是 .22.1一元二次方程(第2课时)1.填空:(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程;(2)ax2+bx+c=0(a≠0)这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.2.填空:(1)把(x+3)(x-4)=0化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是;(2)把(2x+1)2=4x化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .3.填空:在-4,-3,-2,-1,0,1,2,3,4这些数中,是一元二次方程x2-x-6=0的根的是 .4.填空:方程x2-36=0的根是x1= ,x2= .5.完成下面的解题过程:(1)解方程:2x2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:9(x-2)2=1.解:原方程化成 .开平方,得,x1= ,x2= .22.2.1配方法(第1课时)1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得, .开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.课外补充作业:6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.22.2.1配方法(第2课时)1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方, .开平方,得,x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.22.2.1配方法(第3课时)1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得.配方, .开平方,得,x1= ,x2= .3.用配方法解方程:(2x+1)(x-3)=x-9.22.2.2公式法(第1课时)1.完成下面的解题过程:利用求根公式解方程:x2+x-6=0.解:a= ,b= ,c= . b2-4ac== >0.=_________,1x=_________,1x=__________.2.利用求根公式解下列方程:(1)21x=04;(2)24x ;(3)3x 2-4x+2=0.22.2.2公式法(第2课时) 1.完成下面的解题过程: 用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.=_________,1x =_________,1x =__________.解:整理,得 . a= ,b= ,c= .b 2-4ac= = .=_________,12x =x =_________.(3)(x-2)2=x-3.解:整理,得 . a= ,b= ,c= . b 2-4ac== <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.22.2.3因式分解法(第1课时) 1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.x=__________________=______, 1x =_________,2x =__________. 2.完成下面的解题过程:用因式分解法解方程:x 2解:移项,得 .因式分解,得 . 于是得 或 , x 1= ,x 2= .3.用因式分解法解下列方程:(1)x 2+x=0;(2)4x 2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.22.2.3因式分解法(第2课时)1.填空:解一元二次方程的方法有四种,它们是直接开平方法、 、、 . 2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0; 解:原方程化成 .开平方,得 , x 1= ,x 2= .(2)用配方法解方程:3x 2-x-4=0;解:移项,得 . 二次项系数化为1,得.配方 , . 开平方,得 ,x 1= ,x 2= .(3)用公式法解方程:x(2x-4)=2.5-8x. 解:整理,得 . a= ,b= ,c= . b 2-4ac== >0.=_________,x 1= ,x 2= .(4)用因式分解法解方程:x(x+2)=3x+6. 解:移项,得 . 因式分解,得 . 于是得 或 ,x 1= ,x 2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.课外补充作业:3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.22.3实际问题与一元二次方程(第1课时)1.完成下面的解题过程:一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长.解:设一条直角边的长为 cm,则另一条直角边的长为 cm.根据题意列方程,得.整理,得 .解方程,得x1= ,x2= (不合题意,舍去).答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2,(1)求菱形的两条对角线长;(2)求菱形的周长.(提示:菱形的面积=两条对角线积的一半)22.3实际问题与一元二次方程(第2课时)1.填空:(1)有一人得了流感,他把流感传染给了10个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有人得流感.(2)有一人得了流感,他把流感传染给了x个人,共有人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有人得流感.2.完成下面的解题过程:有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人?解:设每轮传播中平均一个人传播了x个人.根据题意列方程,得.提公因式,得( )2= .解方程,得 x1= ,x2= (不合题意,舍去).答:每轮传播中平均一个人传播了个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空:(1)经过一轮传播后,共有人知道这个消息;(2)经过两轮传播后,共有人知道这个消息;(3)经过三轮传播后,共有人知道这个消息;(4)请猜想,经过十轮传播后,共有人知道这个消息.22.3实际问题与一元二次方程(第3课时)1.填空:(1)扎西家2006年收入是2万元,以后每年增长10%,则扎西家2007年的收入是万元,2008年的收入是万元;(2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是万元,2008年的收入是万元.2.完成下面的解题过程:某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少?解:设该公司利润的年平均增长率是x.根据题意列方程,得.解方程,得x1≈,x2≈(不合题意,舍去).答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空:(1)明年该公司年利润要达到万元;(2)后年该公司年利润要达到万元;(3)第三年该公司年利润要达到万元;(4)第十年该公司年利润要达到万元.第二十二章一元二次方程复习(第1、2、3课时)1.填空(以下内容是本章的基础知识,是需要你理解的,先直接用铅笔填,想不起来再在课本中找)(1)只含有个未知数,并且未知数的最高次数是的方程,叫做一元二次方程. (2)ax2+bx+c=0这种形式叫做一元二次方程的形式,其中是二次项系数,是一次项系数,是常数项.(3)能使一元二次方程左右相等的未知数的值叫做一元二次方程的解,一元二次方程的解也叫一元二次方程的 .(4)一元二次方程的四种解法是:直接开平方法、、、.(5)一元二次方程ax2+bx+c=0,当b2-4ac 时,方程有两个不相等的实数根;当b2-4ac 时,方程有两个相等的实数根;当b2-4ac 时,方程没有实数根. (6)b2-4ac叫做一元二次方程ax2+bx+c=0根的,用来表示.(7)利用一元二次方程解决实际问题的步骤是:审题,,,, .2.填空:(1)把(x+2)(x-5)=1化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(2)把(x+3)(x-3)=5x2-2化成一元二次方程的一般形式,结果是,其中二次项系数是,一次项系数是,常数项是 .(3)已知一元二次方程x2-kx+2=0的一个根是-3,则k= .(4)一个长方形的长比宽多2,面积是100,求长方形的长x.根据这个问题,可以列出的方程是 .(5)x2+12x+ =(x+ )2,x2-43x+ =(x- )2.(6)在方程①3x2,②5x2,③8x2=3x-1中,没有实数根的是,有两个不相等的实数根是,有两个相等的实数根是 .(7)有一人得了流感,他把流感传染给了x个人,则经过两轮传染后,共有人得流感.(8)经过两年的努力,某村的青稞亩产由250千克达到300千克,求每年的平均增长率x.根据这个问题,可以列出的方程是.3.完成下面解题过程:(1)用直接开平方法解方程:4(x+2)2-9=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:x2+2x-4=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .(3)用公式法解下列方程:2x(x-1)=3(x+1);解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.=_________,1x =_________,2x =__________. (4)用因式分解法解方程:(2x-3)2=x 2.解:移项,得 . 因式分解,得 . 于是得或 , x 1= ,x 2= .4.用适当的方法解下列方程:(1)196x 2-1=0;(2)x 2+8x=0;(3)x(2x-5)=4x-10;(4)x(x-7)=1;(5)2x 2+3x+3=0;(6)4x 2+12x+9=81.5.一元二次方程kx 2-2x+1=0,填空:(1)当k 时,方程有两个不相等的实数根;(2)当k 时,方程有两个相等的实数根;(3)当k 时,方程没有实数根. 6.把小圆形场地的半径增加5米得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.7.某银行经过最近的两次降息,使一年期存款的年利率由4%降至2%,平均每次降息的百分率是多少?8.一个直角梯形的下底比上底大2cm ,高比上底小1cm ,面积等于8cm 2,求这个直角梯形的周长.文档说明(Word 文档可以删除编辑)专注于可以编辑的精品文档:小学试卷教案合同协议施工组织设计、期中、期末等测试中考、高考、数学语文英语试卷、高中复习题目、本文档目的是为了节省读者的工作时间,提高读者的工作效率,读者可以放心下载文档进行编辑使用.由于文档太多,审核有可能疏忽,如果有错误或侵权,请联系本店马上删除。

