【易错题】初三数学下期中试卷附答案(1)
2020年初三数学下期中试卷带答案(1)
2020年初三数学下期中试卷带答案(1)一、选择题1.若35x x y =+,则x y 等于 ( ) A .32 B .38 C .23 D .852.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BCB .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 3.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小 4.在同一直角坐标系中,函数k y x=和y=kx ﹣3的图象大致是( ) A . B . C .D .5.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 6.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是( )A.B.C.D.7.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )mA.105 m B.(105 1.5)C.11.5m D.10m8.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶111.如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为A .423B .22C .823D .3212.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <2二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。
人教版数学九年级(下)期中质量测试卷1(附答案)
九年级(下)期中数学试卷一、选择题。
(本大题共10小题.每小题3分.共30分.每小题给出四个答案.其中只有一个是正确的.请把选出的答案填在答题卷上。
) 1.-3的倒数是( )。
A .13B .13-C .-3D .32.下列图形中.既是轴对称图形又是中心对称图形的是( )。
A .B .C .D .3.数据2.6.8.6.10的众数和中位数分别为( )。
A .6和6B .6和8C .8和7D .10和74.一个多边形每一个外角都等于18°.则这个多边形的边数为( )。
A .10B .12C .16D .205.式子x 有意义的x 的取值范围是( )。
A .12≥-x 且1≠x B .x ≠1C .12≥-xD .12>-x 且1≠x 6.把二次函数且()213=--y x 的图象向左平移3个单位.向上平移4个单位后.得到的图象所对应的二次函数表达式为( )。
A .()221=-+y x B .()221=++y x C .()241=-+y xD .()241=++y x7.关于x 的不等式组382122>-+≥⎧⎪⎨+⎪⎩x x x 的解集是( )。
A .2≥xB .5>xC .25-≤<xD .23-≤<x8.如图.点A .B .C .D 在O 上.⊥OA BC .若50∠=︒B .则∠D 的度数为( )。
A .20°B .25°C .30°D .40°9.如图.在正方形ABCD 中.点E 、F 分别是边BC 和CD 上的两点.若1=AB .AEF △为等边三角形.则=CE ( )。
A.2B.3C.2D110.在平面直角坐标系中.如图是二次函数()20=++≠y ax bx c a 的图象的一部分.给出下列命题:①0++=a b c ;②2>b a ;③方程20++=ax bx c 的两根分别为-3和1;④240->b ac .其中正确的命题有( )。
九年级(下)期中数学试卷附答案
九年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.32.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.106.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.14.解不等式组:.15.先化简,再求值:(1﹣),其中x=3.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.3【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:﹣1+2=2﹣1=1.故选:B.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【考点】34:同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°【考点】JA:平行线的性质;J3:垂线.【分析】根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10【考点】L8:菱形的性质;A8:解一元二次方程﹣因式分解法.【分析】边AB的长是方程y2﹣7y+10=0的一个根,解方程求得y的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】FH:一次函数的应用.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=1.【考点】6E:零指数幂.【分析】直接根据非0数的0次幂等于1进行解答.【解答】解:∵2≠0,∴20=1.故答案为:1.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是16.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】根据三角形的中位线定理求出DE=BC,DE∥BC,求出△ADE∽△ABC,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:∵D、E为边AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为4,∴△ABC的面积是16,故答案为:16.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是AD=CD.(只需写一个,不添加辅助线)【考点】P3:轴对称图形.【分析】轴对称图形的定义即可得到结论.【解答】解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是k<2且k≠1.【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是﹣1.【考点】R2:旋转的性质;LE:正方形的性质.【分析】先根据正方形的边长,求得CB1=OB1=AC﹣AB1=﹣1,进而得到S△OB1C==,即可得出四边形AB1OD的面积.(﹣1)2,再根据S△ADC【解答】解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1,∴S四边形AB1OD故答案为:﹣1.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】M2:垂径定理;KM:等边三角形的判定与性质.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.【考点】L5:平行四边形的性质;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)首先代入30°角的正切值、化简二次根式,即可得出答案;(2)由平行四边形的性质得出∠BCA=∠DAC=42°,再由三角形的外角性质得出∠COD=∠CBD+∠BCA,即可得出结果.【解答】解:(1)﹣3tan30°+=﹣3×+2=﹣+2=(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCA=∠DAC=42°,∴∠COD=∠CBD+∠BCA=42°+23°=65°.14.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x>﹣3,所以,不等式组的解集为x>﹣1.15.先化简,再求值:(1﹣),其中x=3.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=3时,原式=2.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.【考点】N3:作图—复杂作图.【分析】(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N.可先证明△AOD≌△COD,再证明△MOB≌NOB,从而可得NB=MB;(2)连接AC,BD交于点O,连接MO并延长与AE交于点Q,连接QC,则CQ ∥AM.理由如下:由正方形的性质以及对顶角相等可证△BMO≌DQO,所以QO=MO,由于∠QOC=∠MOA,CO=AO,所以△COQ≌AOM,则∠QCO=∠MAO,从而可得CQ∥AM.【解答】解:(1)在BA上截取BN=BM,连结CN,则CN为所作,如图1(2)在DA上截取DQ=BM,连结CQ,则CQ为所作,如图2.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.【考点】X6:列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】需要拆除,理由为:根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB 的长,由DB﹣AB求出AD的长,由AD+3与10比较即可得到结果.【解答】解:需要拆除,理由为:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i=:3,即∠CDB=30°,∴DC=2BC=20米,BD==10米,∴AD=BD﹣AB=(10﹣10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【考点】MD:切线的判定;KO:含30度角的直角三角形;M5:圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐【考点】L5:平行四边形的性质;G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【分析】(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为AA′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(6,0),∴把x=6代入反比例解析式得:y=2,即B′(6,2),∴平行四边形ABCD向上平移2个单位,即AA′=2,∴D′(0,5),把y=5代入反比例解析式得:x=,即E(,5).22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【考点】HF:二次函数综合题.【分析】(1)由函数函数y=﹣x2+3x﹣2的解析式可知a1=﹣1,b1=3,c1=﹣2,然后依据旋转函数的定义得到﹣1+a2=0,b2=3,﹣2+c2=0,然后求得a2,b2,c2的值即可;(2)依据旋转函数的定义列出关于m、n的方程,从而可求得m、n的值,然后代入计算即可;(3)先求得A,B,C三点的坐标,然后再求得A1,B1,C1的坐标,然后可求得经过点A1,B1,C1的二次函数的解析式,最后依据旋转函数的定义进行判断即可.【解答】解:(1)∵a1=﹣1,b1=3,c1=﹣2,∴﹣1+a2=0,b2=3,﹣2+c2=0,∴a2=1,b2=3,c2=2,∴函数y=﹣x2+3x﹣2的“旋转函数”为y=x2+3x+2;(2)解:根据题意得m=﹣2n,﹣2+n=0,解得m=﹣3,n=2,∴(m+n)2017=(﹣3+2)2017=﹣1;(3)证明:当x=0时,y=﹣(x+1)(x﹣4)=2,则C(0,2),当y=0时,﹣(x+1)(x﹣4)=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),∵点A、B、C关于原点的对称点分别是A1,B1,C1,∴A1(1,0),B1(﹣4,0),C1(0,﹣2),…设经过点A1,B1,C1的二次函数解析式为y=a2(x﹣1)(x+4),把C1(0,﹣2)代入得a2•(﹣1)•4=﹣2,解得a2=,∴经过点A1,B1,C1的二次函数解析式为y=(x﹣1)(x+4)=x2+x﹣2,∵y=﹣(x+1)(x﹣4)=﹣x2+x+2,∴a1+a2=﹣+=0,b1=b2=,c1+c2=2﹣2=0,∴经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】MR:圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)解:如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6﹣t,∴t(6﹣t)=5×1,∴解得:t1=1,t2=5,∴t的值为1秒或5秒.。
【易错题】九年级数学下期中试题(含答案)
【易错题】九年级数学下期中试题(含答案)一、选择题1.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)2.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .25B .5C .5D .123.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m 4.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .375.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小6.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:9 7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺8.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变9.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 910.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 11.如图▱ABCD ,F 为BC 中点,延长AD 至E ,使:1:3DE AD =,连结EF 交DC 于点G ,则:DEG CFG S S ∆V =( )A .2:3B .3:2C .9:4D .4:912.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A .51-B .51+C .2D .212+ 二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。
【易错题】九年级数学下期中试题(及答案)
【易错题】九年级数学下期中试题(及答案)一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .3.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P 为AC 的中点时,过点P 的△ABC 的“相似线”最多有几条?( )A .1条B .2条C .3条D .4条4.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m5.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .196.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米7.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺 8.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( )A .a :d =c :bB .a :b =c :dC .c :a =d :bD .b :c =a :d 9.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒10.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x = (x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1211.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .33B .55C .233D .25512.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍二、填空题13.若点A(m ,2)在反比例函数y =的图象上,则当函数值y≥-2时,自变量x 的取值范围是____.14.在△ABC 中,∠ABC=90°,已知AB=3,BC=4,点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交直线AB 于点P ,当△PQB 为等腰三角形时,线段AP 的长为_____.15.若反比例函数y =﹣的图象经过点A(m ,3),则m 的值是_____.16.如图,已知点A ,C 在反比例函数(0)a y a x=>的图象上,点B ,D 在反比例函(0)b y b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.17.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.18.如图,四边形ABCD、CDEF、EFGH都是正方形,则∠1+∠2= .19.若ab=34,则a bb=__________.20.已知线段AB的长为10米,P是AB的黄金分割点(AP>BP),则AP的长_____米.(精确到0.01米)三、解答题21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE的长(结果保留根号).23.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.24.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.25.如图,已知点D是的边AC上的一点,连接,,.求证:∽;求线段CD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.2.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P 的角等于∠B 时,即图中当PF⊥AB 时,△APF∽△ABC;②公共角为∠C 时:当过点P 的角等于∠A 时,即图中P E ∥AB 时,△CPE∽△CAB ;当过点P 的角等于∠B 时,∵∠CPB=∠A+∠ABP,∴PB>PC ,PC=PA ,∴PB>PA ,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C .4.B解析:B【解析】 由图可知,:3BC AC =tan 3BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V ,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.8.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.9.C解析:C【解析】【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.10.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上,∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.11.D解析:D【解析】【分析】【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=25, 故选D .12.A解析:A【解析】【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE ⊥AB 于E ,OF ⊥CD 于F ,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性.14.或6【解析】【分析】当△PQB为等腰三角形时有两种情况需要分类讨论:①当点P在线段AB上时如图1所示由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时如图2所示利用角解析:53或6.【解析】【分析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP 的中点,从而可以求出AP.【详解】解:在Rt △ABC 中,AB =3,BC =4,由勾股定理得:AC =5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB =BQ .∵BP =BQ ,∴∠BQP =∠P ,∵90,90BQP AQB A P o o ,∠+∠=∠+∠= ∴∠AQB =∠A ,∴BQ =AB ,∴AB =BP ,点B 为线段AP 中点,∴AP =2AB =2×3=6. 综上所述,当△PQB 为等腰三角形时,AP 的长为53或6. 故答案为53或6.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.﹣2【解析】∵反比例函数y=-6x 的图象过点A (m3)∴3=-6m 解得=-2 解析:﹣2【解析】∵反比例函数的图象过点A (m ,3), ∴,解得.16.【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OEa -b=5•OF 求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa -b=5•OF ∴OE=OF=又∵OE+OF=6∴=6∴a- 解析:403 【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b --+=6,即可求出答案.【详解】 如图,∵由题意知:a-b=4•OE ,a-b=5•OF ,∴OE=4a b -,OF=5a b -, 又∵OE+OF=6,∴45a b a b --+=6, ∴a-b=403, 故答案为:403. 【点睛】 本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b --+=6是解此题的关键.17.3:2【解析】因为DE∥BC 所以因为EF∥AB 所以所以故答案为:3:2 解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 18.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF ∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF ∴△ACF ∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF a ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74【解析】【分析】由比例的性质即可解答此题.【详解】 ∵34a b =, ∴a=34b ,∴a bb+=3744b b bb b+=,故答案为7 4【点睛】此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设A P为x米根据题意得整理得x2+10x﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=﹣5≈6.18,x2=﹣5(不符合题意,舍去)经检验x=5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.旗杆AB的高度是11米.【解析】【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.CE的长为(4+)米【解析】【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【详解】过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=CH AH,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×33∵DH=1.5,∴CD=23+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=CD CE,∴CE=23 1.53+=(4+3)(米),答:拉线CE的长为(4+)米.考点:解直角三角形的应用-仰角俯角问题23.(1)证明见解析;(2)BP=25 3.【解析】【分析】(1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;(2))由△ABP∽△PCD,可得PC ABCD BP=,由PD∥AB,可得PC BCCD AC=,即AB BCBP AC=,可求BP的长.【详解】(1)∵AB=AC,∴∠ABC=∠ACB.∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,且∠APD=∠B,∴∠DPC =∠BAP且∠ABC=∠ACB,∴△BAP∽△CPD.(2)∵△ABP∽△PCD,∴PC CDAB BP=即PC ABCD BP=.∵PD∥AB,∴PC CDBC AC=即PC BCCD AC=,∴AB BCBP AC=,∴101210BP=,∴BP253=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.24.(1)75;32)13【解析】【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出3解;(2)过点B作BE∥AD交AC于点E,同(1)可得出3Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13 OD OBOA OC==.又∵AO=33,∴OD=13AO=3,∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=43.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵3,∴3∴3∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(32+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD=413.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.25.(1)参见解析;(2)5.【解析】【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD长.【详解】(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∵相似三角形的对应线段成比例,∴=,即=,解得:CD=5.。
【易错题】九年级数学下期中试卷(附答案)
