第2章 系统的数学模型及传递函数
《机械控制工程基础》-2物理系统的数学模型及传递函数解析
称为叠加性或叠加原理。
控制工程基础
2.1.3 非线性系统的线性化
(2)非线性系统 如果系统的数学模型是非线性的,这种 系统称为非线性系统。 工程上常见的非线性特性如下: 饱和非线性 死区非线性 间隙非线性 摩擦非线性……
控制工程基础
2.1.3 非线性系统的线性化
(3)举例 下列微分方程描述的系统为线性系统:
零初始条件: 输入及其各阶导数在t =0-时刻均为0; 输出及其各阶导数在t =0-时刻均为0。 形式上记为:
Y (s) b0 s m b1s m1 bm1s bm G( s ) X (s) a0 s n a1s n1 an1s an
控制工程基础
2.2.2 传递函数的求法
(1)解析法(根据定义求取) 设线性定常系统输入为x(t) ,输出为y(t) ,描 述系统的微分方程的一般形式为 :
dny d n1 y d n2 y dy an n an1 n 1 an 2 n2 a1 a0 y dt dt dt dt
Xi ( s) Ts Xo ( s)
传递函数: G( s)
式中T为微分时间常数。
特点: (1)一般不能单独存在 (2)反映输入的变化趋势 (3)增强系统的阻尼 (4)强化噪声
4.积分环节
1 微分方程: xo (t ) T xi (t )dt
传递函数:
X ( s) 1 G( s) o X i (s) Ts
2 2
下列微分方程描述的系统为非线性系统:
控制工程基础
2.1.3 非线性系统的线性化
(4)系统运动微分方程的建立
电气系统
电阻、电感和电容器是电路中的三个基本元件。通常利用基尔霍夫 定律来建立电气系统的数学模型。 基尔霍夫电流定律:
自动控制原理-第二章-控制系统的数学模型—结构图-信号流图-传递函数
f (t)
(t)
1(t )
t t2 2
e at
sin t cos t
F (s)
1
1s 1 s2 1 s3
1 (s a)
(s2 2) s (s2 2)
2.2 线性定常微分方程的求解 拉普拉斯反变换:部分分式展开法
时域 差分方程
解析式模型
状态方程
复域
传递函数 结构图-信号流图
图模型
频域 频率特性
数学模型是一个反应变量之间关系的表达式,在不同的域中有不同的表现形式!
1.引言
解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表 达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(例如阶跃信号、单位脉冲信号、正弦信 号等),根据系统或元件的输出响应,经过数据处理而辨识出系统的数学模型。
k 1 v n1
s
l 1 n2
(Ti s 1)
(T
2 j
s2
2Tj
s
1)
i 1
j 1
适用于 频域分
析
3.2 传递函数的基本概念 传递函数的标准形式
K:增益
K*=根轨迹增益
K与K*的关系:
两者关系
m
zj
K K*
j 1 n
pi
i 1
3.3 典型环节及其传递函数
一个传递函数可以分解为若干个基本因子的乘积,每个基本因子就称为典型环节。常见 的几种形式有:
Y (s)
R(s)
Y (s)
数学模型-传递函数
1 1 , j ,Ti zj pi ( pi )
( z j )
m
(3) 二项式表示法:
如 p1 . p2为一对共轭复数,则有
1 1 2 ( s p1 )( s p2 ) s 2 n s n 2
1 1 2 2 或 (T1 s 1)(T2 s 1) T s 2Ts 1
当初始条件为零时有:
3
第二章 数学模型
传 递 函 数(续)
C ( s ) b0 s m b1 s m 1 bm 1 s bm 则G ( s ) R( s ) a 0 s n a 1 s n 1 a n 1 s a n
s j 为复数, G (s ) 是复变量s 的函数, 故称为复放大系数。
i 1
m
(s z )
当s
z j时,G(s) = 0. z j 为传函的零点。
10
当 s pi 时,G(s) = , pi 为传函的极点。
第二章 数学模型
而 K g b0 ——传递系数。(根轨迹中叫根轨迹增益)
a0
(2)时间常数表示法:
bm d m s m d m 1 s m 1 d 1 s 1 G( s ) a n c n s n c n 1 s n 1 c 1 s 1
其传递函数为
6. 齿轮系
m
Z1
Z2
c
