瞬间搞定牛吃草问题概念及公式

合集下载

牛吃草问题解法公式

牛吃草问题解法公式

牛吃草问题解法公式牛吃草问题有这么几个公式哦。

一、基本公式(假设草匀速生长的情况)1. 草的生长速度 = (对应的牛头数×吃的较多天数 - 相应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 你可以这么想哈,比如说有一群牛,多吃几天的话,那吃到的草就多。

这里面多出来的草量呢,其实就是多吃的这几天里草长出来的量。

那用多吃的草量除以多吃的天数,不就得到草每天生长的速度了嘛。

就像你种树,过了几天发现树多了一些,那多出来的树的数量除以过的天数就是树每天长的数量呀。

2. 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数- 这个呢,就是说原来草地上有的草量。

你想啊,牛吃的草量是牛头数乘以吃的天数,但是这里面有一部分是草自己长出来的呀,把草长出来的那部分(草的生长速度乘以吃的天数)减掉,剩下的就是原来草地上就有的草量啦。

就好比你存钱,你存进去的钱(牛吃的草量)有一部分是利息(草生长的量),把利息减掉,就是你最开始存的本金(原有草量)。

3. 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 这个公式就是说,当我们知道原来有多少草,也知道牛的数量和草生长的速度的时候,就可以算出这些牛能吃多少天。

你可以想象成有一堆食物(原有草量),有一些人(牛)在吃,同时食物还在慢慢增加(草生长),那用食物总量除以每天实际减少的量(牛头数减去草生长速度,因为草在长就相当于吃的量减少了),就得到能吃的天数啦。

4. 牛头数 = 原有草量÷吃的天数+草的生长速度- 这个就好比你知道有一堆活(原有草量)要干多少天(吃的天数),而且这个活还在慢慢增加(草生长速度),那你就能算出需要多少人(牛头数)来干这个活啦。

牛吃草问题的详细解法

牛吃草问题的详细解法

牛吃草问题的详细解法一、牛吃草问题基础概念。

1. 问题描述。

- 牛吃草问题又称为消长问题或牛顿问题。

典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

2. 基本公式。

- 设每头牛每天的吃草量为1份。

- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。

- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。

二、牛吃草问题示例及解析。

1. 题目1。

- 有一片牧场,草每天都在匀速生长。

如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。

问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。

- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。

要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。

- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。

- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。

2. 题目2。

- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。

那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。

- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。

牛吃草问题与行程问题的解题公式

牛吃草问题与行程问题的解题公式

(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

1)因为草量=原有草量+新长出的草量,而且草量是均匀增长的。

所以“对应的牛头数×吃的较多天数”就代表了第一次情况下的总草量,即为:吃的较多天数时的总草量=草地原有草量+草的生长速度*较多天数时的时间。

同理“相应的牛头数×吃的较少天数”代表了第二次情况下的总草量,即为:吃的较少天数时的总草量=草地原有草量+草的生长速度*较少天数时的时间。

两个一做差,式子中的“原有草量”就被减掉了,等号的左边就是两次情况之下总草量的差,右边等于草的生长速度*两次情况下的时间差,所以直接把时间差除到左边去,就得到了草的生长速度了。

(2)牛吃的草的总量包括两个方面,一是原来草地上的草,而是新增长出来的草。

所以“牛头数×吃的天数”表示的就是牛一共吃了多少草,牛在这段时间把草吃干净了,所以牛一共吃了多少草就也表示草的总量。

当然草的总量减去新增长出来的草的数量,就剩下原来草地上面草的数量了。

(3)(4)这个公式可以由(2)变形就能得到了,意思和(2)是相同的。

牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天有一牧场长满牧草,每天牧草均速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有多少头牛路程=速度×时间;路程÷时间=速度;路程÷速度=时间]关键问题确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差追及问题(直线)距离差=追者路程-被追者路程=速度差X追及时间追及问题(环形)快的路程-慢的路程=曲线的周长流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速:(顺水速度-逆水速度)÷2。

