年级奥数牛吃草问题练习题及答案

合集下载

小学奥数牛吃草习题有答案

小学奥数牛吃草习题有答案

小学奥数牛吃草习题5、牧场上一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛6、一只船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进入一些水,如果用12个人舀水,3小时可以舀完,如果只有5个人舀水,要10小时才能舀完,现在要2小时舀完,需要多少人7、一水井原有水量一定,河水每天均匀入库,5台抽水机连续20天可以抽干,6台同样的抽水机连续15天可以抽干,若要求6天抽干,需要多少台同样的抽水机8一个水池安装有排水量相等的排水管若干根,一根进水管不断往池里放水,平均每分钟进水量相等,如果开放三根排水管,45分钟可把池中水放完;如果开放5根排水管,25分钟可把池中水放完;如果开放8根排水管,几分钟排完水池中的水9、有一酒槽,每天泄漏等量的酒,如让6人饮,则4天喝完;如让4人饮,则5天喝完,若每人的饮酒量相同,问每天的漏酒量为多少10、某火车站的检票口,在检票开始前已有一些人排队,检票开始后每分钟有10人前来排队检票;一个检票口每分钟能让25人检票进站;如果只有一个检票口,检票开始8分钟后就没有人排队;如果两个检票口,那么检票开始后多少分钟就没有人排队11、某游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进10个游客;如果开放4个入口,20分钟就没有人排队;现在开放6个入口,那么开门后多少分钟就没有人排队12、一个大水坑,每分钟从四周流掉四壁渗透一定数量的水;如果用5台水泵,5小时就能抽干水坑的水;如果用10台水泵,3小时就能抽干水坑的水;现在要1小时抽干水坑的水,问要用多少台水泵13、画展9点开门,但早有人排队等候入场;从第一个观众来到时起,每分钟来的观众人数一样多,如果开了3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没人排队,问第一个观众到达的时间是几点几分14、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底;白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米;黑夜往下滑,两只蜗牛滑行的速度都是相同的;结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底;求井深;15、经测算,地球上的资源可供100亿人生活100年或可供80亿人生活300年;假设地球每年新生成的资源是一定的,为了使资源不至减少,地球上最多生活多少人16、自动扶梯以平均速度往上行驶着,两位急性的孩子要从扶梯上梯;已知男孩每秒钟走3级梯级,女孩每妙秒钟走2级梯级;结果男孩用了4秒钟到达梯顶,女孩用了5秒钟到达梯顶,问扶梯共有多少级17、11头牛10天可吃5公顷草地上的草;12头牛14天可吃完6公顷全部牧草;问8公顷草地可供19头牛吃多少天假设每块草地每公顷每天牧草长得一样快4、解:设每头牛每天的吃草量为117头牛30天的吃草量为:17×30=51019头牛24天的吃草量为:19×24=456两种吃法的草量差一定是新生的草的一部分,这部分新生的草对应的时间是两种吃法所用的时间差;每天新生的草量:510-456÷30-24=9原有草量:510-9×30=240经过6+2=8天之后,牧场上原有和新生的草的总量是:240+9×8=312吃草8天的牛共吃的草量:312-4×6=288共有吃8天草的牛:288÷8=36头加上4头死亡的牛,一共有牛:36+4=40头5、解:设每头牛每周的吃草量为127头牛6周的吃草量为:27×6=16223头牛9周的吃草量为:23×9=207两种吃法的草量差一定是新生的草的一部分,这部分新生的草对应的时间是两种吃法所用的时间差;每周新生的草量:207-162÷9-6=15原有草量:162-15×6=72每周新生的草量为15个单位,也就是够15头牛吃的,设想21头牛中15头专吃新生的草,剩下的牛吃原有的草,全部牧场的草供21头牛可吃的周数:72÷21-15=12周6、解:设每人每小时的舀水量为112人3小时舀水量为:12×3=365人10小时舀水量为:5×10=50两种方法的舀水量差一定是新进入的水的一部分,这部分新进入的水对应的时间是两种方法法所用的时间差;每小时新进入的水量:50-36÷10-3=2原有水量:36-2×3=30每小时新进入的水量为2个单位,也就是够2人舀的水量,设想2人专舀新进入的水量,其它人舀原有的水;如果2小时舀完,需用的人数:30÷2+2=17人7、解:设每台抽水机每天的抽水量为15台抽水机20天舀水量为:5×20=1006台抽水机15天舀水量为:6×15=90两种方法的抽水量差一定是新进入的水的一部分,这部分新进入的水对应的时间是两种方法法所用的时间差;每小天新进入的水量:100-90÷20-15=2原有水量:100-2×20=60每天新进入的水量为2个单位,也就是够2台抽水机抽的水量,设想2台抽水机专抽新进入的水量,其它抽水机抽原有的水;如果6天抽干,需要的抽水机数:60÷6+2=12台8、解:设每根排水管每分钟的排水量为13根排水管45分钟的排水量为:3×45=1355根排水管25分钟的排水量为:5×25=125两种方法的排水量差一定是新放入的水的一部分,这部分新进入的水对应的时间是两种方法所用的时间差;每分钟新进入的水量:135-125÷45-25=原有水量:×45=每分钟新放入的水量为个单位,也就是够台抽水机抽的水量也就是2分钟新进入的水量够1根排水管1分钟排的,设想台抽水机专抽新进入的水量,其它抽水机抽原有的水;排完水池中的水,需要:÷=15分钟9、解:设每人每天喝的酒量为16人4天喝的酒量为:6×4=244人5天喝的酒量为:4×5=20两种喝法的酒量差一定是泄漏的酒的一部分,这部分泄漏的酒对应的时间是两种喝法所用的时间差;每天泄漏的酒量:24-20÷5-4=4每天泄漏的酒量为4个单位,也就是够4人喝的酒量10、解:一个检票口8分钟检票进站人数:25×8=200人一个检票口8分钟新增加的排队检票的人数:10×8=80人原有的排队人数:200-80=120人开2个检票口在一分钟内,原有队伍中检完票的人数:25×2-10=40人开2个检票口,需要几分钟检完票:120÷40=3分钟11、解:4个入口20分钟进入的游客数:4×10×20=800人20新增加的排队游客数:800-400=400人每分钟增加的排队游客数:400÷20=20人/分钟6个入口在1分钟内,进入的原有排队游客数:6×10-20=40人6个入口多少分钟后就没有人排队:400÷40=10分钟12、解:设每台水泵每小时的抽水量为15台水泵5小时的抽水量为:5×5=2510台水泵3小时的抽水量为:10×3=30两种方法的抽水量差一定是新流掉水量的一部分,这部分新流掉的水量对应的时间是两种方法所用的时间差;每小时新流掉的水量:30-25÷5-3=原有水量:25+×5=在原有水量里再减去新流掉的水量,才是真正要抽的水量;要1小时抽干,需要的水泵台数:台13、解:每分钟入场的客众量为19分钟3个入口入场的观众量:9×3=275分钟5个入口入场的客众量:5×5=25每分钟新来的客众量:27-25÷9-5=原有观众量:×9=来了个单位的观众量需要多长时间:÷=45分钟第一个观众到达的时间:60-45=15分,8点15分;14、解:第一只蜗牛比第二只蜗牛5个白天共多爬行的距离:20-15×5=25分米第一只蜗牛比第二只蜗牛5个白天共多爬行的距离,正是第二只蜗牛爬行1个白天和滑行一个夜晚的距离,也就是第二只蜗牛行进一昼夜的距离;从井顶到井底第二只蜗牛用了6个昼夜,因此井深为:25×6=150分米15、解:假设每人每年生活需要的资源量为1100亿人生活100年生活需要的资源量为:100×100=1000080亿人生活300年生活需要的资源量为:80×300=24000每年新生成的资源量:24000-10000÷300-100=70使资源不至减少,利用每年新生的资源来满足人们的生活需要,因此地球上最多生活:70÷1=70亿人16、解:男孩到达梯顶多走的梯级数:3×4=12女孩到达梯顶多走的梯级数:2×5=10每秒钟扶梯走的梯级数12-10÷5-4=2梯级数:3+2×4=20男孩走梯级的速度加上扶梯上升的速度才是男孩实际上升的速度,即3+2=5,一秒钟男孩上升了5个梯级,到达梯顶用时是4秒钟,因此扶梯梯级数为20;17、解:设每头牛每天的吃草量为111头牛10天,说明在5公顷草地上总产草量原有草及新生长的草为11×10=110;1公顷草地上产草量是:110÷5=2212头牛14天,说明在6公顷草地上总产草量原有草及新生长的草为12×14=168;1公顷草地上产草量是:168÷6=281公顷草地上新长的草量:28-22÷14-10=1公顷草地上原有的草量:×10=78公顷草地原有草量:7×8=568公顷可供19头牛吃:56÷×8=8天。

