一元一次方程的基本概念和性质知识讲解
初中数学知识归纳一元一次方程的概念和性质
初中数学知识归纳一元一次方程的概念和性质一元一次方程是初中数学中基础且重要的概念之一,它在数学和实际问题中都有着广泛的应用。
了解一元一次方程的概念和性质对于学好数学和解决实际问题至关重要。
本文将对一元一次方程的定义、基本形式、解的概念和性质进行归纳和阐述。
概念:一元一次方程是指未知数的最高次数为一次的方程。
它通常采用以下形式表示:ax + b = 0,其中a和b是已知的实数常数,a称为方程的系数,b称为方程的常数项,x是未知数。
在一元一次方程中,未知数的次数是最低的,且系数不为零。
基本形式:一元一次方程的基本形式是ax + b = 0。
其中,x是未知数,a和b 是已知的实数常数,且a不等于零。
在解一元一次方程时,我们的目标是找到使方程成立的未知数的值。
解的概念:解是指使方程成立的未知数的值。
对于一元一次方程ax + b = 0,解的求解过程即为确定未知数x的值,使得方程左右两边相等。
解可以是整数、分数、小数或无理数,具体取决于方程的系数和常数项。
性质:1. 一元一次方程只有一个未知数。
在求解时,我们只需要找到一个与方程相符的未知数的值即可,因此称为一次方程。
2. 一元一次方程的解唯一。
由于一次方程的图像是一条直线,与x 轴交于一点,因此该方程只有一个解。
3. 如果a不等于0,那么方程ax + b = 0的解为x = -b/a。
这是因为将x = -b/a代入方程中可得到ax + b = a(-b/a) + b = -b + b = 0。
在实际问题中,一元一次方程有着广泛的应用。
例如,根据已知的速度和时间,可以利用一元一次方程求解出距离;根据已知的进价、利润率和售价,可以利用一元一次方程计算出进货成本等。
因此,了解和掌握一元一次方程的概念和性质对于解决实际问题至关重要。
总结:一元一次方程是初中数学中的基础概念,其定义为ax + b = 0,其中a和b是已知的实数常数,a不等于零,x是未知数。
一元一次方程具有唯一解的性质,解的求解过程是确定未知数使方程成立。
一元一次方程 基础知识整理
一元一次方程1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。
方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。
2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。
3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。
4.解方程(1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。
(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。
一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。
注意与加法交换律不一样。
移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。
(3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。
括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。
去分数:先把分式化成整式再计算。
应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。
当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。
(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解决实际问题一般步骤:审设列解验答(1)配套问题等量关系:加工或者生产的总量相等或成比例。
一元一次方程知识点总结和例题讲解
一元一次方程知识点及题型一、方程的有关概念1. 方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程. 3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论. 二、等式的性质三、移项法则:把等式一边的某项变号后移到另一边,叫做移项. 四、去括号法则 五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a ,得到方程的解x=ba ).六.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,写出答案 【基础与提高】 一.选择题1.下列各式中,是方程的个数为( )(1)﹣4﹣3=﹣7;(2)3x ﹣5=2x+1;(3)2x+6;(4)x ﹣y=v ;(4)a+b >3;(5)a 2+a ﹣6=0. A . 1个B . 2个C . 3个D . 4个2.下列说法正确的是( ) A . 如果ac=bc ,那么a=b B . 如果,那么a=bC .如果a=b ,那么D . 如果,那么x=﹣2y3.若关于x 的方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的解是( ) A .x =0 B .x =3 C . x =﹣3D .x =24.方程(m+1)x|m|+1=0是关于x的一元一次方程,则m()A.m=±1 B.m=1 C.m=﹣1 D.m≠﹣15.若关于x的方程nx n﹣1+n﹣4=0是一元一次方程,则这个方程的解是()A.x=﹣1 B.x=1 C.x=﹣4 D.x=46.已知x=3是关于x的方程x+m=2x﹣1的解,则(m+1)2的值是()A.1B.9C.0D.47.已知x=﹣6是方程2x﹣6=ax的解,则代数式的值是()A.4B.3C.2D.18.设P=2x﹣1,Q=4﹣3x,则5P﹣6Q=7时,x的值应为()A.B.C.D.﹣9.服装店同时销售两种商品,销售价都是100元,结果一种赔了20%,另一种赚了20%,那么在这次销售中,该服装店()A.