第二章 数学模型
§2-2 传 递 函 数
用拉氏变换求解微分方程,虽思路清晰,简单实用,但 如果系统参数改变,特征方程及其解都会随之改变。 要了解参数变化对系统动态响应的影响,就必须多次 计算,方程阶次愈高,计算工作量越大,故引入另一 种数模—传递函数。它是控制理论中的重要概念和工具, 也是经典理论中两大分支—根轨迹和频率响应的 基础。利用传递函数不必求解微方就可研究初始条件 为零的系统在输入信号作用下的动态过程。
自动控制原理 线性系统的数学模型传递函数
惯性环节的动态方程是一个一阶微分方程: T dc(t) c(t) Kr(t) dt
其传递函数为:
G(s) C(s) K R(s) Ts 1
式中 T—— 惯性环节的时间常数 K—— 惯性环节的增益或放大系数
12/47
§2.3 传递函数
当输入为单位阶跃函数时,其单位阶跃响应为:
24/47
§ 2.4 方框图
在控制工程中,为了便于对系统进行 分析和设计,常将各元件在系统中的功能 及各部分之间的联系用图形来表示,即方 框图和信号流图。
25/47
§ 2.4 方框图
2.4.1方框图的概念及其表示
方框图也称方块图或结构图,具有形象和直观的 特点。
系统方框图是系统中各元件功能和信号流向的 图解,它清楚地表明了系统中各个环节间的相 互关系。
n个环节串联后总的传递函数 : G(s) C(s) X1(s) X 2 (s) C(s) R(s) R(s) X1 (s) X n1 (s) G1 (s)G2 (s) Gn (s)
34/127
§ 2.4 方框图
环节串联后总的传递函数等于串联的各个环节传递 函数的乘积。
环节的串联
RC网络
35/47
d nc(t) d n1c(t)
dc(t)
a0 dt n a1 dt n1 an1 dt anc(t)
b0
d mr(t) dt m
b1
d m1r(t) dt m1
bm1
dr(t) dt
bmr(t)
式中c(t)为输出量,r(t)为输入量 。
设c(t)和r(t)及其各阶导数初始值均为零,对上 式取拉氏变换,得:
G(s) KTd s Td s 1
机械控制工程基础第二章物理系统的数学模型及传递函数
系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R
控制工程基础:第二章 控制系统的数学模型及传递函数
用线性微分方程描述的系统,称为线性系统。 如果方程的系数为常数,则称为线性定常系统; 如果方程的系数不是常数,而是时间的函数,则称为线性时 变系统。
线性系统的重要性质是可以应用叠加原理:
(1)多个输入同时作用于线性系统的总响应,等于各个输入 单独作用时分别产生的响应之和,且输入增大若干倍时,其输出 亦增大同样的倍数。
一、 拉氏变换的定义
§2.2 拉普拉斯积分变换
1. 拉氏变换的定义
如果有一个以时间t为自变量的实函数f (t),
它的定义域是t 0,那么函数f (t)的拉氏变换为:
L[ f (t)] F (s) f (t)est dt 0
复变量:s j
原函数: f (t) 象函数: F (s)
F(s) L[ f (t)]
(6)式即为二阶常系数线性微分方程。
四、小结:
§2.1系统运动微分方程的建立
(1)物理本质不同的系统,可以有相同形式的数学模型。
机械平移动力学系统:
d2 m dt2
xo
(t
)
B
d dt
xo (t) kxo (t)
fi (t)
电网络系统:
LC
d2 dt 2
uo
(t)
RC
d dt
uo
(t)
uo
(t)
L[Ax1(t) Bx2 (t)] AX1(s) BX 2 (s)
2. 微分定理和积分定理
(1)微分定理
在所有初始条件均 为零时
L[ df (t)] sF (s) dt
L[ f (t)] F(s)
L[ df (t)] sF (s) f (0) dt
L[ d 2 f (t)] s 2 F (s) sf (0) f (0) dt 2
《控制工程基础》第二章
第二章 系统的数学模型
2.2 系统的微分方程
例2-6 下图所示为一电网络系统,其输入为电压u(t), 输出为电容器的电量q(t),列写该系统微分方程。
L
R
解:根据克希荷夫电压定律,得
u
i
C
u(t)Ldd(ti)tR(ti)C 1i(t)dt
∵
i(t) dq(t) dt
消去中间变量i(t),并整理得,
轴平移了时间T。 例 求f(t)= 1 - 1 1(t-T)的拉氏变换
TT
4. 微分定理