【易错题】九年级数学下期中试卷(附答案)一、选择题1.已知线段a 、b ,求作线段x ,使22b x a=,正确的作法是( ) A .B .C .D .2.如图,在正方形ABCD 中,N 为边AD 上一点,连接BN .过点A 作AP ⊥BN 于点P ,连接CP ,M 为边AB 上一点,连接PM ,∠PMA =∠PCB ,连接CM ,有以下结论:①△PAM ∽△PBC ;②PM ⊥PC ;③M 、P 、C 、B 四点共圆;④AN =AM .其中正确的个数为( )A .4B .3C .2D .13.观察下列每组图形,相似图形是( )A .B .C .D .4.如图,在矩形ABCD 中,DE AC ⊥于E ,设ADE α∠=,且3cos 5α=,5AB =,则AD 的长为( )A .3B .163C .203D .1655.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变6.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3B .5C .23D .25 7.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .98.如图所示,在△ABC 中,AB =6,AC =4,P 是AC 的中点,过 P 点的直线交AB 于点Q ,若以 A 、P 、Q 为顶点的三角形和以A 、B 、C 为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.439.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)10.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.1311.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个12.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252B.25-C.251D52二、填空题13.如图,P(m,m)是反比例函数9yx=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.14.如图,在▱ABCD 中,EF ∥AB ,DE :EA=2:3,EF=4,则CD 的长为___________.15.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).16.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.17.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数()y x 0xk =<的图象经过点C ,则k 的值为 .18.若a b =34,则a b b+=__________. 19.如果点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,那么:AP AB 的值为________.20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题21.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=320m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时.(1)居民楼是否会受到噪音的影响?请说明理由;(2)如果行驶的速度为72km/h,居民楼受噪音影响的时间为多少秒?22.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.24.如图,已知反比例函数y=kx的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=kx的图象上,当-3≤x≤-1时,求函数值y的取值范围.25.已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.(1)如图1,若⊙O直径为10,AC=8,求BF的长;(2)如图2,连接OA,若OA=F A,AC=BF,求∠OAD的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.2.A解析:A【解析】【分析】根据互余角性质得∠PAM=∠PBC,进而得△PAM∽△PBC,可以判断①;由相似三角形得∠APM=∠BPC,进而得∠CPM=∠APB,从而判断②;根据对角互补,进而判断③;由△APB∽△NAB得AP ANBP AB=,再结合△PAM∽△PBC便可判断④.【详解】解:∵AP⊥BN,∴∠PAM+∠PBA=90°,∵∠PBA+∠PBC=90°,∴∠PAM=∠PBC,∵∠PMA=∠PCB,∴△PAM∽△PBC,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.3.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.4.C解析:C【解析】【分析】根据矩形的性质可知:求AD 的长就是求BC 的长,易得∠BAC =∠ADE ,于是可利用三角函数的知识先求出AC ,然后在直角△ABC 中根据勾股定理即可求出BC ,进而可得答案.【详解】解:∵四边形ABCD 是矩形,∴∠B =∠BAC =90°,BC=AD ,∴∠BAC +∠DAE =90°, ∵DE AC ⊥,∴∠ADE +∠DAE =90°,∴∠BAC =ADE α∠=,在直角△ABC 中,∵3cos 5α=,5AB =,∴25cos 3AB AC α==,∴AD=BC 203==. 故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.5.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x =1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy ,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x =2xy ,其值为定值.【详解】解:因为等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,所以△BEC 和△DCF 都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为EC•CF=2x •2y =2×xy =18,所以,EC•CF 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.6.D解析:D【解析】【分析】 【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=AD AB =2210=25, 故选D .7.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC ,∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:9.A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.10.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.11.D解析:D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.12.A解析:A【解析】根据黄金比的定义得:512APAB-=,得5142522AP-=⨯=- .故选A.二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三解析:933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933+.14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD 中AB=CD .∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式 解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n45=⎛⎫= ⎪⎝⎭nn x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 16.8或【解析】【分析】根据题意可分两种情况①当CP 和CB 是对应边时△CPQ∽△CBA 与②CP 和CA 是对应边时△CPQ∽△CAB 根据相似三角形的性质分别求出时间t 即可【详解】①CP 和CB 是对应边时△CP解析:8或6411 【解析】【分析】根据题意可分两种情况,①当CP 和CB 是对应边时,△CPQ ∽△CBA 与②CP 和CA 是对应边时,△CPQ ∽△CAB ,根据相似三角形的性质分别求出时间t 即可.【详解】①CP 和CB 是对应边时,△CPQ ∽△CBA , 所以CP CB =CQ CA , 即16216t -=12t , 解得t =4.8;②CP 和CA 是对应边时,△CPQ ∽△CAB , 所以CP CA =CQ CB , 即16212t -=16t , 解得t =6411. 综上所述,当t =4.8或6411时,△CPQ 与△CBA 相似. 【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.17.-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4∴A (﹣32)∵点A 在反比例函数的图象上∴解得k=-6【详解】请在此输入详解! 解析:-6【解析】【分析】分析:∵菱形的两条对角线的长分别是6和4,∴A (﹣3,2).∵点A 在反比例函数()y x 0xk =<的图象上, ∴23k =-,解得k=-6. 【详解】请在此输入详解! 18.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b ∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74【解析】【分析】由比例的性质即可解答此题.【详解】 ∵34a b =, ∴a=34b , ∴a b b +=3744b b b b b+= , 故答案为74【点睛】 此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.19.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项,∴点P 是线段AB 的黄金分割点,∴:AP AB ,. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =12. 20.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题21.(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.【解析】【分析】(1)作AC ⊥ON 于C ,利用含30度的直角三角形三边的关系得到AC =12AO =160,则点A 到MN 的距离小200,从而可判断学校会受到影响;(2)以A 为圆心,100为半径画弧交MN 于B 、D ,如图,则AB =AD =200,利用等腰三角形的性质得BC =CD ,接下来利用勾股定理计算出BC =120,所以BD =2BC =240,然后利用速度公式计算出学校受到的影响的时间.【详解】(1)如图:过点A 作AC ⊥ON ,∵∠QON =30°,OA =320米,∴AC =160米,∵AC <200,∴居民楼会受到噪音的影响;(2)以A 为圆心,200m 为半径作⊙A ,交MN 于B 、D 两点,即当火车到B 点时直到驶离D 点,对居民楼产生噪音影响,∵AB =200米,AC =160米,∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,∵72千米/小时=20米/秒,∴影响时间应是:240÷20=12秒.【点睛】此题是解直角三角形的应用,主要考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.22.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF-=-=,在Rt△ABF中BF=2222AB AF54-=-=3,∴BD=DF﹣BF=43﹣3,sin∠ABF=45 AFAB=,在Rt△DBE中,sin∠DBE=DBBD,∵∠ABF=∠DBE,∴sin∠DBE=45,∴DE=BD•sin∠DBE=45×(43﹣3)=16312-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.23.(1)见解析;(2)(﹣4,2).【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义.24.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-4 3 .【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为4yx=,∵A(4,m),∴m=44=1;(2)∵当x=﹣3时,y=﹣43;当x=﹣1时,y=﹣4,又∵反比例函数4yx=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.25.(1)BF =6;(2)∠OAD =30°.【解析】【分析】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .利用勾股定理求出AM ,证明四边形AMBF 是平行四边形即可解决问题;(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .证明AO ⊥CM .推出∠OAD =∠BCM ,解直角三角形求出∠BCM 即可解决问题.【详解】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .∵CM 是直径,∴∠CAM =∠CBM =90°,∵CM =10,AC =8,∴AM =22CM AC -=22108-=6,∵AD ⊥CB ,BE ⊥AC ,∴∠ADC =∠MBC =90°,∠BEC =∠MAC =90°,∴AD ∥BM ,AM ∥BE ,∴四边形AMBF 是平行四边形,∴BF =AM =6.(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .由(1)可知四边形AMBF 是平行四边形,∴AM =BF ,AF =BM∵AC =BF ,∴AC =AM ,∵∠MAC =90°,MO =OC ,∴AO⊥CM,∵AD⊥BC,∴∠AOJ=∠CDJ=90°,∵∠AJO=∠CJD,∴∠DCJ=∠JAO,∵AF=OA,AF=BM,∴OA=BM,∴CM=2BM,∵∠CBM=90°,∴sin∠BCM=BMCM=12,∴∠BCM=30°,∴∠OAD=∠BCM=30°.【点睛】本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题.。
(人教版)初中数学九年级下册期中测试01含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期中测试一、选择题(每小题3分,共42分) 1.在反比例函数3k y x -=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .3k >B .0k >C .3k <D .0k <2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (单位:kPa )是气体体积V (单位:3m )的反比例函数,其图象如图所示。
当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于35m 4B .小于35m 4C .不小于34m 5D .小于34m 53.某反比例函数的图象经过点(2,3)-,则此函数图象也经过点( )A .(2,3)-B .(3,3)--C .(2,3)D .(4,6)-4.对于反比例函数2y x=,下列说法不正确的是( ) A .点(2,1)--在它的图象上 B .它的图象在第一、三象限 C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小5.已知长方形的面积为220 cm ,设该长方形一边长为 cm y ,另一边长为 cm x ,则y 与x 之间的函数图象大致是( )ABCD6.当0a ≠时,函数1y ax =+与函数ay x=在同一平面直角坐标系中的图象可能是( )ABCD7.已知ABC △2,'''A B C △的两边长分别为1,3,如果ABC △与'''A B C △相似,那么'''A B C △的第三边长应该是( )ABC D 8.点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数3y x=-的图象上,若1230x x x <<<,则为,为,y 为的大小关系是( ) A .112y x y <<B .122y y y <<C .211y y y <<D .211y y y <<9.如图所示,AB CD ∥,AC ,BD 交于点O ,若7BO =,3DO =,25AC =,则AO 的长为( ) A .10B .12.5C .15D .17.510.顺次连接三角形三边的中点,所构成的三角形与原三角形对应高的比是( )A .1:4B .1:3C .1:2D .11.用一放大镜看一个直角三角形ABC ,该三角形的边长放大到原来的10倍后,下列结论中错误的是( ) A .斜边上的中线是原来的10倍 B .斜边上的高是原来的10倍 C .周长是原来的10倍 D .最小内角是原来的10倍12.近视眼镜的度数y (单位:度)与镜片焦距x (单位:m )成反比例函数关系.已知400-度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数解析式为( ) A .400y x=-B .14y x=-C .100y x=-D .1400y x=-13.如图所示,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( )A .2E K ∠=∠B .2BC HI =C .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .2ABCDEF GHIJKL S S =六边形六边形14.如图所示,等边三角形ABC 的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=︒,则CD 的长为( )A .32B .23C .12D .34二、填空题(每小题3分,共24分)15.在对物体做功一定的情况下,力F (单位:N )与此物体在力的方向上移动的距离s (单位:m )成反比例函数关系,其图象如图所示,点(5,1)P 在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是__________m .16.若正方形AOBC 的边OA ,OB 在坐标轴上,顶点C 在第一象限且在反比例函数1y x=的图象上,则点C 的坐标是__________.17.如图所示,双曲线(0)ky k x=>与O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线.已知点P 的坐标为(1,3),则图中阴影部分的面积为__________.18.函数为1(0)y x x = ,29(0)y x x=>的图象如图所示,有下列结论: ①两函数图象的交点A 的坐标为(3,3);②当3x >时,为21y y >; ③当1x =时,8BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大面减小。
【易错题】九年级数学下期中试卷附答案(1)
【易错题】九年级数学下期中试卷附答案(1) 一、选择题1.已知一次函数y1=x-1和反比例函数y2=2x的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>02.若反比例函数kyx=(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-43.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;4.用放大镜观察一个五边形时,不变的量是()A.各边的长度 B.各内角的度数 C.五边形的周长 D.五边形的面积5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.196.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .57.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交CD 于点F ,交AD 的延长线于点E ,若AB =4,BM =2,则△DEF 的面积为( )A .9B .8C .15D .14.58.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒9.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .1210.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD =OA ,则△ABC 与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:611.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,则CD的长度是()A.2 B.1 C.4 D.2512.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍二、填空题13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.14.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=34x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.15.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=12x(x>0)交于C点,且AB=AC,则k的值为_____.16.如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且43OEEA=,则FGBC=______.17.如果点P把线段AB分割成AP和PB两段(AP PB>),其中AP是AB与PB的比例中项,那么:AP AB的值为________.18.近视眼镜的度数(y度)与镜片焦距(x米)呈反比例,其函数关系式为120.yx=如果近似眼镜镜片的焦距0.3x=米,那么近视眼镜的度数y为______.19.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.20.如图,l1∥l2∥l3,AB=25AC,DF=10,那么DE=_________________.三、解答题21.如图,等边ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 上的点,连接CD 、EF 交于点G ,且60CGF ∠=︒.(1)请直接写出图中所有与BDC ∆相似的三角形(任选一对证明);(2)若45EF DC =,试求AE EC 的值.22.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A 处测得山顶B 的仰角为45°,他们从A 处沿着坡度为i=1 : 3的斜坡前进1000 m 到达D 处,在D 处测得山顶B 的仰角为58°,若点A 处的海拔为12米,求该座山顶点B 处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,3≈1. 732)23.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F.(1)求证:△CDE ∽△CBF ;(2)若B 为AF 的中点,CB=3,DE=1,求CD 的长.24.如图,AB 与CD 相交于点O ,△OBD ∽△OAC ,OD OC =35,OB =6,S △AOC =50, 求:(1)AO 的长;(2)求S △BOD25.如图,E为□ABCD的边CD延长线上的一点,连结BE交AC于点O,交AD于点F,求证:BO EO FO BO.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】因为一次函数和反比例函数交于A、B两点,可知x-1=2x,解得x=-1或x=2,进而可得A、B两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y1>y2.【详解】解方程x−1=2x,得x=−1或x=2,那么A点坐标是(−1,−2),B点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题2.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.3.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.4.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D选项错误.故选B.点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.6.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,考点:反比例函数k的几何意义.7.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE=AE=∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.C解析:C【解析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD ,如图所示:∵BC 是半圆O 的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9,∴k=245,故选:C【点睛】考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键. 10.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.11.A解析:A【解析】【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的12,得到△COD,∴C(1,2),则CD的长度是2,故选A.【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.12.A解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.14.【解析】【分析】认真审题根据垂线段最短得出PM⊥AB时线段PM最短分别求出PBOBOAAB的长度利用△PBM∽△ABO即可求出本题的答案【详解】解:如图过点P作PM⊥AB则:∠PMB=90°当PM⊥解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB 的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PM AB AO=,即:754PM =,所以可得:PM=285.15.k=【解析】试题分析:如图:作CD⊥x轴于D则OB∥CD∴△AOB∽△ADC∴∵AB=AC∴OB=CD由直线y=kx﹣3(k≠0)可知B(0﹣3)∴OB=3∴CD=3把y=3代入y=(x>0)解得x解析:k=3 2【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.16.【解析】【分析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似其位似中心为点O且则故答案为:【点睛】本题考查了位似的性质熟练掌握位似的性质是解题的关键解析:4 7【分析】利用位似图形的性质结合位似比等于相似比得出答案.【详解】Q 四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE 4EA 3=, OE 4OA 7∴=, 则FG OE 4BC OA 7==, 故答案为:47. 【点睛】本题考查了位似的性质,熟练掌握位似的性质是解题的关键.17.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄解析:12 【解析】【分析】解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB =12,故填12. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB . 18.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.19.7【解析】设树的高度为m 由相似可得解得所以树的高度为7m解析:7【解析】设树的高度为x m ,由相似可得6157262x +==,解得7x =,所以树的高度为7m 20.【解析】试题解析::∵l1∥l2∥l3∴∵AB=AC ∴∴∵DF=10∴∴DE=4 解析:【解析】试题解析::∵l 1∥l 2∥l 3, ∴AB DE AC DF=. ∵AB=25AC , ∴25AB AC =, ∴25DE DF =. ∵DF=10, ∴2105DE =, ∴DE=4. 三、解答题21.(1)GFC CFE ∆∆、;(2)14 【解析】【分析】(1)根据等边三角形的性质及∠CGF=60°,可以得出∠B=∠ACB=∠CGF=60°,可以得出△BDC ∽△GFC ∽△CFE ;(2)由(1)△BDC ∽△CFE 可以得出EF CE DC BC = ,再根据条件45EF DC =和三角形ABC是等边三角形和线段的转化,就可以得出AE EC的值. 【详解】解:(1)GFC CFE ∆∆、∵等边ABC ∆,∴∠B=∠ACB =60°∵60CGF ∠=︒∴∠B=∠ACB=∠CGF又∵∠DCB=∠FCG∴GFC BDC ∆∆∽∵∠EFC=∠GFC∴GFC CFE ∆∆∽∴GFC CFE BDC ∆∆∽∽△(2)∵△BDC ∽△CFE 454541,54EF CE DC BCEF DC CE BC CE AE AC EC ∴==∴=∆∴∴==Q Q 等边ABC AC=BC即【点睛】 本题考查了相似三角形的判定与性质,等边三角形的性质.22.1488米.【解析】【分析】过D 作DE ⊥BC 于点E ,作DF ⊥AC 于点F ,易知四边形DECF 为矩形,在Rt △ADF 中,利用三角函数可求出DF 和AF ,设BE=x 米,在Rt △BDE 中,利用三角函数可表示出DE 的长度,再根据AC=BC 建立方程求出x 的值,最后用BC 加上A 点的海拔高度即为B 处的海拔高度.【详解】解:如图,过D 作DE ⊥BC 于点E ,作DF ⊥AC 于点F ,∵DE ⊥BC ,DF ⊥AC ,∠C=90°∴四边形DECF 为矩形,∴DE=FC ,DF=EC∵山坡AD 的坡度为3∴∠DAF=30°, ∴1DF=AD sin 30=1000=5002⋅⨯o 米, 3AF=AD cos30=1000=5003⋅o 设BE=x 米,在Rt △BDE 中,∠BDE=58°, ∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即50035001.6=+x x 解得400034000976-=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.23.(1)证明见解析;(2)3【解析】【分析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE ∽△CBF ,可得CD :CB=DE :BF ,根据B 为AF 中点,可得CD=BF ,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD 是矩形,∴∠D=∠1=∠2+∠3=90°, ∵CF ⊥CE ,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE ∽△CBF ;(2)∵四边形ABCD 是矩形,∴CD=AB ,∵B 为AF 的中点,∴BF=AB ,∴设CD=BF=x ,∵△CDE ∽△CBF , ∴CD DE CB BF =, ∴13x x= , ∵x>0,∴3即:3【点睛】本题考查了相似三角形的判定与性质:有两组角对应相等的两个三角形相似;两个三角形相似对应角相等,对应边的比相等.也考查了矩形的性质24.(1)10;(2)18.【解析】【分析】(1)根据相似三角形对应边之比相等可得BO AO =DO CO =35,再代入BO =6可得AO 长; (2)根据相似三角形的面积的比等于相似比的平方可得BOD AOC S S V V =925,进而可得S △BOD . 【详解】解:(1)∵△OBD ∽△OAC ,∴BO AO =DO CO =35∵BO =6,∴AO =10; (2)∵△OBD ∽△OAC ,DO CO =35∴BOD AOC S S V V =925∵S △AOC =50,∴S △BOD =18.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的面积之比等于相似比的平方.25.见解析【解析】【分析】由AB ∥CD 得△AOB ∽△COE ,有OE :OB=OC :OA ;由AD ∥BC 得△AOF ∽△COB ,有OB :OF=OC :OA ,进而解答.【详解】∵AB ∥CD ,∴△AOB ∽△COE .∴OE :OB=OC :OA ;∵AD ∥BC ,∴△AOF ∽△COB .∴OB :OF=OC :OA .∴OB :OF=OE :OB , 即:BO EO FO BO【点睛】 本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.。