总体上是赚了B.总体上是赔了C.总体上不赔不赚D.没法判断是赚了还是赔了10.如图是一个长方形试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2cm,则x等于()A.cm B.cm C.cm D.cm11.关于x的方程(k﹣3)x﹣1=0的解是x=﹣1,那么k的值是()A.k≠3 B.k=﹣2 C.k=﹣4 D.k=212.江苏卫视《一站到底》栏目中,有一期的题目如图,两个天平都保持平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.513.已知方程2x+k=5的解为正整数,则k所能取的正整数值为()A.1B.1或3 C.3D.2或314.小芳同学解关于x的一元一次方程﹣时,发现有个数模糊看不清楚,聪明的小芳翻看了书后的答案,知道这个方程的解是3.于是她很快补上了这个数.她补的这个数是()A.B.3C.8D.915.若代数式3x﹣7和6x+13互为相反数,则x的值为()A.B.C.D.16.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个B.3个C.4个D.5个二.填空题17.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元.若设这件衣服的成本是x元,根据题意,可得到的方程是_________.18.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是_________cm3.19.已知与的值相等时,x=_________.20.若x=﹣1是关于x方程ax+b=1的根,则代数式(a﹣b)2011的值是_________.21.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多_________元.22如果要由等式m﹙a+1﹚=x﹙a+1﹚得到m=x,需要满足的条件是_________.23.关于x的方程(a﹣1)x2+x+a2﹣4=0是一元一次方程,则方程的解为_________.24.关于x的方程(m+2)x=6解为自然数,当m为整数时,则m的值为_________.25.已知m+n=2008(m﹣n),则=_________.三计算题解方程:(1)3(x﹣1)﹣2(2x+1)=12;(2)(3).(4)﹣=.(5).(6)(7).(8)﹣=3.(9)(10)四.解答题1.若x=2是方程ax-1=3的解,求a的值2.方程x+2=5与方程ax-3=9的解相等 求a 的值3.为何值时,关于的方程4231x m x -=-的解是23x x m =-的解的2倍?4.已知,2x =是方程12()23m x x --=的解,求代数式2(62)m m -+的值.5.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?6.一批货物,甲把原价降低10元卖出,用售价的10%做积累,乙把原价降低20元,用售价的20%做积累,若两种积累一样多,则这批货物的原售价是多少?7.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?8.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨,现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?9.今年“六•一”儿童节,张红用8.8元钱购买了甲、乙两种礼物,甲礼物每件1.2元,乙礼物每件0.8元,其中甲礼物比乙礼物少1件,问甲、乙两种礼物各买了多少件?10.小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑250米,小东每分钟跑200米,小明让小东先出发3分钟之后再出发,结果两人同时到达乙地,求甲、乙两地之间的路程是多少米?11.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
数学中的一元一次方程知识点
数学中的一元一次方程知识点一元一次方程是数学中的基础概念,也是初等代数中的重要内容。
它在解决实际问题和建立数学模型时起到了关键的作用。
本文将介绍一元一次方程的基本定义、性质和求解方法。
1. 一元一次方程的定义一元一次方程是指一个变量的一次方程,形式通常为ax + b = 0,其中a和b是已知的常数,而x是未知数。
一元一次方程的问题通常是要求解未知数的值。
2. 一元一次方程的性质一元一次方程具有以下几个性质:- 一元一次方程只有一个未知数。
- 方程中的系数和常数可以是任意实数,但未知数通常是实数。
- 方程中的系数不能同时为零,即a ≠ 0。
- 一元一次方程的解通常是唯一的,也就是只有一个解或无解。
3. 一元一次方程的求解方法解一元一次方程的常用方法有以下几种:- 原始解法:通过移项和消元的方式,将方程变形为x = 数字的形式,得到方程的解。
- 代入法:将已知的解代入方程,验证解是否满足方程的等式关系。
- 叠减法:通过两个方程相减,消去一个未知数,得到一个一元一次方程,从而求解未知数的值。
- 等价方程法:通过变形,将原方程转化为一个等价的方程,使得求解过程更简单。
4. 一元一次方程在实际问题中的应用一元一次方程在实际问题中有广泛的应用,比如:- 财务问题:计算投资回报率、利润分配等问题时,通常可以建立一元一次方程来求解。
- 几何问题:用一元一次方程可以计算图形的面积、周长、对角线长度等。
- 物理问题:用一元一次方程可以描述速度、加速度、力等物理量之间的关系。
总结:一元一次方程是数学中的重要概念,它帮助我们解决实际问题,建立数学模型,以及理解数学中的基本性质和求解方法。
通过掌握一元一次方程的知识,我们可以更好地理解和应用数学,提高解决问题的能力。
一元一次方程(专题详解)(解析版)