若L[f(t)]=F(s),则有L[ df ( t ) ]=s F(s) - f(0)
初始状态为0时,L[
d
n
d
f
n
( t
t
)
dt
]=
s
n
F(s)
第二章 系统的数学模型 2.3 拉氏变换与拉氏反变换
5. 积分定理
解: 1)明确系统的输入与输出,
f( t) k
输入—f(t) , 输出—x(t)
m
2)进行受力分析,列写微分方程,
cx ( t) f(t) kx(t) 利用 Fma,得
图2-1
பைடு நூலகம்
m f( t ) k ( t ) x c x ( t ) m x ( t )
c· x(t)
3)整理微分方程,得
m x ( t ) c x ( t ) k ( t ) x f ( t )
本章教学大纲
1. 掌握机械、电气系统微分方程的建立方法; 2. 了解非线性方程的线性化; 3. 熟悉拉氏变换及反变换、线性定常微分方程的解法; 4. 掌握传递函数基本概念及典型环节传递函数; 5. 掌握系统传递函数方框图的化简。 教学重点:微分方程建立、传递函数概念与求法、典
朱玉华自动控制原理第2章 数学模型2-3
G(s) C(s) ……① R(s)
若已知线性定常系统的微分方程为
a0
d nc(t) dt n
a1
d n1c(t) dt n1
an1
dc(t) dt
anc(t)
b0
d mr(t) dt m
b1
d m1r(t) dt m1
bm1
dr(t) dt
bmr(t)
式中,c(t)为输出量,r(t)为输入量。
§2.3 传 递 函 数
一、传递函数的基本概念
指导思想:在零初始条件下,通过拉氏变换,将微分 方程变为s域(复数域)内的代数方程,在s 域内研究系统 的运动规律。必要时,通过拉氏反变换转化为时域形式。
s域(复数域)内的代数方程(即数学模型),称为 传递函数。
1、传递函数的定义
在初始条件为零时,线性定常系统输出量的拉氏变换与 输入量的拉氏变换之比,定义为该系统的传递函数。
RC
du0 (t) dt
u0 (t)
RC
dui (t) dt
G(s) RCs Td s RCs 1 Td s 1
只有当Td<<1时,才有G(s)≈Tds,实际的微分环节趋 于理想微分环节
再如:RL网络,其电路方程为
du0 (t) dt
R L
u0 (t)
dui (t) dt
G(s) Ls Td s Ls 1 Td s 1
如
G(s)
C(s) R(s)
b1s a0s2
b2 a1s
a2
S的代数方程:
(a0s2 a1s a2 )C(s) (b1s b2 )R(s)
用 d 置换s后得相应的微分方程 dt
a0
d 2c(t) dt 2
第2章 系统的数学模型及传递函数
u(t)
R-L-C无源电路网络
L
R
di(t) d 2q(t) u(t) L dt L dt2
ui(t)
i(t) C
uo(t)
R-L-C无源电路网络
20
ui
(t)
Ri (t )
L
d dt
i(t)
1 C
i(t)dt
uo
(t)
1 C
i(t)dt
ui(t)
L
R
i(t) C uo(t)
R-L-C无源电路网络
6
• 实际的系统通常是非线性的,线性只在一定的工 作范围内成立。
• 判别系统的数学模型微分方程是否是非线性的, 可视其中的函数及其各阶导数,如出现高于一次 的项,或者导数项的系数是输出变量的函数,则 此微分方程是非线性的。(P11)
• 非线性微分方程的求解很困难。在一定条件下, 可以近似地转化为线性微分方程,可以使系统的 动态特性的分析大为简化。实践证明,这样做能 够圆满地解决许多工程问题,有很大的实际意义。
5. 系统传递函数只表示系统输入量与输出量的数学关系(描述系统 的外部特性),而没有表示系统中间变量之间的关系(描述系统的内 部特性)。在现代控制理论中,可采用状态空间描述法来对系统的动 态特性进行描述。
34
y(t) k c m f(t)
••
•
m y(t) c y(t) ky(t) f (t)
输出 b
输出
输出
0
输入
0
输入
0
输入
a 饱和(放大器)
死区(电机)
间隙(齿轮)
A.饱和:如运算放大器当输入大于一定值时,输出被限制在 ±15V,达到饱和。
B.传动间隙:齿轮及丝杠螺母副组成的机床进给传动系统, 有传动间隙,在输入与输出间有滞环关系。P11图2-1
第二章 (2.1,2.2)控制系统的微分方程、传递函数
拉氏变换的重要应用——解线性定常微分方程
求微分方程的拉氏变换,注意初值!!