小升初奥数解题方法:牛吃草问题

小升初奥数解题方法:牛吃草问题

小升初奥数解题方法:牛吃草问题
小升初奥数解题方法:牛吃草问题
牛吃草问题有两种常用的方法:
1、四步法
解决牛吃草问题常用到四个基本公式,分别是︰
(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片草,这块地既有原有的'草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:
(1)(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

(2)牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

2、二元一次方程法
设草的生长速度为,原有草量为,根据题意列二元一次方程,并解方程!。

瞬间搞定牛吃草问题概念及公式

瞬间搞定牛吃草问题概念及公式

瞬间搞定牛吃草问题概念及公式牛吃草问题是指在给定草地生长速度不变的情况下,不同头数的牛吃光同一片草地所需天数不同,求若干头牛吃这片草地可以吃多少天的问题。

这个问题起源于17世纪英国科学家___的研究。

解决这个问题需要用到四个基本公式,分别是草的生长速度、原有草量、吃的天数和牛头数。

在解决问题时,需要找到草地中的不变量,即原有草量和每日新长草的数量。

解题的关键是弄清已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,最终解答问题。

例如,某牧场可供10头牛吃20天,15头牛吃10天,求25头牛可以吃多少天。

解决这个问题需要用到基本公式,计算草的生长速度、原有草量、吃的天数和牛头数。

最终得出25头牛可以吃5天。

___解析】设每周野果的产量可供X只猴子吃一周,共需___有恒等式:解,得,代入恒等式因此,选择C。

问题描述:有一片草场,每天可供X头牛吃,25头牛可吃Y天。

如果10头牛可在20天内吃完该草场上的草,15头牛可在10天内吃完,问该草场上有多少头牛可以在4天内吃完?解题思路:根据核心公式,设每天草场上的草量可供X头牛吃,每公亩草场原有牧草量为Y,每公亩牧场每天新长出来的草可供X头牛吃1天。