一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (2)知识框架 (2)一、基础知识点 (2)知识点1 方程和一元一次方程的概念 (2)知识点2 方程的解与解方程 (3)知识点3 等式的性质 (4)二、典型题型 (5)题型1 依题意列方程 (5)题型2 运用等式的性质解方程 (6)三、难点题型 (7)题型1 利用定义求待定字母的值 (7)3.2解一元一次方程-合并同类项和移项 (8)知识框架 (8)一、基础知识点 (8)知识点1 合并同类项解一元一次方程 (8)知识点2 移项解一元一次方程 (9)二、典型题型 (10)题型1 一元一次方程的简单应用 (10)3.3解一元一次方程-去括号与去分母 (11)知识框架 (11)一、基础知识点 (11)知识点1 去括号 (11)知识点2 去分母 (12)二、典型题型 (13)题型1 去括号技巧 (13)题型2 转化变形解方程 (15)题型3 解分子分母中含有小数系数的方程 (16)三、难点题型 (18)题型1 待定系数法 (18)题型2 同解问题 (18)题型3 含参数的一元一次方程 (19)题型4 利用解的情况求参数的值 (20)题型5 整体考虑 (21)3.4实际问题与一元一次方程 (21)一、基础知识点 (21)知识点1 列方程解应用题的合理性 (21)知识点2 建立书写模型常见的数量关系 (22)知识点3 分析数量关系的常用方法 (23)二、典型例题 (24)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。
例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。
一元一次方程知识点及经典例题
一元一次方程知识点及经典例题一、知识要点梳理知识点一:方程和方程的解1.方程:含有未知数的等式叫方程。
注意:a.必须是等式b.必须含有未知数。
易错点:(1).方程式等式,但等式不一定是方程;(2).方程中的未知数可以用x表示,也可以用其他字母表示;(3).方程中可以含多个未知数。
考法:判断是不是方程:例:下列式子:(1).8-7=1+0(2).1、一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:1)只含有一个未知数;2)未知数的次数是1次;3)整式方程。
2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等。
知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a+c=b+c;(c为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc;如果a=b(且c≠0),那么a/c=b/c。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为:-=1.6.方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤:1.变形步骤具体方法变形根据注意事项1.不能漏乘不含分母的项;去分母公倍数2.掉分母后,如果分子是多项式,则要加括号2.合并同类项1.分配律应满足分配到每一项去先去小括号,再乘法分配律、去括号2.注意符号,特别是去掉括号3.移项要变号;一般把含有未知数的项移动到方程左边,其余项移到右边4.合并同类项时,把同类项的同系数相加,字母与字母的指数不变5.未知数的系数a,成“ax=b”的形式6.方程两边同除以未知数的系数a,分子、分母不能颠倒。
一元一次方程的概念
一元一次方程的概念一元一次方程是数学中最基本也是最常见的方程类型之一。
它是用来描述一个未知数和已知系数之间的关系的数学等式。
本文将介绍一元一次方程的定义、特征,以及解一元一次方程的常见方法。
一、一元一次方程的定义一元一次方程是指只含有一个未知数和一次项的方程。
其一般形式可以表示为:ax + b = 0,其中a和b为已知常数,x为未知数。
在一元一次方程中,a不等于0,否则方程将退化为一个常数等式。
在一元一次方程中,未知数x的一次项系数a代表了未知数x的系数,常数b代表了方程中的常数项。
通过对方程中的未知数和已知数进行运算,我们可以求解这个方程并找到未知数的值。
二、一元一次方程的特征一元一次方程具有一些特征,我们可以通过这些特征来判断一个方程是否为一元一次方程。
首先,一元一次方程只涉及一个未知数。
方程中只含有一个变量,其他字母和数字都是已知的常数。
其次,一元一次方程中的未知数只出现在一次项中,并且该项的次数为1。
这意味着未知数只进行一次乘法运算,不存在平方、立方或更高次的情况。
此外,一元一次方程中的系数是已知的常数,不随未知数的变化而变化。
系数通常用字母表示,但它们的值是确定的,不会随求解过程的进行而改变。
三、解一元一次方程的常见方法解一元一次方程的目标是找到未知数x的值,使得方程等式成立。
根据方程的特征,我们可以采用以下常见的方法来解一元一次方程。
1. 合并同类项和移项法通过合并同类项和移项法,将方程转化为ax = -b的形式,然后通过两边同除以a,得到x = -b/a的解。
2. 两边相等原则根据方程两边相等的原则,可以通过运算操作将方程转化为x = -b/a的形式,从而找到未知数的解。
3. 代数运算法通过代数运算法,可以通过一系列等式的变换,将方程简化为形如x = -b/a的解。
4. 图解法对于一元一次方程,可以将方程转化为一条直线的图像。
通过画出这条直线,并与横轴的交点来确定方程的解。
以上是解一元一次方程的常见方法,通过这些方法,我们可以求解一元一次方程并得到其解。
一元一次方程知识点及经典例题
一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果,那么;(c 为一个数或一个式子)。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。
方程的右边没有变化,这要与“去分母”区别开。
2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。
一元一次方程(知识点完整版)
第三章:一元一次方程本章板块⎪⎪⎪⎩⎪⎪⎪⎨⎧程实际问题与一元一次方方程的解解方程等式的基本性质定义一元一次方程.5.4.3.2.1 知识梳理【知识点一:方程的定义】方程:含有未知数的等式就叫做方程。