【易错题】初三数学下期中试题(附答案)
【易错题】初三数学下期中试题(附答案)一、选择题1.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)2.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.3.若35xx y=+,则xy等于()A.32B.38C.23D.854.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果12C EAFC CDF=VV,那么S EAFS EBCVV的值是()A.12B.13C.14D.195.若37a b=,则b aa-等于()A.34B.43C.73D.376.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤7.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=8.如图,BC是半圆O的直径,D,E是»BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果70A∠︒=,那么DOE∠的度数为()A.35︒B.38︒C.40︒D.42︒9.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:610.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°11.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m12.下列变形中:①由方程125x-=2去分母,得x﹣12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x﹣4=x+4移项,得7x=0;④由方程2﹣5362x x-+=两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是()个.A.4B.3C.2D.1二、填空题13.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.16.如图,在平面直角坐标系中,已知点A、B的坐标分别为(8,0)、(0,3C 是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P的坐标为____17.已知反比例函数y=2mx,当x>0时,y随x增大而减小,则m的取值范围是_____.18.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB="AC=8" cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.19.如图所示,将一副三角板摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值为_____.20.已知线段AB的长为10米,P是AB的黄金分割点(AP>BP),则AP的长_____米.(精确到0.01米)三、解答题21.如图,一次函数y=mx+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B(4,1)两点,过点A作y轴的垂线,垂足为M.(1)求一次函数和反比例函数的解析式;(2)求△OAM的面积S;(3)在y轴上求一点P,使PA+PB最小.22.如图,已知反比例函数y =k x 的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值; (2)若点C (x ,y )也在反比例函数y =k x的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.23.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC V 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,连接DE 交AC 于点F .() 1求证:四边形ADCE 为矩形;()2当ABC V 满足什么条件时,四边形ADCE 是一个正方形?并给出证明. ()3在()2的条件下,若AB AC 22==,求正方形ADCE 周长.24.如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,F 是BC 延长线上一点,∠F =∠B .(1)若AB =10,求FD 的长;(2)若AC =BC ,求证:△CDE ∽△DFE .25.如图,已知∠BAE =∠CAD ,AB =18,AC =48,AE =15,AD =40.求证:△ABC ∽△AED .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,2,所以△ABC的周长为2,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+32B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.2.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.3.A解析:A【解析】【分析】先根据比例的基本性质进行变形,得到2x=3y,再根据比例的基本性质转化成比例式即可得.【详解】根据比例的基本性质得:5x=3(x+y),即2x=3y,即得32xy=,故选A.【点睛】本题考查了比例的基本性质,熟练掌握比例的基本性质是解本题的关键. 4.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 5.B解析:B【解析】由比例的基本性质可知a=37b ,因此b a a -=347337b b b -=. 故选B.6.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB V V ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB V V ∽,成立. ③AE DE AB BC =,但AED V 比一定与B Ð相等,故ADE V 与ACD V 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB V V ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE V , 故不能证明:ADE V 与ABC V 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.7.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.8.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.10.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 11.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD , ∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 12.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】 ①方程125x -=2去分母,两边同时乘以5,得x ﹣12=10,故①正确. ②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题13.【解析】【分析】将点的坐标代入可以得到-1=然后解方程便可以得到k的值【详解】∵反比例函数y=的图象经过点(2-1)∴-1=∴k=−;故答案为k=−【点睛】本题主要考查函数图像上的点满足其解析式可以解析:32 k=-【解析】【分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=− 32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF∥AB,∴△DEF∽△DAB,∴EF:AB=DE:DA=DE:(DE+EA)=2:5,∴AB=10,∵在▱ABCD中AB=CD.∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.16.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB 列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:(1,3)【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=33=,∴a1=1,a2=3(舍去).∴DP=1,∵3,∴P(13.考点:1相似三角形性质与判定;2平面直角坐标系.17.m>2【解析】分析:根据反比例函数y=当x>0时y随x增大而减小可得出m ﹣2>0解之即可得出m的取值范围详解:∵反比例函数y=当x>0时y随x增大而减小∴m﹣2>0解得:m>2故答案为m>2点睛:本解析:m>2.【解析】分析:根据反比例函数y=2mx-,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.详解:∵反比例函数y=2mx-,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为m>2.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.18.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:48-163【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=33x.所以3,则3.所以S△AGC=12×8×(12-43)=48-16319.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 2【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠3CDAC,则AC6x,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC ,∴在Rt △BED 中,tan ∠CBD =DEBE故答案为:12. 【点睛】 本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x =5﹣5是原方程的解析:18【解析】【分析】 根据黄金分割定义:AP BP AB AP=列方程即可求解. 【详解】解:设AP 为x 米,根据题意,得 x 1010x x-= 整理,得x 2+10x ﹣100=0解得x 1=﹣5≈6.18,x 2=﹣5(不符合题意,舍去)经检验x =5是原方程的根,∴AP 的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.(1)y=4x;y =-x +5(2)2(3)(0,175) 【解析】分析:(1)根据待定系数法分别求出反比例函数与一次函数解析式即可;(2)根据反比例函数的性质,xy=k <直接求出面积即可;(3)作点A 关于y 轴的对称点N ,则N (-1,4),连接BN 交y 轴于点P ,点P 即为所求.详解:(1)将B(4,1)代入y=kx得:1=4k,∴k=4,∴y=4x,将B(4,1)代入y=mx+5,得:1=4m+5,∴m=-1,∴y=-x+5,(2)在y=4x中,令x=1,解得y=4,∴A(1,4),∴S=12×1×4=2,(6分)(3)作点A关于y轴的对称点N,则N(-1,4),连接BN交y轴于点P,点P即为所求.设直线BN的关系式为y=kx+b,由414k bk b==+⎧⎨-+⎩,得35175kb⎧-⎪⎪⎨⎪⎪⎩==,∴y=−35x+175,∴P(0,175)点睛:此题主要考查了待定系数法求一次函数与反比例函数解析式以及作对称点问题,根据已知得出对称点是解决问题的关键.22.(1) k=4, m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-43.【解析】【分析】【详解】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x=﹣3和﹣1时y 的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB 的面积为2,∴k=4,∴反比例函数解析式为4y x =,∵A (4,m ),∴m=44=1; (2)∵当x=﹣3时,y=﹣43; 当x=﹣1时,y=﹣4,又∵反比例函数4y x =在x <0时,y 随x 的增大而减小,∴当﹣3≤x≤﹣1时,y 的取值范围为﹣4≤y≤﹣43. 考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征.23.(1)证明见解析;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形;证明见解析;(3)8;【解析】【分析】( 1 )根据等腰三角形的性质,可得 ∠ CAD=12∠ BAC ,根据等式的性质,可得∠CAD+ ∠CAE=12( ∠BAC+ ∠CAM )=90°,根据垂线的定义,可得∠ADC=∠CEA ,根据矩形的判定,可得答案;( 2 )根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;( 3 )根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.【详解】()1∵AB AC =,AD BC ⊥,垂足为点D , ∴1CAD BAC 2∠∠=. ∵AN 是ABC V 外角CAM ∠的平分线, ∴1CAE CAM 2∠∠=. ∵BAC ∠与CAM ∠是邻补角,∴BAC CAM 180∠∠+=o , ∴()1CAD CAE BAC CAM 902∠∠∠∠+=+=o . ∵AD BC ⊥,CE AN ⊥,∴ADC CEA 90∠∠==o ,∴四边形ADCE 为矩形;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形,∵BAC 90∠=o 且AB AC =,AD BC ⊥, ∴1CAD BAC 452∠∠==,ADC 90∠=o , ∴ACD CAD 45∠∠==o ,∴AD CD =.∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;()3由勾股定理,得AB =,AD CD =,=,AD 2=,正方形ADCE 周长4AD 428=⨯=.【点睛】本题考查了的正方形的判定与性质,(1)利用了等腰三角形的性质,矩形的判定;(2)利用了正方形的判定;(3)利用了勾股定理,正方形的周长,灵活运用是关键.24.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE ∥AB ,进而得出∠DEC =∠B ,即可得出FD =DE ,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B =∠A =∠CED =∠CDE ,即可得出∠CDE =∠F ,即可得出△CDE ∽△DFE .【详解】解:(1)∵D 、E 分别是AC 、BC 的中点,∴DE //AB , DE =12AB =5 又∵DE //AB ,∴∠DEC = ∠B .而∠ F = ∠ B ,∴∠DEC =∠B ,∴FD =DE =5;(2)∵AC =BC ,∴∠A =∠B .又∠CDE =∠A ,∠CED = ∠B ,∴∠CDE =∠B .而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.25.证明见解析.【解析】【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出65AB ACAE AD==,据此即可得证.【详解】∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴65 AB ACAE AD==,∴△ABC∽△AED.【点睛】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.。
初三数学下册期中易错题测试
初三数学下册期中易错题测试(含解析解析) 2021九年级数学下册期中易错题测试(含答案解析)一.选择题(共11小题)1.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l 1,l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,…,如此连续,得到一系列点P1,P2,P3,…,Pn.若Pn与P重合,则n的最小值是()A.5 B.6 C.7 D.82.关于x的方程ax2+(a+2)x+9a=0有两个不等的实数根x1,x2,且x1<1<x2,那么a的取值范畴是()A.﹣<a<B.a>C.a<﹣D.﹣<a<03.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线B C于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()xK b 1.C omA.11+ B.11﹣C.11+ 或11﹣D.11+ 或1+4.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是()A.相交B.外切C.外离D.内含5.已知⊙O1和⊙O2的直径分别为4cm和6cm,两圆的圆心距是1cm,则两圆的位置关系是()A.内切B.外切C.相交D.外离6.在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)7.若关于x的分式方程无解,则a的值为()A.﹣2 B.0 C.1 D.1或﹣28.方程x2+3x﹣1=0的根可看作是函数y=x+3的图象与函数y= 的图象交点的横坐标,那么用此方法可推断出方程x3﹣x﹣1=0的实数根x0所在的范畴是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<39.过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y= (x>0)的图象与△ABC有公共点,则k的取值范畴是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤810.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x ()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二.填空题(共12小题)12.一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为_________cm(π取3.14,结果保留两位有效数字).13.二次函数y=﹣(x﹣2)2+ 的图象与x轴围成的封闭区域内(包括边界),横、纵坐标差不多上整数的点有_________个(提示:必要时可利用下面的备用图画出图象来分析).14.如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线O C上取一点A,过点A作AH⊥x轴于点H,得到△AOH.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形△P OQ与△AOH全等,则符合条件的△AOH的面积是_________.15.为美化小区环境,某小区有一块面积为30m2的等腰三角形草地,测得其一边长为10m,现要给这块三角形草地围上白色的低矮栅栏,则其长度为_________m.16.在直角坐标系中,已知两点A(﹣8,3),B(﹣4,5)以及动点C(0,n),D(m,0),则当四边形ABCD的周长最小时,比值为____ _____.17.矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABC D沿直线l作无滑动翻动,当点A第一次翻动到点A1位置时,则点A通过的路线长为_________.18.在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、A D上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD 的面积比是_________.19.?ABCD的对角线相交于点O,请你添加一个条件_________(只添一个即可),使?ABCD是矩形.20.操作与探究:如图,在△ABC中,AC=BC=2,∠C=90°,将一块三角板的直角顶点放在斜边的中点P处,绕点P旋转.设三角板的直角边P M交线段CB于E点,当CE=0,即E点和C点重合时,有PE=PB,△PB E为等腰三角形,此外,当CE等于_________时,△PBE为等腰三角形.21.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范畴是_________.22.幼儿园某班有玩具若干件分给小朋友,假如每人三件,那么还多5 9件;假如每人分5件,那么最后一个小朋友得到玩具但不超过3件,则那个班有_________件玩具.新-课-标-第- 一-网23.点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B 作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM= MN=NC,△AOC的面积为6,则k的值为_________.三.解答题(共7小题)24.A(0,1),M(3,2),N(4,4).动点P从点A动身,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时刻为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范畴;(3)直截了当写出t为何值时,点M关于l的对称点落在坐标轴上.25.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/秒的速度沿FG方向移动,移动开始前点A与点F重合.已知正方形ABCD的边长为1cm,FG=4cm,GH=3cm,设正方形移动的时刻为x秒,且0≤x≤2.5.(1)直截了当填空:DG=_________cm(用含x的代数式表示);(2)连结CG,过点A作AP∥CG交GH于点P,连结PD.①若△DGP的面积记为S1,△CDG的面积记为S2,则S1﹣S2的值会发生变化吗?请说明理由;②当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段P D的长.26.△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?假如不变,求出线段ED的长;假如变化请说明理由.27.AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)假如AB=12,BC=8,求圆心O到BC的距离.28.在⊙O中,点P为直径BA延长线上一点,直线PD切⊙O于点D,过点B作BH⊥PD,垂足为H,BH交⊙O于点C,连接BD.(1)求证:BD平分∠ABH;(2)假如AB=10,BC=6,求BD的长;(3)在(2)的条件下,当E是的中点,DE交AB于点F,求DE? DF的值.29.解方程:.30.某养鸡场打算购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只?(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?(3)相关资料说明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?2021九年级数学下册期中易错题测试(含答案解析)参考答案与试题解析一.选择题(共11小题)1.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l 1,l2上).小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,…,如此连续,得到一系列点P1,P2,P3,…,Pn.若Pn与P重合,则n的最小值是()A.5 B.6 C.7 D.8考点:轴对称的性质.专题:规律型.分析:设两直线交点为O,作图后依照对称性可得.解答:解:作图可得:设两直线交点为O,依照对称性可得:作出的一系列点P1,P2,P3,…,Pn都在以O为圆心,OP为半径的圆上,∵∠α=60°,∴每相邻两点间的角度是60°;故若Pn与P重合,则n的最小值是6.故选B点评:此题考查了平面图形,要紧培养学生的观看、分析能力和与作图能力.2.关于x的方程ax2+(a+2)x+9a=0有两个不等的实数根x1,x2,且x1<1<x2,那么a的取值范畴是()A.﹣<a<B.a>C.a<﹣D.﹣<a<0考点:根的判别式;解一元一次不等式组.分析:第一解关于x的方程ax2+(a+2)x+9a=0,求出x的解,再依照x1<1<x2,求出a的取值范畴.解答:解:ax2+(a+2)x+9a=0,解得;x1= = ,x2= ,∵x1<1<x2,∴①>1,解得;﹣<a<0,②<1.解得:﹣<a<0,∴﹣<a<0,故选:D.点评:此题要紧考查了解一元二次方程与不等式的解法,此题综合性较强,解题的关键是利用求根公式求出x,再求不等式的解集是解决问题的关键.3.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线B C于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+ B.11﹣C.11+ 或11﹣D.11+ 或1+考点:平行四边形的性质;勾股定理.专题:运算题;压轴题;分类讨论.分析:依照平行四边形面积求出AE和AF,有两种情形,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE= ,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE= 代入求出BE= ,同理DF=3 >5,即F在DC的延长线上,∴CE=6﹣,CF=3 ﹣5,即CE+CF=1+ ,②如图:∵AB=5,AE= ,在△ABE中,由勾股定理得:BE= ,同理DF=3 ,由①知:CE=6+ ,CF=5+3 ,∴CE+CF=11+ .故选D.点评:本题考查了平行四边形性质,勾股定理的应用,要紧培养学生的明白得能力和运算能力,注意:要分类讨论啊.4.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是()A.相交B.外切C.外离D.内含考点:圆与圆的位置关系.分析:本题直截了当告诉了两圆的半径及圆心距,依照数量关系与两圆位置关系的对应情形便可直截了当得出答案.解答:解:∵两圆的直径分别为2cm和4cm,∴两圆的半径分别为1cm和2cm,两圆圆心距d=2+1=3故两圆外切.故选B.点评:本题要紧考查两圆之间的位置关系,两圆外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).5.已知⊙O1和⊙O2的直径分别为4cm和6cm,两圆的圆心距是1cm,则两圆的位置关系是()A.内切B.外切C.相交D.外离考点:圆与圆的位置关系.分析:先将直径转化为半径,求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为3cm和4cm,圆心距O1O2 =1cm,O1O2=4﹣3=1cm,∴依照圆心距与半径之间的数量关系可知⊙O1与⊙O2相内切.故选A.点评:本题考查了由数量关系来判定两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.6.在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)考点:切线的性质;坐标与图形性质;勾股定理;垂径定理.专题:压轴题;网格型.分析:依照垂径定理的性质得出圆心所在位置,再依照切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.解答:解:连接AC,作AC的垂直平分线BO′,交格点于点O′,则点O′确实是所在圆的圆心,∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.点评:此题要紧考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.7.若关于x的分式方程无解,则a的值为()A.﹣2 B.0 C.1 D.1或﹣2考点:解分式方程.专题:运算题.分析:该分式方程无解的情形有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.解答:解:去分母得:x(x﹣a)﹣3(x﹣1)=x(x﹣1),去括号得:x2﹣ax﹣3x+3=x2﹣x,移项合并得:(a+2)x=3.(1)把x=0代入(a+2)x=3,∴a无解;把x=1代入(a+2)x=3,解得a=1;(2)(a+2)x=3,当a+2=0时,0×x=3,x无解即a=﹣2时,整式方程无解.综上所述,当a=1或a=﹣2时,原方程无解.故选D.点评:分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.8.(方程x2+3x﹣1=0的根可看作是函数y=x+3的图象与函数y= 的图象交点的横坐标,那么用此方法可推断出方程x3﹣x﹣1=0的实数根x0所在的范畴是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3考点:图象法求一元二次方程的近似根.