求出 C ( s ) 的表达式 拉氏反变换,求得 c (t )
例1 已知系统的微分方程式,求系统的输出响应。
d 2c(t ) dc(t ) 2 2c(t ) r(t ) 2 dt dt d2 解: 在零初态下应用微分定理: 2 s 2
+
i (t )
R
–
u (t )
+
i (t )
u (t ) i (t ) R
du ( t ) 1 i (t ) dt C
di (t ) u (t ) L dt
电容
C
–
u (t )
+
ቤተ መጻሕፍቲ ባይዱi (t )
电感
u (t )
–
L
机械系统三要素的微分方程
设系统输入量为外力,输出量为位移
d 2 x (t) m f (t) 2 dt
d uc (t ) duc (t ) LC RC uc (t ) ur (t ) 2 dt dt
2
3.机械位移系统
输入量为外力: F (t ) 输出量为位移: y (t )
dy 2 (t ) 依据牛顿定律: F m dt 2
dy (t ) d y (t ) F (t ) ky (t ) f m 2 dt dt
d 2 y (t ) dy (t ) m f ky (t ) F (t ) 2 dt dt
微分方程结构一致 二阶线性定常微分方程
不同形式的物理环节和系统可以建立相同形式的数学模型。
系统微分方程由输出量各阶导数和输 入量各阶导数以及系统的一些参数构成。 n阶线性定常系统的微分方程可描述为:
第二章自动控制系统的数学模型
第二章自动控制系统的数学模型本章要点系统的数学模型是对系统进行定量分析的基础和出发点。
本章主要介绍从微分方程、传递函数和系统框图去建立自动控制系统的数学模型。
内容包括系统微分方程的建立步骤、传递函数的定义与性质、系统框图的建立、等效变换及化简、系统各种传递函数的求取以及典型环节的数学模型。
为了对自动控制系统性能进行深入的分析和设计,须定量计算系统的动、静态性能指标。
而要完成此项任务,就必须掌握其变化规律,用一个反映其运动状态的数学表达式描述系统的动态过程。
这种描述系统各变量之间关系的数学表达式称为系统的数学模型。
系统数学模型的建立主要有解析法和实验法。
解析法是从系统元件所遵循的一些基本规律出发去推导系统的数学模型。
如果不了解系统的结构和运动规律,则应采用实验法建立数学模型,即在系统的输入端加上测试信号,在根据测试出的输出响应信号建立其数学模型。
系统的数学模型有多种,经典控制理论中常用的数学模型有:微分方程(时域数学模型)、传递函数(复域数学模型)、频率特性(频域数学模型)和动态结构图(几何模型)。
第一节系统的微分方程微分方程是描述系统的输入量和输出量之间关系最直接的方法。
当系统的输入量和输出量都是时间t的函数时,其微分方程可以确切描述系统的运动过程。
一、系统微分方程的建立步骤1.根据系统的组成结构、工作原理和运动规律,确定系统的输入量和输出量。
2.从输入端开始,根据各环节所遵循的运动规律,依次列写微分方程。
联立方程,消去中间变量,求取一个只包含系统输入量和输出量的微分方程。
3.将方程整理成标准形式。
即把含输出量的各项放在方程的左边,把含输入量的各项放在方程的右边,方程两边各导数按降幂排列,并将有关系数化为具有一定物理意义的表示形式,如时间常数等。
二、举例说明例2-1求图2-1所示RC网络的微分方程。
解:由图可知,输入量为u i(t) , 输出量为u o(t) ,根据电路遵循的基尔霍夫电压定律,有dtt du Ct i t u R t i t u o o i )()()()()(=+=消去上式中的中间变量i(t) ,得)()()(t u dtt du RCt u o o i += 整理得 ()()()o o i du t RCu t u t dt+= 例2-2 求直流电动机的微分方程。
自动控制原理第二章
d 2 x(t ) dx(t ) m f kx(t ) F (t ) 2 dt dt
当初始条件为零时,对上式进行拉氏变换后可得传递函数为
X ( s) 1 G( s) 2 F ( s) ms fs k
三、性质: ★
1、传递函数表达系统本身固有的动态性能,与输入量大
an c ( n ) (t ) an 1c ( n 1) (t ) ... a1c (1) (t ) a0 c(t ) bm r ( m ) (t ) bm 1r ( m 1) (t ) ... b1r (1) (t ) b0 r (t ), (n m)
2-2 微分方程(基本数学模型)
一、微分方程的建立(时域)
控制系统中的输出量和输入量通常都是时间 t 的函数。
很多常见的元件或系统的输出量和输入量之间的关系都可以用 一个微分方程表示,方程中含有输出量、输入量及它们各自对时间 的导数或积分。这种微分方程又称为动态方程、运动方程或动力学 方程。微分方程的阶数一般是指方程中最高导数项的阶数,又称为 系统的阶数。