注意未知数的理解,n m x ,,等,都可以作为未知数。
题型:判断给出的代数式、等式是否为方程 方法:定义法例1、判定下列式子中,哪些是方程?(1)4=+y x (2)2>x (3)642=+(4)92=x (5)211=x【知识点二:一元一次方程的定义】一元一次方程:①只含有一个未知数(元);②并且未知数的次数都是1(次);③这样的整式方程叫做一元一次方程。
题型一:判断给出的代数式、等式是否为一元一次方程 方法:定义法例2、判定下列哪些是一元一次方程?0)(22=+-x x x ,712=+x π,0=x ,1=+y x ,31=+xx ,x x 3+,3=a题型二:形如一元一次方程,求参数的值方法:2x 的系数为0;x 的次数等于1;x 的系数不能为0。
例3、如果()051=+-mx m 是关于x 的一元一次方程,求m 的值例4、若方程()05122=+--ax x a 是关于x 的一元一次方程,求a 的值【知识点三:等式的基本性质】等式的性质1:等式两边都加上(或减去)同个数(或式子),结果仍相等。
即:若a=b ,则a ±c=b ±c等式的性质2:等式两边同时乘以同一个数,或除以同一个不为0的数,结果仍相等。
即:若b a =,则bc ac =;若b a =,0≠c 且cb c a = 例5、运用等式性质进行的变形,不正确的是( )A 、如果a=b ,那么a-c=b-cB 、如果a=b ,那么a+c=b+cC 、如果a=b ,那么cbc a = D 、如果a=b ,那么ac=bc 【知识点四:解方程】方程的一般式是:()00≠=+a b ax 题型一:不含参数,求一元一次方程的解 方法:步骤具体做法 依据 注意事项1.去分母在方程两边都乘以各分母的最小公倍数等式基本性质2防止漏乘(尤其整数项),注意添括号; 2.去括号先去小括号,再去中括号,最后去大括号 去括号法则、分配律括号前面是“+”号,括号可以直接去,括号前面是“-”号,括号里的每一项都要变号3.移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(移项一定要变号)等式基本性质1 移项要变号,不移不变号;4.合并同类项将方程化简成()0≠=a b ax合并同类项法则计算要仔细5.化系数为1 方程两边同时除以未知数的系数a ,得到方程的解 等式基本性质2 计算要仔细,分子分母勿颠倒例7、解方程2583243=--+x x练习1、()()()35123452+--=-+-x x x x练习2、14.01.05.06.01.02.0=+--x x 练习3、x =+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+221413223题型二:解方程的题中,有相同的含x 的代数式方法:利用整体思想解方程,将相同的代数式用另一个字母来表示,从而先将方程化简,并求值。
一元一次方程所有知识点
一元一次方程所有知识点一、一元一次方程的概念。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。
- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。
二、一元一次方程的解法。
1. 移项。
- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。
- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
2. 合并同类项。
- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。
- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。
3. 系数化为1。
- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。
- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。
三、一元一次方程的应用。
1. 行程问题。
- 基本公式:路程=速度×时间。
- 相遇问题:两者路程之和等于总路程。
例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。
- 追及问题:两者路程之差等于初始距离。
例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。
一元一次方程的性质
未知数的最高次数为1
方程中未知数的指数必须为1,不能 有其他指数。
方程解与根的概念
解的定义
使方程左右两边相等的未知数的 值叫做方程的解。
根的定义
方程的解也叫做方程的根,两者是 等价的。
解与根的关系
对于一元一次方程,其解或根是唯 一的,且满足方程的约束条件。
线性方程与非线性方程区分
01
02
03
线性方程
将已知的未知数的值代入原方程,从而求出另一个未知数的值
例如,解方程组 $left{ begin{array}{l} x + y = 5 x = 2 end{array} right.$,将 $x = 2$ 代入第一个方程,可得 $y = 3$
03 方程解的存在性与唯一性
解的存在性定理
对于一元一次方程 ax + b = 0 (a ≠ 0),若 a 和 b 是已知数, 且 a ≠ 0,则该方程一定有解。
直接求解法
适用于简单的一元一 次方程,如 $ax + b = 0$($a neq 0$)
例如,解方程 $2x + 5 = 0$,可得 $x = -frac{5}{2}$
通过移项和化简,直 接求出未知数的值
消元法
适用于包含两个或两个以上未知数的一 元一次方程组
通过将两个方程相加或相减,消去其中 一个未知数,从而得到另一个未知数的
相遇与追及问题
根据两物体相对运动的速度和距离关系建立方程,如相遇时两物体走过的总路程 等于两地距离,追及时快者走过的路程减去慢者走过的路程等于两者相距的路程 。
工程问题建模与求解
工作量问题
根据工作效率、工作时间和工作量之间的关系建立方程,如 $W = Pt$,其中 $W$ 为工作量,$P$ 为工 作效率(单位时间内完成的工作量),$t$ 为工作时间。
