大学物理作业 答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级___ ___学号____ ____姓名____ _____成绩
______________ 一、填空题
1. 一旋转齿轮的角加速度=4at 3
-3bt 2
,式中a 、b 均为恒量,若齿轮具有初角速度为0,则任意时
刻t的角速度 ,转过的角度为 .
2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为,试问圆盘绕中心轴转动所受摩擦力矩为 。
3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、
d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为
, 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。
4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度匀速转动,则对其转轴来说,它的动量为____________,角动量为__________. 三、计算题:
1. 固定在一起的两个同轴均匀圆柱体可绕其光滑
的水平对称轴OO ’
转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两
侧,如图所示,设R =,r =,m =4kg ,M =10kg ,
m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力.
解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).
题2-26(a)图 题2-26(b)图
(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①
1111a m T g m =- ②
12T R T r I α''-= ③
r
R O ’
O
m 2
m 1
式中 112221,,,T T T T a r a R αα''==== 而 222
1
21mr MR I += 由上式求得
(2)由①式 22220.10 6.1329.820.8T m r m g α=+=⨯⨯+⨯=N 由②式11129.820.2. 6.1317.1T m g m R α=-=⨯-⨯⨯=N
2. 计算题3-13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r = m
解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有
a m T g m 222=- ① a m T 11= ②
对滑轮运用转动定律,有
α)2
1
(212Mr r T r T =- ③
又, αr a = ④
联立以上4个方程,得 2212s m 6.72
15
20058
.92002
-⋅=+
+⨯=
+
+=
M m m g m a
题3-13(a)图 题3-13(b)图
3. 如图质量为M ,长为L 的均匀直杆可绕O 轴在竖直平面内无摩擦地转动,开始时杆处于自由下垂位置,一质量为m 的弹性小球水平飞来与杆下端发生完全弹性碰撞,若M >3m ,且碰撞后,杆上摆的最大角度为=30,则
求:(A)小球的初速度v 0,(B)碰撞过程中杆给小球的冲量. (教材) 解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动
量守恒定律和机械能守恒定律,可列式:
mvl
I l mv +=ω0 ①
2
2202
12121mv I mv +=ω ② 上两式中2
3
1Ml I =
,碰撞过程极为短暂,可认为棒没有显着的角位移;碰撞后,棒从竖直位置上摆到最大角度o
30=θ,按机械能守恒定律可列式:
m
v M O
L
)30cos 1(2
212︒-=l
Mg I ω ③ 由③式得 2
12
1)231(3)30cos 1(⎥⎦
⎤⎢⎣⎡-=⎥⎦⎤
⎢⎣⎡︒-=l g I Mgl ω
由①式 ml
I v v ω
-
=0 ④ 由②式 m
I v v 2
20
2
ω-= ⑤
所以 22
001)(2ωωm
v ml I v -=-
求得
gl
m
M m m M
l ml I l v +-=
+=+=
31232(6)311(2)1(220ωω
(2)相碰时小球受到的冲量为 ⎰
-=∆=0d mv mv mv t F
由①式求得 ωωMl l I mv mv t F 31
d 0-=-
=-=⎰
gl M 6
)32(6--=
负号说明所受冲量的方向与初速度方向相反.