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷

华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18 2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15 4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=712897.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2 8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0 11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣315.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣516.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.717.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或1418.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤120.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2 21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠123.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥325.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.1527.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2二.填空题(共11小题)28.方程(x﹣5)2=4的解为.29.一元二次方程(2x+1)2﹣81=0的根是.30.一元二次方程x2+2x﹣6=0的根是.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.三.解答题(共12小题)39.解方程:(3x+1)2=6440.解方程:2x2+4x﹣1=0(用配方法).41.用公式法解方程:3x2﹣6x+1=2.42.用公式法解方程:2x(x﹣3)=x2﹣1.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=044.用配方法解方程3x2﹣5x﹣2=0.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=046.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=048.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷参考答案与试题解析一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18【分析】移项,配方,即可得出选项.【解答】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:A.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为【分析】利用配方法对各选项进行判断.【解答】解:A、x2+8x+9=0化为(x+4)2=7,所以A选项的配方错误;B、x2﹣2x﹣99=0化为(x﹣1)2=100,所以B选项的配方正确;C、2t2﹣7t﹣4=0先化为t2﹣t=2,再化为,所以C选项的配方正确;D、3x2﹣4x﹣2=0先化为x2﹣x=,再化为(x﹣)2=,所以D选项的配方正确.故选:A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】移项,系数化成1,再配方,即可得出选项.【解答】解:﹣x2+8x+1=0,﹣x2+8x=﹣1,x2﹣8x=1,x2﹣8x+16=1+16,(x﹣4)2=17,故选:C.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=【分析】先移项,再将二次项系数化为1后,继而两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵2x2﹣6x+1=0,∴2x2﹣6x=﹣1,则x2﹣3x=﹣,∴x2﹣3x+=﹣+,即(x﹣)2=,故选:A.【点评】本题主要考查解一元二次方程﹣配方法,解题的关键是掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=71289【分析】移项后两边配上一次项系数一半的平方即可得.【解答】解:x2+34x﹣71000=0x2+34x=71000x2+34x+172=71000+172(x+17)2=71289故选:B.【点评】题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.7.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2【分析】先把二次项系数化为1,再把常数项移到方程的右边,进行把方程两边加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方的形式即可.【解答】解:4x2﹣8x﹣1=0,4x2﹣8x=1,4(x2﹣2x+1)=5,4(x﹣1)2=5.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.【分析】先把常数项移到方程右侧,两边除以2,然后方程两边加上,再把方程左边写成完全平方的形式即可.【解答】解:x2+x=,x2+x+=+,(x+)2=.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.【分析】将方程常数项移到右边,方程左右两边同时除以2,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,变形后即可得到正确答案.【解答】解:2x2﹣x﹣2=0,移项得:2x2﹣x=2,左右两边同时除以2得:x2﹣x=1,配方得:x2﹣x+=1+,即(x﹣)2=,故选:B.【点评】考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0【分析】用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.【解答】解:A.3x2+5x+1=0中,x=,不合题意;B.3x2﹣5x+1=0中,x=,不合题意;C.3x2﹣5x﹣1=0中,x=,不合题意;D.3x2+5x﹣1=0中,x=,符合题意;故选:D.【点评】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法.11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=【分析】求出b2﹣4ac的值,再代入公式求出即可.【解答】解:﹣3x2+5x﹣1=0,b2﹣4ac=52﹣4×(﹣3)×(﹣1)=13,x==,故选:C.【点评】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.【点评】本题是一道易错题,学生在作答时往往把一次项系数﹣6误认为6,所以,在解答时要注意这一点.14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣3【分析】用公式法求一元二次方程时,首先要把方程化为一般形式.【解答】解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.15.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣5【分析】利用因式分解法求解可得.【解答】解:∵x(x﹣5)=0,∴x=0或x﹣5=0,解得:x1=0,x2=5,故选:C.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.16.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.7【分析】把方程的左边利用十字相乘法分解因式,根据两数之积为0,两因式至少有一个为0,转化为两个一元一次方程,分别求出两方程的解即可得到原方程的解,进而得到三角形的第三边长.【解答】解:方程x2﹣10x+21=0可化为:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∴三角形的第三边长为3或6,当第三边长为3时,由3+3=6,得到三边不能构成三角形,舍去;所以第三边长为7,故选:D.【点评】此题考查了运用因式分解法解一元二次方程,以及三角形的三边关系,运用因式分解的方法解一元二次方程的前提必须是方程坐标利用因式分解的方法把和的形式化为积的形式,右边为0,此方法的理论依据为ab=0,得到a=0或b=0,三角形的三边关系为:三角形的两边之和大于第三边,两边之差小于第三边,利用此性质把求出的方程的解x=3舍去.17.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或14【分析】先求出方程的解,再得出三角形的三边长,最后求出即可.【解答】解:解方程x2﹣6x+8=0得:x=4或2,当三角形的三边为5,2,2时,2+2+<5,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为5,4,4时,符合三角形三边关系定理,此时三角形的周长为5+4+4=13,故选:B.【点评】本题考查了解一元二次方程和等腰三角形的性质,三角形的三边关系定理等知识点,能求出符合的所有情况是解此题的关键.18.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对【分析】先利用因式分解的方法解方程得到x1=3,x2=4,根据题意讨论:当腰为3,底边为4时;当腰为4,底边为3时,然后分别计算出等腰三角形的周长.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4,当腰为3,底边为4时,等腰三角形的周长为3+3+4=10;当腰为4,底边为3时,等腰三角形的周长为3+4+4=11.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤1【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:B.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.20.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,求出即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,解得:k且k≠﹣2,故选:C.【点评】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠1【分析】根据一元二次方程的定义和△的意义得到k﹣1≠0且△>0,即(﹣2)2﹣4(k﹣1)×3>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实数根,∴k﹣1≠0,即k≠1,△=(﹣2)2﹣4(k﹣1)×3=﹣12k+16,∵方程有两个不相等的实数解,∴△>0,∴﹣12k+16>0,∴k<,∴k的取值范围是k<且k≠1.故选:B.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了一元二次方程的定义23.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.25.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.27.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.二.填空题(共11小题)28.方程(x﹣5)2=4的解为x1=7,x2=3.【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.29.一元二次方程(2x+1)2﹣81=0的根是x1=4;x2=﹣5.【分析】先变形为(2x+1)2=81,再两边开方得到2x+1=±9,然后解两个一次方程即可.【解答】解:(2x+1)2=81,2x+1=±9,所以x1=4,x2=﹣5.故答案为x1=4,x2=﹣5.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.30.一元二次方程x2+2x﹣6=0的根是x1=,x2=﹣3.【分析】找出a,b,c的值,代入求根公式即可求出解.【解答】解:这里a=1,b=2,c=﹣6,∵△=8+24=32,∴x=,即x1=,x2=﹣3.故答案为:x1=,x2=﹣3.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.【解答】解:∵x1、x2是方程2x2﹣3x﹣1=0的两根,∴x1+x2=.x1x2=﹣,∴x12+x22=,故答案为:【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由两根关系,得根x1+x2=5,x1•x2=a,解方程得到x1+x2=5,即x1﹣x2=2,即可得到结论.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【分析】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.【点评】本题考查了根与系数的关系,难度较大,关键是根据已知条件对进行变形.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为﹣1或﹣3.【分析】利用根与系数的关系可以得到代数式,再把所求代数式利用完全平方公式变形,结合前面的等式即可求解.【解答】解:∵这个方程的两个实数根为x1、x2,∴x1+x2=﹣(m+3),x1•x2=m+1,而x12+x22=4,∴(x1+x2)2﹣2x1•x2=4,∴(m+3)2﹣2m﹣2=4,∴m2+6m+9﹣2m﹣6=0,m2+4m+3=0,∴m=﹣1或﹣3,故答案为:﹣1或﹣3【点评】本题主要考查一元二次方程根的判别式和根与系数的关系的应用,关键是利用根与系数的关系和完全平方公式将代数式变形分析.三.解答题(共12小题)39.解方程:(3x+1)2=64【分析】利用直接开平方法解方程得出答案.【解答】解:(3x+1)2=64,则:(3x+1)2=256,故3x+1=±16,解得:x1=﹣,x2=5.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.40.解方程:2x2+4x﹣1=0(用配方法).【分析】先把方程的二次项系数化为1,再利用完全平方公式变形为(x+1)2=,然后利用直接开平方法求解.【解答】解:x2+2x﹣=0,x2+2x+1=+1,(x+1)2=x+1=±,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.41.用公式法解方程:3x2﹣6x+1=2.【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程.【解答】解:3x2﹣6x﹣1=0,△=(﹣6)2﹣4×3×(﹣1)=48,x===,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.42.用公式法解方程:2x(x﹣3)=x2﹣1.【分析】先把方程化为一般式,然后利用求根公式解方程.【解答】解:方程整理为x2﹣6x+1=0,△=(﹣6)2﹣4×1=32,x==3±2,所以x1=3+2,x2=3﹣2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=0【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式、负指数幂的性质化简,二次根式的混合运算,然后根据实数运算法则进行计算即可得出结果.(2)根据配方法求解即可.【解答】解:(1)原式=﹣9﹣1+()﹣1﹣++1=﹣9+;(2)2x2﹣4x﹣1=0,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.【点评】本题考查的是解一元二次方程,实数的运算,熟知二次根式的运算、数的开方及乘方法则、负整数指数幂的运算法则特殊角的三角函数值是解答此题的关键.44.用配方法解方程3x2﹣5x﹣2=0.【分析】移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:3x2﹣5x﹣2=0,3x2﹣5x=2,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,x﹣=±,x1=﹣,x2=2.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=0【分析】(1)先计算乘方、取绝对值符号、计算负整数指数幂、化简二次根式,再计算加减可得;(2)把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方,写成完全平方式,再开方可得.【解答】解:(1)原式=1+3﹣﹣4+3=2;(2)∵x2+4x﹣2=0,∴x2+4x=2,则x2+4x+4=2+4,即(x+2)2=6,∴x+2=±,∴x=﹣2±,即x1=﹣2+、x2=﹣2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.46.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据特殊角锐角三角函数的值即可求出答案.【解答】解:(1)x2+4x+4=6(x+2)2=6x=﹣2±(2)原式=×﹣+=1=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=0【分析】(1)先算乘方和开方,再算乘法,最后算加减即可;(2)先求出b2﹣4ac的值,再判断即可.【解答】解:(1)原式=5﹣3﹣4+1=﹣1;(2)x2﹣4x+5=0,b2﹣4ac=(﹣4)2﹣4×1×5=﹣1<0,所以此方程无解.【点评】本题考查了解一元二次方程、零指数幂、平方差公式、二次根式的混合运算,能求出每一部分的值是解(1)的关键,能熟记公式是解(2)的关键.48.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.【分析】(1)先把二次根式化为最简二次根式.再把括号内合并后进行二次根式的乘除运算;(2)先把方程化为一般式,然后利用配方法解方程.【解答】解:(1)运算=(10﹣3)÷×=7÷×=7=14;(2)x2﹣2x+()2=0,(x﹣)2=0,x﹣=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.【分析】(1)根据方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)得到m的最小整数,可得方程为x2+2x+1=0,再解一元二次方程即可.【解答】解:(1)∵一元二次方程x2﹣4(2m+2)x+m2﹣3=0有实根,∴△=(2m+2)2﹣4(m2﹣3)=8m+16≥0,∴m≥﹣2;(2)m满足条件的最小值为m=﹣2,此时方程为x2+2x+1=0,解得x1=x2=﹣1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0时方程有两个不相等的实数根;(2)△=0时方程有两个相等的实数根;(3)△<0时方程没有实数根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m的取值范围.【解答】(1)证明:∵关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0,∴△=[﹣(m+1)]2﹣4(3m﹣6)=m2﹣10m+25=(m﹣5)2≥0,∴方程总有两个实数根;(2)解:由求根公式可求得x=3或x=m﹣2,若方程有一个根为负数,则m﹣2<0,解得m<2.综上可知,若方程有一个根是负数,m的取值范围为m<2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是。

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案

人教版九年级数学上册《22.2二次函数与一元二次方程》同步测试题及答案一、单选题1.根据表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,可以判断方程20ax bx c ++=的一个解x 的范围是( )x0 0.5 1 1.5 2 2y ax bx c =++ -1-0.513.57A .00.5x <<B .0.51x <<C .1 1.5x <<D .1.52x <<2.如表是一组二次函数y =x 2﹣x ﹣3的自变量和函数值的关系,那么方程x 2﹣x ﹣3=0的一个近似根是( )x 1 2 3 4 y ﹣3﹣1 39 A .1.2B .2.3C .3.4D .4.53.下表给出了二次函数()20y ax bx c a =++≠中x ,y 的一些对应值,则可以估计一元二次方程()200ax bx c a ++=≠的一个近似解1x 的范围为( )x … 1.2 1.3 1.4 1.5 1.6 … y…1.16-0.71-0.24-0.250.76…A .11.2 1.3x <<B .11.3 1.4x <<C .11.4 1.5x <<D .11.5 1.6x <<4.已知二次函数()20y ax bx c a =++≠的图象如图所示,有下列4个结论:①0abc >;②24b ac >;③a (m 2−1)+b (m −1)<0(m ≠1);④关于x 的方程21ax bx c ++=有四个根,且这四个根的和为4,其中正确的结论有( )A .①②③B .②③④C .①④D .②③5.根据下列表格中二次函数y =ax 2+bx+c 的自变量x 与y 的对应值,判断关于x 的一元二次方程ax 2+bx+c=0的一个解的大致范围是( )x ﹣1 0 1 2 3 4 y﹣7﹣5﹣151323A .1<x <2B .﹣1<x <1C .﹣7<x <﹣1D .﹣1<x <56.已知二次函数224y x x =-+,下列关于其图象的结论中,错误..的是( ) A .开口向上B .关于直线1x =对称C .当1x >时,y 随x 的增大而增大D .与x 轴有交点7.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标(1,)n ,与y 轴的交点在0203(,),(,)之间(包含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m2(1)(1)0a m b m -+-≤总成立;④关于x 的方程214ax bx c a ++=-无实数根.其中结论正确的个数为( )A .1个B .2个C .3个D .4个8.将抛物线2(1)y x =+的图象位于直线9y =以上的部分向下翻折,得到如图图象,若直线y x m =+与此图象有四个交点,则m 的取值范围是( )A .574m << B .354m << C .495m << D .374m << 9.已知函数f (x )=x 2+2x ,g (x )=2x 2+6x +n 2+3,当x =1时,f (1)=12+2×1=3,g (1)=2+6+n 2+3=n 2+11.则以下结论正确的有( )①若函数g (x )的顶点在x 轴上,则6n = ②无论x 取何值,总有g (x )>f (x );③若﹣1≤x ≤1时,g (x )+f (x )的最小值为7,则n =±3; ④当n =1时,令()()2()g x h x f x =,则h (1)•h (2)…h (2023)=2024.A .1个B .2个C .3个D .4个10.已知,抛物线y =ax 2+2ax 在其对称轴的左侧y 随x 的增大而减小,关于x 的方程ax 2+2ax =m (m>0)的一个根为﹣4,而关于x 的方程ax 2+2ax =n (0<n <m )有两个整数根,则这两个根的积是( ) A .0B .﹣3C .﹣6D .﹣8二、填空题11.若抛物线2=2++y x mx n -与x 轴交于A ,B 两点,其顶点C 到x 轴距离是8,则线段AB 的长为 . 12.根据下列表格的对应值,判断20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的取值范围是x3.23 3.24 3.25 3.26 2ax bx c ++ 0.06-0.02-0.030.0913.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣4,8),B (2,2),则关于x 的方程ax 2﹣bx ﹣c =0的解为 .14.抛物线 2y ax bx c =++ (a ,b ,c 为常数, 0a > )经过两点 ()()2,0,4,0A B - ,下列四个结论:①20b a += ;②若点 ()()2020,,2021,m n - 在抛物线上,则 m n < ;③0y > 的解集为 2x <- 或 4x > ;④方程 ()21a x bx c x +++=- 的两根为 123,3x x =-= .其中正确的结论是 (填写序号).15.若抛物线25y x bx =+-的对称轴为直线2x =,则关于x 的方程25x bx +-213x =-的解为 .16.若一元二次方程()200ax bx c ac ++=≠有两个不相等实根,则下列结论:①240b ac ->;②方程20cx bx a ++=一定有两个不相等实根;③设2bm a=-,当0a >时,一定有22am bm ax bx +≤+;④s ,()t s t <是关于x 的方程()()10x p x q +--=的两根,且p q <,则q t s p >>>,一定成立的结论序号是 .17.抛物线2y ax bx c =++(a ,b ,c 为常数,0)c <经过(11),,(0)m ,和(0)n ,三点,且3n ≥. 下列四个结论:①0b <;②2414ac b a->;③当3n =时,若点(2)t ,在该抛物线上,则>1t ;④若关于x 的一元二次方程2ax bx c x ++=有两个相等的实数根,则10<3m ≤. 其中正确的是 (填序号即可).18.抛物线()20y ax bx c a =++≠的对称轴为1x =,经过点()3,n -,顶点为D ,下列四个结论:21a b +=①;240b ac ->②;③关于x 的一元二次方程2ax bx c n ++=的解是13x =-和25x =;④设抛物线交y 轴于点C ,不论a 为何值,直线CD 始终过定点()15,n -.其中一定正确的是 (填写序号).三、解答题19.已知抛物线的顶点坐标为()2,0,且经过点()1,3-.(1)求该抛物线的解析式;(2)若点(m,−27)在该抛物线上,求m 的值.20. 排球场的长度为18m ,球网在场地中央且高度为2.24.m 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()²(0)y a x h k a =-+<.(1)某运动员第一次发球时,测得水平距离x 与竖直高度y 的几组数据如下:水平距离/x m 0 2 4 6 11 12 竖直高度/y m2.482.722.82.721.821.52①根据上述数据,求这些数据满足的函数关系()²(0)y a x h k a =-+<; ②判断该运动员第一次发球能否过网 ▲ (填“能”或“不能”).(2)该运动员第二次发球时,排球运动过程中的竖直高度(y 单位:)m 与水平距离(x 单位:)m 近似满足函数关系()20.024 2.88y x =--+,请问该运动员此次发球是否出界,并说明理由.21.如图,抛物线()2y ax bx c a 0=++≠经过点()A 03,,()B 23,和()C 10-,,直线()y mx n m 0=+≠经过点B ,C ,部分图象如图所示,则:(1)该抛物线的对称轴为直线 ;(2)关于x 的一元二次方程2ax bx c 0++=的解为 ; (3)关于x 的一元二次方程2ax bx c mx n ++=+的解为 .22.已知抛物线y=ax 2+x+1(0a ≠)(1)若抛物线的图象与x 轴只有一个交点,求a 的值; (2)若抛物线的顶点始终在x 轴上方,求a 的取值范围.23.如图,二次函数y =2x +bx +c 的图象与x 轴只有一个公共点P ,与y 轴交于点Q ,过点Q 的直线y=2x +m 与x 轴交于点A ,与这个二次函数的图象交于另一点B ,若S △BPQ =3S △APQ ,求这个二次函数的解析式.24.二次函数解析式为223y ax x a =--.(1)判断该函数图象与x 轴交点的个数;(2)如图,在平面直角坐标系中,若二次函数图象顶点是A ,与x 轴交于B ,C 两点,与y 轴交于D ,点C 的坐标是()3,0,求直线CD 的解析式;(3)请你作一条平行于x 轴的直线交二次函数的图象于点M ,N ,与直线CD 于点R ,若点M ,N ,R 的横坐标分别为m ,n ,r ,且r m n <≤,求m n r ++的取值范围.25.抛物线L :212y x bx c =-+与直线L ':22y kx =+交于A 、B 两点,且()2,0A .(1)求k 和c 的值(用含b 的代数式表示c ); (2)当0b =时,抛物线L 与x 轴的另一个交点为C . ①求ABC 的面积;②当15x -≤≤时,则1y 的取值范围是_________.(3)抛物线L :212y x bx c =-+的顶点(),M b n ,求出n 与b 的函数关系式;当b 为何值时,点M 达到最高.(4)在抛物线L 和直线L '所围成的封闭图形的边界上把横、纵坐标都是整数的点称为“美点”,当20b =-时,直接写出“美点”的个数_________.参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】B 5.【答案】A 6.【答案】D 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】412.【答案】3.24 3.25x << 13.【答案】x 1=﹣4,x 2=2 14.【答案】①③ 15.【答案】1224x x ==, 16.【答案】①②③④ 17.【答案】②③④ 18.【答案】④③19.【答案】(1)y =−3(x −2)2(2)5m =或1-20.【答案】(1)解:①由表中数据可得顶点()42.8,设2(4) 2.8(0)y a x a =-+<把()02.48,代入得16 2.8 2.48a += 解得:0.02a =-∴所求函数关系为20.02(4) 2.8y x =--+;②能.(2)解:判断:没有出界.第二次发球:()20.024 2.88y x =--+ 令0y =,则()20.024 2.880x --+= ,解得18(x =-舍) 216x =21618x =<∴该运动员此次发球没有出界.21.【答案】(1)x 1=(2)1x 1=- 2x 3= (3)1x 2= 2x 1=-22.【答案】(1)解:由题意得方程ax 2+x+1=0有两等实数根.∴△=b 2-4ac =1-4a =0,∴a =14. ∴当a =14时函数图象与x 轴恰有一个交点; (2)解:由题意得4104a a-> 当a >0时,4a -1>0,解得a >14;当a <0时,4a -1<0,解得a <14.∴a <0.∴当a >14或a <0时,抛物线顶点始终在x 轴上方.23.【答案】y =x 2﹣4x+424.【答案】(1)函数图象与x 轴交点的个数是2(2)3y x =- (3)12m n r ≤++<25.【答案】(1)1k =- 44c b =-(2)10;1421y -≤≤ (3)244n b b =-+- 2b = (4)90。