牛吃草问题练习题及答案

牛吃草问题练习题及答案

牛吃草问题练习题及答案一、基础题1. 一片草地上有足够的草,可供10头牛吃30天。

若15头牛吃这片草地,可以吃几天?2. 一片草地上有草若干,每天生长的草量可供5头牛吃1天。

若20头牛吃这片草地,可以吃几天?3. 一片草地上有草若干,每天生长的草量可供10头牛吃2天。

若30头牛吃这片草地,可以吃几天?4. 一片草地上有草若干,每天生长的草量可供15头牛吃3天。

若40头牛吃这片草地,可以吃几天?5. 一片草地上有草若干,每天生长的草量可供20头牛吃4天。

若50头牛吃这片草地,可以吃几天?二、提高题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,每天实际消耗的草量是生长量的几倍?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,每天实际消耗的草量是生长量的几倍?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,每天实际消耗的草量是生长量的几倍?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,每天实际消耗的草量是生长量的几倍?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,每天实际消耗的草量是生长量的几倍?三、拓展题1. 一片草地上有草若干,每天生长的草量可供10头牛吃1天。

若20头牛吃这片草地,草地上的草可以维持多少天?2. 一片草地上有草若干,每天生长的草量可供15头牛吃2天。

若30头牛吃这片草地,草地上的草可以维持多少天?3. 一片草地上有草若干,每天生长的草量可供20头牛吃3天。

若40头牛吃这片草地,草地上的草可以维持多少天?4. 一片草地上有草若干,每天生长的草量可供25头牛吃4天。

若50头牛吃这片草地,草地上的草可以维持多少天?5. 一片草地上有草若干,每天生长的草量可供30头牛吃5天。

若60头牛吃这片草地,草地上的草可以维持多少天?四、综合应用题1. 一片草地原有草量可供50头牛吃20天,若这片草地每天长出的草量可以供10头牛吃1天。

(完整版)小学奥数之牛吃草问题(含答案)

(完整版)小学奥数之牛吃草问题(含答案)

“牛吃草问题就是追及问题,牛吃草问题就是工程问题。

”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。

这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。

解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。

把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。

求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。

解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。

----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。

如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。

这类工作总量不固定(均匀变化)的问题就是牛吃草问题。

例1 牧场上一片青草,每天牧草都匀速生长。

这片牧草可供10头牛吃20天,或者可供15头牛吃10天。

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

经典奥数:牛吃草问题(专项试题)一.填空题(共6小题)1.某牧场上有一片青草,可供27头牛吃6周,或供23头牛吃9周.如果草每周生长速度相同,那么这片青草可供21头牛吃周.2.有一个蓄水池装有9根水管,其中一根为进水管,其余8根是相同的出水管.已知储水池内有一定体积的水,并且进水管正以均匀的速度向这个蓄水池注水,如果8根出水管全部打开,需要3小时把池内的水全部排光;如果打开5根出水管,需要6小时把池内的水全部排光.如果在9小时内把水池中的水全部排光,需要同时打开根出水管.3.一艘轮船发生漏水事故。

当漏进水600桶时,两部抽水机开始排水,甲机每分钟能排水20桶,乙机每分钟能排水16桶,经50分钟刚好将水全部排完。

每分钟漏进的水有桶。

4.有一个酒桶坏了,所以每天匀速往外面流失酒,已知酒桶里面的酒可供7人喝6天,可供5人喝8天.若1人独饮,可以喝天.5.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完、请问:(1)要使得草永远吃不完,最多可以放养头牛;(2)如果放养36头牛,天可以把草吃完.6.李奶奶家有12只鸡蛋和一只每天能下一只鸡蛋的母鸡,如果她家每天要吃3只鸡蛋,那么这些鸡蛋可连续吃天.二.解答题(共15小题)7.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120个工人砌10天后,又增加5个工人一起砌还需要再砌几天可以把砖用完?8.一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进水600桶.一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完.每分钟漏进的水有多少桶?9.陕北某村有一块草场,假设每天草都均匀生长.这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?10.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?11.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管,开始进水管以均匀的速度不停地向这个蓄水池注水,池内注入一些水后,有人想把出水管也打开,使池内的水再全部排光,如果把8根出水管全部打开,需要3个小时可将池内的水排光;若仅打开3根出水管,则需要18小时才能将池内的水排光.问:如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?12.某地遭遇干旱,政府为解决居民饮水问题,在一眼山泉旁边修了一个蓄水池,每小时有40立方米的水注入水池.当开动5台抽水机时,2.5小时把池水抽完,当开动8台抽水机时,1.5小时把池水抽完,这个蓄水池能容多少立方米水?13.一只船被发现漏水时,已经进了一些水,水均匀进入船内.如果10人淘水,3小时淘完;如果5人淘水,8小时淘完.如果要求2小时淘完,需要安排多少人淘水?14.牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?15.现在有牛、羊、马吃一块地的草,草均匀生长,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?16.有一口水井.在无渗水的情况下,甲抽水机用20小时可将水抽完,乙抽水机用12小时可将水抽完.现在甲、乙两台抽水机同时抽,由于有渗水,结果用9小时才将水抽完.在有渗水的情况下,用甲抽水机单独抽需多少小时抽完?17.有100名游客在世界文化历史遗产秦始皇兵马俑博物馆门前排队,开门后每分钟来的游人是相等的,一个入口处平均每分钟可以放进10名游客;如果两个入口处20分钟就可以全部检完票,外面没有人排队了,为了减少游客排队时间,现在开放4个入口处,那么开门后多少分钟就没有人排队了?18.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?19.科技馆9点营业,每分钟来的人数相同.如果开5个窗口,则9点5分可无人排队;如果开3个窗口,则9点9分可没有人,求8点几分第一个游客到?20.某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用9辆车发货,12小时可运完.若用8辆车发货,16小时可运完.快递公司开始只用了6辆车发货,三小时后增加若干辆车.再经过5小时就运完了,那么后来增加的车辆数应该是多少辆?21.有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?参考答案与试题解析一.填空题(共6小题)1.【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(23×9﹣27×6)÷(9﹣6),=45÷3,=15(份);原有的草的份数:27×6﹣6×15,=162﹣90,=72(份);可供21头牛吃:72÷(21﹣15),=72÷6,=12(周);答:这个草场的草可供21头牛吃12周.故答案为:12周.2.【解答】解:设每根出水管每小时出水1份,进水管的速度为:(5×6﹣8×3)÷(6﹣3),=6÷3,=2(份);蓄水池内原有的水为:5×6﹣2×6,=30﹣12,=18(份);9小时内把水池中的水全部排光,需要打开出水管的根数是:(18+2×9)÷9,=36÷9,=4(根);答:如果在9小时内把水池中的水全部排光,需要同时打开4根出水管.故答案为:4.3.【解答】解:[(20+16)×50﹣600]÷50=[36×50﹣600]÷50=[1800﹣600]÷50=1200÷50=24(桶)答:每分钟漏进的水有24桶。