例2-1的RLC串联电路的微分方程为
d 2 u o (t ) du o (t ) LC RC u o (t ) u i (t ) 2 dt dt
当初始条件为零时,对上式进行拉氏变换后可得传递函数为
U o ( s) 1 G( s) U i ( s) LCs 2 RCs 1
本章只讨论解析法建立系统的数学模型。
3.模型表示形式
a.时域:微分方程;b.复数域:传递函数,c.频域:频率特 性
三种数学模型之间的关系
线性定常系统
拉氏 s=jω 微分方程 变换 传递函数 频率特性
第第二章 控制系统的数学模型
1
sa
1
(s a)n
18
拉普拉斯变换简表
f (t)
9
sin t
10
cost
11
1 (1 eat )
a
12
1 a
(a0
(a0
a)eat
)
13
1 a2
(at
1
e at
)
14
a0t a2
(
a0 a2
t)(eat
1)
F (s)
s2 2
s
s2 2
s s(s a)
s a0 s(s a)
1 s2 (s a)
(1)独立性(可加性):线性系统内各个 激励产生的响应互不影响
xi1(t) xi2(t)
xo1(t) xo2(t)
xi1(t)+xi2(t) xo1(t)+xo2(t)
(2)均匀性(齐次性)
8
线形系统的一般形式
an
dn dtn
y(t) an1
d n1 d t n 1
y(t) ... a1
d dt
dt
s
则
证:
f (0) lim sF (s)
s
由微分定理有:
L( df (t)) sF (s) f (0) dt
两边取极限
lim[ df (t) est dt] lim[sF (s) f (0)]
s 0 dt
s
27
lim[ df (t) est dt] lim[sF (s) f (0)]
0 dt s0
s0
lim est 1
s0
[ df (t) dt] lim[sF (s) f (0)]
《自动控制原理》第二章传递函数
输出信号的拉氏变换 传递函数 = 输入信号的拉氏变换 零初始条件
C ( s) G(s) = R( s)
autocumt@ 1 中国矿业大学信电学院
一、 传递函数的定义和主要性质
设线性定常系统由下述n阶线性常微分方程描述: 设线性定常系统由下述n阶线性常微分方程描述:
dn d n −1 d a 0 n c (t ) + a1 n −1 c (t ) + ⋅ ⋅ ⋅ + a n −1 c (t ) + a n c (t ) dt dt dt d m −1 d dm = b0 m r (t ) + b1 m −1 r (t ) + ⋅ ⋅ ⋅ + bm −1 r (t ) + bm r (t ) dt dt dt
autocumt@
15
中国矿业大学信电学院
自动控制原理
4、振荡环节
特点:包含两个独立的储能元件,当输入量发生变化时,两个 包含两个独立的储能元件,当输入量发生变化时, 包含两个独立的储能元件 储能元件的能量进行交换,使输出带有振荡的性质。 储能元件的能量进行交换,使输出带有振荡的性质。
z1 n 2 (t) = n1 (t) z2
G(s) = N 2 (s) z1 = =K N1 (s) z 2
传递函数: 传递函数:
autocumt@
9
中国矿业大学信电学院
其它一些比例环节
自动控制原理
R2 R1
r (t )
Ec
R
c (t )
ic (t )
r1
r2
r (t )
c(t )
C
例:积分电路 积分电路
i1 (t )
R1
第二章物理系统的数学模型及传递函数
依据电学定律列写方程式 。
(1)
(2)
第二章 线性系统的数学模型
例 弹簧阻尼系统
Fs ky
ky
y
f dy dt
y
Ff fv
m
o
F
m
o
F
ma F F Fs Ff f — 粘滞摩擦系数
d 2 y dy m dt2 f dt ky F
k— 弹簧系数 v— 物体相对的移动速度
例1 编写如图1所示RLC电路的微分方程式
例1 编写如图1所示RLC电路的微分方程式
图 1 RLC串联网络
解: (1) 定输入输出量: u ----输入量 uc ----输出量
(2) 列写微分方程 di
L dt Ri uc u
式中
i dq dt
q Cuc
(3)消去中间变量,可得电路微分方程式
LC
d2 dt 2
uc
RC
d dt
uc
第二章 物理系统的数学 模型及传递函数
主要内容:
系统数学模型 线性系统微分方程的建立; 拉氏变换 运用拉氏变换法求解线性微分方程; 传递函数的概念和性质; 结构图的绘制及其等效变换; 结构图和信号流图的关系; 梅逊公式。
本章重点:
通过本章学习,应着重了解控制系统数学模型 的基本知识,熟练掌握线性定常系统微分方程 的建立、传递函数的概念和应用知识、控制系 统方框图的构成和等效变换方法、典型闭环控 制系统的传递函数的基本概念。
xa和xb作为网络的结点。在每一 个节点上,力的和等于零。
xa
xb
f fK K (xa xb )
K
M
fK fM fB MD2xb BDxb
综合两个方程可以得到:
控制工程基础4-第2章 (数学模型-2:传递函数)
拉氏变换可以简化线性微分方 程的求解。还可将线性定常微分方 程转换为复数S域内的数学模型— 传递函数。
一、传递函数的概念
二、典型环节的传递函数
一、 传递函数概念
输入
输入拉氏 变换
设一控制系统 r(t) c(t) 系统 G(S)
R(S)
输出 输出拉氏 变换
C(S)
传递函数的定义:
零初始条件下,系统输出量拉氏变换与系 统输入量拉氏变换之比。
R(s)
G1(s)+G2(s)
C(s)
+ G2(s) C2(s)
n C1(s)=R(s)G1(s) C2(s)=R(s)G2(s) G (s)=Σ Gi (s) n个环节的并联 i=1 C(s)=C1(s)+C2(s) =R(s)G1(s)+R(s)G2(s) C(s) =G (s)+G (s) G(s)= R(s) 1 等效 2
2) 传递函数取决于系统的结构和参数, 与外施信号的大小和形式无关。
3) 传递函数为复变量S 的有理分式。
4) 传递函数是在零初始条件下定义 的,不能反映非零初始条件下系统的运 动过程。
二、 基本环节的传递函数
不同的物理系统,其结构差别很 大。但若从系统的数学模型来看,一 般可将自动控制系统的数学模型看作 由若干个典型环节所组成。研究和掌 握这些典型环节的特性将有助于对系 统性能的了解。
结构图特点
• 结构图是方块图与微分方程(传函)的结合。一方面它直观反映了整 个系统的原理结构(方块图优点),另一方面对系统进行了精确的定 量描述(每个信号线上的信号函数均可确定地计算出来) • 能描述整个系统各元部件之间的内在联系和零初始条件下的动态性能, 但不能反映非零条件下的动态性能 • 结构图最重要的作用:计算整个系统的传函 • 对同一系统,其结构图具有非唯一性;简化也具有非唯一性。但得到 的系统传函是确定唯一的. • 结构图中方块≠实际元部件,因为方框可代表多个元件的组合,甚至 整个系统
第二章物理系统的数学模型及传递函数
要 消去它们, 就要找出中间变量与其它因素间的关系. 感应 电势 E ( t ) 正比于转速 m ( t ) 和激磁电流 I f 产生的磁通量 由于激磁电流是恒定的, 所以磁通量也恒定, 感应电势仅取 决于转速, 并可表示为:
a
(3) 消去中间变量 从式(1)和式(2)中可见,
i a ( t ), E a ( t ), M m ( t ) 是中间变量,
uC (t ) u (t )
m
d x(t ) dt
2
2
f
dx(t ) dt
Kx(t ) F (t )
相似系统:揭示了不同物理现象之间的相似关系
三、非线性系统的线性化
1)线性系统 线性系统是由线性元件组成的系统,线性微分
方程用来描述线性系统。 若微分方程的系数是常数称线性定常系统,或 线性时不变系统。 这是经典控制论主要研究的对象,因为它可以 方便地进行拉氏变换,并求得传递函数。
4.用解析法建立运动方程的步骤
1)分析系统的工作原理和系统中各变量间的关系,确 定出待研究元件或系统的输入量和输出量; 2)从输入端入手(闭环系统一般从比较环节入手), 依据各元件所遵循的物理,化学,生物等规律,列写 各自方程式,但要注意负载效应。所谓负载效应,就 是考虑后一级对前一级的影响。 3)将所有方程联解,消去中间变量,得出系统输入输 出的标准方程。所谓标准方程包含三方面的内容:① 将与输入量有关的各项放在方程的右边,与输出量有 关的各项放在方程的左边;②各导数项按降幂排列; ③将方程的系数通过元件或系统的参数化成具有一定 物理意义的系数。
§2-1 系统的数学模型
线性系统微分方程的建立
步骤:1.分析系统和元件的工作原理,找出 各物理量之间的关系,确定输出量及输入 量。 2.设中间变量,依据物理、化学等定律忽 略次要因素列写微分方程式。 3. 将所有方程联解,消去中间变量,得出系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中,m、C、K通常均为常数,故机械平移系统可 以由二阶常系数微分方程描述。 显然,微分方程的系数取决于系统的结构参数,而阶 16 次等于系统中独立储能元件(惯性质量、弹簧)的数量。
机械旋转系统
i(t)
0
o(t) 0
J
TK(t)
K
TC(t)
柔性轴
粘性液体
齿轮
C
J —旋转体转动惯量;K —扭转刚度系数;C —粘性阻尼系数