华师大版九年级上第22章一元二次方程单元复习题有答案解析

华师大版九年级上第22章一元二次方程单元复习题有答案解析

华师大版九年级上册第22章一元二次方程单元复习题姓名:;成绩:;一、选择题(4分×10=40分)1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+92、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2D.﹣17、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠28、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣511、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(4分×6=24分)13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为.14、(抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是(填序号即可)三、解答题(8分+6分=14分)19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.(2)解方程:m2﹣6m﹣9991=0;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;四、解答题(10分×4=40分)21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.五、解答题(12分×2=24分)24、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.华师大版九年级上册第22章一元二次方程单元复习题的解析一、选择题1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+9考点:解一元二次方程-配方法.分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2 D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.故选B.8、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.解答:解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选D.10、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.11、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b★b﹣a★a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b★b﹣a★a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根与系数的关系;根的判别式.专题:计算题.分析:①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1x2=2n>0,y1y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1y2=2m,∴2m﹣2n=y1+y2+y1y2,∵y1与y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1与1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,还考查了举例反证法,有一定的难度,注意总结.二、填空题13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.14. (抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a ≤且a≠1.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= 3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【点评】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是1.【分析】由n是方程的根可得nm2﹣2m+n2=0且△=(﹣2)2﹣4nn2≥0,继而可得n的取值范围,即可知n的最大值.【解答】解:∵n是方程x2+m2x﹣2m=0(m为实数)的一个实数根,∴nm2﹣2m+n2=0,且△=(﹣2)2﹣4nn2≥0,即4﹣4n3≥0,∴n3≤1,则n≤1,∴n的最大值为1,故答案为:1.【点评】本题主要考查一元二次方程的解与根的判别式,根据题意得出关于n的不等式是解题的关键.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是①②④(填序号即可)【分析】先读懂题意,根据题意求出每个式子的左边和右边,再判断是否正确即可.【解答】解:∵[2+(﹣5)]#(﹣2)=(﹣3)#(﹣2)=6,∴①正确;∵(a*b)#c=(a+b)#c=(a+b)c=ac+bc,c(a*b)=c(a+b)=ac+bc,∴②正确;∵a*(b#a)=a*ab=a+ab,(a*b)#a=(a+b)#a=(a+b)a=a2+ab,∴③错误;∵(1*x)#(1#x)=1,∴(1+x)#(x)=1,(1+x)x=1,x2+x﹣1=0,解得:x2=,x2=,∵x>0,∴x=,∴④正确.故答案为:①②④.【点评】本题考查了整式的混合运算,解一元二次方程,有理数的混合运算的应用,能正确根据运算法则和新运算进行化简和计算是解此题的关键.三、解答题19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.(2)解方程:m2﹣6m﹣9991=0;【分析】①先进行配方,然后直接开平方求出方程的解;【解答】解:①∵m2﹣6m﹣9991=0,∴m2﹣6m+9﹣9﹣9991=0,∴(m﹣3)2=10000,∴m﹣3=±100,∴m1=103,m2=﹣97;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;【分析】把x2﹣5看成一个整体,利用因式分解法解方程即可;【解答】解:∵(x2﹣5)2﹣3(x2﹣5)﹣4=0,∴(x2﹣5)2﹣3(x2﹣5)+﹣﹣4=0,∴(x2﹣5﹣)2=,∴x2﹣=±,∴x2=,∴x2=或x2=,x=±2或x=±3,∴x1=2,x2=﹣2,x3=3,x4=﹣3;四、解答题21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.【分析】(1)根据根与系数的关系得出△>0,代入求出即可;(2)根据根与系数的关系得出x1+x2=﹣(2k+1),x1x2=k2+1,根据x1+x2=﹣x1x2得出﹣(2k+1)=﹣(k2+1),求出方程的解,再根据(1)的范围确定即可.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k2+1)>0,解得:k>,即实数k的取值范围是k>;(2)∵根据根与系数的关系得:x1+x2=﹣(2k+1),x1x2=k2+1,又∵方程两实根x1、x2满足x1+x2=﹣x1x2,∴﹣(2k+1)=﹣(k2+1),解得:k1=0,k2=2,∵k>,∴k只能是2.【点评】本题考查了根与系数的关系和根的判别式的应用,能正确运用性质进行计算是解此题的关键,题目比较好,难度适中.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.【分析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k ≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得x1+x2=﹣,x1x2=,代入到+x1+x2=2中,可求得k 的值.【解答】解:(1)当k=1时,原方程可化为2x+2=0,解得:x=﹣1,此时该方程有实根;当k≠1时,方程是一元二次方程,∵△=(2k)2﹣4(k﹣1)×2=4k2﹣8k+8=4(k﹣1)2+4>0,∴无论k为何实数,方程总有实数根,综上所述,无论k为何实数,方程总有实数根.(2)由根与系数关系可知,x1+x2=﹣,x1x2=,若S=2,则+x1+x2=2,即+x1+x2=2,将x1+x2、x1x2代入整理得:k2﹣3k+2=0,解得:k=1(舍)或k=2,∴S的值能为2,此时k=2.【点评】本题主要考查一元二次方程的定义、根的判别式、根与系数的关系,熟练掌握方程的根与判别式间的联系,及根与系数关系是解题的关键.五、解答题25、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有两个整数根得△>0,得出m>0或m<﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.【解答】(1)解:把点A(2,2)代入y1=,得:2=,∴k=4;(2)证明:∵四边形ABCD是正方形,∴BC=AB,∠ABC=90°,BD=AC,∴∠EBC+∠ABF=90°,∵CE⊥x轴,AF⊥x轴,∴∠CEB=∠BFA=90°,∴∠BCE+∠EBC=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,,∴△BCE≌△ABF(AAS);(3)解:连接AC,作AG⊥CE于G,如图所示:则∠AGC=90°,AG=EF,GE=AF=2,由(2)得:△BCE≌△ABF,∴BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,∴OE=CE,∴点C的坐标为:(﹣x﹣2,x+2),代入双曲线y2=﹣(x<0)得:﹣(x+2)2=﹣9,解得:x=1,或x=﹣5(不合题意,舍去),∴OB=1,BF=3,CE=OE=3,∴EF=2+3=5,CG=1=OB,B(﹣1,0),AG=5,在Rt△BOD和Rt△CGA中,,∴Rt△BOD≌Rt△CGA(HL),∴OD=AG=5,∴D(0,5),设直线BD的解析式为:y=kx+b,把B(﹣1,0),D(0,5)代入得:,。

九年级数学上册第22章《一元二次方程》习题精选新人教版

九年级数学上册第22章《一元二次方程》习题精选新人教版

1第22章《一元二次方程》姓名得分一、填空题(每空2分,共32分)1.把一元二次方程(x -2)(x +3)=1化为一般形式是.2.用配方法解方程2250x x 时,配方后得到的方程是;当x时,分式2926xx 的值为零;一元二次方程2x (x -1)=x -1的解是;3.方程(x-1)2=4的解是;方程2x =x 的解是.4.足球世界杯预选赛实行主客场的循环赛,即每两支球队都要在自己的主场和客场踢一场。

共举行比赛210场,则参加比赛的球队共有支。

5.一个菱形的两条对角线的和是14cm ,面积是24 cm 2,则这个菱形的周长是___ _______。

6.当m 时,关于x 的一元二次方程02142mx x 有两个相等的实数根,此时这两个实数根是.7.请你写出一个有一根为1的一元二次方程:.8.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是.9.在实数范围内定义一种运算“*”,其规则为22*a bab ,根据这个规则,方程(2)50*x的解为.10.李娜在一幅长90cm 、宽40cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积是整个挂图面积的54%,设金色纸边的宽度为xcm ,根据题意,所列方程为:。

11.若方程2310xx 的两根为1x 、2x ,则1211x x 的值为.12.设a b ,是方程220110x x 的两个实数根,则22aa b 的值为.二、选择题(每小题3分,共24分)1.下列方程中,是一元二次方程的是()A .221xx y B .2110xxC .2xD .2(1)(3)1x x x2.一元二次方程x 2-3x +4=0的根的情况是()A .有两个不相等的实根B .有两个相等的实根C .无实数根D .不能确定3.已知代数式2346x x 的值为9,则2463xx 的值为()A .18 B.12 C.9 D.74.直角三角形两条直角边的和为7,面积为6,则斜边为()。