由此,可得到以下解题步骤:例2:设X头牛可在Y天内吃完该草场上的草,根据核心公式代入,得到X=30,Y=5,因此,该草场上有30头牛可以在4天内吃完。

例3:设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y。

由于牧场面积发生变化,每天长出的草量不再是常量。

根据核心公式代入,得到Z=35,因此,需要35头牛在24天内吃完40公亩牧场的草。

例4、例5、例6同理,都可以用核心公式解决。

每天新生长的野果足够X只猴子吃,33只猴子共需___吃完。

根据恒等式,得到X×7Y=33×7,___。

将X代入恒等式得到7Y²=33,解___。

解法二:假设每只猴子每周吃的野果数量为w,那么33只猴子共需吃的野果数量为33w。

公考牛吃草公式口诀

公考牛吃草公式口诀

公考牛吃草公式口诀1. 牛吃草啊牛吃草,公式就像魔法宝。

原有草量设为y,牛数n和天数t。

2. 牛儿吃草像割麦,公式口诀记心怀。

y=(n - x)×t,x是草长速度快。

3. 公考牛吃草问题妙,公式像把开锁钥。

牛群就像贪吃蛇,草量计算有绝招。

4. 牛吃草来草在长,公式口诀响当当。

假设草长速度x,牛儿数量别搞忘。

5. 公考牛儿把草嚼,公式好比导航猫。

原有草量y要晓,n头牛儿吃多少。

6. 牛吃草的世界里,公式是个大秘密。

像孙悟空的金箍棒,(n - x)×t等于y。

7. 牛儿吃草笑嘻嘻,公式口诀要牢记。

草量增长速度x,牛数n来把它欺。

8. 公考中有牛吃草,公式就像藏宝岛。

y是草量原本有,牛吃天数t来凑。

9. 牛吃草呀像旋风,公式口诀记心中。

草长速度x一蹦,牛儿数量来平衡。

10. 牛儿大口吃着草,公式像个智慧鸟。

原有草量y不少,n头牛儿吃得饱。

11. 公考牛草问题难?公式口诀来扬帆。

就像火箭冲上天,(n - x)×t把草算。

12. 牛吃草像挖财宝,公式口诀是个宝。

草长速度x在跑,牛数n不能乱搞。

13. 牛儿吃草好热闹,公式像个小鞭炮。

y等于原有草量妙,n和t把关系造。

14. 公考牛草像迷宫,公式口诀破苍穹。

草长速度x像虫,牛数n来把它轰。

15. 牛儿吃草像拔河,公式口诀别记错。

原有草量y是锅,(n - x)×t往里搁。

16. 牛吃草的公式啊,就像魔法咒语呀。

n头牛儿很潇洒,草长速度x 来压。

17. 公考牛草问题奇,公式像个大飞机。

y是草量老地基,牛数n和t 是机翼。

18. 牛儿吃草乐悠悠,公式口诀像星斗。

草长速度x在溜,牛数n把草量揪。

【初中数学】奥数牛吃草问题的4个基本公式及经典题型

【初中数学】奥数牛吃草问题的4个基本公式及经典题型

【初中数学】奥数牛吃草问题的4个基本公式及经典题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛吃草问题是小学奥数中的经典奥数题型之一,也是小学奥数考试中经常会涉及到的考点。

在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×喝的较多天数-适当的牛头数×喝的较少天数)÷(喝的较多天数-喝的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)喝的天数=旧有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式就是化解牛吃草问题的基础。

通常设立每头牛每天吃草量维持不变,设立为"1",解题关键就是弄清楚未知条件,展开对照分析,从而谋出来每日崭新短草的数量,再算出草地里旧有草的数量,进而答疑题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上布满牧草,牧草每天都在匀速生长,这片牧场供12头牛喝25天,或者供24头牛喝10天。

在牧场的西侧存有一块60公顷的牧场,20天中供多少头牛吃草?【解析】设立1头牛1天的吃草量为"1",节录条件,将它们转变为如下形式便利分析12头牛25天12×25=300:旧有草量+25天自然增加的草量24头牛10天24×10=240:旧有草量+10天自然增加的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上旧有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供更多草800+16×20=1120,可以使1120÷20=56(头)牛喝20天。

[数算]解决牛吃草问题常用到四个基本公式

[数算]解决牛吃草问题常用到四个基本公式

[数算]解决牛吃草问题常用到四个基本公式牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随 吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度=对应的牛头数 吃的较多天数-相应的牛头数 吃的较少天数(吃的较多天数-吃的较少天数);(2)原有草量=牛头数 吃的天数-草的生长速度 吃的天数;`(3)吃的天数=原有草量 (牛头数-草的生长速度);(4)牛头数=原有草量 吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

分享一点个人的经验给大家,我的笔试成绩一直都是非常好的,不管是行测还是申论,每次都是岗位第一。

其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。

公务员考试这种选人的方式第一就是考解决问题的能力,第二就是考思维,第三考决策力(包括轻重缓急的决策)。

非常多的人输就输在时间上,我是特别注重效率的。

第一,复习过程中绝对的高效率,各种资料习题都要涉及多遍;第二,答题高效率,包括读题速度和答题速度都高效。

我复习过程中,阅读和背诵的能力非常强,读一份一万字的资料,一般人可能要二十分钟,我只需要两分钟左右,读的次数多,记住自然快很多。

包括做题也一样,读题和读材料的速度也很快,一般一份试卷,读题的时间一般人可能要花掉二十几分钟,我统计过,我最多不超过3分钟,这样就比别人多出20几分钟,这在考试中是非常不得了的。

教你全面解决牛吃草问题

教你全面解决牛吃草问题

牛吃草问题集锦【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。

这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。

牛吃草问题又称为消长问题。

解决牛吃草问题常用到四个基本公式,分别是∶(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

1.旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了求增加人数的速度还有原来的人数2.有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 3.牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

问:可供25头牛吃几天?2、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?3、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。

已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。

照此计算,可供多少头牛吃10天?4、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼。

已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上。

牛吃草问题公式推导过程

牛吃草问题公式推导过程

典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

1牛吃草问题的公式解决牛吃草问题的流程一般为:首先设每头牛每天所吃的草量为1,然后根据不同头数的牛吃光草所花的天数计算出草地每天新的长草量以及最初的草总量,最后再根据牛吃草的核心公式求出答案。

1、(所有牛每天吃的草量一草地每天新长的草量)×天数=最初的草量2、草地每天新长的草量=(较多的天数x对应牛的头数-较少的天数x 对应牛的头数)÷(较多的天数—较少的天数)3、牛吃草的天数=最初的草量÷(牛每天吃的草量草地每天新长的草量)2牛吃草问题的例题一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天。