专题:压轴题.分析:所给方程不是常见的方程,两边都除以x以后再转化为二次函数和反比例函数,画出相应函数的图象即可得到实数根x0所在的范畴.解答:解:方程x3﹣x﹣1=0,∴x2﹣1= ,∴它的根可视为y=x2﹣1和y= 的交点的横坐标,当x=1时,x2﹣1=0,=1,交点在x=1的右边,当x=2时,x2﹣1=3,= ,交点在x=2的左边,又∵交点在第一象限.∴1<x0<2,故选C.点评:本题考查了运用图象法求一元二次方程的近似根,难度中等.解决本题的关键是得到所求的方程为一个二次函数和一个反比例函数的解析式的交点的横坐标.9.过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y= (x>0)的图象与△ABC有公共点,则k的取值范畴是()A.2≤k≤9 B.2≤k≤8 C.2≤k≤5 D.5≤k≤8考点:反比例函数综合题.专题:综合题;压轴题.分析:先求出点A、B的坐标,依照反比例函数系数的几何意义可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,依照直线y=﹣x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.解答:解:∵点C(1,2),BC∥y轴,AC∥x轴,∴当x=1时,y=﹣1+6=5,当y=2时,﹣x+6=2,解得x=4,∴点A、B的坐标分别为A(4,2),B(1,5),依照反比例函数系数的几何意义,当反比例函数与点C相交时,k=1×2=2最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣3)2+9,∵1≤x≤4,∴当x=3时,k值最大,现在交点坐标为(3,3),因此,k的取值范畴是2≤k≤9.故选A.点评:本题考查了反比例函数系数的几何意义,二次函数的最值问题,本题看似简单但不容易入手解答,判定出最大最小值的取值情形并考虑到用二次函数的最值问题解答是解题的关键.10.已知:M,N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=﹣abx2+(a+b)x ()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为考点:二次函数的最值;一次函数图象上点的坐标特点;反比例函数图象上点的坐标特点;关于x轴、y轴对称的点的坐标.菁优网版权所有专题:压轴题.分析:先用待定系数法求出二次函数的解析式,再依照二次函数图象上点的坐标特点求出其最值即可.解答:解:∵M,N两点关于y轴对称,点M的坐标为(a,b),∴N点的坐标为(﹣a,b),又∵点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,整理得,故二次函数y=﹣abx2+(a+b)x为y=﹣x2+3x,∴二次项系数为﹣<0,故函数有最大值,最大值为y= = ,故选:B.点评:本题考查的是二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直截了当得出,第二种是配方法,第三种是公式法.本题是利用公式法求得的最值.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点:二次函数图象与系数的关系.专题:压轴题.分析:由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.解答:解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故本选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故本选项错误;C、当x=1时,a+b+c=2b+c<0,故本选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范畴为x1>1,∴与x轴的另一个交点的取值范畴为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故本选项正确.故选D.点评:此题考查了二次函数图象与系数的关系.此题难度适中,解题的关键是把握数形结合思想的应用,注意把握二次函数图象与系数的关系,把握二次函数的对称性.二.填空题(共12小题)12.一种圆筒状包装的保鲜膜,如图所示,其规格为20cm×60m,经测量这筒保鲜膜的内径Φ1、外径Φ的长分别为3.2cm,4.0cm,则该种保鲜膜的厚度约为7.5×10﹣4cm(π取3.14,结果保留两位有效数字).考点:圆柱的运算.专题:压轴题.分析:保鲜膜的厚度=膜的总厚度÷总层数.解答:解:圆筒状保鲜膜的平均直径是(3.2+4.0)÷2=3.6cm,而保鲜膜长的是60m=6000cm,因此一共有6000÷(3.14×3.6)=530层,那么厚度确实是:0.5×(4.0﹣3.2)÷530=7.54÷10000=0.000754cm≈7.5×10﹣4cm.点评:本题的关键是得出圆筒状包装的保鲜膜的平均直径,而不能直截了当让两个外径的差除以2来得出保鲜膜的厚度.13.二次函数y=﹣(x﹣2)2+ 的图象与x轴围成的封闭区域内(包括边界),横、纵坐标差不多上整数的点有7个(提示:必要时可利用下面的备用图画出图象来分析).考点:二次函数的性质.专题:运算题;压轴题.分析:依照二次函数的解析式可知函数的开口方向向下,顶点坐标为(2,),当y=0时,可解出与x轴的交点横坐标.解答:解:∵二次项系数为﹣1,∴函数图象开口向下,顶点坐标为(2,),当y=0时,﹣(x﹣2)2+ =0,解得x1= ,得x2= .可画出草图为:图象与x轴围成的封闭区域内(包括边界),横、纵坐标差不多上整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).点评:本题考查了二次函数的性质,熟悉二次函数的性质、画出函数草图是解题的关键.14.如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线O C上取一点A,过点A作AH⊥x轴于点H,得到△AOH.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形△P OQ与△AOH全等,则符合条件的△AOH的面积是,2 ,,.考点:二次函数综合题.专题:探究型.分析:由于两三角形的对应边不能确定,故应分四种情形进行讨论:①∠POQ=∠OAH=60°,现在A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标,由三角形的面积公式即可得出结论;②∠POQ=∠AOH=30°,现在∠POH=60°,即直线OP:y= x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标,由三角形的面积公式即可得出结论;③当∠OPQ=90°,∠POQ=∠AOH=30°时,现在△QOP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论;④当∠OPQ=90°,∠POQ=∠OAH=60°,现在△OQP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论.解答:解:①如图1,当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;∵∠AOH=30°,∴直线OA:y= x,联立抛物线的解析式,解得或故A(,),∴S△AOH= ××= ;②当∠POQ=∠AOH=30°,现在△POQ≌△AOH;易知∠POH=60°,则直线OP:y= x,联立抛物线的解析式,得,解得或,∴P(,3),A(3,)∴S△AOH= ×3×= ;③如图3,当∠OPQ=90°,∠POQ=∠AOH=30°时,现在△QOP≌△AOH;易知∠POH=60°,则直线OP:y= x,联立抛物线的解析式,得,,解得或,∴P(,3),∴OP=2 ,QP=2,∴OH=OP=2 ,AH=QP=2,∴A(2 ,2),∴S△AOH= ×2 ×2=2 ;④如图4,当∠OPQ=90°,∠POQ=∠OAH=60°,现在△OQP≌△A OH;现在直线OP:y= x,联立抛物线的解析式,得,解得或,∴P(,),∴QP= ,OP= ,∴OH=QP,QP= ,AH=OP= ,∴A(,),∴S△AOH= ××= .综上所述,△AOH的面积为:,2 ,,.故答案为:,2 ,,.点评:本题考查的是二次函数综合题,涉及到全等三角形的判定和性质以及函数图象交点坐标的求法,解答此题时一定要注意进行分类讨论.15.为美化小区环境,某小区有一块面积为30m2的等腰三角形草地,测得其一边长为10m,现要给这块三角形草地围上白色的低矮栅栏,则其长度为 2 +10或20+2 或20+6 m.考点:解直角三角形的应用.专题:应用题;压轴题;分类讨论.分析:(1)如图,当底边BC=10m时,由于S=30m2,因此高AD=6,然后依照勾股定理求出AB,AC,最后求出三角形的周长;(2)①当△ABC是锐角三角形时,如图,当AB=AC=10m时,高CE =6m,依照勾股定理能够求出AE=8m,BE=2m,然后在RT△BEC中,能够求出BC,最后求出周长;②当△ABC是钝角三角形时,作AD⊥BC,设BD=xm,AD=hm,求出x的长,进而可得出△ABC的周长.解答:解:(1)如图1,当底边BC=10m时,由于S=30m2,因此高AD=6m,现在AB=AC= = (m),因此周长=(2 +10)m;(2)①当△ABC是锐角三角形时,如图2,当AB=AC=10m时,高C E=6,现在AE=8m,BE=2m,在Rt△BEC中,BC=2 m,现在周长=(20+2 )m.②当△ABC是钝角三角形时,如图3,设BD=xm,AD=hm,则在Rt△ABD中,×2x×h=30,xh=30,,解得或(舍去),故△ABC是钝角三角形时,△ABC的周长=2×10+3 =(20+6 )(m),故填空答案:2 +10或20+2 或20+6 .点评:解此题关键是把实际问题转化为数学问题,抽象到三角形中.另外要分类讨论.16.在直角坐标系中,已知两点A(﹣8,3),B(﹣4,5)以及动点C(0,n),D(m,0),则当四边形ABCD的周长最小时,比值为.考点:轴对称-最短路线问题;坐标与图形性质.专题:动点型.分析:先依照两点间的距离公式求出AB的值,再过点B作关于y轴的对称点B′,过点A作关于x轴的对称点A′,连接A′B′分别交x、y轴于点D、C,由两点之间线段最短可知线段A′B′即为四边形ABCD 的周长最小值,用待定系数法求出过A′B′两点的直线解析式,即可求出C、D的坐标.解答:解:∵AB= =2 ,∴四边形ABCD周长=AB+BC+CD+AD=2 +BC+CD+AD,∴求其周长最小值,确实是求BC+CD+AD的最小值.过B作y轴对称点B′(4,5),则BC=B′C,过A作x轴对称点A′(﹣8,﹣3),则AD=A′D∴BC+CD+AD=B′C+CD+A′D≥A′B′即A′、D、C、B′四点共线时取等号可求出相应的C、D坐标,设直线A′B′的方程是y=kx+b(k≠0),∴,解得k= ,b= ,故过A′B′两点的一次函数解析式为y= x+ ,∴C(0,)D(﹣,0),即n= ,m=﹣,故答案为:﹣.点评:本题考查的是两点之间线段最短及用待定系数法求一次函数的解析式,依照对称的性质作出A、B的对称点A′、B′及求出其坐标是解答此题的关键.17.矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABC D沿直线l作无滑动翻动,当点A第一次翻动到点A1位置时,则点A通过的路线长为6π.考点:弧长的运算;矩形的性质;旋转的性质.专题:压轴题;规律型.分析:如图依照旋转的性质知,点A通过的路线长是三段:①以90°为圆心角,AD长为半径的扇形的弧长;②以90°为圆心角,AB长为半径的扇形的弧长;③90°为圆心角,矩形ABCD对角线长为半径的扇形的弧长.解答:解:∵四边形ABCD是矩形,AB=4,BC=3,∴BC=AD=3,∠ADC=90°,对角线AC(BD)=5.∵依照旋转的性质知,∠ADA′=90°,AD=A′D=BC=3,∴点A第一次翻动到点A′位置时,则点A′通过的路线长为:= .同理,点A′第一次翻动到点A″位置时,则点A′通过的路线长为:=2π.点A″第一次翻动到点A1位置时,则点A″通过的路线长为:= .则当点A第一次翻动到点A1位置时,则点A通过的路线长为:+2π+ =6π.故答案是:6π.点评:本题考查了弧长的运算、矩形的性质以及旋转的性质.依照题意画出点A运动轨迹,是突破解题难点的关键.18.在正方形ABCD中,点E、F、G、H分别在边AB、BC、CD、A D上,四边形EFGH是矩形,EF=2FG,那么矩形EFGH与正方形ABCD的面积比是.考点:相似三角形的判定与性质;矩形的性质;正方形的性质.菁优网版权所有专题:运算题.分析:依照题意画出图形,如图所示,由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,再由等腰直角三角形BEF与等腰直角三角形CFG相似,且相似比为2:1,得到BE=BF=DH =DG=2AE=2AH=2CG=2CF,设正方形边长为3a,表示出BE,BF,以及A H,AE,利用勾股定理表示出EF与EH,进而表示出矩形EFGH的面积,即可求出矩形与正方形面积之比.解答:解:由对称性得到△EFB≌△HDC,△AEH≌△CFG,且四个三角形都为等腰直角三角形,∵△BEF∽△CFG,EF=2FG,设正方形的边长为3a,即S正方形ABCD=9a2,则BE=BF=DH=DG=2a,AE=AH=CG=CF=a,依照勾股定理得:EF=2 a,EH= a,∴S矩形EFGH=EF?EH=4a2,则矩形EFGH与正方形ABCD的面积比是.故答案为:点评:此题考查了相似三角形的判定与性质,矩形的性质以及正方形的性质,熟练把握相似三角形的判定与性质是解本题的关键.19.?ABCD的对角线相交于点O,请你添加一个条件AC=BD(只添一个即可),使?ABCD是矩形.考点:矩形的判定;平行四边形的性质.专题:开放型.分析:依照矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.解答:解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.点评:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯独.20.操作与探究:如图,在△ABC中,AC=BC=2,∠C=90°,将一块三角板的直角顶点放在斜边的中点P处,绕点P旋转.设三角板的直角边P M交线段CB于E点,当CE=0,即E点和C点重合时,有PE=PB,△PB E为等腰三角形,此外,当CE等于1或时,△PBE为等腰三角形.考点:旋转的性质.专题:操作型.分析:△PBE为等腰三角形,有三种可能:①PE=PB,现在CE=0;②PB=BE,依照CE=BC﹣BE可求解;③PE=BE,现在PE⊥BE.解答:解:∵在△ABC中,AC=BC=2,∠C=90°,∴AB= =2 ,又∵P点为AB的中点,∴PB= ,①若PE=PB,连接PC,∵PB=PC,∴C、E两点重合,现在CE=0;②若PB=BE,则CE=BC﹣BE=2﹣;③若PE=BE,现在PE⊥BE,∵P点为AB的中点,∴E点为BC的中点,即CE= BC=1.故答案为:1或.点评:本题考查了等腰直角三角形的性质,旋转的性质,分类讨论的数学思想.21.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范畴是6≤a<9.考点:一元一次不等式的整数解.菁优网版权所有专题:运算题;压轴题.分析:解不等式得x≤,由于只有两个正整数解,即1,2,故可判定的取值范畴,求出a的取值范畴.解答:解:原不等式解得x≤,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.点评:本题考查了一元一次不等式的整数解.正确解不等式,求出正整数是解答本题的关键.解不等式应依照不等式的差不多性质.22.幼儿园某班有玩具若干件分给小朋友,假如每人三件,那么还多5 9件;假如每人分5件,那么最后一个小朋友得到玩具但不超过3件,则那个班有152或155件玩具.考点:一元一次不等式组的应用.分析:设那个幼儿园有x个小朋友,则有(3x+59)件玩具.依照关键语句“假如每人分5件,那么最后一个小朋友得到玩具但不超过3件”得:0<3x+59﹣5(x﹣1)≤3求解可得答案.解答:解:设那个幼儿园有x个小朋友,则有(3x+59)件玩具,由题意得:0<3x+59﹣5(x﹣1)≤3,解得:<x≤32,∵x为整数,∴x=31或x=32,当x=31时3x+59=3×31+59=152;当x=32时,3×32+59=155.故答案为:152或155.点评:此题要紧考查了一元一次不等式组的应用,关键是弄明白题意,依照关键语句列出不等式组.23.点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B 作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM= MN=NC,△AOC的面积为6,则k的值为4.考点:反比例函数综合题.专题:代数几何综合题.分析:设OM的长度为a,利用反比例函数解析式表示出AM的长度,再求出OC的长度,然后利用三角形的面积公式列式运算恰好只剩下k,然后运算即可得解.解答:解:设OM=a,∵点A在反比例函数y= ,∴AM= ,∵OM=MN=NC,∴OC=3a,∴S△AOC= ?OC?AM= ×3a×= k=6,解得k=4.故答案为:4.点评:本题综合考查了反比例函数与三角形的面积,依照反比例函数的特点,用OM的长度表示出AM、OC的长度,相乘恰好只剩下k是解题的关键,本题设计巧妙,是不错的好题.三.解答题(共7小题)24.A(0,1),M(3,2),N(4,4).动点P从点A动身,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时刻为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范畴;(3)直截了当写出t为何值时,点M关于l的对称点落在坐标轴上.。
【易错题】初三数学下期中试题(含答案)(1)
【易错题】初三数学下期中试题(含答案)(1)一、选择题1.有一块直角边AB=3cm ,BC=4cm 的Rt △ABC 的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为( )A .67B .3037C .127D .60372.如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6) 3.如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 4.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对5.P 是△ABC 一边上的一点(P 不与A 、B 、C 重合),过点P 的一条直线截△ABC,如果截得的三角形与△ABC 相似,我们称这条直线为过点P 的△ABC 的“相似线”.Rt△ABC 中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条6.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小7.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米8.若△ABC∽△A′B′C′且34ABA B='',△ABC的周长为15cm,则△A′B′C′的周长为()cm.A.18B.20 C.154D.8039.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A 3B5C23D2510.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)11.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.252B.25-C.251D5212.下列变形中:①由方程125x-=2去分母,得x﹣12=10;②由方程29x=92两边同除以29,得x=1;③由方程6x ﹣4=x +4移项,得7x =0;④由方程2﹣5362x x -+=两边同乘以6,得12﹣x ﹣5=3(x +3). 错误变形的个数是( )个. A .4 B .3 C .2 D .1二、填空题13.如图,已知AD 为ABC ∆的角平分线,DE AB ∥,如果23AE EC =,那么AE AB=______.14.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.15.如图,Rt ABC V 中,90ACB ∠=︒,直线EF BD P ,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S V 四边形,=则CF AD= .16.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A 、B 、C 和点D 、E 、F .若AB =3,DE =2,BC =6,则EF =______.17.如图,已知两个反比例函数C 1:y =1x 和C 2:y =13x在第一象限内的图象,设点P 在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,则四边形PAOB的面积为_____.18.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.19.如图所示,将一副三角板摆放在一起,组成四边形ABCD ,∠ABC =∠ACD =90°,∠ADC =60°,∠ACB =45°,连接BD ,则tan ∠CBD 的值为_____.20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)22.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.23.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)将△ABC 各顶点的横纵坐标都缩小为原来的12得到△A 1B 1C 1,请在图中画出△A 1B 1C 1;(2)求A 1C 1的长.24.如图所示,双曲线()10,0k y x k x=>>与直线()20y kx b k =+≠(b 为常数)交于()2,4A ,(),2B a 两点.(1)求双曲线()10,0k y x k x=>>的表达式; (2)根据图象观察,当21y y <时,求x 的取值范围;(3)求AOB ∆的面积.25.如图,已知在ABC V 中,4AB =,8BC =,D 为BC 边上一点,2BD =. (1)求证:ABD CBA V :V ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题解析:如图,过点B 作BP ⊥AC ,垂足为P ,BP 交DE 于Q .∵S △ABC =12AB•BC=12AC•BP , ∴BP=·341255AB BC AC ⨯==. ∵DE ∥AC ,∴∠BDE=∠A ,∠BED=∠C ,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.4.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.5.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.6.D解析:D 【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.7.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=13;∴AC=BC÷3故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.8.B解析:B【解析】∵△ABC∽△A′B′C′,∴34 ABC ABA B C A B''=''='VV的周长的周长,∵△ABC的周长为15cm,∴△A′B′C′的周长为20cm.故选B.9.D解析:D【解析】【分析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.10.A解析:A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.11.A解析:A【解析】根据黄金比的定义得:51APAB-=,得5142522AP=⨯= .故选A.12.B解析:B【解析】【分析】根据方程的不同特点,从计算过程是否正确、方法应用是否得当等方面加以分析.【详解】①方程125x-=2去分母,两边同时乘以5,得x﹣12=10,故①正确.②方程29x =92,两边同除以29,得x =814;要注意除以一个数等于乘以这个数的倒数,故②错误.③方程6x ﹣4=x +4移项,得5x =8;要注意移项要变号,故③错误.④方程2﹣5362x x -+=两边同乘以6,得12﹣(x ﹣5)=3(x +3);要注意去分母后,要把是多项式的分子作为一个整体加上括号,故④错误.故②③④变形错误.故选B .【点睛】 在解方程时,要注意以下问题:(1)去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号;(2)移项时要变号.二、填空题13.【解析】【分析】由证得【详解】∵∴△CED∽△CAB∴∵∴∵为的角平分线∴∠ADE=∠BAD=∠DAE∴故填:【点睛】此题考查相似三角形的判定与性质根据平行线证得三角形相似由此得到边的比值关系推导出 解析:35【解析】【分析】由DE AB ∥证得【详解】∵DE AB ∥,∴△CED ∽△CAB, ∴DE CE AB AC =, ∵23AE EC =, ∴35DE CE AB AC ==, ∵AD 为ABC ∆的角平分线,DE AB ∥,∴∠ADE=∠BAD=∠DAE, ∴AE AB =35DE CE AB AC ==, 故填:35. 【点睛】此题考查相似三角形的判定与性质,根据平行线证得三角形相似,由此得到边的比值关系,推导出AE AB的值. 14.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.15.【解析】【分析】先证△AEG∽△ABC△AGF∽△ACD 再利用相似三角形的对应边成比例求解【详解】解:∵EF∥BD∴∠AEG=∠ABC∠AGE=∠ACB∴△AEG∽△ABC 且S△AEG=S 四边形EB 解析:12【解析】【分析】先证△AEG ∽△ABC ,△AGF ∽△ACD 再利用相似三角形的对应边成比例求解.【详解】解:∵EF ∥BD∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG ∴S △AEG :S △ABC =1:4,∴AG :AC=1:2,又EF ∥BD∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD =1:4,∴S △AFG 1=3S 四边形FDCGS △AFG 1=4S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.16.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF,结合图形计算即可.【详解】∵1l∥2l∥3l,∴36 DE ABEF BC==又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.17.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18.【解析】【分析】分析:设BCAD交于点G过交点G作GF⊥AC与AC交于点F根据AC=8就可求出GF的长从而求解【详解】解:设BCAD交于点G过交点G 作GF⊥AC与AC交于点F设FC=x则GF=FC=解析:48-163【解析】【分析】分析:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,根据AC=8,就可求出GF的长,从而求解.【详解】解:设BC,AD交于点G,过交点G作GF⊥AC与AC交于点F,设FC=x,则GF=FC=x,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=3x.所以x+3x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16319.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 2【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC ,从而按正切函数的定义可解.【详解】解:如图所示,连接BD ,过点D 作DE 垂直于BC 的延长线于点E,∵在Rt △ABC 中,∠ACB =45°,在Rt △ACD 中,∠ACD =90°∴∠DCE =45°,∵DE ⊥CE∴∠CEB =90°,∠CDE =45°∴设DE =CE =x ,则CD 2x ,在Rt △ACD 中,∵∠CAD =30°,∴tan ∠3CD AC , 则AC 6x ,在Rt △ABC 中,∠BAC =∠BCA =45°∴BC 3,∴在Rt △BED 中,tan ∠CBD =DE BE (13)x +31- 故答案为:312. 【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键. 20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b=4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.观景亭D到南滨河路AC的距离约为248米.【解析】【分析】过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.【详解】过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,tan∠DBE=DE BE,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.22.(1)(2,6);(25(3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则AG=22=5,12则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,2,10,∵△A1B1C1∽△ABC2:1,∴A1B12,B1C1=2,A1C15所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.23.(1)作图见解析;(2)10【解析】【分析】(1)直接利用位似图形的性质求解即可;(2)根据题意利用勾股定理解答即可.【详解】(1)如图所示:△A 1B 1C 1,△A 2B 2C 2,都是符合题意的图形;(2)A 1C 1的长为:10.【点睛】本题考查了位似变换及勾股定理的知识点,解题的关键是由题意正确得出对应点的位置.24.(1)18y x=;(2)02x <<或4x >;(3)6. 【解析】【分析】(1)把点A 坐标代入反比例函数解析式即可求得k 的值;(2)根据点B 在双曲线上可求出a 的值,再结合图象确定双曲线在直线上方的部分对应的x 的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC 的面积减去△BOC 的面积即可求出结果.【详解】解(1):双曲线()10,0k y x k x=>>经过()2,4A ,∴248k =⨯=, ∴双曲线的解析式为18y x =. (2)∵双曲线()10,0k y x k x =>>经过(),2B a 点, ∴82a=,解得4a =,∴()4,2B , 根据图象观察,当21y y <时,x 的取值范围是02x <<或4x >.(3)设直线AB 的解析式为y mx n =+,∴2442m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+,∴直线AB 与x 轴的交点()6,0C, ∴AOB AOC BOC S S S ∆∆∆=-116462622=⨯⨯-⨯⨯=. 【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.25.(1)证明见解析;(2)△CDE ,3DE =.【解析】【分析】(1)中根据图中B Ð为公共角,找到三角形相似的“夹角相等”的条件,只要证明AB BD BC AB=,依据是“两边对应成比例,且夹角相等,两三角形相似 ;(2)由//DE AB 可得出C ABD ED V V ∽,在(1)中ABD CBA V :V ,所以可得EDC CBA V :V ,于是可构建与线段DE 有关的比例式,即可求出DE 的长 .【详解】(1)【证明】∵4AB =,8BC =,2BD =,12AB BD CB BA ∴==. ∵ABD CBA ∠=∠,∴ABD CBA V :V . (2)【解】由(1)知,ABD CBA V :V .∵//DE AB ,∴CDE CBA V :V ,∴V :V ABD CDE .由CDE CBA V :V ,得DE DC BA BC =, 即8248DE -=, 解得3DE =.【点睛】本题考查的知识点是相似三角形的判定,关键是根据题中的线段的长和图形的特点,通过仔细观察和计算寻找缺少的条件.。