上册第第二十二章一元二次方程同步练习册以及答案

上册第第二十二章一元二次方程同步练习册以及答案

第二十二章 一元二次方程22.1 一元二次方程(1)学习要求:通过学习感受现实生活和学习环境中方程知识的实际意义、体会建模思想,接受和理解一元二次方程及相关概念,通过交流、辨析,能将方程化为一般形式,认识二次项系数、一次项系数、常数项等概念,并注意系数的符号.做一做: 填空题:1.一元二次方程5x 2=3x +2的一般形式是____________,它的二次项系数是______,一次项系数是______,常数项是______.2.已知方程(m +1)x 2-2mx =1是一元二次方程,那么m ≠______. 3.当m ______时,方程223213x x mx =--不是关于x 的一元二次方程. 4.已知:方程(m 2-4)x 2-6(m -2)x +3m -4=0,当m ______时,它是一元二次方程,当m ______时,它是一元一次方程. 选择题:5.把方程(2x +1)(3x +1)=x 化成一般形式后,一次项系数和常数项分别是( ) (A)4,1 (B)6,1 (C)5,1 (D)1,6 6.下列方程中,一元二次方程是( ) (A)2x 4-5x 2=0 (B)(2x 2+7)2-3=0 (C)012=+xx(D)0312142=++-x x 7.把方程(2x -1)(3x +2)=x 2+2化成一般形式后,二次项系数和常数项分别是( )(A)5,-4 (B)5,1 (C)5,4 (D)1,-4 解答题:8.根据题意,列出方程:(1)一个三角形的底比高多2cm ,三角形面积是30cm 2,求这个三角形的底和高.(2)两个连续正整数的平方和是313,求这两个正整数.(3)已知两个数的和为6,积为7,求这两个数.问题探究:已知关于x 的一元二次方程3(x -k )2+4k -5=0的常数项等于1,则所得关于k 的一元二次方程的一般形式是什么?22.1 一元二次方程(2)学习要求:进一步理解一元二次方程的概念,灵活掌握二次项系数、一次项系数、常数项,体会一元二次方程与现实生活的关系.做一做: 填空题:1.方程(x +1)(x +2)=3化为一般形式是____________.2.两个连续奇数的积是255,求这两个数,若设较小奇数为x ,则根据题意,可得方程为____________.3.一个矩形的长比宽多2cm ,面积为30cm 2,求这个矩形的长与宽,设矩形的长为x cm ,列出方程为____________. 选择题:4.下列各方程中,一定是关于x 的一元二次方程的是( ) (A)mx 2+8x =6x (x -1)-2 (B)ax 2+bx +c =0 (C)(m 2+1)x 2-5x +3=0(D)x1+5x +8=0 5.下列各方程中,一定是关于x 的一元二次方程的个数是( )①1232=-xx ;②mx 2+nx -4=0;③11-=-x x x ;④x 2-x 2(1+x 2)-2=0 (A)4个 (B)3个 (C)2个 (D)1个6.长50cm ,宽30cm 的矩形薄铁片,在四个角截去四个大小相同的正方形,做成底面积为1200cm 2的无盖长方体盒子.设截去的小正方形边长为x cm ,列出的正确方程是( ) (A)(50-2x )(30-2x )=1200 (B)(50-x )(30-x )=1200 (C)(50-2x )(30-x )=1200 (D)50 ×30-4x 2=1200 解答题:根据下列问题,列出方程(不必求解).7.学校有一块长方形空地,长42米,宽30米,准备在中间开辟花圃,四周修建等宽的林荫小道,使小道的面积和花圃面积相等,求小道的宽.问题探究:根据方程:(50+x )(40+x )=3000,你能结合身边的实际,编一个应用问题吗?试试看.22.2 降次——解一元二次方程(1)学习要求:在进一步理解一元二次方程的有关概念的基础上,结合平方根的意义,初步体会利用开平方可以将一些一元二次方程降次转化为一元一次方程.做一做: 填空题: 1.x (x +2)=5(x +2)的一般形式是_______,其中二次项系数是______,一次项系数是______,常数项是______.2.若x =2满足方程x 2-12x -m =0,则m =______. 3.形如方程x 2=a (a ≥0)的解是______.4.形如方程(x +m )2=n (n ≥0)的解是______.选择题:5.方程(x +2)2=9的解为( ) (A)x 1=9,x 2=-9 (B)x 1=9,x 2=0 (C)x 1=-9,x 2=0 (D)x 1=1,x 2=-5 6.方程(x +3)2-9=0的解的情况为( ) (A)x 1=3,x 2=-3 (B)x 1=0,x 2=-6 (C)x 1=9,x 2=-6 (D)x 1=6,x 2=0 7.方程4x 2-1=0的根的情况是( ) (A)x =±2 (B)0,2121=-=x x (C)21±=x(D)无实根解答题: 8.解下列方程:(1)x 2=169;(2)5x 2=125;(3)(x +3)2=16;(4)(6x -7)2-128=0.问题探究: 若等式24x a ·(a 1-2x)4=a 9成立,求x 的值.22.2 降次——解一元二次方程(2)学习要求:在掌握了利用求平方根的方法解一元二次方程以后,结合完全平方的特征,体会转化思想:即配方转化降次求解一元二次方程.理解配方法的要领,掌握配方法的基本步骤.做一做: 填空题:1.根据公式a 2±2ab +b 2=(a ±b )2,填充下列各式: (A)x 2+8x +______=(x +______)2 (B)x 2-2x +______=(x -______)2(C)x 2+x +______=(x +______)2 (D)x 2-x +______=(x -______)2 选择题:2.用配方法解方程x 2-3x -1=0时,以下解法中的配方过程正确的是( ) (A)x 2-3x -1=0 (B)x 2-3x -1=0 x 2-3x +9=9+1 x 2-3x +9=1 (x -3)2=10 (x -3)2=1 (C)x 2-3x -1=0 (D)x 2-3x -1=01494932+=+-x x 1232332+=+-x x413)23(2=-x 25)23(2=-x解答题:3.用配方法解下列方程: (1)x 2-6x +4=0; (2)x 2+5x -6=0;(3)x 2+6x +8=0;(4)x 2+4x -12=0;(5)(2x -3)2-3=0;(6)x 2+2mx -n 2=0.问题探究:求证:不论a 、b 取何实数,多项式a 2b 2+b 2-6ab -4b +14的值都不小于1.22.2 降次——解一元二次方程(3)学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.做一做: 填空题:1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______.3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______. 选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( ) (A)(x -1)2=m 2+1 (B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +1 5.方程x 2=x +1的解是( ) (A)1+=x x(B)251±=x (C)1+±=x x(D)251±-=x6.方程x 2-6x -3=0的解的情况为( ) (A)有两个相等的实数根 (B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根解答题:7.用公式法解方程: (1)2x 2+2x =1; (2)5x +2=3x 2;(3)x (x +8)=16; (4)(2y +1)(3y -2)=3.问题探究:在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( )(A)m =0,n =0 (B)m ≠0,n ≠0 (C)m ≠0,n =0(D)m =0,n ≠022.2 降次——解一元二次方程(4)学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.做一做: 填空题:1.方程x 2+x -3=0的两根是____________. 2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________. 选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( ) (A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数 5.已知x 2-3x +1=0,则xx 1+的值为( )(A)3 (B)-3 (C)23 (D)16.下列方程中,两实根之和等于零的是( ) (A)9x 2+4=0 (B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6 解答题: 7.解下列方程: (1)x 2+3x -4=0; (2)x 2-x -1=0;(3)-2x 2=5x -3;(4)3x 2+2x =4.问题探究:一根长36cm 的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm 的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.22.2 降次——解一元二次方程(5)学习要求:在理解了利用求平方根的思想来达到降次求解一元二次的方程之后,因式分解又是一种转化的思想,来实现将一元二次方程降次为一元一次方程求解.做一做: 填空题:1.当x =3时,(x -3)(x +3)的值为____________. 2.方程x (x -3)=0的根为______________.3.方程x 2=x 的右边化为零后变为________,左边分解因式后化为______,原方程的解为______选择题:4.关于x 的方程(m 2-m )x 2+mx +n =0是一元二次方程的条件是( ) (A)m ≠0 (B)m ≠1 (C)m ≠0或m ≠1 (D)m ≠0且m ≠1 5.方程x 2=2x 的解是( ) (A)x =0 (B)x =2 (C)x =0或x =2 (D)x =±2 6.方程(x -3)2=3-x 的解是( ) (A)x =3 (B)x =2或x =3 (C)x =2 (D)x =4 解答题:7.用因式分解法解方程: (1)(x -1)(x -2)=0; (2)x 2-3x =0;(3)x2-4x+4=0;(4)x2-5x+4=0.问题探究:若等腰三角形的两边长分别是方程x2-9x+14=0的两根.那么这个等腰三角形的周长是多少?22.2 降次——解一元二次方程(6)学习要求:进一步体会利用因式分解法降次的基本思想,掌握因式分解法求解一元二次方程.做一做:填空题:1.分解因式:2x2+5x-3=____________.2.用因式分解法解方程x2-5x=6,得方程的根为____________.3.方程2(x+3)2-5(x+3)=0的解为______.最简便的解法是____________.4.若代数式x2+6x的值为零,则x的值为______.选择题:5.已知(x+y)(x+y+2)=15,则x+y的值为( )(A)3或5 (B)3或-5(C)-3或5 (D)-3或-56.下列方程:①x2-5x-6=0;②x2-6x-5=0;③x2+5x+6=0;④x2+6x+5=0.适宜用因式分解求解的是( )(A)①、②、③、④(B)①、③、④(C)①、②、③(D)②、③、④解答题:7.解下列方程:(1)9(x-3)2=25;(2)6x2-x=1;(3)x2+4x-96=0;(4)x(x-1)=2;(5)4(2x-1)2=9(x-2)2;(6)(2x-3)2-2(3-2x)=8.问题探究:当k是什么整数时,方程(k2-1)x2-6(3k-1)x+72=0只有正整数根?22.2 降次——解一元二次方程(7)学习要求:在掌握了配方法、公式法及因式分解法求解一次二次方程之后,同学们应注意灵活地应用这些知识.做一做: 填空题: 1.方程0)75.0)(5.0()43(2=--+-x x x 的较小根是____________. 2.已知单项式xxb a 3222-与4221b a -是同类项,则x 的值是__________. 3.++x x 222______=(x +______)2. 4.4x 2-______+9=(______-3)2.选择题:5.方程x (x 2+1)=0的实数根的个数是( ) (A)0(B)1(C)2(D)36.下列方程中,两根分别为-1+3和-1-3的是( ) (A)0)31)(31(=--++x x (B)0)31)(31(=+--+x x (C)0)31)(31(=--+-x x (D)0)31)(31(=++-+x x解答题: 7.解下列方程 (1)x 2-6x +4=0;(2)x 2-22x -3=0;(3)2y (y +2)=(y +2); (4)(2x -1)2-4=0;(5)3y 2+1=23y ;(6)(2x -1)(x -2)=-1.问题探究:小明养了一群鸽子,小亮问小明养了几只鸽子,小明说:“如果你给我一只鸽子,那么鸽子总数的平方是鸽子总数的9倍.”你知道小明现在有几只鸽子吗?阅读与思考——一元二次方程的近似解与连分数学习要求:将一些具体值代入所要解的一元二次方程,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,逐步估计出一元二次方程的近似解.这就是求一元二次方程近似解的基本要领.下面介绍另外一种估计一元二次方程近似解的方法.方程:x 2-3x -1=0,因为x ≠0,所以先将其变形为x =x 13+,用x13+代替x ,得 xxx 131313++=+=反复若干次用x13+代替x ,就得到 xx +++++++=3131313131313形如上式右边的式子称为连分数.可以猜想,随着替代次数的不断增加,右式最后的x1对整个式子的值的影响将越来越小,因此可以根据需要,在适当的时候把x 1忽略不计,例如,当忽略x =x 13+中的x 1时,就得到x =3,当忽略xx 1313++=的x 1时,就得到313+=x ;如此等等.于是就可以得到一系列分数:,,3131313,31313,313,3 ++++++即: .30303.333109,3.31033,333.3310,3 ===可以发现它们越来越趋于方程x 2-3x -1=0的正根.同学们不妨利用此方法求一求方程x 2-5x -1=0的近似解.22.3 实际问题与一元二次方程(1)学习要求:在学习一元二次方程的解法的过程中,同学们应注意与实际问题相联系,逐步培养用方程的思想与知识解决实际问题的能力,培养学数学用数学的意识.做一做: 填空题:1.某公司10月份产值为a 万元,比5月份增长20%,则5月份产值为____________. 2.一个六位数,低位上的三个数字组成的三位数是a ,高位上的三个数字组成的三位数是b ,现将a ,b 互换,则得到的六位数是____________3.一项工程,甲班干完需m 天,乙班干完需(m +2)天,甲、乙两班合干,完成工程需__________________天. 选择题:4.甲走20天的路程乙走30天,已知乙每天走15千米,问甲每天走多少千米?在下列几种设未知数的写法中,正确的是( ) (A)设甲每天走x (B)设甲速为x 千米 (C)设甲走x 千米 (D)设甲每天走x 千米5.一件工作,甲独做4天完成,乙独做6天完成,则二人合做( )天完成. (A)6(B)5(C)512 (D)2解答题:6.列方程解应用题:(1)两个数的差为4,它们的积为45,求这两个数.(2)一个直角三角形的三条边的长是三个连续的整数,求三条边的长.(3)某林场第一年造林200亩,第一年到第三年共造林728亩,求后两年造林面积的平均增长率.问题探究:我国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一题:直田积(矩形面积) 八百六十四步(平方前),只云长阔(长与宽)共六十步,问阔及长各几步?22.3 实际问题与一元二次方程(2)学习要求:进一步运用方程解决实际问题,逐步培养逻辑思维能力和分析问题、解决问题的能力. 做一做: 填空题:1.某公司今年的年产值是1000万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是______万元.2.制造某种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分率是______.3.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm,宽为32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为______cm.解答题:4.有一个两位数恰等于其个位与十位上的两个数字乘积的3倍,已知十位上的数字比个位上的数字小2,求这个两位数.5.某电冰箱厂今年每个月的产量都比上个月增长同样的百分数.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月增长率.6.某养鸡场的矩形鸡舍一边靠墙,另三边用竹篱笆围成,现有材料可制作竹篱笆13m,若欲围成20m2的鸡舍,鸡舍的长、宽应各是多少?问题探究:第6题中,利用13m的竹篱笆,能围成21m2的鸡舍吗?能围成22m2的鸡舍吗?