五年级数学奥数:牛吃草问题练习及答案【三篇】

五年级数学奥数:牛吃草问题练习及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是⽆忧考为⼤家整理的《五年级数学奥数:⽜吃草问题练习及答案【三篇】》供您查阅。

【第⼀篇】牧场上⼀⽚青草,每天牧草都匀速⽣长.这⽚牧草可供10头⽜吃20天,或者可供15头⽜吃10天.问:可供25头⽜吃⼏天? 分析:这类题难就难在牧场上草的数量每天都在发⽣变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新⽣长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速⽣长,所以这⽚草地每天新长出的草的数量相同,即每天新长出的草是不变的.即: (1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的. (2)在已知的两种情况中,任选⼀种,假定其中⼏头⽜专吃新长出的草,由剩下的⽜吃原有的草,根据吃的天数可以计算出原有的草量. (3)在所求的问题中,让⼏头⽜专吃新长出的草,其余的⽜吃原有的草,根据原有的草量可以计算出能吃⼏天. 解答:解:设1头⽜1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50. 为什么会多出这50呢?这是第⼆次⽐第⼀次多的那(20-10)=10天⽣长出来的,所以每天⽣长的青草为50÷10=5. 现从另⼀个⾓度去理解,这个牧场每天⽣长的青草正好可以满⾜5头⽜吃.由此,我们可以把每次来吃草的⽜分为两组,⼀组是抽出的15头⽜来吃当天长出的青草,另⼀组来吃是原来牧场上的青草,那么在这批⽜开始吃草之前,牧场上有多少青草呢?(10-5)×20=100. 那么:第⼀次吃草量20×10=200,第⼆次吃草量,15×10=150; 每天⽣长草量50÷10=5. 原有草量(10-5)×20=100或200-5×20=100. 25头⽜分两组,5头去吃⽣长的草,其余20头去吃原有的草那么100÷20=5(天). 答:可供25头⽜吃5天. 点评:解题关键是弄清楚已知条件,进⾏对⽐分析,从⽽求出每⽇新长草的数量,再求出草地⾥原有草的数量,进⽽解答题中所求的问题. 这类问题的基本数量关系是: 1、(⽜的头数×吃草较多的天数-⽜头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量. 2、⽜的头数×吃草天数-每天新长量×吃草天数=草地原有的草.【第⼆篇】由于天⽓逐渐冷起来,牧场上的草不仅不长⼤,反⽽以固定的速度在减少.已知某块草地上的草可供20头⽜吃5天,或可供15头⽜吃6天.照此计算,可供多少头⽜吃10天? 分析:20头⽜5天吃草:20×5=100(份):15头⽜6天吃草:15×6=90(份);青草每天减少:(100-90)÷(6-5)=10(份);⽜吃草前牧场有草:100+10×5=150(份); 150份草吃10天本可供:150÷10=15(头);但因每天减少10份草,相当于10头⽜吃掉;所以只能供⽜15-10=5(头). 解:①青草每天减少:(20×5-90)÷(6-5)=10(份); ②⽜吃草前牧场有草 10×5+20×5 =50+100, =150(份). ③150÷10-10, =5(头). 答:可供5头⽜吃10天. 点评:此题属于⽜吃草问题,这类题⽬有⼀定难度.对于本题⽽⾔,关键的是要求出青草每天减少的数量.【第三篇】有⼀个蓄⽔池装有9根⽔管,其中⼀根为进⽔管,其余8根为相同的出⽔管.进⽔管以均匀的速度不停地向这个蓄⽔池注⽔.后来有⼈想打开出⽔管,使池内的⽔全部排光(这时池内已注⼊了⼀些⽔).如果把8根出⽔管全部打开,需3⼩时把池内的⽔全部排光;如果仅打开5根出⽔管,需6⼩时把池内的⽔全部排光.问要想在4.5⼩时内把池内的⽔全部排光,需同时打开⼏个出⽔管? 分析:假设打开⼀根出⽔管每⼩时可排⽔“1份”,那么8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份);两种情况⽐较,可知3⼩时内进⽔管放进的⽔是30-24=6(份);进⽔管每⼩时放进的⽔是6÷3=2(份);在4.5⼩时内,池内原有的⽔加上进⽔管放进的⽔,共有8×3+(4.5-3)×2=27(份).由此解答即可. 解:设打开⼀根出⽔管每⼩时可排出⽔“1份”,8根出⽔管开3⼩时共排出⽔8×3=24(份);5根出⽔管开6⼩时共排出⽔5×6=30(份). 30-24=6(份),这6份是“6-3=3”⼩时内进⽔管放进的⽔. (30-24)÷(6-3)=6÷3=2(份),这“2份”就是进⽔管每⼩时进的⽔. [8×3+(4.5-3)×2]÷4.5 =[24+1.5×2]÷4.5 =27÷4.5 =6(根) 答:需同时打开6根出⽔管. 点评:此题属于⽜吃草问题,解答关键是把打开⼀根出⽔管每⼩时可排⽔“1份”,进⼀步分析推理求解.。

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

(完整版)小学五年级奥数:牛吃草问题(题目+答案)

精心整理精心整理牛吃草问题例:有一片牧草,草每天匀速的生长,这片牧草可供100头牛吃3周,可供50头牛吃8周,那么可供多少头牛吃两周?设每头牛每周吃草一份,100头牛3周吃的草:100×3=300(份)50头牛8周吃的草:50×8=400(份)草的生长速度:(400-300)÷(8-3)=20(份)原有牧草的份数:100×3-3×20=240(份)(240+20×2)÷2=140(头)① 一个牧场,19头牛只需要24天就将草吃完。