【易错题】初三数学下期中一模试卷(及答案)
【易错题】初三数学下期中一模试卷(及答案)一、选择题1.如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是( )A .①和②B .②和③C .①和③D .①和④2.已知反比例函数y =﹣6x ,下列结论中不正确的是( ) A .函数图象经过点(﹣3,2) B .函数图象分别位于第二、四象限C .若x <﹣2,则0<y <3D .y 随x 的增大而增大 3.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x (x >0)、y=k x (x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .12 4.若37a b =,则b a a -等于( ) A .34 B .43 C .73 D .375.在函数y =21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 26.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞( )A .8米B .9米C .10米D .11米7.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .218.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .99.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60°C .75°D .105° 10.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍11.如图,∠APD=90°,AP=PB=BC=CD ,则下列结论成立的是( )A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA12.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2二、填空题13.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.14.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=__.15.学校校园内有块如图所示的三角形空地,计划将这块空地建成一个花园,以美化环境,预计花园每平方米造价为30元,学校建这个花园至少需要投资________元.16.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.17.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).18.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.19.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.20.已知线段a =2厘米,c =8厘米,则线段a 和c 的比例中项b 是______厘米.三、解答题21.如图,△ABC 中,CD 是边AB 上的高,且AD CD CD BD=.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.22.如图,直线123l //l //l ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,若AB 4AC 7=,DE 2=,求EF 的长.23.已知锐角三角形ABC 内接于⊙O (AB >AC ),AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 、AE 交于点F .(1)如图1,若⊙O 直径为10,AC =8,求BF 的长;(2)如图2,连接OA ,若OA =F A ,AC =BF ,求∠OAD 的大小.24.如图,E 为□ABCD 的边CD 延长线上的一点,连结BE 交AC 于点O ,交AD 于点F ,求证:BO EO FO BO=.25.(1)计算:tan 609tan308sin 602cos 45︒︒︒︒+-+(2)在ABC V 中,90,2,6C AC BC ︒∠===A ∠的度数【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】设小长方形的长为2a ,宽为a .利用勾股定理求出三角形的三边长即可判断.由题意可知:小长方形的长是宽的2倍,设小长方形的宽为a ,则长为2a ,∴图①中的三角形三边长分别为2a ==;图②中的三角形三边长分别为5a ==;图③中的三角形三边长分别为==;==、5a =,∴①和②图中三角形不相似;∵22a a ≠≠ ∴②和③图中三角形不相似;∵22a a ≠≠ ∴①和③图中三角形不相似;55a === ∴①和④图中三角形相似.故选D【点睛】本题考查相似三角形的判定,勾股定理等知识,解题的关键是熟练掌握熟练掌握基本知识.2.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.3.A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.4.B解析:B【解析】由比例的基本性质可知a=37b,因此b aa-=347337b bb-=.故选B.5.A解析:A【解析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.6.C解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.7.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC 中,cosB=22,sinC=35,AC=5, ∴cosB=22=BD AB , ∴∠B=45°,∵sinC=35=AD AC =5AD , ∴AD=3, ∴2253-,∴BD=3,则△ABC 的面积是:12×AD ×BC=12×3×(3+4)=212. 故选:A .【点睛】此题主要考查了解直角三角形的知识,作出AD ⊥BC ,进而得出相关线段的长度是解决问题的关键. 8.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE9.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−32|+(1−tan B)2=0,∴sinA=3,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.10.A解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 11.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.12.C解析:C【解析】【分析】一次函数y1=kx+b落在与反比例函数y2=cx图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=cx(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.二、填空题13.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx .【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.14.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC根据该相似三角形的对应边成比例求得DP的长度【详解】设DP=x则CP=5-x本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD∽△PBC和△PAD∽△PBC,根据该相似三角形的对应边成比例求得DP的长度.【详解】设DP=x,则CP=5-x,本题需要分两种情况情况进行讨论,①、当△PAD∽△PBC时,AD BC = DP CP∴225xx=-,解得:x=2.5;②、当△APD∽△PBC时,ADCP=DPBC,即25x-=2x,解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位.15.【解析】【分析】如图所示作BD⊥CA于D则在直角△ABD中可以求出BD然后求出△ABC面积;根据单价可以求出总造价【详解】如图所示AB=10AC=30∠B AC=120°作BD⊥CA于D则在直角△AB解析:6750【解析】【分析】如图所示,作BD⊥CA于D,则在直角△ABD中可以求出BD,然后求出△ABC面积;根据单价可以求出总造价.【详解】如图所示,AB=103,AC=30,∠BAC=120°,作BD⊥CA于D,则在直角△ABD中,∠BAD=60°,∴BD=ABsin60°=15,∴△ABC面积=12×AC×BD=225.又因为每平方米造价为30元,∴总造价为30×225=6750(元).【点睛】此题主要考查了运用三角函数定义解直角三角形,关键是通过作辅助线把实际问题转化为数学问题,抽象到解直角三角形中解题.16.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.17.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式 解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x解得x 2=x 12 同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 18.【解析】【分析】如图根据正方形的性质得:DE∥BC 则△ADE∽△ACB 列比例式可得结论【详解】如图∵四边形CDEF 是正方形∴CD=EDDE∥CF 设ED=x 则CD=xAD=12-x∵DE∥CF∴∠AD 解析:6017. 【解析】【分析】 如图,根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】如图,∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=12-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE BC =AD AC , ∴x 5=12-x 12, ∴x=6017, 故答案为6017.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.19.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD∥BC 判定△ADF∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积. 20.4【解析】∵线段b 是ac 的比例中项∴解得b =±4又∵线段是正数∴b =4点睛:本题考查了比例中项的概念利用比例的基本性质求两条线段的比例中项的时候负数应舍去解析:4【解析】∵线段b 是a 、c 的比例中项,∴216b ac ==,解得b =±4,又∵线段是正数,∴b =4. 点睛:本题考查了比例中项的概念,利用比例的基本性质求两条线段的比例中项的时候,负数应舍去.三、解答题21.(1)证明见试题解析;(2)90°.【解析】试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°, ∵AD CD CD BD=. ∴△ACD ∽△CBD ;(2)∵△ACD ∽△CBD ,∴∠A=∠BCD ,在△ACD 中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.22.5【解析】【分析】 利用平行线分线段成比例定理得到AB DE AC DF=,然后把有关数据代入计算即可. 【详解】 123l //l //l Q ,直线AC 依次交1l 、2l 、3l 于A 、B 、C 三点,直线DF 依次交1l 、2l 、3l 于D 、E 、F 三点,AB DE AC DF ∴=, AB 4AC 7=Q ,DE 2=, 427DF∴=, 解得:DF 3.5=,EF DF DE 3.52 1.5∴=-=-=.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.23.(1)BF =6;(2)∠OAD =30°.【解析】【分析】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .利用勾股定理求出AM ,证明四边形AMBF 是平行四边形即可解决问题;(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .证明AO ⊥CM .推出∠OAD =∠BCM ,解直角三角形求出∠BCM 即可解决问题.【详解】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .∵CM 是直径,∴∠CAM =∠CBM =90°,∵CM =10,AC =8,∴AM =22CM AC -=22108-=6,∵AD ⊥CB ,BE ⊥AC ,∴∠ADC =∠MBC =90°,∠BEC =∠MAC =90°,∴AD ∥BM ,AM ∥BE ,∴四边形AMBF 是平行四边形,∴BF =AM =6.(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .由(1)可知四边形AMBF 是平行四边形,∴AM =BF ,AF =BM∵AC =BF ,∴AC =AM ,∵∠MAC =90°,MO =OC ,∴AO ⊥CM ,∵AD ⊥BC ,∴∠AOJ =∠CDJ =90°,∵∠AJO =∠CJD ,∴∠DCJ =∠JAO ,∵AF =OA ,AF =BM ,∴OA =BM ,∴CM =2BM ,∵∠CBM =90°,∴sin ∠BCM =BM CM =12, ∴∠BCM =30°,∴∠OAD =∠BCM =30°.【点睛】 本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题.24.见解析【解析】【分析】由AB ∥CD 得△AOB ∽△COE ,有OE :OB=OC :OA ;由AD ∥BC 得△AOF ∽△COB ,有OB :OF=OC :OA ,进而解答.【详解】∵AB ∥CD ,∴△AOB ∽△COE .∴OE :OB=OC :OA ;∵AD ∥BC ,∴△AOF ∽△COB .∴OB :OF=OC :OA .∴OB :OF=OE :OB , 即:BO EO FO BO= 【点睛】 本题考查了平行四边形的性质与相似三角形的判定与性质,解题的关键是熟练的掌握行四边形的性质与相似三角形的判定与性质.25.(1;(2)∠A =60°【解析】【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)由锐角三角函数定义求出∠A 度数即可.【详解】(1+2322⨯⨯⨯(2)∵90,C AC BC ︒∠===∴tanA =BC AC ==, ∴∠A =60°【点睛】此题考查了实数的运算以及解直角三角形,熟练掌握运算法则是解本题的关键.。
【易错题】初三数学下期中试卷(附答案)(1)
【易错题】初三数学下期中试卷(附答案)(1)一、选择题1.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对 2.如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A .212B .12C .14D .213.如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A .7B .7.5C .8D .8.54.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m5.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x(x >0)的图象经过顶点B ,则反比例函数的表达式为( )A.y=12xB.y=24xC.y=32xD.y=40x6.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小7.已知两个相似三角形的面积比为 4:9,则周长的比为 ( )A.2:3B.4:9C.3:2D.2:38.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)9.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.15B.25C.215D.810.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A .1:2B .1:4C .1:5D .1:611.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF 来测量操场旗杆AB 的高度,他们通过调整测量位置,使斜边DF 与地面保持平行,并使边DE 与旗杆顶点A 在同一直线上,已知DE=0.5m ,EF=0.25m ,目测点D 到地面的距离DG=1.5m ,到旗杆的水平距离DC=20m ,则旗杆的高度为( )A .105 mB .(105 1.5)+ mC .11.5mD .10m12.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元二、填空题13.如图,在△ABC 中,CD 、BE 分别是△ABC 的边AB 、AC 上的中线,则DF EF BF CF++=________。
(北师大版)初中数学九年级下册期中测试01含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期中试卷一、选择题1.如图图形中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .2.学校准备从甲、乙、丙、丁四个科技创新小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如表所示:如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) A .甲B .乙C .丙D .丁3.如图,32−的相反数在数轴上表示的点位于( )两个点之间A .点E 和点FB .点F 和点GC .点G 和点HD .点H 和点I4.下列运算,结果正确的是( ) A .224m m m +=B .2224m m ++=()C .()222436mn m n = D .21242m n mn m ÷=5.如图,ABC △的三个顶点都在方格纸的格点上,其中点A 的坐标是(1−,0)。
2023年人教版九年级数学下册期中考试卷及答案(1)
2023年人教版九年级数学下册期中考试卷及答案(1)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2的倒数是()A. -2B.C.D. 22.已知a, b满足方程组则a+b的值为()A. ﹣4B. 4C. ﹣2D. 23.在一次酒会上, 每两人都只碰一次杯, 如果一共碰杯55次, 则参加酒会的人数为()A. 9人B. 10人C. 11人D. 12人4.用配方法解方程时, 配方结果正确的是()A. B.C. D.5.关于x的不等式x-b>0恰有两个负整数解, 则b的取值范围是()A. B. C. D.6.已知x1, x2是方程x2﹣3x﹣2=0的两根, 则x12+x22的值为()A. 5B. 10C. 11D. 137.如图, 把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°8.如图, 已知, 以两点为圆心, 大于的长为半径画圆, 两弧相交于点, 连接与相较于点, 则的周长为()A. 8B. 10C. 11D. 139.如图, 在平面直角坐标系中, 点在第一象限, ⊙P与x轴、y轴都相切,且经过矩形的顶点C, 与BC相交于点D, 若⊙P的半径为5, 点的坐标是, 则点D的坐标是()A. B. C. D.10.如图, ⊙O中, 弦BC与半径OA相交于点D, 连接AB, OC, 若∠A=60°,∠ADC=85°, 则∠C的度数是()A. 25°B. 27.5°C. 30°D. 35°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 2的相反数是__________.2. 因式分解: _____________.3. 已知二次函数y=x2, 当x>0时, y随x的增大而_____(填“增大”或“减小”).4.如图, 在Rt△ACB中, ∠ACB=90°, ∠A=25°, D是AB上一点, 将Rt△ABC沿CD折叠, 使点B落在AC边上的B′处, 则∠ADB′等于______.5. 如图, 在扇形AOB中, ∠AOB=90°, 点C为OA的中点, CE⊥OA交于点E, 以点O为圆心, OC的长为半径作交OB于点D, 若OA=2, 则阴影部分的面积为__________.6. 已知抛物线的对称轴是直线, 其部分图象如图所示, 下列说法中: ①;②;③;④当时, , 正确的是__________(填写序号).三、解答题(本大题共6小题, 共72分)1. 解方程:=22. 已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α, β.(1)求m的取值范围;(2)若, 则m的值为多少?3. 已知: 如图, 四边形ABCD中, AD∥BC, AD=CD, E是对角线BD上一点, 且EA=EC.(1)求证: 四边形ABCD是菱形;(2)如果BE=BC, 且∠CBE:∠BCE=2:3, 求证:四边形ABCD是正方形.4. 如图, ▱ABCD的对角线AC, BD相交于点O. E, F是AC上的两点, 并且AE=CF, 连接DE, BF.(1)求证: △DOE≌△BOF;(2)若BD=EF, 连接DE, BF.判断四边形EBFD的形状, 并说明理由.5. 某校为了解学生对中国民族乐器的喜爱情况, 随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器), 现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查, 扇形统计图中的 .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生, 请你估计该校喜爱“二胡”的学生约有名.6. 小明大学毕业回家乡创业, 第一期培植盆景与花卉各50盆售后统计, 盆景的平均每盆利润是160元, 花卉的平均每盆利润是19元, 调研发现:①盆景每增加1盆, 盆景的平均每盆利润减少2元;每减少1盆, 盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆, 设培植的盆景比第一期增加x盆, 第二期盆景与花卉售完后的利润分别为W1, W2(单位: 元)(1)用含x的代数式分别表示W1, W2;(2)当x取何值时, 第二期培植的盆景与花卉售完后获得的总利润W最大, 最大总利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、C4、A5、A6、D7、B8、A9、A10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1、﹣22、3.增大.4、40°.5、3212π+.6.①③④.三、解答题(本大题共6小题, 共72分)1.x=7.2、(1);(2)m的值为3.3.(1)略;(2)略.4.(2)略;(2)四边形EBFD是矩形. 理由略.5、(1)200, 15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)W1=-2x²+60x+8000, W2=-19x+950;(2)当x=10时, W总最大为9160元.。
【易错题】九年级数学下期中试卷(带答案)(1)