析和设计。
“叠加 性”、 “均匀性”
5
4. 机械系统常见非线性特性
输出 b 输出 输出
0 a 饱和(放大器)
输入
0 死区(电机)
输入
0
输入
间隙(齿轮)
A.饱和:如运算放大器当输入大于一定值时,输出被限制在 ±15V,达到饱和。 B.传动间隙:齿轮及丝杠螺母副组成的机床进给传动系统, 有传动间隙,在输入与输出间有滞环关系。P11图2-1 C.死区:有输入无输出,如负开口的液压伺服阀。P11图2-2 D.摩擦力:干摩擦力与速度方向相反,P12图2-3、图2-4
25
常用拉氏变换表
26
应用拉氏变换解线性微分方程
求解步骤 将微分方程通过拉氏变换变为 s 的代数方程; 解代数方程,得到有关变量的拉氏变换表达式; 应用拉氏反变换,得到微分方程的时域解。
原函数 (微分方程的解) 拉氏反变换 象函数 解 代 数 方 程 微分方程
拉氏变换
象函数的 代数方程
7
5. 非线性系统的线性化
8
y
y=f(x) A(x0,y0) 0 x0 x
A(x0,y0)平衡点,函数在平衡点处 连续可微,则可将函数在平衡点附近 展开成台劳级数:
y0
dy y f ( x) y 0 dx
1d y ( x x0 ) 2! dx 2 x0
2
饱和(放大器)
( x x 0 ) 2
机械工程控制基础
第二章 系统的数学模型及传递函数
郑海明
Wednesday, August 14, 2013
1ቤተ መጻሕፍቲ ባይዱ
控制系统数学模型概述
一、为什么要建立控制系统的数学模型?
1、是定量分析、计算机仿真、系统设计的需要 2、是寻找一个较好的控制规律的需要
二、什么是控制系统的数学模型?
描述控制系统中各变量之间相互关系的数学表达式 三、如何建立数学模型? 1、提出合理的假设,忽略次要因素,抓住本质。 2、建立恰当的数学描述
A1 A2 A3 B1 B2 s s2 s3 s2 s3
29
1 1 A1 2 s 5s 6 s 0 6
1 1 A2 2 s( s 3) s 2 1 1 A3 s( s 2) s 3 3
t t
14
K
K v(t )dt
阻尼
v1(t) x1(t)
fC(t)
v2(t) x2(t) C
fC(t)
f C (t ) C v1 (t ) v2 (t ) Cv(t ) dx1 (t ) dx2 (t ) C dt dt dx(t ) C dt
0 xo(t) 静止(平衡)工作点作为 零点,以消除重力的影响
d2 f i (t ) f C (t ) f K (t ) m 2 xo (t ) fK(t) fC(t) K dt C f K (t ) Kxo (t ) d f C (t ) C xo (t ) dt 机械平移系统及其力学模型 d2 d m 2 xo (t ) C xo (t ) Kxo (t ) f i (t ) dt dt
x0
忽略二次以上的各项,上式可以写成
y kx
其中:
x0
y y y 0
dy k dx
x x x0
9
这就是非线性元件的线性化数学模型
• 上式即为非线性系统的线性化模型,称为增量方程。 y0 = f (x0)称为系统的静态方程; • 增量方程的数学含义就是将参考坐标的原点移到系统 或元件的平衡工作点上,对于实际系统就是以正常工 作状态为研究系统运动的起始点,这时,系统所有的 初始条件均为零。 • 对多变量系统,如:y =f(x1,x2),同样可采用泰勒 级数展开获得线性化的增量方程。 f f y f ( x10 , x20 ) ( x1 x10 ) ( x2 x20 ) x1 x1 x10 x2 x1 x10 增量方程: y y0 y K1x1 K 2 x2
静态方程: y0 f ( x10 , x20 )
x2 x20 x2 x20
f 其中: K1 x1
f , K2 x1 x10 x10 x1 x10 2
x2 x20
x2 x20
注意:以上几种方法只适用于一些非线性 程度较低的系统,对于某些严重的非线性 (本质非线性性质),如:
6
• 实际的系统通常是非线性的,线性只在一定的工 作范围内成立。 • 判别系统的数学模型微分方程是否是非线性的, 可视其中的函数及其各阶导数,如出现高于一次 的项,或者导数项的系数是输出变量的函数,则 此微分方程是非线性的。(P11) • 非线性微分方程的求解很困难。在一定条件下, 可以近似地转化为线性微分方程,可以使系统的 动态特性的分析大为简化。实践证明,这样做能 够圆满地解决许多工程问题,有很大的实际意义。 • 本质非线性性质:在工作点附近存在不连续直线、 跳跃、折线、非单值关系等等。
0 继电特性
0 饱和特性
不能作线性化处理,一般用相平面法及描 述函数法进行分析。
11
课本P13 图2-5
(P14式2-10)
12
§2-2 系统的微分方程
1.