问没有卖掉4设一头牛一天吃一份草.17头牛30天吃的草:17×30=510(份)19头牛24天吃的草:19×24=456(份)每天长草数:(510-456)÷(30-24)=9牧场原有草数:510-9×30=240(份)8天可吃草数:240+8×9=312(份)设卖牛前有x 头:6x+2(x-4)=312x=40② 一片牧草,可供9头牛12干头牛来吃草,再吃67天起增加了多少头牛?设一头牛一天吃一份草.9头牛12天吃的草:9×128头牛)=5(份)从开始46天可知前后共计12天,这片草地共有草量:48+5×12=108(份)开始的44×12=48(份)(头)③ 有一片草地,可供8只羊吃20天,或供14只羊吃10天。

假设草每天的生长速度不变,现有羊若干只,吃了4天后又增加了6只,这样又吃了2天,便将草吃完。

问:原有羊多少只? 设一只羊吃一天的草量为一份.每天新长的草量:(8×20-14×10)÷(20-10)=2(份)原有的草量:8×20-2×20=120(份)若不增加6只羊,这若干只羊吃6天的草量,等于原有草量加上4+2=6天新长草量再减去6只羊2天吃的草量:120+2×(4+2)-1×2×6=120(份)羊的只数:120÷6=20(只)④ 某牧场长满了草,若用17人去割,30天可割尽;若用19人去割,则只要24天便可割尽.假设草每天匀速生长,每人每天割草量相同.问49人几天可割尽?青草的生长速度:(17×30-19×24)÷(30-24)=9(份)精心整理精心整理原有的草的份数:17×30-9×30=240(份)让49人中的9人割生长的草,剩下的40人割草地原有的240份草,可割:240÷40=6(天)⑤由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.牧场上的草可供20头牛吃5天,或可供16头牛吃6天,那么,可供11头牛吃几天?每天草减少的量:(20×5-16×6)÷(6-5)=4(份)牧场上原有的草:(20+4)×5=120(份)可供11头牛吃:120÷(11+4)=8(天)⑥由于天气逐渐变冷,牧场上的草每天以固定的速度减少.牧场上的草可供20头牛吃5天,或可供12头牛吃7天,那么可供6头牛吃几天?每天草减少的量:(20×5-12×7)÷(7-5)=8(份)牧场上原有的草:(20+8)×5=140(份)可供6头牛吃:140÷(6+8)=10(天)⑦牧场上的一片牧草,可供24头牛吃6,那么可以供19头牛吃几周?每周新生草量:(18×10-24×6)÷(10-6)原来有草:24×6-9×6=90(份)设19头牛吃完这片牧草用了x周:19x=90+9xX=9。

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)