【易错题】九年级数学下期中试卷(带答案)(1)一、选择题1.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x (x >0)、y=k x(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .12 2.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .1 3.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小4.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .55.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.6.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)7.在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)8.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为 ( )A.1:2B.1:4C.1:5D.1:69.在△ABC中,若32=0,则∠C的度数是( )A.45°B.60°C.75°D.105°10.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,4)C.(2,﹣1)D.(8,﹣4)11.在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A .B .C .D .12.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .22C .823D .32二、填空题13.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.14.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.15.如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线垂直时,点P 的坐标为____16.如图,等腰直角三角形ABC 中, AB=4 cm.点是BC 边上的动点,以AD 为直角边作等腰直角三角形ADE.在点D 从点B 移动至点C 的过程中,点E 移动的路线长为________cm.17.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.18.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.19.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.20.如果a c eb d f===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=_____.三、解答题21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置的正方体个数.(1)请画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为;(3)在不改变主视图和俯视图的情况下,最多可添加块小正方体.23.如图,AD是△ABC的中线,tan B=13,cos C=22,AC=2.求:(1)BC的长;(2)sin ∠ADC的值.24.如图,在△ABC和△ADE中,∠BAD=∠CAE,∠ABC=∠ADE.(1)求证:△ABC∽△ADE;(2)判断△ABD与△ACE是否相似?并证明.25.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=kx相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】连接OC 、OB ,如图,由于BC ∥x 轴,根据三角形面积公式得到S △ACB =S △OCB ,再利用反比例函数系数k 的几何意义得到12×|3|+12•|k|=2,然后解关于k 的绝对值方程可得到满足条件的k 的值.【详解】连接OC 、OB ,如图,∵BC ∥x 轴,∴S △ACB =S △OCB ,而S △OCB =12×|3|+12•|k|, ∴12×|3|+12•|k|=2, 而k <0,∴k=﹣1,故选A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变. 2.D解析:D【解析】因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b,2b),又因为B点在直线12y x b=-+上,所以()2122b bb=-⨯-+,解得1b=±,因为直线12y x b=-+与y轴交于正半轴,所以0b>,所以1b=,故选D.3.D解析:D 【解析】A选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B选项:反比例函数的图象关于原点中心对称,故本选项错误;C选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D选项:∵k=1>0,∴当x<0时,y随x的增大而减小,故是正确的.故选B.4.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.5.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.6.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.8.B解析:B【解析】试题分析:利用位似图形的性质首先得出位似比,进而得出面积比.∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选B.考点:位似变换.9.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A B)2=0,∴tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.10.A解析:A【解析】【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.11.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.12.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒=3, ∵BE 平分∠ABC ,∴∠EBD=30°,∴=3,∴AE=AD-DE== 故选C.【点睛】 本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题13.【解析】【详解】如图过点P 作PA ⊥x 轴于点A ∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值 解析:513【解析】【详解】如图,过点P 作PA ⊥x 轴于点A ,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 14.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.15.(1)【解析】【分析】先根据题意求得CD和PE的长再判定△EPC∽△PDB 列出相关的比例式求得DP的长最后根据PEDP的长得到点P的坐标【详解】由题意可知OB=2AO=8∵CD⊥BOC是AB的中点∴解析:3【解析】【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标.【详解】由题意可知,OB=23,AO=8,∵CD⊥BO,C是AB的中点,∴BD=DO=12BO==PE,CD=12AO=4.设DP=a,则CP=4﹣a,当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP,又∵EP⊥CP,PD⊥BD,∴∠EPC=∠PDB=90°,∴△EPC∽△PDB.DP DBPE PC∴=∴343aa=-,∴a1=1,a2=3(舍去).∴DP=1,∵PE=3,∴P(1,3).考点:1相似三角形性质与判定;2平面直角坐标系.16.【解析】试题解析:连接CE如图:∵△ABC和△ADE为等腰直角三角形∴AC =ABAE=AD∠BAC=45°∠DAE=45°即∠1+∠2=45°∠2+∠3=45°∴∠1=∠3∵∴△ACE ∽△ABD∴∠解析:42【解析】试题解析:连接CE,如图:∵△ABC和△ADE为等腰直角三角形,∴AC=2AB ,AE=2AD ,∠BAC=45°,∠DAE=45°,即∠1+∠2=45°,∠2+∠3=45°, ∴∠1=∠3,∵2AC AE AB AD==, ∴△ACE ∽△ABD , ∴∠ACE=∠ABC=90°,∴点D 从点B 移动至点C 的过程中,总有CE ⊥AC ,即点E 运动的轨迹为过点C 与AC 垂直的线段,AB=2AB=42,当点D 运动到点C 时,CE=AC=42,∴点E 移动的路线长为42cm .17.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=618.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O 连接OBOC 交AB 于D ∴OC ⊥ABBD =AB 由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O ,连接OB ,OC 交AB 于D ,∴OC ⊥AB ,BD=12AB , 由图知,AB=16﹣4=12cm ,CD=2cm ,∴BD=6,设圆的半径为r ,则OD=r ﹣2,OB=r ,在Rt △BOD 中,根据勾股定理得,OB 2=AD 2+OD 2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.19.7【解析】设树的高度为m由相似可得解得所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m20.3【解析】∵=k∴a=bkc=dke=fk∴a+c+e=bk+dk+fk=k(a+b+c)∵a+c+e=3(b+d+f)∴k=3故答案为:3解析:3【解析】∵a c eb d f===k,∴a=bk,c=dk,e=fk,∴a+c+e=bk+dk+fk=k(a+b+c),∵a+c+e=3(b+d+f),∴k=3,故答案为:3.三、解答题21.旗杆AB的高度是11米.【解析】【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)见解析;(2)32.(3)1.【解析】试题分析:(1)根据图示可知主视图有3列,每列小正方形的个数依次为3、1、3,左视图有两列,每列小正方形的个数依次为3、2,据此即可画出;(2)根据三视图画出几何体,根据几何体即可得;(3)要不改变主视图和俯视图的情况下,根据题意画出添加小正方体后的图形(如图2)即可.试题解析:(1)它的主视图和左视图,如图所示,(2)如图1,给这个几何体喷上颜色(底面不喷色),根据图形可知需要喷色的面有32个,所以喷色的面积为32;(3)如图2,在不改变主视图和俯视图的情况下,最多可添加1个小正方体,23.(1)BC=4;(2)sin ∠ADC=2 2.【解析】(1)如图,作AE⊥BC,∴CE =AC •cos C =1,∴AE =CE =1,1tan 3B =, ∴BE =3AE =3,∴BC =4; (2)∵AD 是△ABC 的中线,∴DE =1,∴∠ADC =45°,∴sin 2ADC ∠=. 24.(1)见解析 (2) △ABD ∽△ACE【解析】分析:(1)由∠BAD=∠CAE 易得∠BAC=∠DAE ,这样结合∠ABC=∠ADE ,即可得到△ABC ∽△ADE .(2)由(1)中结论易得AB AC AD AE =,从而可得: AB AD AC AE =,这样结合∠BAD=∠CAE 即可得到△ABD ∽△ACE 了.详解;(1)∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,∵∠ABC=∠ADE ,∴△ABC ∽△ADE .(2)△ABD ∽△ACE ,理由如下:由(1)可知△ABC ∽△ADE , ∴AB AC AD AE =, ∴AB AD AC AE=, 又∵∠BAD=∠CAE ,∴△ABD ∽△ACE .点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.25.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x ,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --. 又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=.。
【易错题】九年级数学下期中试题含答案(1)
【易错题】九年级数学下期中试题含答案(1) 一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.已知一次函数y1=x-1和反比例函数y2=2x的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是( )A.x>2B.-1<x<0C.x>2,-1<x<0D.x<2,x>03.如图,△ABC的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O为位似中心,将△ABC 扩大得到△A1B1C1,且△ABC 与△A1B1C1的位似比为1 :3.则下列结论错误的是 ( )A.△ABC∽△A1B1C1B.△A1B1C1的周长为6+32C.△A1B1C1的面积为3D.点B1的坐标可能是(6,6)4.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大5.已知线段a、b,求作线段x,使22bxa=,正确的作法是()A.B .C .D .6.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .255B .55C .52D .127.如图所示,在△ABC 中, cos B =22,sin C =35,BC =7,则△ABC 的面积是( )A .212B .12C .14D .218.如图,过反比例函数的图像上一点A 作AB ⊥轴于点B ,连接AO ,若S △AOB =2,则的值为( )A .2B .3C .4D .59.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( )A . 212B .12C .14D .2110.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( )A .a :d =c :bB .a :b =c :dC .c :a =d :bD .b :c =a :d 11.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .912.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m二、填空题13.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.14.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.15.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.16.在ABC ∆中,若45B ∠=o ,102AB =,55AC =ABC ∆的面积是______.17.反比例函数y =k x的图象经过点P(a 、b ),其中a 、b 是一元二次方程x 2+k x +4=0的两根,那么点P 的坐标是________. 18.在平面直角坐标系中,O 为坐标原点,B 在x 轴上,四边形OACB 为平行四边形,且∠AOB=60°,反比例函数y=k x(k>0)在第一象限内过点A ,且与BC 交于点F .当F 为BC 的中点,且S △AOF =123OA 的长为__________.),其中AP是AB与PB的比例19.如果点P把线段AB分割成AP和PB两段(AP PBAP AB的值为________.中项,那么:20.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.三、解答题21.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,3).(1)画出△ABC绕点B逆时针旋转90°得到的△A1BC1.(2)以原点O为位似中心,位似比为2:1,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标.22.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;23.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于点E,交BA的延长线于点F.(1)求证:2PC PE PF =g ;(2)若菱形边长为8,2PE =,6EF =,求FB 的长.24.如图,一次函数y =kx +2的图象与反比例函数y =m x 的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA =. (1)求点D 的坐标; (2)求一次函数与反比例函数的解析式;(3)根据图象写出当x >0时,一次函数的值大于反比例函数的值的x 的取值范围.25.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x 1<0<x 2<x 3即可得出结论.【详解】∵反比例函数y =﹣1x中k =﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y 随x 的增大而增大.∵x 1<0<x 2<x 3,∴B 、C 两点在第四象限,A 点在第二象限,∴y 2<y 3<y 1. 故选B .【点睛】 本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.C解析:C【解析】【分析】因为一次函数和反比例函数交于A 、B 两点,可知x-1=2x,解得x=-1或x=2,进而可得A 、B 两点的坐标,据此,再结合函数解析式画图,据图可知当x>2时,以及当-1<x<0时,y 1>y 2.【详解】解方程x −1=2x,得 x =−1或x =2,那么A 点坐标是(−1,−2),B 点坐标是(2,1),如右图,当x >2时, 12y y >,以及当−1<x <0时, 12y y >.故选C.【点睛】本题考查了反比例函数与一次函数交点问题,解题的关键是能根据解析式画出函数的图象,并能根据图象解決问题3.C解析:C【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.4.D解析:D【解析】【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A、∵当x=﹣3时,y=2,∴此函数图象过点(﹣3,2),故本选项正确;B、∵k=﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C、∵当x=﹣2时,y=3,∴当x<﹣2时,0<y<3,故本选项正确;D、∵k=﹣6<0,∴在每个象限内,y随着x的增大而增大,故本选项错误;故选:D.【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.C解析:C【解析】【分析】对题中给出的等式进行变形,先作出已知线段a、b和2b,再根据平行线分线段成比例定理作出平行线,被截得的线段即为所求线段x.【详解】解:由题意,22b xa =∴2a bb x =,∵线段x没法先作出,根据平行线分线段成比例定理,只有C符合.故选C.6.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=255ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.8.C解析:C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.9.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD ⊥BC ,进而得出相关线段的长度是解决问题的关键.10.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A 、a :d=c :b ⇒ab=cd ,故正确;B 、a :b=c :d ⇒ad=bc ,故错误;C 、d :a=b :c ⇒dc=ab ,故正确;D 、a :c=d :b ⇒ab=cd ,故正确.故选B .【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.11.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE12.D解析:D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC=,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.二、填空题13.【解析】已知BC=8AD是中线可得CD=4在△CBA和△CAD中由∠B=∠DAC∠C=∠C可判定△CBA∽△CAD根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4解析:【解析】已知BC=8, AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得.14.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.15.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC 和△PAD∽△PBC 根据该相似三角形的对应边成比例求得DP 的长度【详解】设DP=x 则CP=5-x 本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5.【解析】【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【详解】设DP=x ,则CP=5-x ,本题需要分两种情况情况进行讨论,①、当△PAD ∽△PBC 时,AD BC =DP CP∴225x x=-,解得:x=2.5; ②、当△APD ∽△PBC 时,AD CP =DP BC ,即25x -=2x , 解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位. 16.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,AC =∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键.17.(-2-2)【解析】【分析】先根据点P (ab )是反比例函数y=的图象上的点把点P 的坐标代入解析式得到关于abk 的等式ab=k ;又因为ab 是一元二次方程x2+kx+4=0的两根得到a+b=-kab=4解析:(-2,-2).【解析】 【分析】先根据点P (a ,b )是反比例函数y=k x的图象上的点,把点P 的坐标代入解析式,得到关于a 、b 、k 的等式ab=k ;又因为a 、b 是一元二次方程x 2+kx+4=0的两根,得到a+b=-k ,ab=4,根据以上关系式求出a 、b 的值即可.【详解】把点P (a ,b )代入y=k x得,ab=k , 因为a 、b 是一元二次方程x 2+kx+4=0的两根,根据根与系数的关系得:a+b=-k ,ab=4, 于是有:a b 4{ab 4+=-=, 解得a 2 {b 2=-=-, ∴点P 的坐标是(-2,-2).18.8【解析】分析:过点A 作AH⊥OB 于点H 过点F 作F M⊥OB 于点M 设OA=x 在由已知易得:AH=OH=由此可得S△AOH=由点F 是平行四边形AOBC 的BC 边上的中点可得BF=BM=FM=由此可得S△B解析:8【解析】分析:过点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,在由已知易得:AH=32x ,OH=12x ,由此可得S △AOH =238x 由点F 是平行四边形AOBC 的BC 边上的中点,可得BF=12x ,BM=14x ,FM=34x ,由此可得S △BMF =2332x ,由S △OAF =123可得S △OBF =63,由此可得S △OMF =2363x +,由点A 、F 都在反比例函数k y x =的图象上可得S △AOH =S △BMF ,由此即可列出关于x 的方程,解方程即可求得OA 的值. 详解:如下图,点A 作AH ⊥OB 于点H ,过点F 作FM ⊥OB 于点M ,设OA=x ,∵四边形AOBC 是平行四边形,∠AOB=60°,点F 是BC 的中点,S △OAF =123, ∴AH=3x ,OH=12x ,BF=12x ,∠FBM=60°,S △OBF =63, ∴S △AOH =238x ,BM=14x ,FM=34x , ∴S △BMF =2332x , ∴S △OMF =236332x +, ∵由点A 、F 都在反比例函数k y x =的图象上, ∴S △AOH =S △BMF ,∴238x =2363x +, 化简得:23192x =,解得:1288x x ==-,(不合题意,舍去),∴OA=8.故答案为:8.点睛:本题是一道考查“反比例函数的图象和性质及平行四边形的性质”的综合题,熟记“反比例函数的图象和性质及平行四边形的性质”是解答本题的关键.19.【解析】【分析】根据黄金分割的概念和黄金比是解答即可【详解】∵点把线段分割成和两段()其中是与的比例中项∴点P 是线段AB 的黄金分割点∴=故填【点睛】此题考察黄金分割是与的比例中项即点P 是线段AB 的黄【解析】【分析】根据黄金分割的概念和黄金比是12解答即可. 【详解】∵点P 把线段AB 分割成AP 和PB 两段(AP PB >),其中AP 是AB 与PB 的比例中项, ∴点P 是线段AB 的黄金分割点,∴:AP AB ,故填12. 【点睛】此题考察黄金分割,AP 是AB 与PB 的比例中项即点P 是线段AB 的黄金分割点,即可得到:AP AB =12. 20.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x 由题可得:17:085=x :11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.三、解答题21.(1)见解析;(2)(﹣4,2) .【解析】【分析】(1)根据网格结构找出点A、B、C以点B为旋转中心逆时针旋转90°后的对应点,然后顺次连接即可.(2)利用位似图形的性质得出对应点位置即可得出答案.【详解】解:(1)如图所示,△A1BC1即为所求;(2)如图,△A2B2C2,即为所求,A2(﹣4,2);故答案是:(﹣4,2).【点睛】此题主要考查旋转与位似图形的作图,解题的关键是熟知旋转的性质及位似的定义. 22.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可.【详解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D ﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF ﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB ﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD ,∴∠FAC=36°=∠D , ∵∠AED=∠AEF ,∴△AEF ∽△DEA , ∴AE ED EF AE=, ∴AE 2=EF×ED. 【点睛】 本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(1)见解析;(2) 16=FB .【解析】【分析】(1)可由相似三角形AEP FAP ∆∆∽对应边成比例进行求解,也可由平行线分线段成比例定理进行求解,两者均可;(2)由题中已知线段的长度,结合(1)中的结论,再由平行线分线段成比例,即可得出结论.【详解】(1)证明:Q 四边形ABCD 是菱形,DC DA ∴=,ADP CDP ∠=∠,//DC AB ,又DP Q 是公共边,DAP DCP ∴∆≅∆,PA PC ∴=,DAP DCP ∠=∠,由//DC FA 得,F DCP ∠=∠,F DAP ∴∠=∠,又EPA APF ∠=∠QAEP FAP ∴∆∆∽,∴PA:PF=PE :PA ,2PA PE PF ∴=g2PC PE PF ∴=g .(2)2PE =Q ,6EF =,8PF ∴=,2PC PE PF =Q g ,216PC ∴=,4PC ∴=//DC FB Q∴FB PF DC PC=, 又8DC =, ∴884FB = 16FB ∴=.【点睛】本题主要考查了全等三角形的判定及性质以及菱形的性质和相似三角形的判定及性质问题,能够熟练掌握.24.(1)D (0,2); (2)22y x =+;12y x =;(3)2x > 【解析】【分析】(1)在y=kx+2中,只要x=0得y=2即可得点D 的坐标为(0,2).(2)由AP ∥OD 得Rt △PAC ∽Rt △DOC ,又12OC OA =,可得13OD OC AP AC ==,故AP=6,BD=6-2=4,由S △PBD =4可得BP=2,把P (2,6)分别代入y=kx+2与m y x =可得一次函数解析式为y=2x+2反比例函数解析式为12y x=; (3)当x >0时,一次函数的值大于反比例函数的值的x 的取值范围由图象能直接看出x >2.【详解】解:(1)在y=kx+2中,令x=0得y=2,∴点D 的坐标为(0,2)(2)∵AP ∥OD ,∴∠CDO=∠CPA ,∠COD=∠CAP ,∴Rt △PAC ∽Rt △DOC , ∵12OC OA =,即13OD OC AP AC ==, ∴13OD OC AP AC == ∴AP=6,又∵BD=6-2=4, ∴由142PBD S BP BD =⋅=V ,可得BP=2, ∴P (2,6)(4分)把P (2,6)分别代入y=kx+2与m y x=可得一次函数解析式为:y=2x+2,反比例函数解析式为:12 yx(3)由图可得x>2.【点睛】考查反比例函数和一次函数解析式的确定、图形的面积求法、相似三角形等知识及综合应用知识、解决问题的能力.有点难度.25.10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用。
【易错题】初三数学下期中一模试题含答案