一元一次方程的知识
一元一次方程的知识一、一元一次方程的定义一元一次方程是指只含有一个未知数,且未知数的次数为1的方程。
其一般形式为 ax + b = 0 (a ≠ 0)。
二、方程的解和解方程1. 解方程:通过对方程进行变形,使未知数能够消除,从而得到方程的解。
2. 解的检验:将得到的解代入原方程进行验证,确保解是有效的。
三、方程的根的性质1. 零根:当 a = 0 时,方程有无数多个解,称为零根。
2. 唯一根:当 a ≠ 0 时,方程有唯一一个解。
3. 根的性质:方程的解满足 ax + b = 0 的形式,其中 x 为解,a 和 b 为方程的系数。
四、方程的移项和合并同类项1. 移项:将方程中的项进行左右移动,使其符合标准形式。
2. 合并同类项:将方程中相同或相似的项合并在一起,简化方程。
五、方程的系数和常数项1. 系数:未知数前面的数字因数。
在一元一次方程中,只有一个系数和一个常数项。
2. 常数项:未知数以外的数字因数。
在一元一次方程中,只有一个常数项。
六、方程的等价变形1. 等价变形:通过对方程进行变形,使其满足某种特定形式,而不改变其真实含义。
2. 等式的基本性质:等式两边同加、同减、同乘、同除一个不为零的数,等式不变。
七、对方程进行判断的方法1. 判断是否为等式:首先判断给定的式子是否为等式。
只有等式才有可能是方程。
2. 判断是否为一元一次方程:如果一个等式只含有一个未知数,并且未知数的次数为1,那么它就是一元一次方程。
3. 判断是否为有效方程:根据题目要求,判断给定的方程是否符合条件。
例如,检查方程的系数和常数项是否满足特定条件。
4. 解的存在性判断:通过观察方程的系数和常数项,可以判断解的存在性。
例如,如果方程的系数为正数,则解为负数或零;如果系数为负数,则解为正数或零。
5. 解的唯一性判断:根据方程的系数和常数项,可以判断解的唯一性。
如果方程的系数不为零,则解唯一;如果系数为零,则解不唯一。
八、一元一次方程的应用一元一次方程在现实生活中有着广泛的应用,如购物时的找零问题、速度与时间的关系、距离与速度的关系等。
一元一次方程基础知识详解
一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法基础知识讲解【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项(1)移项要变号(2)不要丢项要变号)合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解b x a=.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,b x a=;(2)当a=0,b=0时,x 为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)基础知识讲解【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.要点三、常见列方程解应用题的几种类型5.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1217.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.《初中数学典型题思路分析》价格及说明四、实际问题与一元一次方程(二)基础知识讲解【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型1.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.五、《一元一次方程》全章复习与巩固【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.。
七年级数学第三章《一元一次方程》知识要点解析
一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:变形步骤具体方法变形根据注意事项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号乘法分配律、去括号法则1.分配律应满足分配到每一项2.注意符号,特别是去掉括号移项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同类项把方程中的同类项分别合并,化成“bax=”的形式(0≠a)合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a,得abx=等式性质2 分子、分母不能颠倒注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。
对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。
1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.典型题列1、x 取何值时,代数式 63x +与 832x - 的值相等.2、已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.3、解下列方程|x -2|+|2x+1|=8 5|x|-16=3|x|-4200920102009433221=⨯++⨯+⨯+⨯x x x x ()20102009111216121=+++++n n4、已知:(a -3)(2a +5)x +(a -3)y +6=0是一元一次方程,求a 的值。
一元一次方程的概念与解法