若能围成,求出鸡舍的长和宽,若不能围成,说明理由.22.3 实际问题与一元二次方程(3)学习要求:通过应用一元二次方程解决一些实际问题,进一步体会学数学用数学的意识,培养分析问题和解决问题的能力.做一做:选择题:1.已知两个连续奇数的积为63,求这两个数.设其中一个数为x,甲、乙、丙三同学分别列出方程①x(x+2)=63 ②x(x-2)=63 ③(x-1)(x+1)=63其中正确的是( )(A)只有①(B)只有②(C)只有①②(D)①②③都正确2.某机床厂今年一月份生产机床500台,三月份生产机床720台,求二,三月份平均每月的增长率,设平均每月增长的百分率为x,则列出方程正确的是( )(A)500+500x=720 (B)500(1+x)2=720(C)500+500x2=720 (D)(500+x)2=7203.生物兴趣小组的同学,将自己采集到的标本向本组其他组员各赠送一件,全组共互赠了182件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是( ) (A)x (x +1)=182 (B)x (x -1)=182 (C)x 21(x +1)=182 (D)x 21(x -1)=182 4.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少.设每月的平均增长率为x ,根据题意列方程为( ) (A)50(1+x )2=175 (B)50+50(1+x )2=175 (C)50(1+x )+50(1+x )2=175 (D)50+50(1+x )+50(1+x )2=175 解答题:5.为响应国家“退耕还林”的号召,改变某省水土流失严重的现状,2004年某省退耕还林1600公顷,到2006年全年退耕还林1936公顷,问这两年平均每年退耕还林的增长率是多少? 6.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112元,求甲种债券的年利率.问题探究:在长为a 的线段AB 上有一点C ,且AC 是AB 和BC 的比例中项,试求线段AC 的长.观察与猜想——一元二次方程根与系数的关系学习要求:一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.做一做: 填空题:1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1·x 2=______. 2.若α ,β 是一元二次方程x 2-3x -2=0的两个实数根,则=+βα11______.3.若α ,β 是方程x 2-3x =5的两根,则α 2+β 2-α β 的值是______. 4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).选择题:5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( ) (A)b 2-4ac =0 (B)b =0 (C)c =0 (D)c ≠06.若α ,β 是方程2x 2+3x -4=0的两根,则α +α β +β 的值是( ) (A)-7 (B)213- (C)21-(D)77.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( ) (A)53(B)53-(C)-3 (D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( ) (A)两个实数根的和为23- (B)两个实数根的和为23 (C)两个实数根的积为23 (D)以上说法都不正确解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值:(1);221221x x x x +(2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.问题探究:已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.数学活动(1)学习要求:通过合作、交流、归纳与探索,挖掘一元二次方程两根与一些二次三项式的分解因式之间的内在联系,认识二次三项式的因式分解,并进一步理解一元二次方程的根.做一做:我们已经学过一些特殊的二次三项式的因式分解,如3x 2-2x =x (3x -2) x 2-9=(x +3)(x -3) x 2+4x +4=(x +2)2但对于一般的二次三项式ax 2+bx +c (a ≠0),你能把它分解因式吗? 观察下列各式,你能发现什么呢?方程方程的根分解因式x 2-7x +6=0 x 1= x 2=x 2-7x +6=( )( )x 2+2x -3=0 x 1= x 2= x 2+2x -3=( )( ) 4x 2-12x +9=0 x 1= x 2= 4x 2-12x +9=( )( ) 3x 2+7x +4=0 x 1= x 2=3x 2+7x +4=( )( )通过上面的计算、观察,你能得到什么结论呢?设方程ax 2+bx +c =0(a ≠0)的两个实数根为x 1,x 2,则二次三项式分解因式为ax 2+bx +c =_________________________.你能说说其中的道理吗?根据你们得到的结论,试一试将下列因式分解. (1)x 2+20x -69; (2)24x 2-2x -35;(3)x 2-x -1;(4)2x 2-6x +3.数学活动(2)学习要求:通过合作、交流利用方程的知识解决一些实际问题,体会建立数学模型、学数学用数学的意识,提高学习基本素养.做一做:1.如果与水平面成45°角向斜上方投掷标枪,那么标枪飞行的水平距离S (单位:m)与标枪出手的速度v (单位:m/s)之间大致有如下关系:28.92+=v S .某同学按这种要求投掷标枪,标枪飞行的水平距离为42m ,求标枪出手时的速度(结果精确到0.1m/s).2.某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元? 3.小明将勤工俭学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的450元连同应得税后利息又全部按一年定期存入银行.如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(利息税为利息的20%,结果精确到0.01%).数学活动(3)学习要求:通过合作、交流、实践与探索,初步学习把现实世界的问题化为纯数学的问题,即建立数学模型,培养创新精神与实践能力.课题:洗衣服的数学问题.现在衣物已打好了肥皂,揉搓得很充分了,再拧一拧,当然不可能完全把水拧干,设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂得更干净?(1)如果把衣服一下放到20斤清水里,那么连同衣服上那1斤水,一共21斤水,污物均匀分布在这21斤水里,拧干后,衣服上还有1斤水,所以污物残存量是原来的⋅211如何洗,效果更佳呢?(2)如果衣服上残存水量是1.5斤或2斤,洗衣用水量是37斤,那么又该怎么洗法?复 习学习要求:通过复习,全面认识和理解一元二次方程的有关概念,掌握用公式法、因式分解法求解一元二次方程.理解配方法原理及这一思想的含意,会用方程的思想解决一些实际问题,认识根与系数之间的关系.做一做: 填空题:1.方程(2x -1)(3x +2)=x 2+2化为一般形式后,a =______,b =______,c =______. 2.y 2-4y +______=(y -______)2. 3.+-x x 252______=(x -______)2. 4.如果关于x 的一元二次方程x 2+px +q =0的两个根是x 1=1,x 2=3,那么这个一元二次方程是______.5.等腰△ABC 两边的长分别是一元二次方程x 2-5x +6=0的两个解,则这个等腰三角形的周长是______. 选择题: 6.①,542=-x ②xy =1,③2122=+x x④0312=x ,以上方程中,是一元二次方程的有( )(A)0个 (B)1个 (C)2个 (D)3个 7.x 2-3=3x 化为一般式后,a ,b ,c 的值分别为( ) (A)0,-3,-3 (B)1,-3,3 (C)1,3,-3 (D)1,-3,-3 8.解方程3x 2+27=0得( ) (A)x =±3 (B)x =3 (C)x =-3(D)无实根9.方程0)21()21(2=--+x x 的解是( ) (A)332,021-==x x (B)223,121-==x x (C)322,021-==x x(D)x 1=0,x 2=110.下面是李刚同学在一次测验中解答的填空题,其中答对的是( )(A)若x 2-8=0,则22=x(B)方程x (2x -1)=2x -1的解为x =1(C)若方程x 2+2x +k =0有一个根是-3,则k =-3(D)若分式1232-+-x x x 的值等于零,则x =1或2解答题:11.用适当的方法解下列方程:(1);17.052=+x(2)4x 2+3x =0;(3)x 2-25x +144=0; (4)(3y -2)2-5(3y -2)=14;(5)x 2-6x +6=0;(6)(x +6)(x -7)=14.12.一个两位数的两个数字之和为9,把个位数与十位数字互换后所得的新数乘以原数,积为1458,求这个两位数. 13.有一个两位数等于其各位数字之和的4倍,其中十位数字比个位数字小2,求此两位数.14.已知关于x 的方程x 2-bx -a =0有两等根,且一次函数y =ax +b 的图像如图所示,又a 、b 满足5||2=--b a b ,求a 2+b 2的值.图115.某中学从2008年到2011年四年内师生共植树2008棵,已知该校2008年植树353棵,2009年植树500棵,如果2010年和2011年植树棵数的年增长率相同,那么该校2011年植树多少棵?第二十二章 一元二次方程测试题填空题(每题6分,满分36分)1.一元二次方程的一般形式是________________,当一次项系数为零时,其形式为_______ _________.2.方程2x 2=9的二次项系数是________________,一次项系数是________________常数项是________________ 选择题:3.方程①5x 2-38=x ,②4x 2-5y +9=0,032=x ③,0312=+-xx ④中,是一元二次方程的有( )(A)①② (B)① (C)①③④ (D)①③ 4.把方程x 2+3=4x 配方,得( ) (A)(x -2)2=7 (B)(x +2)2=1 (C)(x -2)2=1(D)(x +2)2=25.方程x 3=3x 的所有的解为( ) (A)0(B)0,3(C)3,3- (D)3,3,0-6.方程(x +m )2=n 2的解为( ) (A)x =-m ± n (B)x =m ±n (C)x =m +n (D)x =-m +n解答题:7.解下列方程:(每题6分,满分36分)(1)x 2-3x +2=0;(2)(y -2)2=3;(3)(2x +1)2+3(2x +1)=0; (4)x 2-4x =8;(5)6x 2-4=2x ;(6)3x 2+5(2x +1)=0.8.(9分)一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数,求这个两位数.9.(9分)某发电厂规定,该厂家属区的每户居民如果一个月的用电量不超过akWh ,那么这个月这户居民只要交10元电费.如果超过akWh ,则这个月除仍要交10元电费外,超过部分还要按100a元/kWh 交费.下表是一户居民3月和4月的用电情况及交费情况:根据表中的数据求a 的值.月份 用电量(kWh)电费总额(元)3 80 25 4451010.(10分)一次函数y =x +b 与反比例函数xk y 3+=图象的交点为A (m ,n ),且m 、n (m <n )是关于x 的一元二次方程kx 2+(2k -7)x +k +3=0的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求点A 的坐标与一次函数、反比例函数的解析式.参考答案第二十二章 一元二次方程22.1 一元二次方程(1)1.5x 2-3x -2=0,5,-3,-2. 2.-1 3.=3 4.≠±2, =-2 5.A 6.D 7.A 8.(1)设宽为x cm ,x (x +2)=15 (2)设两个连续的整数分别为x ,x +1.x 2+(x +1)2=313.(3)设一个数为x .x (6-x )=7问题探究:3k 2+4k -6=022.1 一元二次方程(2)1.x 2+3x -1=0 2.x (x +2)=255 3.x (x -2)=30 4.C 5.D 6.A 7.设小道的宽为x 米.(42-2x )(30-2x )=304221⨯⨯ 问题探究:略 22.2 降次——解一元二次方程(1)1.x 2-3x -10=0,1, -3, -10 2.-20 3.a x ±= 4.n m x ±-= 5.D 6.B 7.C 8.(1)x =±13 (2)x =±5 (3)x 1=1,x 2=-7 (4)6287±=x 问题探究:25或21-22.2 降次——解一元二次方程(2)1.(A)16,4 (B)1,1 (C)21,41 (D).21,41 2.C 3.(1),531+=x 532-=x(2)x 1=1,x 2=-6 (3)x 1=-2,x 2=-4 (4)x 1=2,x 2=-6 (5)233±=x(6)22n m m +±- 问题探究.提示:将a 2b 2+b 2-6ab -4b +14进行配方为a 2b 2-6ab +9+b 2-4b +4+1=(ab -3)2+(b -2)2+1,可证22.2 降次——解一元二次方程(3)1.4x 2+7x +3=0,4,7,3 2.b 2-4ac 3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t 4.D 5.B 6.B 7.(1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 问题探究:C22.2 降次——解一元二次方程(4)1.2131,213121--=+-=x x 2.x 1=-2,x 2=1 3.y 2+4y -140=0 4.C 5.A 6.D 7.(1)x 1=1,x 2=-4 (2)251,25121-=+=x x (3)211=x ,x 2=-3 (4)3131,313121--=+-=x x 问题探究:长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339- 22.2 降次——解一元二次方程(5)1.0 2.x 1=0,x 2=3 3.x 2-x =0,x (x -1)=0,x 1=0,x 2=1 4.D 5.C 6.B 7.(1)x 1=1,x 2=2 (2)x 1=0,x 2=3 (3)x 1=x 2=2 (4)x 1=4,x 2=1 问题探究:1622.2 降次——解一元二次方程(6)1.(2x -1)(x +3) 2.x 1=6,x 2=-1 3.-3,21- 因式分解 4.0或-6 5.B 6.B 7.(1)34,31421==x x (2)31,2121-==x x (3)x 1=8,x 2=-12 (4)x 1=2,x 2=-1 (5)78,421=-=x x (6)25,2121=-=x x 问题探究:1,2,3.提示:分两种情况讨论:(1)当k 2-1=0,即k =±1,检验当k =1时,x =6,k =-1时,x =-3(不合题意舍去) (2)k 2-1≠0时,用因式分解法可得,16,11221-=+=k x k x 因k 为整数,要使x 1,x 2,都为整数,只有k =2,k =3,综上所述k =1,2,322.2 降次——解一元二次方程(7)1.85 2.4或-1 3.2,2 4.12x ,2x 5.B 6.D 7.(1)53,5321-=+=x x (2)52,5221-=+=x x (3)21,221=-=y y (4)23,2121=-=x x (5)3321==y y (6)1,2321==x x 问题探究:8只 22.3 实际问题与一元二次方程(1)1.a 65万元 2.1000a +b 3.22)2(++m m m 4.D 5.C 6.(1)5,9或-5,-9 (2)3,4,5 (3)20% 问题探究:阔为24步,长为36步22.3 实际问题与一元二次方程(2)1.1210 2.10% 3.4 4.24 5.20% 6.长8m ,宽2.5m 或长5m ,宽4 m .问题探究:能围成21m 2的,长为7m ,宽为3m ,也可为长6m ,宽3.5m ,不能围成22m 2的22.3 实际问题与一元二次方程(3)1.C 2.B 3.B 4.D 5.10% 6.10% 问题探究:a 215- 观察与猜想——一元二次方程根与系数的关系1.-2,21- 2.23- 3.24 4.c a +-2 5.C 6.B 7.B 8.D 9.(1)29(2)3 10.21-问题探究:m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意数学活动(1)(1)(x -3)(x +23) (2)(6x +7)(4x -5) (3))251)(251(--+-x x (4))233)(233(2--+-x x 数学活动(2)1.标枪出手时的速度约为19.8m/s . 2.每件衬衫应降价20元 3.这种存款的年利率大约为1.44%数学活动(3)略复 习新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