小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。

问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。

2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。

多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。

3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。

若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。

问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。

若要5天内抽干水,需要抽水机40÷5+4=12台。

4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

高斯小学奥数四年级下册含答案第17讲_牛吃草问题

第十七讲牛吃草问题什么是“牛吃草问题”呢?同学们先来看看一个简单的例子:仓库里有一堆草,给4头牛吃,6天可以吃完,如果给3头牛吃,几天能吃完? 这道题该怎么处理呢?我们可以借助下面这个关系式来进行求解:由于每头牛每天的吃草量是不变的,因此可以把它设为单位“1”.这样4头牛6天吃掉的草量就等于4624⨯=个单位,而3头牛每天吃掉“3”个单位的草,因此3头牛需要2438÷=天才能吃完.大家看,牛吃草问题是不是很简单?但是,这道题还不是真正的“牛吃草问题”呢.真正的“牛吃草问题”不是让一群牛去仓库里吃草,而是去一片草地上吃草.大家能看出这其中的区别吗?地方更宽敞?草更新鲜?当然不是这些,最大的区别在于,仓库里草的总量是固定不变的,而草地上的草还在不停地生长,这样一来问题一下子就变复杂了.不过大家不用害怕,有了上面设单位“1”的方法后,这类题目的解法是很容易的,大家可以从下面的例子中学到这种方法.首先我们来看一下例题1,当草地原草量和生长量都告诉我们的时候,我们该如何解决“牛吃草问题”.-例题1一块草地有草180份,每天长5份.如果每头牛每天吃1份草,那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)6头牛,吃_______天;(3)10头牛,吃_______天;(4)_______头牛,吃18天;(5)_______头牛,吃15天.「分析」原有草量已知,要计算多少天可以把草吃完,关键是找出每天减少多少草量.练习1一块草地有草60份,每天长2份.那么:(1)要使得草永远吃不完,那么最多放养_______头牛;(2)5头牛,吃_______天;(3)7头牛,吃_______天;(4)_______头牛,吃10天;(5)_______头牛,吃15天.当原草量和生长量都未知时,我们该怎么办呢?例题2有一片牧场,草每天都在均匀地生长.如果在牧场上放养18头牛,那么10天就把草吃完了;如果放养24头牛,那么7天就把草吃完了.(1)要放养多少头牛,才能恰好14天把草吃完?(2)如果放养32头牛,多少天可以把草吃完?「分析」这是最常见的牛吃草问题,这类问题的难点在于牛吃草的同时,草还在生长.假设1头牛1天吃1份草,会发现两种放养方法吃的总草量不同.为什么会这样呢?因为两次草生长的天数不同,于是就可以算出草生长的速度了.练习2有一片牧场,草每天都在均匀地生长.如果放养24头牛,那么6天就把草吃完了;如果放养21头牛,那么8天就把草吃完了.(1)放养多少头牛,12天才能把草吃完?(2)要使得草永远吃不完,那么最多放养多少头牛?我们可以把例2的方法总结一下,得出牛吃草问题的基本解题步骤:1.将每头牛每天的吃草量设为单位“1”;2.比较已知条件中的牛的吃草总量,算出草每天的生长量;3.计算草地原有草的总量;4.根据所问问题求解.前面的两道题都是草在生长,草的总量在增加.而实际生活中,草量有时也会随着时间不断减少,那么碰到这样的问题我们该怎么办呢?下面就来看一道这样的问题.例题3进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少.现在开始在这片牧场上放羊,如果放38只羊,需要25天把草吃完;如果放30只羊,需要30天把草吃完.(1)放养多少只羊,12天才能把草吃完?(2)如果放20只羊,这片牧场可以吃多少天?「分析」本题在羊吃草的同时,草也在不断的减少,这也是牛吃草问题的一种.同前面的问题一样,我们还是要对比一下两个已知条件,算出草的减少速度和原有草总量.练习3进入冬季,有一片牧场上的草开始枯萎,因此均匀地减少.若在这儿放牛,可以供32头牛吃24天,或者供27头牛吃28天.(1)放养多少头牛,12天才能把草吃完?(2)如果在这片牧场上养21头牛,那么草可以供吃多少天?例题4有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么17头牛和20只羊多少天可将草吃完?「分析」这道题既有牛又有羊,只需将牛羊统一,然后按照基本的牛吃草问题求解即可.练习4一片草场,草每天都在均匀生长.如果在这片草场上放20头牛和24头羊,那么18天可以吃完;如果在这片草场上放15头牛和54头羊,那么15天就把草吃完.已知,一头牛每天吃的草量相当于3只羊每天吃的草量,请问如果在这片草地上放12头牛和18头羊可以吃几天?在前面的例题中,牛总是听话地呆在某一块草地上吃草,因此在吃的过程中,牛的数量不会发生改变.而实际上,牛有时不会老老实实呆在一块草地上的,它们会四处走动,而牛一走动就会改变草地上牛的数量.那么在吃草的过程中,牛的数量发生变化又该如何处理呢?请大家来看下面的问题.例题5一片草地,草每天都在均匀生长.有15头牛吃草,8天可以把草全部吃完.如果起初这15头牛吃了2天后,又来了2头牛,则总共7天就可以把草吃完.如果起初这15头牛吃了2天后,又来了5头牛,则总共需要多少天可以把草吃完?假定草生长的速度不变,每头牛每天吃的草量相同.「分析」这道题牛的数量在变化,但同其他牛吃草问题一样,还是需要通过比较草量的变化求出每天生长的草量和原有草量.有很多的问题看上去和“牛吃草”毫无联系,但仔细观察就会发现,它们都只是换了个形式的“牛吃草”而已.这样的问题通常都可以看成牛吃草问题来求解,下面我们来看一个这样的例子.例题6有一个蓄水池装有8根排水管,某天天降大雨,雨水以均匀的速度不停地向这个蓄水池注入.后来有人想打开排水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根排水管全部打开,需3小时把池内的水全部排光;如果打开5根水管,需6小时把池内的水全部排光.想要4.5小时把池内的水全部排光,需同时打开多少根排水管?「分析」雨水注入蓄水池,排水管往外排水,这和牛吃草问题有什么类似呢?什么量相当于牛、什么量相当于草呢?课堂内外牛顿的故事牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的.牛顿Newton(1642~1727,英国人)是大科学家,是近代科学的象征.他在世时作为科学界的主宰几乎被当作偶像崇拜.他作为英国皇家学会连任24年的终身会长,法国科学院至尊的外国院士,还兼任英国造币局局长和国会议员,并前所未有地被封为贵族,获得爵士称号.他死后作为自然科学家又第一个获得国葬,长眠于威斯敏斯特教堂,这是历代帝王和一流名人的墓地.牛顿去世之后,他的声望有增无减.他不仅有不朽的著作《自然哲学的数学原理》《光学》等流传于世,而且由于后继大师们的发展,他的思想观念长期统率着科学战线上的士卒.他在物理、数学研究上的主要成果,至今仍是各国大中学生必修的功课.牛顿名言:“我不知道在别人看来,我是什么样的人;但在我自己看来,我不过就像是一个再海滨玩耍的小孩,为不时发现比寻常更为光滑的一块卵石或比寻常更为美丽的一片贝壳而沾沾自喜,而对于展现在我面前的浩瀚的真理的海洋,却全然没有发现.”