一元一次方程的概念与解法【知识要点】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的标准形式是:2.等式的基本性质(1)等式的两边都加上或减去或,所得的结果仍是等式.(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:【典型例题】例1.下列方程是一元一次方程的有哪些?x+2y=9 x 2-3x=1 11=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x_________3,123=--=那么x x ;(3)如果;__________x ,521==那么x(4)如果________.3x ,32==那么yx例3.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x例4.解方程 1.32243332=+--x x 2.1423(1)(64)5(3)25x x x --++=+3.21101211364x x x -++-=- 4.22314615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.83161.20.20.55x x x +-+-=-例6.x 取何值时,代数式 63x + 与 832x- 的值相等.例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.例9.当.38322倍的的值是为何值时,代数式x x x x ++-例10. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.系统讲解一元一次方程的应用【知识梳理】一、知识结构二、知识要点归纳1.列方程解决实际问题的一般步骤(1)找——找准等量关系,找出能够表示题意的等量关系.(2)设——设未知数,弄清题意和找准等量系后,用字母表示题目中的一个未知数.(3)列——列出方程,用含未知数的代数式表示出题目中的各种数量,依据找准的等量关系,列出方程.(4) 解——解方程.解出所列的方程,求出未知数的值.(5) 答_作出应答,检验方程的解是否符合实际,作出回答且注明单位.水速度=船速-水速2.分析应用题中等量关系的一般方法(1)译式法:将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数式之间的内在联系找出等量关系.(2)线示法:用同一直线的线段表示应用题中的数量关系,然后根据线段的长度的内在联系,找出等量关系.(3)列表法:将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.(4)图示法:利用图表示题中的数量关系,它可以使量之间的关系更为直观,更方便找出其中的等量关系.三、考查解析一元一次方程应用问题,关键是考查同学们用一元一次方程的模型解决实际问题的能力,大多数属于当基本题或中档题,学习中应抓住其核心问题——建模,从等量关系入手,而不是只让学生套题型,套步骤去解应用题.【典型例题】劳动力分配问题例1.某车间有100个工人,每人平均每天可以加工螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓要配两个螺母)应如何分配加工螺栓、螺母的工人?分析:等量关系为螺栓数:螺母数=1︰2.设加工螺栓人数为x,则加工螺栓的总数为18x个,加工螺母总数为24(100-x)个.解:设加工螺栓的人数为x人,依题意有24xx⨯(=-2,18)100解得 40=x (人).∴加工螺母的人数为 100-x =100-40=60(人) 答:应分配40人去加工螺栓.点评:此题重点是培养学生寻找等量关系的意识和能力. 等体积问例2.一个圆柱形水桶,底面半径为11cm ,高25cm ,将满桶的水倒入底面长30cm ,宽20cm 的长方体容器,问此长方体容器的高度至少要多少才不溢出水(π取3.14,结果精确到0.1cm )? 分析:从相等关系入手,即圆柱形容器积=长方体器容积. 解:设长方体容器的高为x cm ,依题意,有 30×20x =25π×112,解方程,得 ≈=24121πx 15.9cm , 答:长方体容器的高至少需要15.9cm.点评:“等积变换”是中学数学的常用方法,要让学生理解和把握这方法,并能在实际问题中灵活应用. 盈亏问题例3.某服装个体户同时卖出两套服装,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.(1)在这次买卖中,这位个体户是赔是赚还是正好保本? (2)若将题中的135元改成为任何正数a 元,情况如何? 分析:关键把握等量关系: 进价(1+盈利率)=售价,进价(1-亏本率)=售价.解:(1)设第一件进价为x 元,则135%)251(=+x , 解得 108=x ,设第一件进价为y 元,则135%)251(=-y , 解得 180=y ,而 181352)180108(1352)(=⨯-+=⨯-+y x .所以赔18元.(2)仿前一小题方法可得: a x =+%)251(及a y =-%)251(, 解得 a x 54=, a y 34=,而 0152234542)(>=-⎪⎭⎫ ⎝⎛+=-+aa a a a y x , 所以此时仍然是亏本.点评:解决该题的关键是把握住此类问题中的几个等量关系,同时理解好一些常用“词”:如:打八折,进价,售价,盈利10%,亏本20%等.拓广:在例3中,将题中的135元改为任何正数a 元,同时又将题中的25%改为m%(0<m <100)情况如何?工程量问题例4.甲、乙两水管往水池中注水,甲管单独打开用20小时可注满一池水,乙管单独打开用40小时可注满一池水.现在甲管单独打开8小时后,乙管才开始工作,问两管一起打开后需多少小时可注满水池?分析:利用等量关系,甲管工作量+乙管工作量=1,来解题,为了理清工作量的关系,可列表如下:(设两管一起开后x 小时可注满全池)解:设两管一起打开后x 小时可注满全池,依题意,得140208=++xx . 解得 8=x (小时),答:两管一起打开后8小时可注满水池.点评:“列表法”在分析等量关系中,有其特点,但重点还应是在培养学生寻找等量关系的意识和能力上,提高“建模”能力.行程问题例5.由甲地到乙地前32的路是高速公路,后31的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路上的行驶速度是100千米/时,在普通公路的行驶速度是60千米/时.B 车在高速公路上的行驶速度是110千米/时,在普通公路上的行驶速度是70千米/时.A 、B 两车分别从甲、乙两地同时出发相向行驶,在距离丙地44千米处相遇,求甲、乙两地之间的距离是多少?