最新-九年级数学上册 第22章《一元二次方程》复习练习题(一) 新人教版 精品

最新-九年级数学上册 第22章《一元二次方程》复习练习题(一) 新人教版 精品

第22章《一元二次方程》复习练习题(一)-、填空题1.关于x 的一元二次方程4)7(3)3(2-+=-y y y 的一般形式是 ;二次 项系数是 ,一次项系数是 ,常数项是 .2.已知2是关于x 的方程12232=-a x 的一个解,则2a -1的值为_____________. 3.一元二次方程032=+x x 的解是 ;用配方法解方程2x ² +4x +1 =0,配方后得到的方程是 ;用配方法解方程23610x x -+=,则方程可变形为 .4.关于x 的一元二次方程02)12(22=-+++-k x k x 有实数根,则k 的取值范围是 ;当m 满足 时,关于x 的方程21402x x m -+-=有两个不相等的实数根;已知关于x 的一元二次方程()21210k x x ++-=有两个不相同的实数根,则k 的取值范围是5.某县2018年农民人均年收入为7 800元,计划到2018年,农民人均年收入达到9 100 元.设人均年收入的平均增长率为x ,则可列方程 .6.某果农2018年的年收入为5万元,由于党的惠农政策的落实,2018年年收入增加到7.2 万元,则平均每年的增长率是__________.7.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .8.为应对金融危机,拉动内需,湖南省人民政府定今年为“湖南旅游年”. 青年旅行社3月底组织赴凤凰古城、张家界风景区旅游的价格为每人1000元,为了吸引更多的人赴凤凰、张家界旅游,在4月底、5月底进行了两次降价,两次降价后的价格为每人810元,那么这两次降价的平均降低率为 .9.一个直角三角形的斜边长为5cm ,一条直角边比另一条直角边长1cm ,则这个直角三角形的面积是 cm 210.菱形ABCD 的一条对角线长为6,边AB 的长是方程 01272=+-x x 的一个根,则菱形ABCD 的面积为 .11.在实数范围内定义运算“⊕”法则:22a b a b ⊕=-,则方程(4⊕3)⊕24x =解是 .12.如图,是一个长方形的土地,长50m ,宽48m .由南到北,由东到西各修筑一条同样宽度的彩石路,要使空地的面积是2218m 2,如果设小路宽为xm ,根据题意所列的方程为 .二、选择题:1.方程:①13122=-x x ②05222=+-y xy x ③0172=+x ④022=y 中一元二次方程是 ( )A .①和② B .②和③ C .③和④ D .①和③2.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( )A .27B .33C .27和33D .以上都不对3.若关于x 的方程2430kx x -+=有实根,则k 的非负整数值是( )A .0,1B .0,1,2C .1D .1,2,3 4.方程220x kx --=的根的情况是( ) A .方程有两个相等的实数根B .方程有两个相等的实数根C .方程没有实数根D .方程的根的情况与k 的取值有关5.小明用配方法解下列方程时,只有一个配方有错误,请你确定小明错的是( )A .22990x x --=化成2(1)100x -=B .2890x x ++=化成2(4)25x += C .22740t t --=化成2781416t ⎛⎫-= ⎪⎝⎭ D .23420y y --=化成221039y ⎛⎫-= ⎪⎝⎭ 6.三角形两边的长分别是8和6,第三边的长是一元二次方程21660x x -+数根,则该三角形的面积是( )A .24 B .24或 C .48 D .7.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为( )A .27B .33C .27和33D .以上都不对8.某市2018年国内生产总值(GDP )比2018年增长了12%,由于受到国际金融危机的影 响,预计今年比2018年增长7%,若这两年GDP 年平均增长率为x%,则x%满足的关系 ( ) A .12%7%%x += B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+9.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14 B .12 C .12或14 D .以上都不对10.为了美化环境,某市加大对绿化的投资.2018年用于绿化投资20万元,2018年用于 绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率 为x ,根据题意所列方程为( ) A .22025x = B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++= 11.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米 12.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( ) A .1 B .1- C .2D .2- 13.关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A.1B.3C.-3D.±314. 若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 ( ) A .1 B .2 C .1或2D .0 15.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠16. 关于x 的一元二次方程()220x mx m -+-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定17.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在 的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%三、解答题1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被 感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到 有效控制,3轮感染后,被感染的电脑会不会超过700台?2.某企业2018年盈利1500万元,2018年克服全球金融危机的不利影响,仍实现盈利2160万元.从2018年到2018年,如果该企业每年盈利的年增长率相同,求:(1)该企业2018年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2018年盈利多少万元?3.常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2018年完成工业总产值440亿元,如果要在2018年达到743.6亿元,那么2018 年到2018年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2018年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?4.随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2018年底拥有家庭轿车64辆,2018年底家庭轿车的拥有量达到100辆.(1)若该小区2018年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.5. 2018年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2018~2018年》,某市政府决定2018年投入6000万元用于改善医疗卫生服务,比2018年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2018年投入“需方”的资金将比2018年提高30%,投入“供方”的资金将比2018年提高20%.(1)该市政府2018年投入改善医疗卫生服务的资金是多少万元?(2)该市政府2018年投入“需方”和“供方”的资金各多少万元?(3)该市政府预计2018年将有7260万元投入改善医疗卫生服务,若从2018~2018年每年的资金投入按相同的增长率递增,求2018~2018年的年增长率.6.随着人们节能意识的增强,节能产品的销售量逐年增加.某商场高效节能灯的年销售量2018年为5万只,预计2018年将达到7.2万只.求该商场2018年到2018年高效节能灯年销售量的平均增长率.7. 2018年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署,为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2018年当年用于城市基础设施维护与建设资金达到8.45亿元。

九年级数学上册:第22章一元二次方程 复习题同步练习新人教版

九年级数学上册:第22章一元二次方程 复习题同步练习新人教版

第22章一元二次方程复习题 双基演练一、选择题1.下面关于x的方程中①a x2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a2+a+1)x2-a=0.一元二次方程的个数是()A.1 B.2 C.3 D.42.要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠1且b≠-1 D.a≠3且b≠-1且c≠03.若(x+y)(1-x-y)+6=0,则x+y的值是()A.2 B.3 C.-2或3 D.2或-34.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤05.下面对于二次三项式-x2+4x-5的值的判断正确的是()A.恒大于0 B.恒小于0 C.不小于0 D.可能为06.下面是某同学在九年级期中测试中解答的几道填空题:(1)若x2=a2,则x= a ;(2)方程2x(x-1)=x-1的根是 x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 .•其中答案完全正确的题目个数为()A.0 B.1 C.2 D.37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,•而按原定价的九折出售,将赚20元,则这种商品的原价是()A.500元 B.400元 C.300元 D.200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,•则第二季度共生产零件()A .100万个B .160万个C .180万个D .182万个二、填空题9.若a x 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x 的方程x 2+3x+k 2=0的一个根是-1,则k=_______.11.若x 2-4x+8=________.12.若(m+1)(2)1m m x +-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.13.若a+b+c=0,且a ≠0,则一元二次方程ax 2+bx+c=0必有一个定根,它是_______.14.若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.15.若两个连续偶数的积是224,则这两个数的和是__________.三、计算题(每题9分,共18分)16.按要求解方程:(1)4x 2-3x-1=0(用配方法); (2)5x 2x-6=0(精确到0.1)17.用适当的方法解方程:(1)(2x-1)2-7=3(x+1); (2)(2x+1)(x-4)=5;(3)(x 2-3)2-3(3-x 2)+2=0.能力提升18.若方程x 2=0的两根是a 和b (a>b ),方程x-4=0的正根是c ,试判断以a 、b 、c 为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.19.已知关于x 的方程(a+c )x 2+2bx-(c-a )=0的两根之和为-1,两根之差为1,•其中a ,b ,c 是△ABC 的三边长.(1)求方程的根;(2)试判断△ABC 的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N (N<12)是多少元.聚焦中考22.(2008。

九年级数学上册《第二十二章 二次函数与一元二次方程》同步训练题及答案(人教版)

九年级数学上册《第二十二章 二次函数与一元二次方程》同步训练题及答案(人教版)

九年级数学上册《第二十二章二次函数与一元二次方程》同步训练题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=−1,x2=2那么抛物线y=x2+bx+c的对称轴为直线()A.x=1B.x=12C.x=32D.x=−122.根据表格中代数式ax2+bx+c=0与x的对应值,判断方程ax2+bx+c=0(其中a,b,c是常数,且a ≠A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.203.若函数y=ax2+bx的图象如图所示,则关于x的一元二次方程ax2+bx+5=0的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.已知m>0,关于x的一元二次方程(x+1)(x−2)−m=0的解为x1,x2(x1<x2)则下列结论正确的是( )A.x1<−1<2<x2B.−1<x1<2<x2C.−1<x1<x2<2D.x1<−1<x2<25.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是()A.若(−2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=−2有两个不相等的实数根D.当x>0时,y随x的增大而减小6.关于x的一元二次方程ax2+bx+12=0有一个根是﹣1,若二次函数y=ax2+bx+12的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.14<t<12B.−1<t≤14C.−12≤t<12D.−1<t<127.已知函数y=3−(x−m)(x−n),并且a,b是方程3−(x−m)(x−n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b 8.二次函数y=x2+bx的图象如图,对称轴为直线x=1 .若关于x的一元二次方程x2+bx−t=0(t为实数)在−2<x<3的范围内有解,则t的取值范围是()A.t≥−1B.−1≤t<3C.−1≤t<8D.3<t<8二、填空题:(本题共5小题,每小题3分,共15分.)9.已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是.10.二次函数y=mx2+(m+2)x+ 14m+2的图象与x轴只有一个交点,那么m的值为.112则方程ax的解是.的解是.12.在平面直角坐标系中,抛物线y=x2+bx+5的对称轴为直线x=1.若关于x的一元二次方程x2+ bx+5−t=0(t为实数)在-1<x<4的范围内有实数根,则t的取值范围为.13.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0的两个实数根异号,则m的取值范围为.三、解答题:(本题共5题,共45分)14.利用图象法求一元二次方程x2﹣2x﹣2=0的近似根.(精确到0.1)15.若二次函数y=x2+bx−3的对称轴为直线x=1,求关于x的方程x2+bx−3=5的解.16.已知二次函数y=﹣x2+2x+m的部分图象如图所示,你能确定关于x的一元二次方程﹣x2+2x+m=0的解?17.已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).(1)求证无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.18.如图,已知关于x的二次函数y=x2+mx的图象经过原点O,并且与x轴交于点A,对称轴为直线x=1.(1)常数m= ,点A的坐标为;(2)若关于x的一元二次方程x2+mx=n(n为常数)有两个不相等的实数根,求n的取值范围;(3)若关于x的一元二次方程x2+mx﹣k=0(k为常数)在﹣2<x<3的范围内有解,求k的取值范围.参考答案:1.B 2.C 3.A 4.A 5.D 6.D 7.D 8.C9.﹣5或310.111.x1=−6x2=2x1=−712.4≤t<1313.m<014.解:方程x2﹣2x﹣2=0根是函数y=x2﹣2x﹣2与x轴交点的横坐标.作出二次函数y=x2﹣2x﹣2的图象,如图所示由图象可知方程有两个根,一个在﹣1和0之间,另一个在2和3之间.先求﹣1和0之间的根当x=﹣0.7时,y=﹣0.11;当x=﹣0.8时,y=0,24;因此,x=﹣0.7是方程的一个近似根同理,x=2.7是方程的另一个近似根.故一元二次方程x2﹣2x﹣2=0的近似根为x=﹣0.7或2.7.15.解:∵二次函数y=x2+bx−3的对称轴为直线x=1∴x=−b2a =−b2×1=1解得b=−2.将b=−2代入x2+bx−3=5中,得:x2−2x−3=5解得x1=−2x2=4.16.解:根据图象可知,二次函数y=﹣x2+2x+m的部分图象经过点(3,0),所以该点适合方程y=﹣x2+2x+m,代入,得﹣32+2×3+m=0解得,m=3 ①把①代入一元二次方程﹣x2+2x+m=0,得﹣x2+2x+3=0,②解②,得x1=3,x2=﹣117.(1)证明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,∴无论k为何值,方程总有两个不相等实数根(2)解:∵二次函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,∵二次项系数a=1,∴抛物线开口方向向上,∵△=(k﹣3)2+12>0,∴抛物线与x轴有两个交点,设抛物线与x轴的交点的横坐标分别为x1,x2,∴x1+x2=5﹣k>0,x1x2=1﹣k≥0,解得k≤1,即k的取值范围是k≤1 (3)解:设方程的两个根分别是x1,x2,根据题意,得(x1﹣3)(x2﹣3)<0,即x1x2﹣3(x1+x2)+9<0,又x1+x2=5﹣k,x1x2=1﹣k,代入得,1﹣k﹣3(5﹣k)+9<0,解得k<5.则k的最大整数2值为2.18.(1)-2;(2,0)(2)解:∵一元二次方程x2﹣2x=n有两个不相等的实数根∴△=4+4n>0n>﹣1(3)解:一元二次方程x2﹣2x﹣k=0有解则△=4+4k≥0k≥﹣1方程的解为:x=1±√1+k∵方程在﹣2<x<3的范围内有解1﹣√1+k>﹣2,k<81+ √1+k<3,k<3∴﹣1≤k<8。

人教版九年级数学上第22章二次函数22.2《二次函数与一元二次方程》同步练习(含答案)

人教版九年级数学上第22章二次函数22.2《二次函数与一元二次方程》同步练习(含答案)