如果一头牛一天吃草的量等于5只羊一天吃草的量,那么这块草地可以供10头牛和75只羊一起吃多少天?题目前面说的是牛和羊,两种不同的动物,不同数量,不同天数。

所以我们需要把它换算成同一种动物,这样才便于我们进行计算。

题目后面说1头牛,一天的吃草量等于5只羊一天的吃草量。

这个是一个非常重要的信息。

100只羊每天吃掉的草其实就相当于100÷5=20头牛的草的消耗量。

我们把每头牛一天的吃草量当成为1份,假设草地每天恢复的量为x 份,那我们就可以列一个方程。

根据这个方程式,我们可以算出这个x=10,也就是说草地每天恢复10份的量。

根据题意草地原有草量为。

(16×20)-(20×10)=320-200=120(份)10头牛和75只羊每天的吃草量,其实就相当于:10+75÷5=25(头)牛的吃草量。

每天纯消耗草量:25-10=15(份)120÷(25-10)=120÷15=8(天)答:这块草地可以供10头牛和75只羊一起吃8天。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草公式口诀

牛吃草公式口诀

牛吃草公式口诀
摘要:
1.牛吃草问题简介
2.牛吃草公式推导
3.牛吃草公式应用口诀
4.实例解析
5.总结
正文:
在日常生活中,我们经常会遇到这样一种问题:牧场上有一群牛,它们在同一时间开始吃草,吃完草后,牧草的生长速度不变,牛的数量也不变。

这时,我们需要计算出牛吃完草所需要的时间。

这个问题就是著名的“牛吃草问题”。

牛吃草问题的解决方法是基于牛吃草的速度和牧草的生长速度。

假设每头牛每小时吃草的速度为v,牧草的生长速度为m,牧场原本的草量为x,牛的数量为n。

那么,我们可以得到以下的公式:
剩余草量= 初始草量- (牛的数量× 每小时吃草速度)× 吃草时间根据这个公式,我们可以推导出牛吃草的时间公式:
吃草时间= 初始草量/ (牛的数量× 每小时吃草速度+ 牧草的生长速度)
为了便于记忆,我们可以将这个公式转化为口诀:
“草量剩余等于零,牛数乘以速度除以生长速度等于时间。


接下来,我们通过一个实例来解析这个公式。

假设有一片牧场,初始草量为100,有3头牛,每头牛每小时吃草速度为5,牧草的生长速度为1。

我们可以根据公式计算出吃草时间:
吃草时间= 100 / (3 × 5 + 1) = 100 / 16 ≈ 6.25小时
因此,3头牛吃完这片牧场的草需要大约6.25小时。

总结,牛吃草问题是一个有趣且实用的数学问题。

通过掌握牛吃草公式和口诀,我们可以轻松地解决这个问题。

在实际应用中,只需要将已知条件代入公式,即可求得答案。

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型

小学奥数牛吃草问题的4个基本公式及经典题型牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。

牛吃草问题是小学奥数中的经典奥数题型之一,也是小学奥数考试中经常会涉及到的考点。

牛吃草问题讲解在小学这类问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题所求的问题。

小学奥数牛吃草问题:例1一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。

在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛 25天12×25=300 :原有草量+25天自然减少的草量24头牛 10天24×10=240 :原有草量+10天自然减少的草量从上易发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。

牛吃草问题小学奥数

牛吃草问题小学奥数

牛吃草问题牛吃草问题概念及公式牛吃草问题又称为消长问题或牛顿牧场,牛吃草问题的历史起源是17世纪英国伟大的科学家牛顿1642—1727)提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是五大基本公式:1) 设定一头牛一天吃草量为“1”2)草的生长速度=草量差÷时间差;3)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`4)吃的天数=原有草量÷(牛头数-草的生长速度);5)牛头数=原有草量÷吃的天数+草的生长速度。