“如果说我比别人看得更远些,那是因为我站在了巨人的肩上.”“无知识的热心,犹如在黑暗中远征.”“你该将名誉作为你最高人格的标志.”“我能算出天体运行的轨道,却算不出人性的贪婪.”作业1.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完.那么要使得草永远吃不完,最多可以放养多少头牛?2.有一片牧场,草每天都在均匀地生长.如果放养8头牛,8天就把草吃完了;如果放养10头牛,6天就把草吃完了.如果放养14头牛,多少天就能把草吃完?3.有一片均匀生长的草地,可以供1头牛吃40天,或者供5只羊吃20天,如果1头牛每天吃草量相当于3只羊每天吃的草.那么这片草地每天生长的草可供多少只羊吃1天?这片草地的原草量可供多少只羊吃1天?如果让1头牛与6只羊一起吃可以吃多少天?4.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,如果没有放养牛,牧场上的草全部枯萎需要多少天?5.一片草地,可供8头牛吃30天或者供10头牛吃25天.那么这片草地可供4头牛吃多少天?第十七讲牛吃草问题1.例题1答案:5;180;36;15;17详解:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养5头牛;(2)方法一:6头牛每天吃6份,而草每天长5份,实际相当于每天消耗1份草,一共能吃1801180÷=天;方法二:6头牛派5头牛去吃每天新生长的草,而1头牛吃原草,仍然是180天;(3)方法同第二问,()÷-=天;18010536(4)方法一:18天,原草与新草一共是180518270+⨯=份,吃了18天,所以每天要吃2701015÷=份,所以需要15头牛;方法二:原草180份,吃18天,需要10头牛,但是还要有5头牛吃每天新长的草,一共要15头牛;(5)方法同第四问,18015517÷+=头.2.例题2答案:14;5详解:(1)设每头牛每天吃1份草,18头牛10天吃180份,24头牛7天吃168份.相差了18016812-=天的草,所以草每天的生长量是-=份,是因为多长了10731234-=÷=份.10天后是180份,10天长了40份新草,所以原草量是18040140份.140份草要14天吃完,需要10头牛,其中还需要4头牛吃每天的新草,一共需要10414+=头牛;(2)32头牛中有4头牛吃新草,剩下28头牛吃原有的140份草,所以需要吃÷=天.1402853.例题3答案:90;40详解:(1)设每只羊每天吃1份草,38只羊25天吃950份,30只羊30天吃900份.相差了95090050-=天的草,所以草每天的枯萎量-=份,是因为多枯萎了30255是50510⨯=份草,所以原草量是÷=份.30天后是900份,30天枯萎了3010300+=份.1200份草要12天吃完,即每天减少100份,其中每天枯萎900300120010份草,所以每天羊吃90份草,所以放养90只羊;(2)每天枯萎10份,放养20只羊,则每天一共减少30份,把1200份草吃光,需要12003040÷=天.答案:10详解:设每只羊每天吃1份草.14头牛可换为56只羊,所以56只羊30天吃⨯=份.每天的生长量是56301680⨯=份;70只羊16天吃70161120()()-⨯=份.17头牛和20 16801120301640-÷-=份,原草量是16803040480只羊相当于88只羊,其中有40只羊吃新草,剩下48只羊吃480份原草,需要10天.5.例题5答案:6天详解:设每头牛每天吃1份草,15头牛8天吃120份;15头牛7天,2头牛5天吃⨯+⨯=份.每天草的生长量是()()15725115-÷-=份.原草量是120115875-⨯=份.如果15头牛吃了2天,有5头牛吃原草,相当于还有10头牛1205880在吃原草,原草还剩下8010260-⨯=份.20头牛中5头牛吃每天新长的草,剩下的15头牛吃原有草,需要60154+=天.÷=天.一共用了2466.例题6答案:6根详解:设每根水管每小时排1份水,8根3小时排24份水,5根6小时排30份水,雨水每小时注入()()-⨯=份水.2根水-÷-=份水,池内原有2423183024632管用来排新注入的雨水,原水需要18 4.54÷=根水管,一共需要同时打开6根水管.7.练习1答案:2;20;12;8;6简答:(1)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养2头牛;(2)方法一:5头牛每天吃5份,而草每天长2份,实际相当于每天消耗3份草,一共能吃60320÷=天;方法二:5头牛派2头牛去吃每天新生长的草,而3头牛吃原草,仍然是20天;(3)方法同第二问,()÷-=天;607212(4)方法一:10天,原草与新草一共是6021080+⨯=份,吃了10天,所以每天要吃80108÷=份,所以需要8头牛;方法二:原草60份,吃10天,需要6头牛,但是还要有2头牛吃每天新长的草,一共要8头牛;(5)方法同第四问,601526÷+=头.答案:18;12简答:(1)设每头牛每天吃1份草,24头牛6天吃144份,21头牛8天吃168份.相差了16814424-=份,是因为多长了862-=天的草,所以草每天的生长量是24212÷=份.6天后是144份,6天长了72份新草,所以原草量是1447272-=份.72份草要12天吃完,需要6头牛,其中还需要12头牛吃每天的新草,一共需要61218+=头牛;(2)要使得草永远吃不完,放养的牛数又要最多,就一定是长多少吃多少,所以需要放养12头牛.9. 练习3答案:67;35简答:(1)设每头牛每天吃1份草,32头牛24天吃768份,27头牛28天吃756份.相差了76875612-=份,是因为多枯萎了28244-=天的草,所以草每天的枯萎量是1243÷=份.24天后是768份,24天枯萎了24372⨯=份草,所以原草量是76872840+=份.840份草要12天吃完,即每天减少70份,其中每天枯萎3份草,所以每天牛吃67份草,所以放养67头牛;(2)每天枯萎3份,放养21头牛,则每天一共减少24份,把840份草吃光,需要8402435÷=天.10. 练习4答案:30天简答:设每只羊每天吃1份草.20头牛可换为60只羊,所以84只羊18天吃84181512⨯=份;15头牛可换为45只羊,所以99只羊15天吃99151485⨯=份.每天的生长量是()()1512148518159-÷-=份,原草量是151********-⨯=份.12头牛和18只羊相当于54只羊,其中有9只羊吃新草,剩下45只羊吃1350份原草,需要30天.11. 作业1答案:12头简答:设每头牛每天吃草“1”,246144⨯=,218168⨯=,所以草每天生长量为 ()()1681448612-÷-=.要想草永远吃不完,牛每天吃掉的草不能超过草每天长的量,最多可放养12头牛,原草量不变.12. 作业2答案:4天简答:8864⨯=,10660⨯=,草每天生长量为()()6460862-÷-=,原草量是606248-⨯=.放养14头牛,草每天减少14212-=,经过48124÷=天草就吃完了.13. 作业3答案:1只;80只;10天简答:设每只羊每天吃草“1”,把牛转换为羊,340120⨯=,520100⨯=,草每天长()()12010040201-÷-=,可供1只羊吃一天.原有草量是12040180-⨯=,可供80只羊吃一天.1头牛和6只羊相当于是9只羊,可以吃()809110÷-=天.14. 作业4答案:30天简答:205100⨯=,16696⨯=,比较发现草每天枯萎()()10096654-÷-=.所以5天草共枯萎4520⨯=,原草量是10020120+=,没有牛的话,一共需要120430÷=天草全部枯萎.15. 作业5答案:50天简答:830240⨯=,1025250⨯=,比较30天吃的总草量240,和25天吃的总草量250,能判断出草在枯萎.草每天枯萎()()25024030252-÷-=,原草量是240302300+⨯=.有4头牛时,每天草的减少量是426+=,所以经过300650÷=天草吃完了.。