分析:本题在相遇过程中A 、B 两车同时出发相向而行至相遇如图3-5-1所示,相等关系是A 车行驶时间=B 车行驶时间.距丙地44千米处,有两种可能,(1)相遇处在高速公路上距丙地44千米,(2)相遇处在普通公路上,解题时要考虑到这两种情况,再根据实际取舍.解:设甲、乙两地相距x 千米,A 车从甲地到丙地,需要15010032xx=(小时),B 车从乙地到丙地,需要2107031x x=(小时), ∵210150x x > ∴A 、B 两车只能在高速公路上距丙地44千米处相遇.列方程得,1104470311004432+=-xx 解得441=x .答:甲、乙两地之间的距离是441千米.点评:“线示法”分析等量关系比较方便.但要注意分类讨论各种情况,以免挂一漏万.利息问题例6.大宝、小宝共利用假期打工1000元,大宝把他的工钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税,小宝把他的工钱买了月利率为2.15%的债券,但要交纳20%的利息税,一年后两人得到的收益恰好相等,问两人的压岁钱各是多少?分析:抓住这一问题的等量关系.1.利息(免税的)=存入钱数×年利率,2.利息(不免税的)=存入钱数×年利率×(1-税率),3..大宝的收益=小宝的收益.解:设大宝的工钱为x元,则小宝的工钱为(1000-x)元,由题意,得.1⨯98%⨯⨯x.=x-(80%100012%).215解得510x(元),1000-x=490(元).=答:大宝的工钱是510元,小宝的工钱是490元.【自我测试】一、基础测试1.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追及超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒2.有一旅客携带30公斤行李从某机场乘飞机返回绵阳,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购行李票,已知该旅客现已购行李票60元,则它的飞机票价为()A.300元B.400元C.600元D.800元3.一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?4.某商品的进货单价为280元,按25%的利润率确定售价.后因市场发生变化,决定按原定价格的八五折出售,问这时每售出一件这种商品,商店获利多少?5.用内径18毫米的圆柱形试管盛满水后,向一个底面是边长为22毫米的正方形,高是15毫米的空长方体容器内倒水,倒满容器后试管内水面下降约多少毫米?6.一艘船在甲、乙两地之间航行,顺水要3小时,逆水要3.5小时,已知船在静水中航行速度是每小时26千米,求水流速度.7.两人在环形跑道上同向急走,一圈为400米,甲的速度为平均每分钟80米,乙的速度是甲的1.25倍,如果乙在甲的前面100米,多少分钟后两人相遇?8.某人原计划骑车以12km/h的速度由A地去B地.这样可在规定时间内到达B地.但他因事将原计划出发的时间推迟了20min,只好以15km/h的速度前进,结果比规定时间早4min到达B地,求A、B 两地的距离?二、综合能力测试题1.某商店先在广州以每件15元的价格购进一种商品10件,后来又到深圳以每件12.5元的价购进同样商品40件,如果商店销售这些商品时,要获利12%的利润,那么这种商品的销售价应该是_______.2.有一卷铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩下10m,这卷铁丝原长多少?3.有大中小三个正方形水池,它们的内池分别为6m、3m、2m,把两堆碎石分别沉浸在中、小水池的水里,两个水池的水面分别升高了6cm和4cm,如果将这两堆碎石都沉浸在大水池的水里,大水池的水面升高了多少厘米?4.有一火车以每分钟600m的速度要过完第一、第二座铁桥,过第二座铁桥比过第一座铁桥多用5分钟,又知第二座铁桥的长度比第一座铁桥长度的2倍短50m,试求各铁桥的长?5.某公司向银行贷款40万元用来生产某种新产品,已知该贷的年利率为1.5%(不计复利),每人新产品的成本是2.3元,售价4元,应纳税是销售额的10%,如果每年生产该种产品20万个,并把所得利润用来归还贷款,问需要几年才能一次性还清?(利润=销售额-成本-应纳税款)6.某班共40名学生,其中33人数学成绩不低于80分,32人英语成绩不低于80分,且班上每人在这两科中至少有一科不低于80分.求两科成绩都不低地80分的人数.。
初一一元一次方程所有知识点总结和常考题(含答案解析)
初一一元一次方程所有知识点总结和常考题【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则〔依据分配律:a (b+c )=ab+ac 〕1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1.去分母(方程两边同乘各分母的最小公倍数)2.去括号(按去括号法则和分配律)3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4.合并(把方程化成ax = b (a≠0)形式)5.系数化为1(在方程两边都除以未知数的系数a (或乘未知数的倒数),得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题(增长率问题): 增长量=原有量³增长率 现在量=原有量+增长量(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.(2)多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现.审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:(1)“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为: ①形状面积变了,周长没变;②原料体积=成品体积.