这五个公式是解决牛吃草问题的基础。

首先一般假设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

求天数例1、牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

问:这片牧草可供25头牛吃多少天?练习1(求时间)1.一块牧场长满了草,每天均匀生长。

这块牧场的草可供10头牛吃40天,供15头牛吃20天。

可供25头牛吃__天。

()A. 10B. 5C. 202、一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。

如果有牛21头,几天能把草吃尽?3.有一片草地,草每天生长的速度相同。

这片草地可供5头牛吃40天,或6供头牛吃30天。

如果4头牛吃了30天后,又增加2头牛一起吃,这片草地还可以再吃几天?4.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?5.由于天气逐渐寒冷,牧场上的牧草每天以均匀的速度减少,经测算,牧场上的草可供30头牛吃8天,可供25头牛吃9天,那么可供21头牛吃几天?6.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少,如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?7.一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛有一块牧场,可供10头牛吃20天;15头牛吃10天;则它可供25头牛吃多少天?8.牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草问题概念及公式
牛吃草问题又称为消长问题或牛顿牧场牛吃草问题的·历史起源:英国数学家牛顿(1642—1727)说过:“在学习科学的时候,题目比规则还有用些”因此在他的著作中,每当阐述理论时,总是把许多实例放在一起。

在牛顿的《普遍的算术》一书中,有一个关于求牛和头数的题目,人们称之为牛顿的牛吃草问题。

,是17世纪英国伟大的科学家牛顿提出来的。

典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是︰
假设定一头牛一天吃草量为“1”
1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
3)吃的天数=原有草量÷(牛头数-草的生长速度);
4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

这类问题的基本数量关系是:
1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草量。

解多块草地的方法多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

“牛吃草”问题分析
【牛老师例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛
吃多少天?
A.3
B.4
C.5
D.6
【牛老师答案】C
【牛老师解析】设该牧场每天长草量恰可供X头牛吃一天,这片草场可供25头牛吃Y 天
根据核心公式代入
(200-150)/(20-10)=5 10*20-5*20=100 100/(25-5)=5(天)
【牛老师例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?
A.20
B.25
C.30
D.35
【牛老师答案】C
【牛老师解析】设该牧场每天长草量恰可供X头牛吃一天,
根据核心公式代入
(20×10-15×10)=5 10×20-5×20=100 100÷4+5=30(头)
【牛老师例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?
A.50
B.46
C.38
D.35
【牛老师答案】D
【牛老师解析】设每公亩牧场每天新长出来的草可供X头牛吃1天,每公亩草场原有牧草量为Y ,
24天内吃尽40公亩牧场的草,需要Z头牛
根据核心公式:
,代入
,因此,选择D
【牛老师注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。

【牛老师例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】
A.5台
B.6台
C.7台
D.8台
【牛老师答案】B
【牛老师解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y台抽水机有恒等式:
解,得,代入恒等式
【牛老师例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?【北京社招
2006】
A.16
B.20
C.24
D.28
【牛老师答案】C
【牛老师解析】设每分钟流入的水量相当于X台抽水机的排水量,共需Y小时
有恒等式:
解,得,代入恒等式
【牛老师例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)【浙江2007】
A.2周
B.3周
C.4周
D.5周
【牛老师答案】C
【牛老师解析】设每天新生长的野果足够X只猴子吃,33只猴子共需Y周吃完
有恒等式:
解,得,代入恒等式
【牛老师例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了【浙江2006】
A.2小时
B.1.8小时
C.1.6小时
D.0.8小时
【牛老师答案】D
【牛老师解析】设共需X小时就无人排队了。

例题1、旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客OK了求增加人数的速度还有原来的人数
设一个检票口一分钟一个人
1个检票口30分钟30个人
2个检票口10分钟20个人
(30-20)÷(30-10)=0.5个人
原有1×30-30×0.5=15人
或2×10-10×0.5=15人
2、有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份
所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
所以45-30=15天,每亩面积长84-60=24份
所以,每亩面积每天长24÷15=1.6份
所以,每亩原有草量60-30×1.6=12份
第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
所以,一共需要38.4+3.6=42头牛来吃。

两种解法:
解法一:
设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)
解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15亩,可以推出15亩每天新长草量(28×45-30×30)/(45-30)=24;15亩原有草量:1260-24×45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头。

相关文档
最新文档