小学五年级奥数第9课牛吃草问题试题附答案-精品

小学五年级奥数第9课牛吃草问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第9课《牛吃草问题》试题附答案第九讲“牛吃草”问题有这样的问题.如:牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?这类问题称为“牛吃草”问题。

解答这类问题,困难在于草的总量在变,它每天,每周都在均匀地生长,时间愈长,草的总量越多.草的总量是由两部分组成的:①某个时间期限前草场上原有的草量;②这个时间期限后草场每天(周)生长而新增的草量,因此,必须设法找出这两个量来。

下面就用开头的题目为例进行分析.(见下图)27头牛吃6周原有的草6周生长的草23头牛吃9周________________________________________ A _____________原有的草9周生长的草从上面的线段图可以看出23头牛9周的总草量比27头牛6周的总草量多,多出部分相当于3周新生长的草量.为了求出一周新生长的草量,就要进行转化.27头牛6周吃草量相当于27X6=162头牛一周吃草量(或一头牛吃162 周),23头牛9周吃草量相当于23义9二207头牛一周吃草量(或一头牛吃207 周).这样一来可以认为每周新生长的草量相当于(207-162)+(9-6)=15头牛一周的吃草量。

需要解决的第二个问题是牧场上原有草量是多少?用27头牛6周的总吃草量减去6周新生长的草量(即15X6=90头牛吃一周的草量)即为牧场原有草量。

所以牧场上原有草量为27X6-15X6=72头牛一周的吃草量(或者为23X9- 15X9=72)。

牧场上的草21头牛几周才能吃完呢?解决这个问题相当于把21头牛分成两部分.一部分看成专吃牧场上原有的草.另一部分看成专吃新生长的草.但是新生的草只能维持15头牛的吃草量,且始终可保持平衡(前面已分析过每周新生的草恰够15头牛吃一周).故分出15头牛吃新生长的草,另一部分21-15二 6 (头)牛去吃原有的草.所以牧场上的草够吃72+6=12(周),也就是这个牧场上的草够21头牛吃12周.问题得解。

奥数专题之牛吃草问题

奥数专题之牛吃草问题

奥数专题之牛吃草问题1【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。

下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用。

【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完。

问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款。

某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D奥数专题之牛吃草问题21有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问2.如果放牧16头牛几天可吃完牧草?3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期?7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完。

五年级奥数:牛吃草问题

五年级奥数:牛吃草问题

济南五年级奥数题及答案:牛吃草
1.平均数应用题
某工厂运来一批苹果平分给了两个车间,然后再由各车间平分给每个工人.由于分派出错,一车间的48斤苹果误送到了二车间,结果使得两车间苹果平分到人后,一车间每人比二车间每人少分了8斤苹果,已知一车间31人,二车间23人,那么工厂运来的苹果一共多少斤?
2.牛吃草问题
一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?。