【易错题】初三数学下期中一模试题含答案一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y22.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)3.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.23DEBC=B.25DEBC=C.23AEAC=D.25AEEC=4.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)5.如图所示,在△ABC中, cos B=2,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.216.下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似7.已知点C 在线段AB 上,且点C 是线段AB 的黄金分割点(AC >BC ),则下列结论正确的是( )A .AB 2=AC •BC B .BC 2=AC •BC C .AC =512-BCD .BC =512-AC 8.已知2x =3y ,则下列比例式成立的是( )A .B .C .D .9.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A .15B .25C .215D .8 10.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .911.在小孔成像问题中,如图所示,若为O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .13B .12C .2倍D .3倍12.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A.51-B.51+C.2D.212+二、填空题13.如果把两条邻边中较短边与较长边的比值为51-的矩形称作黄金矩形.那么,现将长度为20cm的铁丝折成一个黄金矩形,这个黄金矩形较短的边长是_____cm.14.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为___________.15.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是______________.16.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.17.如图,矩形ABCD的顶点,A C都在曲线kyx=(常数0k≥,0x>)上,若顶点D的坐标为()5,3,则直线BD的函数表达式是_.18.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左侧墙上与地面成60°角时,梯子顶端距离地面23米,若保持梯子底端位置不动,将梯子斜靠在右端时,与地面成45°,则小巷的宽度为_____米(结果保留根号).19.如图,已知两个反比例函数C1:y=1x和C2:y=13x在第一象限内的图象,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB 的面积为_____.20.如图,在平面直角坐标系中,点A是函数kyx(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为______.三、解答题21.如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).(2)求景点C 与景点D 之间的距离.(结果精确到1km ) (参考数据:3=1.73,5=2.24,sin53°=0.80,sin37°=0.60,tan53°=1.33,tan37°=0.75,sin38°=0.62,sin52°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73).22.如图,在△ABC 和△ADE 中,∠BAD =∠CAE ,∠ABC =∠ADE .(1)求证:△ABC ∽△ADE ;(2)判断△ABD 与△ACE 是否相似?并证明.23.已知:如图,在正方形ABCD 中,P 是BC 上的点,Q 是CD 上的点,且∠AQP =900, 求证:△ADQ ∽△QCP .24.如图,某市郊外景区内一条笔直的公路l 经过A 、B 两个景点,景区管委会又开发了风景优美的景点C .经测量,C 位于A 的北偏东60︒的方向上,B 的北偏东30°的方向上,且10AB km =.(1)求景点B 与C 的距离.(2)求景点A 与C 的距离.(结果保留根号)25.如图,点C 、D 在线段AB 上,△PCD 是等边三角形,且CD 2=AD •BC .(1)求证:△APD∽△PBC;(2)求∠APB的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD:DB=2:3,∴ADAB=25.∵DE∥BC,∴DEBC=ADAB=25,A错误,B正确;AE AC =ADAB=25,C错误;AE EC =ADDB=23,D错误.故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.4.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.5.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=2,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.6.B解析:B【解析】【分析】由相似三角形的判定依次判断可求解.【详解】解:A、三边对应成比例的两个三角形相似,故A选项不合题意;B、两边对应成比例,且夹角相等的两个三角形相似,故B选项符合题意;C、斜边与一条直角边对应成比例的两个直角三角形相似,故C选项不合题意;D、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D选项不合题意;故选B.【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.7.D解析:D【解析】【分析】根据黄金分割的定义得出51BC ACAC AB-==,从而判断各选项.【详解】∵点C是线段AB的黄金分割点且AC>BC,∴512BC ACAC AB==,即AC2=BC•AB,故A、B错误;51-AB,故C错误;BC=512AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.8.C解析:C【解析】【分析】把各个选项依据比例的基本性质,两内项之积等于两外项之积,已知的比例式可以转化为等积式2x=3y,即可判断.【详解】A.变成等积式是:xy=6,故错误;B.变成等积式是:3x+3y=4y,即3x=y,故错误;C.变成等积式是:2x=3y,故正确;D.变成等积式是:5x+5y=3x,即2x+5y=0,故错误.故选C.【点睛】本题考查了判断两个比例式是否能够互化的方法,即转化为等积式,判断是否相同即可.9.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA ﹣AP=2,在Rt △OPH 中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1, 在Rt △OHC 中,∵OC=4,OH=1,∴∴故选C .【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键10.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE11.A解析:A【解析】【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用. 12.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy5+1故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.二、填空题13.【解析】【分析】设这个黄金矩形较长的边长是xcm根据题意得:解方程可得【详解】设这个黄金矩形较长的边长是xcm 根据题意得:解得:x=则这个黄金矩形较短的边长是cm 故答案为:【点睛】考核知识点:黄金分 解析:(1555)- 【解析】 【分析】 设这个黄金矩形较长的边长是xcm ,根据题意得:51220x x ⎛⎫-+= ⎪⎝⎭,解方程可得. 【详解】设这个黄金矩形较长的边长是xcm ,根据题意得:512202x x ⎛⎫-+= ⎪⎝⎭, 解得:x= 555-,则这个黄金矩形较短的边长是51(555)(1555)-⨯-=-cm . 故答案为:(1555)-【点睛】考核知识点:黄金分割点的应用.理解黄金分割的意义是关键. 14.【解析】【分析】【详解】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE :DA=DE :(DE+EA )=2:5∴AB=10∵在▱ABCD 中AB=CD∴CD=10故答案为:10【点睛】本题考查①相解析:【解析】【分析】【详解】解:∵EF ∥AB,∴△DEF ∽△DAB,∴EF :AB=DE :DA=DE :(DE+EA )=2:5,∴AB=10,∵在▱ABCD 中AB=CD .∴CD=10.故答案为:10【点睛】本题考查①相似三角形的判定;②相似三角形的性质;③平行四边形的性质.15.5或(答对一个得1分)【解析】根据△B′FC 与△ABC 相似时的对应情况有两种情况:①B′FC∽△ABC 时B′FAB=CF/BC 又因为AB=AC=8BC=10BF=BF 所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分)【解析】根据△B ′FC 与△ABC 相似时的对应情况,有两种情况:① B′FC ∽△ABC 时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF , 所以10810BF BF -=, 解得BF=; ②△B ′CF ∽△BCA 时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF ,BF=B′F ,又BF+FC=10,即2BF=10,解得BF=5.故BF 的长度是5或.16.6【解析】【分析】利用位似的性质得到AB :DE=OA :OD 然后把OA=1OD=3AB=2代入计算即可【详解】解:∵△ABC 与△DEF 位似原点O 是位似中心∴AB :DE=OA :OD 即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB :DE=OA :OD ,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC 与△DEF 位似,原点O 是位似中心,∴AB :DE=OA :OD ,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式.【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n ,把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.18.【解析】【分析】本题需要分段求出巷子被分成的两部分再加起来即可先在直角三角形ABC 中用正切和正弦分别求出BC 和AC (即梯子的长度)然后再在直角三角形DCE 中用∠DCE 的余弦求出DC 然后把BC 和DC 加解析:2+【解析】【分析】本题需要分段求出巷子被分成的两部分,再加起来即可.先在直角三角形ABC 中,用正切和正弦,分别求出BC 和AC (即梯子的长度),然后再在直角三角形DCE 中,用∠DCE 的余弦求出DC ,然后把BC 和DC 加起来即为巷子的宽度.【详解】解:如图所示:3米,∠ACB=60°,∠DCE=45°,AC=CE.则在直角三角形ABC中,ABBC=tan∠ACB=tan60°3AB AC =sin∠ACB=sin60°=32,∴BC3233=2,AC32332=4,∴直角三角形DCE中,CE=AC=4,∴CDCE=cos45°=22,∴CD=CE×22=4×22=2,∴BD=2,故答案为:2【点睛】本题需要综合应用正切、正弦.余弦来求解,注意梯子长度不变,属于中档题.19.【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=S矩形PCOD=1然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积【详解】∵PC⊥x轴PD⊥y轴∴S△解析:2 3【解析】【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=111236⨯=,S矩形PCOD=1,然后利用矩形面积分别减去两个三角形的面积即可得到四边形P AOB的面积.【详解】∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=11||23⋅=111236⨯=,S矩形PCOD=1,∴四边形P AOB的面积=1﹣2×16=23.故答案为:23.【点睛】本题考查了反比函数比例系数k的几何意义.掌握反比函数比例系数k的几何意义是解答本题的关键.反比函数比例系数k的几何意义:在反比例函数kyx=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.20.-2【解析】【分析】根据已知条件得到三角形ABC的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC的面积=1•=12AB OB,得到|k|=2,即可得到结论.【详解】解:∵AB⊥y轴,∴AB∥CO,∴111•1222ABCS AB OB x y k====g三角形,∴2k=,∵0k<,∴2k=-,故答案为:-2.【点睛】本题考查了反比例函数系数k的几何意义,明确1•=12ABCS AB OB=V是解题的关键.三、解答题21.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF-=-=,在Rt△ABF中BF=2222AB AF54-=-=3,∴BD=DF﹣BF=43﹣3,sin∠ABF=45 AFAB=,在Rt△DBE中,sin∠DBE=DBBD,∵∠ABF=∠DBE,∴sin∠DBE=45,∴DE=BD•si n∠DBE=45×(43﹣3)=16312-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.22.(1)见解析 (2)△ABD∽△ACE【解析】分析:(1)由∠BAD=∠CAE易得∠BAC=∠DAE,这样结合∠ABC=∠ADE,即可得到△ABC∽△ADE.(2)由(1)中结论易得AB ACAD AE=,从而可得:AB ADAC AE=,这样结合∠BAD=∠CAE即可得到△ABD∽△ACE了.详解;(1)∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE.(2)△ABD∽△ACE,理由如下:由(1)可知△ABC∽△ADE,∴AB AC AD AE =, ∴AB AD AC AE=, 又∵∠BAD=∠CAE ,∴△ABD ∽△ACE .点睛:这是一道考查“相似三角形的判定与性质的题目”,熟悉“相似三角形的判定定理和性质”是解答本题的关键.23.证明见解析【解析】试题分析:本题利用等角的余角相等得出一对相等的角,加上直角得出相似三角形. 试题解析:在Rt △ADQ 与Rt △QCP 中,∵∠AQP =90°, ∴∠AQP +∠PQC =90°, 又∵∠PQC +∠QPC =90°, ∴∠AQP =∠QPC ,∴Rt △ADQ ∽Rt △QCP .24.(1)BC=10km ;(2)AC=103km.【解析】【分析】(1)由题意可求得∠C =30°,进一步根据等角对等边即可求得结果;(2)分别在Rt BCD ∆和Rt ACD ∆中利用锐角三角函数的知识解直角三角形即可求得结果.【详解】解:(1)过点C 作CD ⊥直线l ,垂足为D ,如图所示.根据题意,得:30CAD ∠=︒,60CBD ∠=︒,∴∠C =∠CBD -∠CAD =30°,∴∠CAD =∠C ,∴BC =AB =10km .(2) 在Rt BCD ∆中,sin CD CBD BC ∠=,∴sin 6053CD BC km ==o g , 在Rt ACD ∆中,1sin 2CD CAD AC ∠==,∴2103AC CD km ==.【点睛】本题考查了解直角三角形的应用,属于基本题型,熟练掌握锐角三角函数的知识是解题的关键.25.(1)见解析;(2)120°【解析】【分析】(1)CD2=AD•BC可得AD:PC=PD:BC,又由△PCD是等边三角形,所以可求出∠ADP=∠BCP=120°,进而证明△ACP∽△PDB;(2)由△APD∽△PBC,可得∠APD=∠B,则可求得∠APB的大小.【详解】(1)证明:∵△PCD是等边三角形,∴PD=PC=DC,∠PDC=∠PCD=60°,∴∠ADP=∠BCP=120°,∵CD2=AD•BC,∴AD:PC=PD:BC,∴△APD∽△PBC;(2)∵△APD∽△PBC,∴∠APD=∠B,∵∠B+∠BPC=60°,∴∠APD+∠BPC=60°,∴∠APB=60°+∠DPC=120°.【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.。
【易错题】初三数学下期中一模试卷带答案
【易错题】初三数学下期中一模试卷带答案一、选择题1.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB.则cos∠AOB的值等于()A.B.C.D.2.如图所示,在△ABC中, cos B=22,sin C=35,BC=7,则△ABC的面积是()A.212B.12C.14D.213.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=512-BC D.BC=512-AC4.观察下列每组图形,相似图形是()A.B.C.D.5.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D.6.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 7.在平面直角坐标系中,将点(2,l )向右平移3个单位长度,则所得的点的坐标是( )A .(0,5)B .(5,1)C .(2,4)D .(4,2) 8.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .33B .55C .233D .2559.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .910.给出下列函数:①y=﹣3x +2;②y=3x;③y=2x 2;④y=3x ,上述函数中符合条作“当x >1时,函数值y 随自变量x 增大而增大“的是( ) A .①③ B .③④C .②④D .②③ 11.如图,河堤横断面迎水坡AB 的坡比是1:3,堤高BC =12m ,则坡面AB 的长度是( )A .15mB .3C .24mD .10312.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶1二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.如图,P(m,m)是反比例函数9yx在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.15.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.18.如图所示,将一副三角板摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值为_____.19.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.20.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.三、解答题21.小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.22.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.(1)求双曲线的解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.23.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200AB=米,坡度为1:3AB的高度AE降低20AC=米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)24.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.25.已知锐角三角形ABC内接于⊙O(AB>AC),AD⊥BC于点D,BE⊥AC于点E,AD、AE交于点F.(1)如图1,若⊙O直径为10,AC=8,求BF的长;(2)如图2,连接OA,若OA=F A,AC=BF,求∠OAD的大小.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.A解析:A【解析】【分析】【详解】试题分析:过点A作AD⊥BC,∵△ABC中,cosB=22,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选A.考点:1.解直角三角形;2.压轴题.3.D解析:D【解析】【分析】根据黄金分割的定义得出51BC ACAC AB-==,从而判断各选项.∵点C是线段AB的黄金分割点且AC>BC,∴12BC ACAC AB==,即AC2=BC•AB,故A、B错误;AB,故C错误;AC,故D正确;故选D.【点睛】本题考查了黄金分割,掌握黄金分割的定义和性质是解题的关键.4.D解析:D【解析】【分析】根据相似图形的定义,形状相同,可得出答案.【详解】解:A、两图形形状不同,故不是相似图形;B、两图形形状不同,故不是相似图形;C、两图形形状不同,故不是相似图形;D、两图形形状相同,故是相似图形;故选:D.【点睛】本题主要考查相似图形的定义,掌握相似图形形状相同是解题的关键.5.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.6.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.7.B解析:B【解析】【分析】在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.【详解】将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点睛】本题运用了点平移的坐标变化规律,关键是把握好规律.8.D解析:D【解析】【分析】【详解】过B点作BD⊥AC,如图,由勾股定理得,221310+=222222+=,cosA=AD AB =2210=25, 故选D .9.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC ,∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE10.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.故选B . 点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.11.C解析:C【解析】【分析】直接利用坡比的定义得出AC 的长,进而利用勾股定理得出答案.【详解】解:Rt △ABC 中,BC =12cm ,tanA =1:3;∴AC =BC÷tanA =123cm , ∴AB =2212(123)+=24cm .故选:C .【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.12.C 解析:C【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案. 【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===,∴23EF BE =,即25BF BE =, ∵AF ∥BC ,∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.二、填空题13.x≤-2或x >0【解析】【分析】先把点A (m2)代入解析式得A(22)再根据反比例函数的对称性求出A 点关于原点的对称点A (-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A (解析:x≤-2或x >0【解析】【分析】先把点A (m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A 点关于原点的对称点A ’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A (m,2)代入y =,得A (2,2),∵点A (2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x 的取值范围为x≤-2或x >0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【详解】如图过点P 作PH ⊥OB 于点H ∵点P (mm )是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m >0解得m=3∴PH=OH=3∵△PAB 是等边三角形∴∠PAH=60°∴根据锐角三933+ . 【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得3∴OB3∴S△POB=12OB•PH933.15.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.16.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2解析:3:2【解析】因为DE∥BC,所以32AD AEDB EC==,因为EF∥AB,所以23CE CFEA BF==,所以32BFFC=,故答案为: 3:2.18.【解析】【分析】如图所示连接BD过点D作DE垂直于BC的延长线于点E构造直角三角形将∠CBD置于直角三角形中设CE为x根据特殊直角三角形分别求得线段CDACBC从而按正切函数的定义可解【详解】解:如解析:31 -【解析】【分析】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD置于直角三角形中,设CE为x,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【详解】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CEB=90°,∠CDE=45°∴设DE=CE=x,则CD2x,在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=33=CDAC,则AC=6x,在Rt△ABC中,∠BAC=∠BCA=45°∴BC=3x,∴在Rt△BED中,tan∠CBD=DEBE=(13)x+=312-故答案为:31 2-.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.19.6【解析】符合条件的最多情况为:即最多为2+2+2=6解析:6【解析】符合条件的最多情况为:即最多为2+2+2=620.7【解析】设树的高度为m由相似可得解得所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m三、解答题21.旗杆AB的高度是11米.【解析】【分析】作CE⊥AB于E,可得矩形BDCE,利用同一时刻物高与影长的比一定得到AE的长度,加上CD的长度即为旗杆的高度.【详解】解:作CE⊥AB于E,∵DC⊥BD于D,AB⊥BD于B,∴四边形BDCE为矩形,∴CE=BD=11.2米,BE=DC=2米,∵同一时刻物高与影长所组成的三角形相似,∴AEEC=11.4,即11.2AE=11.4,解得AE=8,∴AB=AE+EB=8+3=11(米).答:旗杆AB的高度是11米.【点睛】考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.22.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.23.斜坡CD的长是8017【解析】【分析】根据题意和锐角三角函数可以求得AE 的长,进而得到CE 的长,再根据锐角三角函数可以得到ED 的长,最后用勾股定理即可求得CD 的长.【详解】∵90AEB =︒∠,200AB =,坡度为∴tan3ABE ∠==, ∴30ABE ∠=︒, ∴11002AE AB ==, ∵20AC =,∴80CE =,∵90CED ∠=︒,斜坡CD 的坡度为1:4, ∴14CE DE =, 即8014ED =, 解得,320ED =,∴CD =米,答:斜坡CD 的长是【点睛】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.24.河宽为17米.【解析】【分析】由题意先证明∆ABC ∽∆ADE ,再根据相似三角形的对应边成比例即可求得AB 的长.【详解】∵CB ⊥AD ,ED ⊥AD ,∴∠CBA =∠EDA =90°,∵∠CAB =∠EAD ,∴∆ABC ∽∆ADE , ∴AD DE AB BC=, 又∵AD=AB+BD ,BD=8.5,BC =1,DE =1.5, ∴8.5 1.51AB AB +=, ∴AB =17, 即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.25.(1)BF =6;(2)∠OAD =30°.【解析】【分析】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .利用勾股定理求出AM ,证明四边形AMBF 是平行四边形即可解决问题;(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .证明AO ⊥CM .推出∠OAD =∠BCM ,解直角三角形求出∠BCM 即可解决问题.【详解】(1)如图1中,作⊙O 的直径CM ,连接AM ,BM .∵CM 是直径,∴∠CAM =∠CBM =90°,∵CM =10,AC =8,∴AM =22CM AC -=22108-=6,∵AD ⊥CB ,BE ⊥AC ,∴∠ADC =∠MBC =90°,∠BEC =∠MAC =90°,∴AD ∥BM ,AM ∥BE ,∴四边形AMBF 是平行四边形,∴BF =AM =6.(2)如图2中,作⊙O 的直径CM ,连接AM ,BM ,设AD 交CM 于J .由(1)可知四边形AMBF 是平行四边形,∴AM =BF ,AF =BM∵AC =BF ,∴AC =AM ,∵∠MAC =90°,MO =OC ,∴AO ⊥CM ,∵AD ⊥BC ,∴∠AOJ =∠CDJ =90°,∵∠AJO=∠CJD,∴∠DCJ=∠JAO,∵AF=OA,AF=BM,∴OA=BM,∴CM=2BM,∵∠CBM=90°,∴sin∠BCM=BMCM=12,∴∠BCM=30°,∴∠OAD=∠BCM=30°.【点睛】本题属于圆综合题,考查了圆周角定理,平行四边形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线面构造特殊四边形解决问题.。
【易错题】初三数学下期中一模试卷及答案