22.2《二次函数与一元二次方程》同步练习一、选择题1.已知抛物线y=ax2+bx+c的图象如图,则一元二次方程ax2+bx+c=0( )A.没有实根B.有两个实根,且一根为正,一根为负C.只有一个实根D.有两个实根,且一根小于1,一根大于22.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点3.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根4.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( )A.a>0,>0 B.a>0,<0C.a<0,>0 D.a<0,<05.直线y=4x+1与抛物线y=x2+2x+k有唯一交点,则k是( )A.0 B.1 C.2 D.-16.二次函数y=ax2+bx+c,若ac<0,则其图象与x轴( )A.有两个交点B.有一个交点C.没有交点D.可能有一个交点7.y=x2+kx+1与y=x2-x-k的图象相交,若有一个交点在x轴上,则k值为( )1A.0 B.-1 C.2 D.48.已知二次函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根9.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( ) A .a x b ay +=2B .a x b a y +-=22 C .a x ba y --=22 D .a x bay -=2210.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( ) A .m <a <b <n B .a <m <n <b C .a <m <b <nD .m <a <n <b二、填空题11.二次函数y =ax 2+bx +c (a ≠0)与x 轴有交点,则b 2-4ac ______0;若一元二次方程ax 2+bx +c =0两根为x 1,x 2,则二次函数可表示为y =________. 12.若二次函数y =x 2-3x +m 的图象与x 轴只有一个交点,则m =______. 13.若二次函数y =mx 2-(2m +2)x -1+m 的图象与x 轴有两个交点,则m 的取值范围是______.14.若二次函数y =ax 2+bx +c 的图象经过P (1,0)点,则a +b +c =______. 15.若抛物线y =ax 2+bx +c 的系数a ,b ,c 满足a -b +c =0,则这条抛物线必经过点______.16.关于x 的方程x 2-x -n =0没有实数根,则抛物线y =x 2-x -n 的顶点在第______象限.1.二次函数y=-x 2+4x -3的图象交x 轴于A 、B 两点,交y 轴于C 点,则△ABC 的面积为( )A .6B . 4C .3D .117.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.18.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98 三、解答题19.已知抛物线y =ax 2+bx +c 与x 轴的两个交点的横坐标是方程x 2+x -2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.20.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如下表:(1)判断二次函数图象的开口方向,并写出它的顶点坐标;(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x③252,02121<<<<-x x④223,21121<<-<<-x x22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.参考答案1.D . 2.B . 3.C . 4.D .5.C . 6.A . 7.C . 8.D . 9.B . 0.A . 11.≥0,y =a (x -x 1)(x -x 2). 12.⋅4913.31->m 且m ≠0. 1 4.0. 15.(-1,0). 1 6.一.12.45665182-+-=x x y 或y =2x 2+2x -4. 17.4,(1,9). 18.⋅9819.y =2x 2+2x -4.20.21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当=1+4m ≥0,即41-≥m 时两线有公共点.(2)当=1+4m <0,即41-<m 时两线无公共点.24.(1)=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6.。

第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)

第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)

第22章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为( )A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,8【答案】B解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.2. (2020秋•内乡县期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是( )A.0B.2020C.4040D.4042【答案】D【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2021、b2+b=2021、a+b =﹣1,将其代入则a2+b2+a+b中即可求出结论.解:∵a,b是方程x2+x﹣2020=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.3. (2020秋•洛阳新安期中)某食品厂七月份生产面包52万个,第三季度生产面包共196万个,若x满足的方程是52+52(1+x)+52(1+x)2=196,则x表示的意义是( )A.该厂七月份的增长率B.该厂八月份的增长率C.该厂七、八月份平均每月的增长率D.该厂八、九月份平均每月的增长率【答案】D【分析】一般增长后的量=增长前的量×(1+增长率),根据方程结合题意确定x的意义即可.解:依题意得八、九月份的产量为52(1+x)、52(1+x)2,∴52+52(1+x)+52(1+x)2=196中的x表示的意义是该厂八、九月份平均每月的增长率,故选:D.4. (2020秋•宛城区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是( )A.AC的长B.CD的长C.AD的长D.BC的长【答案】C【分析】在Rt△ABC中,由勾股定理可得出AC2+BC2=AB2,结合AB=AD+BD,AC=b,BD=BC=,即可得出AD2+aAD=b2,进而可得出AD的长是方程x2+ax=b2的一个正根.解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2.∵AC=b,BD=BC=,∴b2+()2=(AD+)2=AD2+aAD+()2,∴AD2+aAD=b2.∵AD2+aAD=b2与方程x2+ax=b2相同,且AD的长度为正数,∴AD的长是方程x2+ax=b2的一个正根.故选:C.5. (2020驻马店新蔡期中)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A. 34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6. 如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C 点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )A.2s B.3s C.4s D.5s【答案】B【分析】设当运动时间为t秒时,△PBQ的面积为15cm2,利用三角形面积的计算公式,可得出关于t的一元二次方程,解之即可得出t值,再结合当点Q移动到点C后停止点P 也随之停止移动,即可确定t值.解:设当运动时间为t秒时,△PBQ的面积为15cm2,依题意得:×(8﹣t)×2t=15,整理得:t2﹣8t+15=0,解得:t1=3,t2=5.又∵2t≤6,∴t≤3,∴t=3.故选:B.7.(2020•南阳南召期中)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是( )A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.8.(2020·湖北荆州·中考真题)定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【答案】B【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【解析】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.9.(2020·洛阳孟津期末)关于x的一元二次方程有两个实数根,,则k的值()A.0或2B.-2或2C.-2D.2【答案】D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D. 10.(2021·驻马店新蔡期末)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A.B.C.D.【答案】C【分析】先求得,代入即可得出答案.【解析】∵,∴,,∴=====,∵,且,∴,∴原式=,故选:C.二、填空题:本大题共5小题,每小题3分,合计15分.11. 一元二次方程的根是_____.【答案】【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【解析】解:或,所以.故答案为.12.(2021·南阳邓州期中)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.【答案】2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:,则,故答案为2.13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.14.(2020·2020·周口商水期末)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.【答案】【分析】根据题意设出未知数,列出三组等式解出即可.【解析】设底面长为a,宽为b,正方形边长为x,由题意得:,解得a=10-2x,b=6-x,代入ab=24中得:(10-2x)(6-x)=24,整理得:2x2-11x+18=0.解得x=2或x=9(舍去).故答案为2.15. (2021·洛阳偃师期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为 .三、解答题:本大题共8小题,合计75分.第16题8分,第17、18、19、20题每题9分,第21、22题每题10分,第23题11分16. (2020·南阳镇平期中)(1)用配方法解方程;(2)用公式法解方程:.解:(1)移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,开方得:,,,所以原方程的解为:,;(2)∵a=1,b=2,c=-5,,∴,∴.17. (2020秋•北京期末)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.(1)证明:△=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0△=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.18. (2020秋•洛阳偃师期中)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的,求人行通道的宽度是多少米?【分析】设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据两块矩形绿地的面积之和为原矩形空地面积的,即可得出关于x的一元二次方程,解方程即可.【解答】解:设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据题意得:(50﹣3x)(20﹣2x)=×50×20,整理得:x1=25(舍去),x2=,∴x=.答:人行通道的宽度是米.19. (2020•南阳镇平模拟)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为_______,第五个图中y的值为_______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为_____,当时,对应的______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【答案】(1)10,15;(2),1128;(3)20【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出,再代入可求出当时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵,∴,当时,.故答案为:;1128.(3)依题意,得:,化简,得:,解得:(不合题意,舍去).答:该班共有20名女生.20. (2020秋•南阳市三中校级月考)阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=﹣,x1x2=.∵,∴=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).(1)请用上面的方法将多项式4x2+8x﹣1分解因式.(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.【分析】(1)令多项式等于0,得到一个一元二次方程,利用公式法求出方程的两解,代入ax2+bx+c=a(x﹣x1)(x﹣x2)中即可把多项式分解因式;(2)令二次三项式等于0,找出其中的a,b及c,计算出b2﹣4ac,发现其值小于0,所以此方程无解,故此二次三项式不能利用上面的方法分解因式;(3)因为此二次三项式在实数范围内能利用上面的方法分解因式,所以令此二次三项式等于0,得到的方程有解,即b2﹣4ac大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解:(1)令4x2+8x﹣1=0,∵a=4,b=8,c=﹣1,b2﹣4ac=64+16=80>0,∴x1=,x2=,则4x2+8x﹣1=4(x﹣)(x﹣);(2)二次三项式2x2﹣4x+7在实数范围内不能利用上面的方法分解因式,理由如下:令2x2﹣4x+7=0,∵b2﹣4ac=(﹣4)2﹣56=﹣40<0,∴此方程无解,则此二次三项式不能用上面的方法分解因式;(3)令mx2﹣2(m+1)x+(m+1)(1﹣m)=0,由此二次三项式能用上面的方法分解因式,即有解,∴b2﹣4ac=4(m+1)2﹣4m(m+1)(1﹣m)≥0,化简得:(m+1)[4(m+1)+4m(m﹣1)]≥0,即4(m+1)(m2+1)≥0,∵m2+1≥1>0,∴m+1≥0,解得m≥﹣1,又m≠0,1﹣m≠0则m≥﹣1且m≠0且m≠1时,此二次三项式能用上面的方法分解因式.21. (2020·南阳镇平期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x =0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.解:(1)①分解因式得:(x﹣4)(x+3)=0,解得:x=4或x=﹣3,∵4≠﹣3+1,∴x2﹣x﹣12=0不是“邻根方程”;②分解因式得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,∵5=4+1,∴x2﹣9x+20=0是“邻根方程”;(2)分解因式得:(x+m)(x﹣1)=0,解得:x=﹣m或x=1,∵方程程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程,∴﹣m=1+1或﹣m=1﹣1,∴m=0或﹣2.22. (2020•鹤壁市期末)发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴x==∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+=0,∴x1=,x2=.当为腰时,+<,∴、、不能构成三角形;当为腰时,等腰三角形的三边为、、,此时周长为++=.答:当m=2时,△ABC的周长为.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.23.(2020·内蒙古赤峰·中考真题)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴,,∴,∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,∴x1,x2,x3可以构成“和谐三数组”;(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,∴或或,即或或,解得:m=﹣4或﹣2或2.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为( )A.2017B.2020C.2019D.2018B已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.。

九年级数学上册第22章一元二次方程复习练习题四新人教版

九年级数学上册第22章一元二次方程复习练习题四新人教版

第22章《一元二次方程》复习练习题(四)一、填空题1.一元二次方程0322=--x x 的解为__________;方程2(x -3)=3x(x -3) 的解为 . 2.方程(x ﹣1)(x + 2)= 2(x + 2)的根是 ;方程x 2﹣2x =0的解为 .3.一元二次方程01872=--x x 的解为 ;方程24=0x -的解是 .4.一元二次方程x 2+x=0的两根为 .方程x 2+x -1=0. 的解是 .5.二次三项式x 2﹣kx+9是一个完全平方式,则k 的值是 。

6.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是 .7.一元二次方程2ax 2x+40-=有两个不相等的实数根,则a 的取值范围是 。

8.关于x 的一元二次方程230x x k --=有两个不相等的实数根, 则k 的取值范围是 .9.设a ,b 是方程220130x x +-=的两个不相等的实数根,22a a b ++的值 .10.若关于x 的方程2x 2x m=0--有两个相等的实数根,则m 的值是 .11.如果关于x 的方程x 2+kx+9=0有两个相等的实数根,那么k 的值为 。

12.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则m 的值是13.已知关于x 的一元二次方程x 2-23x -k=0有两个相等的实数根,则k 的值为 。

14.如果关于x 的方程220x x m -+=(m 为常数)有两个相等实数根,那么m = .15.已知关于x 的一元二次方程x ²-4x +m -1=0有两个相等实数根,则m 的值是 ,此方程的根是16.如果方程x 2+2x +a =0有两个相等的实数根,则实数a 的值为 .17.当k 时,关于x 的一元二次方程063622=+++k kx x 有两个相等的实数根。