(P14)
(P27,负载效应)
13
2. 典型元部件所遵循的物理定律:
机械系统
机械系统中以各种形式出现的物理现象,都可简化为 质量、弹簧和阻尼三个要素: x (t) 质量
( s 5) xo (0) xo (0) B1 3xo (0) xo (0) s3 s 2 ( s 5) xo (0) xo (0) B2 2 xo (0) xo (0) s2 s 3
对方程右边进行拉氏变换:
1 Lxi (t ) X i ( s ) L1(t ) s
2
从而:
1 ( s 5s 6) X o ( s ) ( s 5) xo (0) xo (0) s 1 ( s 5) xo (0) xo (0) X o ( s) 2 s( s 5s 6) s 2 5s 6
21
3.例2-1:列写下图所示机械系统的微分方程 解:1)明确系统的输入与输出
输入为f(t),输出为x(t)
2)列写微分方程,受力分析
f kx c x m x
3)整理可得:
m x c x k x f
22
例2-2:列写下图所示电网络的微分方程
解:1)系统的输入与输出 输入为u1,输出为u2 2)列写原始微分方程
1、机理分析法
2、实验辩识法
3
§2-1 系统的数学模型
1.
数学模型应能反映系统内 在的本质特征,同时应对 模型的简洁性和精确性进 行折衷考虑。
2.
4
• 如果方程的系数为常数,则为线性 线性与非线性系统 3.意义:在线性系统中,根据叠加原理,如果
定常系统; 有几个外作用同时加于系统,则可以将它们分 • 如果方程的系数是时间t的函数, 别处理,依次求出各个外作用单独加入时系统 则为线性时变系统; 的响应,然后将它们叠加。此外每个外作用在 (线性时不变系统) 数值上都可只取单位值。从而简化了系统的分
电感 i(t) L u(t) R-L-C无源电路网络
di (t ) d q(t ) u (t ) L L dt dt 2
2
L
ui(t)
R
i(t) C
uo(t)
R-L-C无源电路网络
20
d 1 ui (t ) Ri (t ) L dt i (t ) C i (t )dt ui(t) 1 uo (t ) i(t )dt C
2
J —旋转体转动惯量;K —扭转刚度系数; C —粘性阻尼系数
18
电气系统 电气系统三个基本元件:电阻、电容和电感。
电阻 i(t)
R
u(t) 电容 i(t)
C u(t)
dq u (t ) Ri(t ) R dt
1 u (t ) i (t )dt C 1 = q C
19
v (t) fm(t) m
参考点
d d2 f m (t ) m v(t ) m 2 x(t ) dt dt
f K (t ) K x1 (t ) x2 (t ) Kx(t ) K
弹簧
x1(t) v1(t)
fK(t)
x2(t) v2(t)
fK(t)
v1 (t ) v2 (t )dt
3、非线性环节的处理
2
四、实际工程应用中建立模型的一般步骤
1、把各部件尽可能地作线性化处理; 2、建立线性化的系统模型(近似模型); 3、求系统的近似特性; 4、建立更复杂的模型,得到更精确的特性。 五、古典控制理论中控制系统模型描述方法 1、微分方程 2、传递函数
六、建立控制系统数学模型的一般方法
dxo (t ) L 5 5sX o ( s ) 5 xo (0) dt
28
L6 xo (t ) 6 X o ( s ) d 2 xo (t ) dxo (t ) 即: L 5 6 xo (t ) 2 dt dt