【易错题】初三数学下期中一模试卷及答案一、选择题1.如图,△ABC中,DE∥BC,若AD:DB=2:3,则下列结论中正确的()A.23DEBC=B.25DEBC=C.23AEAC=D.25AEEC=2.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)3.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小4.如图,在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣1(k为常数,且k>0)的图象可能是()A.B.C.D.5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.3B.2C.6D.46.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)7.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.58.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:99.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米10.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为()A.1 : 2B.1 : 3C.2 : 3D.4 : 911.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B.55C.233D.25512.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°二、填空题13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则点C的坐标为________.15.如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.16.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.18.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是_____cm.19.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题21.某学校数学兴趣小组想利用数学知识测量某座山的海拔高度,如图,他们在山腰A处测得山顶B的仰角为45°,他们从A处沿着坡度为31000 m到达D处,在D 处测得山顶B 的仰角为58°,若点A 处的海拔为12米,求该座山顶点B 处的海拔高度,(结果保留整数,参考数据:tan 58°≈1.60,sin 58°≈0. 85,cos 58°≈0.53,3≈1. 732)22.等腰Rt PAB V 中,90PAB ∠=o ,点C 是AB 上一点(与A B 、不重合),连接PC ,将线段PC 绕点C 顺时针旋转90o ,得到线段DC .连接, PD BD . 探究PBD ∠的度数,以及线段AB 与BD BC 、的数量关系.(1)尝试探究:如图(1)PBD ∠= ;AB BC AC =+= ;(2)类比探索:如图(2),点C 在直线AB 上,且在点B 右侧,还能得出与(1)中同样的结论么?请写出你得到的结论并证明:23.如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:2PC PE PF =g ;(2)若菱形边长为8,2PE =,6EF =,求FB 的长.24.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD =AB .(2)如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?(3)如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.25.如图,四边形ABCD 中,AC 平分DAB ∠,2AC AB AD =⋅;90ADC ∠=o ,E 为AB 的中点,()1求证:ADC ACB △∽△;(2)CE 与AD 有怎样的位置关系?试说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】运用平行线分线段成比例定理对各个选项进行判断即可.【详解】∵AD :DB =2:3,∴AD AB =25. ∵DE ∥BC ,∴DE BC =AD AB =25,A 错误,B 正确; AE AC =AD AB =25,C 错误;AE EC =AD DB =23,D 错误. 故选B .【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.2.B解析:B【解析】试题分析:∵以原点O 为位似中心,在第一象限内,将线段CD 放大得到线段AB , ∴B 点与D 点是对应点,则位似比为5:2,∵C (1,2),∴点A 的坐标为:(2.5,5)故选B .考点:位似变换;坐标与图形性质.3.D解析:D【解析】A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B 选项:反比例函数的图象关于原点中心对称,故本选项错误;C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D 选项:∵k=1>0,∴当x <0时,y 随x 的增大而减小,故是正确的.故选B . 4.B解析:B【解析】当k >0时,直线从左往右上升,双曲线分别在第一、三象限,故A 、C 选项错误; ∵一次函数y=kx-1与y 轴交于负半轴,∴D 选项错误,B 选项正确,故选B .5.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】 本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.6.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.A解析:A【解析】【分析】由勾股定理可求AM 的长,通过证明△ABM ∽△EMA ,可求AE=10,可得DE=6,由平行线分线段成比例可求DF 的长,即可求解.【详解】解:∵AB =4,BM =2,∴AM ===,∵四边形ABCD 是正方形,∴AD ∥BC ,∠B =∠C =90°,∴∠EAM =∠AMB ,且∠B =∠AME =90°,∴△ABM ∽△EMA , ∴BM AM AM AE==∴AE =10,∴DE =AE ﹣AD =6,∵AD ∥BC ,即DE ∥MC ,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴DF=3,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.8.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.9.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.10.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴C△CEF:C△ABF=2:3.故选C.11.D解析:D【解析】【分析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.12.A 解析:A 【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°故选B. 二、填空题13.3:2【解析】因为DE ∥BC 所以因为EF ∥AB 所以所以故答案为:3:2解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 14.【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长进而得出△OAD ∽△OBG 进而得出AO 的长即可得出答案【详解】∵正方形BEFG 的边长是6∴∵两个正方形的相似比为∴∴∵AD ∥BG ∴△OAD解析:(3,2)【解析】【分析】直接利用位似图形的性质结合相似比得出AB 的长,进而得出△OAD ∽△OBG ,进而得出AO 的长,即可得出答案.【详解】.∵正方形BEFG 的边长是6,∴6BE EF ==. ∵两个正方形的相似比为13, ∴163CB CB EF ==. ∴2AB BC ==,.∵AD ∥BG ,∴△OAD ∽△OBG , ∴13OA OB =,即213OB OB -=. ∴3OB =.∴点C 的坐标为(3,2). 【点睛】本题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键. 15.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在R t△AOC中,OC==,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO==2+.故答案是:2+.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.16.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.17.【解析】【分析】如图根据正方形的性质得:DE∥BC则△ADE∽△ACB列比例式可得结论【详解】如图∵四边形CDEF是正方形∴CD=EDDE∥CF设ED=x则CD=xAD=12-x∵DE∥CF∴∠AD解析:60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.18.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD=AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.19.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:085=x:11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.20.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题21.1488米.【解析】【分析】过D作DE⊥BC于点E,作DF⊥AC于点F,易知四边形DECF为矩形,在Rt△ADF中,利用三角函数可求出DF和AF,设BE=x米,在Rt△BDE中,利用三角函数可表示出DE 的长度,再根据AC=BC建立方程求出x的值,最后用BC加上A点的海拔高度即为B处的海拔高度.【详解】解:如图,过D作DE⊥BC于点E,作DF⊥AC于点F,∵DE ⊥BC ,DF ⊥AC ,∠C=90°∴四边形DECF 为矩形,∴DE=FC ,DF=EC∵山坡AD 的坡度为3∴∠DAF=30°, ∴1DF=AD sin 30=1000=5002⋅⨯o 米, 3AF=AD cos30=1000=5003⋅o 设BE=x 米,在Rt △BDE 中,∠BDE=58°, ∴BE DE=tan 58 1.6≈o x 米, 在Rt △ABC 中,∠BAC=45°,∴AC=BC∴AF+FC=BE+EC ,即50035001.6=+x x 解得400034000976-=≈x ∴BC=BE+EC=976+500=1476米∵A 处的海拔高度为12米,∴B 处的海拔高度为1476+12=1488米答:该座山顶点B 处的海拔高度为1488米.【点睛】本题考查解直角三角形的应用,作辅助线构造直角三角形,再根据三角函数建立方程是解题的关键.22.(1)90o ,2BC ;(2)结论:90PBD ∠=︒, 2AB BD BC =-,理由详见解析【解析】【分析】(1)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,AC BD =,因此AC =,即可得出结论;(2)由题意得:△PCD 为等腰直角三角形,且∠PCD=90°则∠CPD=45°=∠APB ,证明△PAC ∽△PBD ,得出∠PBD=∠PAC=90°,2AC BD =,因此2AC BD =,即可得出结论.【详解】解:(1)PCD QV 为等腰直角三角形,且90PCD ∠=︒, 45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PB =Q ,~PAC PBD ∴∆∆=,2AC BD ∴=,∴2AC BD =,∴AB BC AC BC BD =+=+,故答案为90o ,2BC BD +,(2)结论:90PBD ∠=︒; 2AB BD BC =-;理由如下: PCD QV 为等腰直角三角形,且90PCD ∠=︒,45CPD APB ∴∠=︒=∠,CPD BPC APB BPC ∴∠+∠=∠+∠,即BPD APC ∠=∠, 又PA PC PB PD ==Q ,PAC PBD ∴V V ∽2=,90PBD PAC ∴∠=∠=︒,2AC BD =,2AC BD ∴=,2AB AC BC BD BC ∴=-=-. 【点睛】 本题是相似形综合题,主要考查了等腰直角三角形的性质、相似三角形的判定与性质等知识;熟练掌握等腰直角三角形的性质,证明三角形相似是解决问题的关键.23.(1)见解析;(2) 16=FB .【解析】【分析】(1)可由相似三角形AEP FAP ∆∆∽对应边成比例进行求解,也可由平行线分线段成比例定理进行求解,两者均可;(2)由题中已知线段的长度,结合(1)中的结论,再由平行线分线段成比例,即可得出结论.【详解】(1)证明:Q 四边形ABCD 是菱形,DC DA ∴=,ADP CDP ∠=∠,//DC AB ,又DP Q 是公共边,DAP DCP ∴∆≅∆,PA PC ∴=,DAP DCP ∠=∠,由//DC FA 得,F DCP ∠=∠,F DAP ∴∠=∠,又EPA APF ∠=∠QAEP FAP ∴∆∆∽,∴PA:PF=PE :PA ,2PA PE PF ∴=g2PC PE PF ∴=g .(2)2PE =Q ,6EF =,8PF ∴=,2PC PE PF =Q g ,216PC ∴=,4PC ∴=//DC FB Q ∴FB PF DC PC=, 又8DC =, ∴884FB = 16FB ∴=.【点睛】本题主要考查了全等三角形的判定及性质以及菱形的性质和相似三角形的判定及性质问题,能够熟练掌握.24.(1)证明见解析(2)222-(3)2【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC ,∵BC=AD ,∴AQ=AB-AD ,∴BF=AQ ,∴QF=BQ+BF=BQ+AQ=AB ,∵AB=CD ,∴QF=CD ,∵QM=CN ,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.25.(1)详见解析;(2)CE ∥AD ,理由见解析.【解析】【分析】(1)证明∠DAC=∠CAB ,∠ADC=∠ACB=90°,即可解决问题;(2)根据直角三角形的性质,可得CE 与AE 的关系,根据等腰三角形的性质,可得∠EAC=∠ECA ,根据角平分线的定义,可得∠CAD=∠CAB ,根据平行线的判定,可得答案.【详解】证明:()1∵AC 平分DAB ∠,∴DAC CAB ∠=∠,∵90ADC ACB ∠=∠=o ,∴ADC ACB △∽△.(2)//CE AD ;∵E是AB的中点,∴12CE AB AE==,∴EAC ECA∠=∠.∵AC平分DAB∠,∴CAD CAB∠=∠,∴CAD ECA=∠,∴//CE AD.【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题】初三数学下期中试卷附答案(1)一、选择题1.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .255B .55C .52D .122.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍; 3.如图,在△ABC 中,DE ∥BC ,12AD DB =,DE=4,则BC 的长是( )A .8B .10C .11D .12 4.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .1 5.对于反比例函数y=1x,下列说法正确的是( ) A .图象经过点(1,﹣1) B .图象关于y 轴对称C .图象位于第二、四象限D .当x <0时,y 随x 的增大而减小 6.如图,在同一平面直角坐标系中,反比例函数y =k x与一次函数y =kx ﹣1(k 为常数,且k >0)的图象可能是( )A .B .C .D .7.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 8.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒9.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变10.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm (如箭头所示),则木桩上升了( )A.8tan20°B.C.8sin20°D.8cos20°11.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.12.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A.13B.12C.2倍D.3倍二、填空题13.如图,P(m,m)是反比例函数9yx在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.14.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.15.△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC 的面积是3,则△A′B′C′的面积是_____.16.将三角形纸片△ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =8,BC =10,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是______________.17.在ABC ∆中,若45B ∠=o ,102AB =,55AC =,则ABC ∆的面积是______.18.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).19.如图,当太阳光与地面成角时,直立于地面的玲玲测得自己的影长为1.25m ,则玲玲的身高约为________m .(精确到0. 01m )(参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428).20.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)三、解答题21.如图,等边ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 上的点,连接CD 、EF 交于点G ,且60CGF ∠=︒.(1)请直接写出图中所有与BDC ∆相似的三角形(任选一对证明);(2)若45EF DC =,试求AE EC 的值.22.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°,在点A 处有一栋居民楼,AO =320m ,如果火车行驶时,周围200m 以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向行驶时. (1)居民楼是否会受到噪音的影响?请说明理由;(2)如果行驶的速度为72km /h ,居民楼受噪音影响的时间为多少秒?23.马路两侧有两根灯杆AB 、CD ,当小明站在点N 处时,在灯C 的照射下小明的影长正好为NB ,在灯A 的照射下小明的影长为NE ,测得BD=24m ,NB=6m ,NE=2m.(1)若小明的身高MN=1.6m ,求AB 的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.24.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.25.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据勾股定理,可得AB的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt△ABC中,∠C=90°,由勾股定理,得22=5AC BC+∴cosA=255ACAB==,故选A.【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.D解析:D【解析】【分析】根据ADDB=12,可得ADAB=13,再根据DE∥BC,可得DEBC=ADAB;接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.4.D解析:D【解析】 因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 5.D解析:D【解析】A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B 选项:反比例函数的图象关于原点中心对称,故本选项错误;C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D 选项:∵k=1>0,∴当x <0时,y 随x 的增大而减小,故是正确的.故选B . 6.B解析:B【解析】当k>0时,直线从左往右上升,双曲线分别在第一、三象限,故A、C选项错误;∵一次函数y=kx-1与y轴交于负半轴,∴D选项错误,B选项正确,故选B.7.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.8.C解析:C【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,【详解】连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°-∠A=20°,∴∠DOE=2∠ACD=40°,故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.9.D解析:D【解析】【分析】由于等腰直角三角形AEF 的斜边EF 过C 点,则△BEC 和△DCF 都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x =3时,y =3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C 点与M 点重合;当y =9时,根据反比例函数的解析式得x =1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy ,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x =2xy ,其值为定值.【详解】解:因为等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,所以△BEC 和△DCF 都是直角三角形;观察反比例函数图像得x =3,y =3,则反比例解析式为y=9x.A 、当x =3时,y =3,即BC=CD=3,所以,,C 点与M 点重合,则EC=EM ,所以A 选项错误;B 、当y =9时,x =1,即BC=1,CD=9,所以,,,所以B 选项错误;C 、因为x y =2×xy =18,所以,EC•C F 为定值,所以C 选项错误;D 、因为BE•DF=BC•CD=xy =9,即BE•DF 的值不变,所以D 选项正确.故选:D .【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.10.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20°11.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.12.A解析:A【解析】【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴CDAB=OFOE=13,∴像CD的长是物体AB长的1 3 .故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.【解析】【详解】如图过点P作PH⊥OB于点H∵点P(mm)是反比例函数y=在第一象限内的图象上的一个点∴9=m2且m>0解得m=3∴PH=OH=3∵△PAB是等边三角形∴∠PAH=60°∴根据锐角三933.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△P AB是等边三角形,∴∠P AH=60°.∴根据锐角三角函数,得AH=3.∴OB=3+3∴S△POB=12OB•PH=933+.14.16【解析】【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE ∴∠CDA=∠OBA∴△AOB∽△E解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.15.12【解析】【分析】根据位似是相似的特殊形式位似比等于相似比其对应的面积比等于相似比的平方进行解答即可【详解】解:∵△ABC与△A′B′C′是位似图形位似比是1:2∴△ABC∽△A′B′C′相似比是解析:12【解析】【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是12,故答案为12.【点睛】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.16.5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况有两种情况:①B′FC∽△ABC时B′FAB=CF/BC又因为AB=AC=8BC=10BF=BF所以解得BF=;②△B′CF∽△解析:5或(答对一个得1分)【解析】根据△B′FC与△ABC相似时的对应情况,有两种情况:① B′FC∽△ABC时,B′F AB ="CF/BC" ,又因为AB=AC=8,BC=10,B'F=BF,所以10810BF BF-=,解得BF=;②△B′CF∽△BCA时,B′F/BA ="CF/CA" ,又因为AB=AC=8,BC=10,B'F=CF,BF=B′F,又BF+FC=10,即2BF=10,解得BF=5.故BF的长度是5或.17.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键.18.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12 同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 19.79【解析】【分析】身高影长和光线构成直角三角形根据tan55°=身高:影长即可解答【详解】解:玲玲的身高=影长×tan55°=125×1428≈179(m )故答案为179【点睛】本题考查了解直角三解析:79【解析】【分析】身高、影长和光线构成直角三角形,根据tan55°=身高:影长即可解答. 【详解】解:玲玲的身高=影长×tan55°=1.25×1.428≈1.79(m ).故答案为1.79.【点睛】本题考查了解直角三角形的应用、正切的概念、计算器的使用.20.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP ∠==1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.三、解答题21.(1)GFC CFE ∆∆、;(2)14【解析】【分析】(1)根据等边三角形的性质及∠CGF=60°,可以得出∠B=∠ACB=∠CGF=60°,可以得出△BDC ∽△GFC ∽△CFE ;(2)由(1)△BDC ∽△CFE 可以得出EF CE DC BC = ,再根据条件45EF DC =和三角形ABC 是等边三角形和线段的转化,就可以得出AE EC 的值. 【详解】解:(1)GFC CFE ∆∆、∵等边ABC ∆,∴∠B=∠ACB =60°∵60CGF ∠=︒∴∠B=∠ACB=∠CGF又∵∠DCB=∠FCG∴GFC BDC ∆∆∽∵∠EFC=∠GFC∴GFC CFE ∆∆∽∴GFC CFE BDC ∆∆∽∽△(2)∵△BDC ∽△CFE454541,54EF CE DC BCEF DC CE BC CE AE AC EC ∴==∴=∆∴∴==Q Q 等边ABC AC=BC即【点睛】 本题考查了相似三角形的判定与性质,等边三角形的性质.22.(1)居民楼会受到噪音的影响;(2)影响时间应是12秒.【解析】【分析】(1)作AC ⊥ON 于C ,利用含30度的直角三角形三边的关系得到AC =12AO =160,则点A 到MN 的距离小200,从而可判断学校会受到影响;(2)以A 为圆心,100为半径画弧交MN 于B 、D ,如图,则AB =AD =200,利用等腰三角形的性质得BC =CD ,接下来利用勾股定理计算出BC =120,所以BD =2BC =240,然后利用速度公式计算出学校受到的影响的时间.【详解】(1)如图:过点A 作AC ⊥ON ,∵∠QON=30°,OA=320米,∴AC=160米,∵AC<200,∴居民楼会受到噪音的影响;(2)以A为圆心,200m为半径作⊙A,交MN于B、D两点,即当火车到B点时直到驶离D点,对居民楼产生噪音影响,∵AB=200米,AC=160米,∴由勾股定理得:BC=120米,由垂径定理得BD=2BC=240米,∵72千米/小时=20米/秒,∴影响时间应是:240÷20=12秒.【点睛】此题是解直角三角形的应用,主要考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(1)AB=6.4m;(2)AB=CD,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN∥AB,∴△MNE∽ABE,∴MNAB=NEBE.∵NB=6,NE=2,MN=1.6,∴1.6AB=28,∴AB=6.4(m);(2)这两根灯杆的高度相等,理由如下:∵MN∥CD,BD=24,∴MNAB=NEBE=28=14,∴MNCD=BNBD=624=14,∴AB=CD.【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.24.(1)抛物线的解析式为y=x2+2x;(2)D1(-1,-1),D2(-3,3),D3(1,3);(3)存在,P(,)或(3,15).【解析】【分析】(1)根据抛物线过A(2,0)及原点可设y=a(x-2)x,然后根据抛物线y=a(x-2)x过B(3,3),求出a的值即可;(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.【详解】解:(1)根据抛物线过A(-2,0)及原点,可设y=a(x+2)(x-0),又∵抛物线y=a(x+2)x过B(-3,3),∴-3(-3+2)a=3,∴a=1,∴抛物线的解析式为y=(x+2)x=x2+2x;(2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1,-1);②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,∴点E横坐标为-1,∴点D的横坐标为1或-3,代入y=x2+2x得D(1,3)和D(-3,3),综上点D坐标为(-1,-1),(-3,3),(1,3).(3)∵点B(-3,3)C(-1,-1),∴△BOC为直角三角形,∠COB=90°,且OC:OB=1:3,①如图1,若△PMA∽△COB,设PM=t,则AM=3t,∴点P(3t-2,t),代入y=x2+2x得(-2+3t)2+2(-2+3t)=t,解得t1=0(舍),t2=79,∴P(13,79);②如图2,若△PMA∽△BOC,设PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t)2+2(-2+t)=3t,解得t1=0(舍),t2=5,∴P(3,15)综上所述,点P的坐标为(13,79)或(3,15).考点:二次函数综合题25.电视塔OC高为1003米,点P的铅直高度为()100313-(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=1003,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=1003100-,即PB=1003100-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.。