18.当t 时,关于x 的一元二次方程2x 2+t x +2=0有两个相等的实数根。

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

二次函数与一元二次方程的关系同步练习题一、单选题(每小题3分,共66分)1.抛物线y=x 2﹣2x+1与坐标轴交点个数为( )A . 无交点B . 1个C . 2个D . 3个2.抛物线y=2(x+1)2﹣2与y 轴的交点的坐标是( )A . (0,﹣2)B . (﹣2,0)C . (0,﹣1)D . (0,0)3.若二次函数y=x 2+bx+c 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,且过点(5,5),则关于x 的方程x 2+bx+c=5的解为( )A .x 1=0或x 2=4B .x 1=1或x 2=5C .x 1=﹣1或 x 2=5D .x 1=1或x 2=﹣54.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c>0的解集是( ).A .B .C . 且D . 或5.二次函数与 的图像与x 轴有交点,则k 的取值范围是( )A .B . 且C .D . 且6.如图,二次函数 的图象交 轴于 , 两点,交 轴于 ,则 的面积为( )A .B .C .D .7.抛物线 的对称轴是( )A .B .C .D .8.二次函数 2y ax bx =+ 的图象如图,若一元二次方程2ax bx k 0++= 有实数解,则k 的最小值为( ) A . -4 B . -6 C . -8 D . 09.已知二次函数y =x 2-2x +c 的图象与x 轴的一个交点为(-3,0),则方程x 2-2x +c =0的两个根是( )A . -3,1B . 5,-3C . 4,-3D . 3,-310.若二次函数y =x 2+(m +1)x -m 的图象与坐标轴只有两个交点,则满足条件 的m 的值有( )A . 1个B . 2个C . 3个D . 4个11.在-3≤x≤0范围内,二次函数y=ax 2+bx+c(a≠0)的图像如图所示.在这个范围内,下列结论:①y 有最大值1,没有最小值;②当-3<x<-1时,y 随着x 的增大而增大;③方程ax 2+bx+c-12=0有两个不相等的实数根 .其中正确结论的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个12.若抛物线y=x 2-6x+m-2(m 是常数)与x 轴只有一个交点A ,则点A 坐标为( )A . (-3,0)B . (-2,0)C . (3,0)D . (6,0)13.如果二次函数2y ax bx c =++(a>0)的顶点在x 轴的上方,那么( )A .240b ac -≥B .240b ac -<C .240b ac ->D .240b ac -=14.将二次函数y =2 x 2-4x -1的图像向右平移3个单位,则平移后的二次函数的 顶点是( )A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)15.函数y=ax 2﹣2x+1和y=ax+a (a 是常数,且a≠0)在同一直角坐标系中的图象 可能是( )16.如图是二次函数y=ax 2+bx+c 的图象,其对称轴为x=1,下列结论:①abc >0; ②2a+b=0;③4a+2b+c <0;④若 , , , 是抛物线上两点,则y 1<y 2其中结论正确的是( )A .①②B .②③C .②④D .①③④17.如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c <0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( )A . 1个B . 2个C . 3个D . 4个18.二次函数y=ax 2+bx+c 的图象如图所示对称轴是x=-1以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A . 1B . 2C . 3D . 419.一次函数 与二次函数在同一个坐标系中的图象可能是( )20.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()21.二次函数y=x2+bx﹣1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t ≥﹣2 B.﹣2≤t<7 C.﹣2≤t<2 D.2<t<722.如果二次函数的图象在轴的下方,则的取值范围为()A.B.C.D.二、填空题(每小题3分,共24分)23.已知抛物线与轴一个交点的坐标为,则一元二次方程ax2-2ax+c=0的根为__________.24.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则关于x的方程ax2+bx+c=0的两个根是_____.25.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为.26.若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是_____.27.如图所示,抛物线y=ax2+bx+c(a0)与轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是___________.28.抛物线与轴的交点坐标是________,与轴的交点坐标是________.29.直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是_____.30.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(每小题10分,共30分)31.已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2) 设该二次函数图象的对称轴与x轴交于点C,连接BA,BC,求ABC的面积和周长.32.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相=kx+b经过点B,C.交于点C,直线y(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.33.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的解析式;(2)设P为对称轴上一动点,求APC周长的最小值;(3)求△ABC的面积.二次函数与一元二次方程的关系同步练习题参考答案1.C 2.D 3.C 4.A 5.D 6.C 7.B 8.A 9.B 10.C 11.C 12.C 13.B 14.C 15.C.16.C 17.B 18.C 19.D 20.C.21.B 22.A 23.x1=-1、x2=324.x1=﹣1,x2=3 25.﹣3.26.m>927.x<-1或x>2 28.,,29.1<x<2.30.②⑤.31.(1)二次函数的解析式是y=-x2+4x-6;(2) S△ABC=6,△ABC的周长= 2+2+2.32.(1)y=x-3;(2)当y1>y2时,x<0和x>3.33.(1)y=x2-4x+3;(2)△APC的周长=3;(3)S△ABC=3.。

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学

第22章《一元二次方程》全章同步练习(人教新课标初三上)doc初中数学一元二次方程 (2)第1课时一元二次方程 (2)答案 (3)第2课时一元二次方程 (5)答案 (6)第3课时花边有多宽 (7)答案 (9)同步练习一元二次方程第1课时一元二次方程1、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。

2、方程2(m+1)x2+4mx+3m-2=0是关于x的一元二次方程,那么m的取值范畴是。

3、关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,那么m= 。

4、关于x的一元二次方程(k-1)x2+2x-k2-2k+3=0的一个根为零,那么k= 。

5、关于x的方程(m+3)x2-mx+1=0,当m 时,原方程为一元二次方程,假设原方程是一元一次方程,那么m的取值范畴是。

6、关于x的方程(m2-1)x2+(m+1)x+m-2=0是一元二次方程,那么m的取值范畴是;当m= 时,方程是一元二次方程。

7、把方程a(x2+x)+b(x2-x)=1-c写成关于x的一元二次方程的一样形式,再写出它的二次项系数、一次项系数和常数项,并求出是一元二次方程的条件。

8、关于x的方程(m+3)x2-mx+1=0是几元几次方程?9、210.01 4y=10、53x0.22=-11、(x+3)(x-3)=912、(3x+1)2-2=013、(x+2)2=(1+2)214、0.04x2+0.4x+1=015、(2x-2)2=616、(x-5)(x+3)+(x-2)(x+4)=4917、一元二次方程(1-3x)(x+3)=2x2+1的一样形式是它的二次项系数是;一次项系数是;常数项是。

18、方程:①2x 2-3=0;②1112=-x;③131212=+-yy;④ay2+2y+c=0;⑤(x+1)(x-3)=x2+5;⑥x-x2=0 。

其中,是整式方程的有,是一元二次方程的有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第22章一元二次方程 复习题双基演练一、选择题1.下面关于x 的方程中①a x 2+bx+c=0;②3(x-9)2-(x+1)2=1;③x+3=1x;④(a 2+a+1)x 2-a=0.一元二次方程的个数是( ) A .1 B .2 C .3 D .42.要使方程(a-3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( ) A .a ≠0 B .a ≠3C .a ≠1且b ≠-1D .a ≠3且b ≠-1且c ≠0 3.若(x+y )(1-x-y )+6=0,则x+y 的值是( ) A .2 B .3 C .-2或3 D .2或-34.若关于x 的一元二次方程3x 2+k=0有实数根,则( ) A .k>0 B .k<0 C .k ≥0 D .k ≤05.下面对于二次三项式-x 2+4x-5的值的判断正确的是( )A .恒大于0B .恒小于0C .不小于0D .可能为06.下面是某同学在九年级期中测试中解答的几道填空题:(1)若x 2=a 2,则x= a ; (2)方程2x (x-1)=x-1的根是 x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 .•其中答案完全正确的题目个数为( ) A .0 B .1 C .2 D .37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,•而按原定价的九折出售,将赚20元,则这种商品的原价是( ) A .500元 B .400元 C .300元 D .200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%,•则第二季度共生产零件( )A .100万个B .160万个C .180万个D .182万个 二、填空题9.若a x 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是________. 10.已知关于x 的方程x 2+3x+k 2=0的一个根是-1,则k=_______.11.若x 2-4x+8=________. 12.若(m+1)(2)1m m x+-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.13.若a+b+c=0,且a ≠0,则一元二次方程ax 2+bx+c=0必有一个定根,它是_______.14.若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是_______. 15.若两个连续偶数的积是224,则这两个数的和是__________. 三、计算题(每题9分,共18分) 16.按要求解方程:(1)4x 2-3x-1=0(用配方法); (2)5x 2(精确到0.1)17.用适当的方法解方程:(1)(2x-1)2-7=3(x+1);(2)(2x+1)(x-4)=5;(3)(x2-3)2-3(3-x2)+2=0.能力提升18.若方程x2=0的两根是a和b(a>b),方程x-4=0的正根是c,试判断以a、b、c为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.19.已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1,•其中a,b,c 是△ABC的三边长.(1)求方程的根;(2)试判断△ABC的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11•公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N(N<12)是多少元.聚焦中考22.(2008。

广州)方程(2)0x x +=的根是( )A 2x =B 0x =C 120,2x x ==-D 120,2x x ==23.(2008。

襄樊)某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价( )A .10%B .19%C .9.5%D .20%24.(2008。

威海)关于x 的一元二次方程()220x mx m -+-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定25.(2008。

四川省资阳)已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2+ 2cx + (a + b )=0的根的情况是( ) A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根26.(2008年湖北省仙桃市潜江市江汉油田)关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 .27.(2008。

江苏省淮安市)小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____.28.(2008年·东莞市)在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。

29.(2008年湘潭)阅读材料:如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b c x x x x aa+=-=.这是一元二次方程根与系数的关系,我们利用它可以用来解题:设12,x x 是方程2630x x +-=的两根,求2212x x +的值. 解法可以这样:126,x x +=- 123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=. 请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求: (1)1211x x +的值;(2)212()x x -的值.答案: 一、1.B 点拨:方程①与a 的取值有关;方程②经过整理后,二次项系数为2,•是一元二次方程;方程③是分式方程;方程④的二次项系数经过配方后可化为(a+12)2+34.不论a 取何值,都不为0,所以方程④是一元二次方程;方程⑤不是整式方程.也可排除,•故一元二次方程仅有2个. 2.B 点拨:由a-3≠0,得a ≠3.3.C 点拨:用换元法求值,可设x+y=a ,原式可化为a (1-a )+6=0,解得a 1=3,a 2=-2. 4.D 点拨:把原方程移项,变形为:x 2=-3k .由于实数的平方均为非负数,故-3k ≥0,•则k ≤0.5.B 点拨:-x 2+4x-5=-(x 2-4x+5)=-(x 2-4x+4+1)=-(x-2)2=-1. 由于不论x 取何值,-(x-2)2≤0,所以-x 2+4x-5<0.6.A 点拨:第(1)题的正确答案应是x=±a ;第(2)题的正确答案应是x 1=1,x 2=12.第(3)题的正确答案是5.7.C 点拨:设商品的原价是x 元.则0.75x+25=0.9x-20.解之得x=300. 8.D 点拨:五月份生产零件:50(1+20%)=60(万个)六月份生产零件50(1+20%)2=72(万个)所以第二季度共生产零件50+60+72=182(万个),故选D . 二、9.a>-2且a ≠0 点拨:不可忘记a ≠0.10点拨:把-1代入方程:(-1)2+3×(-1)+k 2=0,则k 2=2,所以k=.11.14 点拨:由得两边同时平方,得(x-2)2=10,即x 2-4x+4=10,• 所以x 2-4x+8=14.注意整体代入思想的运用. 12.-3或1 点拨:由(2)12,10.m m m +-=⎧⎨+≠⎩ 解得m=-3或m=1.13.1 点拨:由a+b+c=0,得b=-(a+c ),原方程可化为ax-(a+c )x+c=0,解得x 1=1,x 2=c a.14.点拨:设正方形的边长为xcm ,则x 2=6×3,解之得x=±故.15.30或-30 点拨:设其中的一个偶数为x ,则x (x+2)=224.解得x 1=14,x 2=-16,•则另一个偶数为16,-14.这两数的和是30或-30. 三、16.解:(1)4x 2-3x-1=0,称 ,得4x 2-3x=1, 二次项系数化为1,得x 2-34x=14,配方,得x 2-34x+(38)2=14+(38)2, (x-38)2=2564,x-38=±58,x=38±58,所以x 1=38+58=1,x 2=38-58=14.(2)5x 2))=0,,所以x 1=5-≈=0.9,x 2=5≈1.3.点拨:不要急于下手,一定要审清题,按要求解题. 17.解:(1)(2x-1)2-7=3(x+1) 整理,得4x 2-7x-9=0,因为a=4,b=-7,c=-9.所以7248±=⨯.即x 1=78+,x 2=78-.(2)(2x+1)(x-4)=5,整理,得2x 2-7x-9=0, (x+1)(2x-9)=0,即x+1=0或2x-9=0, 所以x 1=-1,x 2=92.(3)设x 2-3=y ,则原方程可化为y 2+3y+2=0. 解这个方程,得y 1=-1,y 2=-2.当y 1=-1时,x 2-3=-1.x 2=2,x 1,x 2.当y 2=-2时,x 2-3=-2,x 2=1,x 3=1,x 4=-1.点拨:在解方程时,一定要认真分析,选择恰当的方法,若遇到比较复杂的方程,•审题就显得更重要了.方程(3)采用了换元法,使解题变得简单.18.解:解方程x 2=0,得x 1,x 2.方程x 2-4=0的两根是x 1=2,x 2=-2. 所以a 、b 、c,2.,所以以a 、b 、c 为边的三角形不存在.点拨:先解这两个方程,求出方程的根,再用两边的和与第三边相比较等来判断. 19.解:(1)设方程的两根为x 1,x 2(x 1>x 2),则x 1+x 1=-1,x 1-x 2=1,解得x 1=0,x 2=-1.(2)当x=0时,(a+c )×02+2b ×0-(c-a )=0.所以c=a .当x=-1时,(a+c )×(-1)2+2b ×(-1)-(c-a )=0.a+c-2b-c+a=0, 所以a=b .即a=b=c ,△ABC 为等边三角形.点拨:先根据题意,列出关于x ,x 的二元一次方程组,可以求出方程的两个根0和-1.进而把这两个根代入原方程,判断a 、b 、c 的关系,确定三角形的形状.20.解:设该产品的成本价平均每月应降低x . 625(1-20%)(1+6%)-500(1-x )2=625-500 整理,得500(1-x )2=405,(1-x )2=0.81. 1-x=±0.9,x=1±0.9,x 1=1.9(舍去),x 2=0.1=10%.答:该产品的成本价平均每月应降低10%. 点拨:题目中该产品的成本价在不断变化,销售价也在不断变化,•要求变化后的销售利润不变,即利润仍要达到125元,•关键在于计算和表达变动后的销售价和成本价. 21.解:依题意,N+(6-3)×22N+(11-6)×25N=29.10,整理,得N 2-29.1N+191=0,解得N 1=19.1,N 2=10, 由于N<12,所以N 1=19.1舍去,所以N=10. 答:起步价是10元.点拨:读懂表格是正确列出方程的基础,表格中的含义是:当行车里程不超过3公里时,价格是10元,当行车里程超过了3公里而不超过6公里时,除付10元外,超过的部分每公里再22N付元;若行车里程超过6公里,除了需付以上两项费用外,超过6•公里的部分,每公里再付25N元.22.C 23。

相关文档
最新文档