(2)常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积³高=S ²h =πr 2h3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念,同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.(1)要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a (其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9,1≤c ≤9).(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题(生产、做工等类问题):工作量=工作效率³工作时间工作时间工作量工作效率=工作效率工作量工作时间= 合做的效率=各单独做的效率的和.一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意。
一元一次方程的概念及解法
一元一次方程的概念及解法【知识点】:1、一元一次方程的定义:只含有一个未知数,并且未知数的次数都是1,这样的整式方程叫一元一次方程。
(如果方程的两边都是关于未知数的整式,我们就把这样的方程叫整式方程。
) 2、方程的解:使方程左右两边相等的未知数的值叫方程的解。
3、解方程:求方程解的过程叫做解方程。
4、等式的基本性质: (1)、等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)、等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
5、解一元一次方程的基本步骤: (1):去分母;(2):去括号;(3):移项;(4):合并同类项;(5):系数化成1。
【例题解析】例1、判断下列各式是不是一元一次方程,是的打“√”, 不是的打“x”。
(1) x+3y=4 ( ) (2) x 2-2x=6 ( ) (3) -6x=0 ( ) (4) 2m +n =0 ( ) (5) 2x-y=8 ( ) (6)y1+8=5y ( ) 例2、下列变形中,正确的是( ) A 、若ac=bc ,那么a=b 。
B 、若cbc a =,那么a=b C 、a =b ,那么a=b 。
D 、若a 2=b 2那么a=b 【练习】:1、下列方程中是一元一次方程的是( ) A .23x y = B .()7561x x +=- C .()21112x x +-= D .12x x-= 2、下列运用等式的性质对等式进行的变形中,正确的是 ( )3、若x (n-2)+2n=0是关于x 的方程一元一次方程,则n= ,此时方程的解是x=___。
4、某数x 的43%比它的一半少7,则列出求x 的方程应是( )A :43%12x -B :43%1()72x -=C :43%12x x -D :172x -=43%x例3、给出下面四个方程及其变形:①48020x x +=+=变形为; ②x x x +=-=-75342变形为;③253215x x ==变形为; ④422x x =-=-变形为; 其中变形正确的是( )A .①③④B .①②④C .②③④D .①②③ 例4、解方程:(利用移项、合并同类项及系数化成1来解方程) (1)x +2x +4x=140 (2)3x +20=4x-25解: x+2x+4x=140↓合并↓系数化为1【练习】:1、下列叙述正确的是 。
一元一次方程知识点总结
一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
第一节 一元一次方程的基本性质
1、方程的相关概念
(1)方程:含有未知数的等式叫做方程。
(2)方程的已知数和未知数,例1
(3)方程的解:使方程左、右两边的式子相等的未知数的值叫做方程的解。
(4)解方程:求方程的解的过程叫做解方程。
(5)方程解的检验
2、一元一次方程的定义
(1)一元一次方程的概念
只含有一个未知数,未知数的最高次数是1,这样的方程叫做一元一次方程。
(2)一元一次方程的形式
标准形式:ax+b=0(其中a 不等于0,a ,b 是已知数)。
最简形式:ax=b (其中a 不等于0,a ,b 是已知数)。
注:一元一次方程的判断标准(首先化简为标准形式或最简形式)
A 、只含有一个未知数(系数不为0).
B 、未知数的最高次数为1.
C 、方程是整式方程.
3、等式的概念和性质
(1)等式的概念:用“=”来表示相等关系的式子,叫做等式。
(2)等式的性质
等式性质1:等式两边同时加上或者减去同一个数或同一个式子,所得结果仍是等式
等式性质2:等式两边同时乘以或者除以同一个数或者同一个式子(除数不能是0),所得结果仍是等式。
(3)等式的其他性质
A 、对称性:若a=b ,则b=a
B 、传递性:若a=b ,b=c 则a=c
例1、判断下列各式是不是方程,如果是,指出已知数和未知数
(1)x x =-95 (2)x y 322=- (3)1152+x
(4)211-=-- (5)x x -=-24 (6)12
5=-x x
练习题: 判断下列各式是不是方程,如果是,指出已知数和未知数
1、3+x
2、1432+=+
3、x x +=+44
4、21=x
5、312=++x x
6、32=x
7、x x -=-44
8、3)2(2++=+x x x x
例2、根据题意列出方程:
(1)x 的20%与15的差的一半等于—2。
(2)x 的3倍比x 的一半多15,求这个数。
(3)某数的3倍与2的差等于16,求这个数。
(4)笼子里有鸡和兔子共12只,共40条腿,求鸡有几只。
练习题:
(1)用绳子量井深,把绳子三折来量,井外余4尺;把绳子四折来量,井外余1尺。
求绳子的长。
(2)一块长方形的场地周长为310米,长比宽长25米,求这个场地的长和宽。
(3)一次劳动中,先安排31人去拔草,18人去植树,后又派20人支援他们,结果拔草的人数是植草的人数的两倍,求支援拔草的人数。
例3、已知031=+-m x
是关于x 的一元一次方程,求m 的值
练习题:关于x 的方程()521=--m x m 是医院一次方程,求m 的值。