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题应用题练习50题附详解

小学奥数牛吃草问题专项练习50题附详解(1)120头牛28天吃完10公顷牧场上的全部牧草,210头牛63天吃完30公顷牧场上的全部牧草,如果每公顷牧场上原有的牧草相等,且每公顷每天新生长的草量相同,那么多少头牛126天可以吃完72公顷牧场上的全部牧草?(2)12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?(3)牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?(4)画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队了,如果开5个入场口,则9点5分就没有人排队了.那么第一个观众到达的时间是8点几分?(5)甲,乙,丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)(6)甲,乙,丙三人同时从同一地点出发,沿同一路线追赶前面的小明,他们三人分别用9分钟,15分钟,20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,求丙每小时行多少千米?(7)假设地球上新生成的资源的增长速度是一定的,照此测算,地球上资源可供137.5亿人生活112.5年,或可供112.5亿人生活262.5年,为使人类能不断繁衍,那么地球上最多能养活多少亿人?(8)快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车,三车的速度分别是每小时24千米,20千米,19千米.快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用多少小时?(9)两位孩子逆着自动扶梯的方向行走.在20秒钟里,男孩可走27级梯级,女孩可走24级梯级,结果男孩走了2分钟到达另一端,女孩走了3分钟到达另一端.问:该扶梯共多少级?(10)两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每个白天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度却是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.那么,井深多少米?(11)某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?(12)某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙14天可以把砖运完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?(13)某商场八时三十分开门,但早有人来等候.从第一个顾客来到时起,每分钟来的顾客数一样多.如果开三个入口,八时三十九分就不再有人排队:如果开五个入口,八时三十五分就不再有人排队.那么,第一个顾客到达时是几点几分?(14)某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.一个入场口每分钟可以进来10个游客,如果开放4个入场口.20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟后就没有人排队?(15)牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:这片牧草可供25头牛吃几天?(16)牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?(17)入冬及其它原因,某片草地的草每天自然减少且减少的速度相同.这片草地可供8头牛吃10天,或供26头牛吃4天.供16头牛吃,能吃几天?(18)天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么可供11头牛吃几天?(19)现欲将一池塘水全部抽干,但同时有水匀速流入池塘.若用8台抽水机10天可以抽干;用6台抽水机20天能抽干.问:若要5天抽干水,需多少台同样的抽水机来抽水?(20)沿着匀速成上升的自动扶梯,甲从上朝下走到底走了150级,乙从下朝上走到顶走了75级.如果甲每分钟走的扶梯级数是乙的3倍,那么这部自动扶梯有多少级?(21)羊村有一批青草,若8只大羊和10只小羊一起吃,则可以吃12天,已知两只小羊每天吃的草量与一只大羊吃的草量相等.那么,这批青草可供多少只小羊和5只大羊吃8天?(22)一个农夫有2公顷,4公顷和6公顷三块牧场,三场牧场上的草长得一样密,而且长得一样快,农夫将8头牛赶到2公顷的牧场,5天吃完了,农夫又将这8头牛赶到4公顷的牧场,15天又吃完了;最后,这8头牛又被赶到6公顷的牧场,这块牧场够吃多少天?(23)一个水库水量一定,河水匀速流入水库.5台抽水机连续20天可抽干,6台同样的抽水机15天可抽干.若要求6天抽干,需要多少台同样的抽水机?(24)一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(25)一牧场上的青草每天都匀速生长.这片青草可供10头牛吃20周,或供15头牛吃10周.那么可供25头牛吃几周?(26)一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周或供23头牛吃9周.那么可供21头牛吃几周?(27)一片草地,每天都匀速长出青草,这片草地可供8头牛吃20天或15头牛吃15天,那么这片草地可供16头牛吃几天?(28)一片草地,每天都匀速长出青草.如果可供24头牛吃6天,或20头牛吃10天吃完.那么可供19头牛吃几天?(29)一片草地每天长的草一样多,现有牛、羊、鹅各一只,且羊和鹅吃草的总量正好是牛吃草的总量.如果草地放牧牛和羊,可以吃45天;如果放牧牛和鹅,可吃60天:如果放牧羊和鹅,可吃90天.这片草地放牧牛、羊、鹅,可以供它们吃多少天?(30)一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马,牛,羊一起去吃草,几天可以将这片牧草吃尽?(31)一艘轮船发生漏水事故,船长立即安排两部抽水机同时向外抽水,当时已经漏了500桶水,一部抽水机每分钟抽水18桶,另一部每分钟抽水12桶,经过25分钟把水抽完,问每分钟漏进水多少桶?(32)一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时船内已经进入一些水,如果以8个人淘水,5小时可以淘完;如果以5个人淘水,10小时才能淘完.现在要想在2小时内淘完,需要多少人?(33)因为天气日渐寒冷,牧场上的草不但不生长,反而以固定的速度每天在减少.如果20头牛去吃20天可以吃完;如果30头牛去吃15天可以吃完.那么,如果10头牛去吃多少天可以吃完?(34)由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?(35)由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?(36)有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的三倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地的草.问几头牛10天能同时吃完两块草地上的草?(37)有快、中、慢三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟,10分钟,12分钟追上骑车人.现在知道快车每小时行24千米,中车每小时行20千米,那么慢车每小时行多少千米?(38)有三块草地,面积分别是4公顷,8公顷和10公顷,草地上的草一样厚,而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?(39)有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?(40)有三块草地,面积分别是5,15,25亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,则第三块草地可供多少头牛吃60天?(41)有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?(42)有一个水池,池底有一个打开的出水口,用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完.如果仅靠出水口出水,那么多长时间能把水漏完?(43)有一个蓄水池,池中已经有一些水,一个进水管不断向池内匀速进水.如果打开10个相同的出水管放水,3小时放完;如果打开5个相同的出水管放水,8小时放完.如果要求在2小时放完,要安排多少个相同的出水管?(44)有一个长方形的水箱,上面有一个注水孔,底面有个出水孔,两孔同时打开后,如果每小时注水30立方米,7小时可以注满水箱;如果每小时注水45立方米,注满水箱可少用2.5小时.那么每小时由底面小孔排水多少立方米?(每小时排水量相同)(45)有一口井,用四部抽水机40分钟可以抽干,若用同样的抽水机6部,24分钟可以抽干,那么同样用抽水机5部,多少时间可以抽干?(46)有一口水井,连续不断涌出泉水,每分钟涌出的水量相等.如果使用3台抽水机来抽水,36分钟可以抽完;如果使用5台抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少台?(47)有一牧场,17头牛30天可将草吃完,19头牛则24天可将草吃完.现有牛若干头,吃6天后卖了4头,余下的牛再吃2天便将草吃完,问有牛多少头(草每日匀速生长)?(48)有一牧场,已知养牛27头,6天把草吃尽,养牛23头,9天把草吃尽.如果养牛21头,那么几天能把草吃尽呢?(49)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?如果桶没有裂缝由4个人来喝需要几天喝完?(50)有一眼泉井,用功率一样的3台抽水机去抽井水,同时开机,40分钟可以抽干;用同样的6台抽水机去抽,则只需要16分钟就可以抽干,那么用同样的抽水机9台,几分钟可以抽干?小学奥数牛吃草问题专项练习50题详解(1)解:设1头牛1天吃1份牧草.120头牛28天吃掉120×28=3360份,说明每公顷牧场28天提供3360÷10=336份牧草;210头牛63天吃掉210×63=13230份,说明每公顷牧场63天提供13230÷30=441份牧草;每公顷牧场63-28=35天多提供441-336=105份牧草,说明每公顷牧场每天的牧草生长量为105÷35=3份,原有草量为336-28×3=252份.如果是72公顷的牧场,原有草量为252×72=18144份,每天新长出3×72=216份,126天共计提供牧草18144+126×216=45360份,可供45360÷126=360头牛吃126天.(2)解:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份)每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份)则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份)可供养4536÷126=36头牛.(3)解:设1头牛1天的吃草量为"1"将它们转化为如下形式方便分析:18头牛16天共18×16=288份相当于原有草量+16天自然增加的草量27头牛8天供27×8=216 份相当于原有草量+8天自然增加的草量从上看出:2000平方米的牧场上16-8=8天生长草量=288-216=72即1天生长草量=72÷8=9那么2000平方米的牧场上原有草量:288-16×9=144或216-8×9=144则6000平方米的牧场1天生长草量=9×(6000÷2000)=27原有草量:144×(6000÷2000)=4326天里,西侧草场共提供草432+27×6=594可以让594÷6=99(头)牛吃6天.(4)解:设一个入口1分钟入场的人数为1份,3个入场口9分钟进入了27份观众,5个入场口5分钟进入了25份观众,说明4分钟来的观众人数是27-25=2份,即每分钟来0.5份.因为9点5分时共来了25份,来25份需要25÷0.5=50分钟,所以第一个观众到达的时间是8点15分.(5)解: 设1个工人1小时搬1份面粉.甲仓库中12个工人5小时搬了12×5=60份,乙仓库中28个工人3小时搬了28×3=84份,说明甲仓库的传送机5-3=2小时多输送了84-60=24份面粉,即每小时输送24÷2=12份,仓库中共有面粉(12+12)×5=120份.丙仓库中120份面粉需在2小时内搬完,每小时需搬120÷2=60份,因此需要工人60-12×2=36名.(6)解:(15×20-24×9)÷(15-9)=14(千米)15×20-14×15=90(千米)90÷20+14=18.5(千米).(7)解:设一亿人一年消耗的能源是1份.那么一年新生的能源是:(262.5×112.5-137.5×112.5)÷(262.5-112.5)=112.5×(262.5-137.5)÷(262.5-112.5)=14062.5÷150=93.75(份)要想使得人类不断生存下去,则每年消耗的能源最多就是每年新生的能源,那么最多的人口是:93.75÷1=93.75(亿人).答:地球上最多能养活93.75亿人.(8)解:6小时时自行车共走了:6×24=144(千米),10小时时自行车共走了:20×10=200(千米),自行车的速度为:(200-144)÷(10-6)=14(千米),三车出发时自行车已经走了:144-14÷6=60(千米),慢车追上的时间为:60÷(19-14)=12(小时).(9)解:2分钟=120秒,3分钟=180秒. 电动扶梯每分钟走:[(180÷20)×24-(120÷20)×27]÷(3-2)=216-162=54(级)电动扶梯共有:(120÷20)×27-54×2=54(级)答:该扶梯共54级.(10)解:(20×5-15×6+20)×5=30×5=150(分米)150分米=15米答:井深15米.(11)解:设1个检票口1分钟检票的人数为1份.因为4个检票口30分钟通过(4×30)份,5个检票口20分钟通过(5×20)份,说明在(30-20)分钟内新来旅客(4×30-5×20)份,所以每分钟新来旅客(4×30-5×20)÷(30-20)=2(份).假设让2个检票口专门通过新来的旅客,两相抵消,其余的检票口通过原来的旅客,可以求出原有旅客为(4-2)×30=60(份)或(5-2)×20=60(份).同时打开7个检票口时,让2个检票口专门通过新来的旅客,其余的检票口通过原来的旅客,需要60÷(7-2)=12(分).(12)解:依题意知开工前运进的砖相当于"原有草"开工后每天运进相同的砖相当于"草的生长速度"工人砌砖相当于"牛在吃草".所以设1名工人1天砌砖数量为"1",列表分析得:15人14天共15×14=210份:原有砖的数量+14天运来砖的数量20人9天共20×9 =180份:原有砖的数量+9天运来砖的数量从上面的表中可以看出(14-9)=5天运来的砖为(210-180)=30即1天运来的砖为30÷5=6原有砖的数量为:180-6×9=126假设6名工人不走,则能多砌6×4=24份砖则砖的总数为126+24+6×(6+4)=210因为是10天工作完,所以有210÷10=21名工人.(13)解:设每个入口每分钟来商场的人数为一份从八时三十分到八时三十九分经过了:9分钟从八时三十分到八时三十五分经过了:5分钟每个入口每分钟增加的人数:(9×3-5×5)÷(5-3)=2÷2=1(份)每个入口原有等候的人数:9×3-1×9=27-9=18(份)从第一个顾客来到时起,到八时三十分开门经过的时间是:18÷1=18(分钟)所以第一个顾客到达时是8点12分.答:第一个顾客到达时是8点12分.(14)解:4个入场口20分钟进入的人数是:10×4×20=800(人),开门后20分钟来的人数是:800-400=400(人),开门后每分钟来的人数是:400÷20=20(人),设开6个入场口x分钟后没有人排队,由题意列方程得10×6×x=400+20x, 40x=400,x=10.答:开放6个入场口10分钟后就没有人排队.(15)解:设1头牛1天吃的草为1份,由条件可知,前后两次青草的问题相差为10×20-15×10=50.为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10(天)生长出来的,所以每天生长的青草为50÷10=5.现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的5头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;每天生长草量50÷10=5.原有草量(10-5)×20=100或200-5×20=100.25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).答:可供25头牛吃5天.(16)解:设每头牛每天吃"1"份草.每天新生草量为:(23×9-27×6)÷(9-6)=(207-162)÷3=45÷3=15(份)原有草量为:27×6-15×6=72(份)21头牛吃的天数:72÷(21-15)=72÷6=12(天)答:这片牧草可供21头牛吃12天.(17)解:设每头牛每天吃草1份则草每天减少:(26÷4-8×10)÷(10-4)=(104-80)÷6=24÷6=4(份)由于草每天减少4份,就相当于每天增加了4头牛吃草,那么草地原有的草的份数:(8+4)×10=12×10=120(份)16头牛吃:120÷(16+4)=120÷20=6(天)答:供16头牛吃,能吃6天.(18)解:5天时共有草:20×5=1006天时共有草:16×6=96草减少的速度为:(100-96)÷(6-5)=4原有的草量为:100+4×5=120可供11头牛吃:120÷(11+4)=8(天).(19)解:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位池塘中原有水量:6×20-4×20=40单位若要5天内抽干水,需要抽水机40÷5+4=12台.(20)解:(150×3+75×2)÷(3+2)=(450+150)÷5=120(级)答:这部自动扶梯有120级.(21)解:假设一只小羊每天吃1份草;这批青草共有:(8×2+10)×12=312(份)5只大羊8天吃青草:5×2×8=80(份)可供小羊的只数是:(312-80)÷8=29(只)答:可供29只小羊和5只大羊吃8天.(22)解:5×8÷2=20,15×8÷4=30(30-20)÷(15-5)=11×6=620-5×1=1515×6=9090÷(8-6)=45(天).(23)解:20天共抽水:20×5=10015天共抽水:15×6=90进水的速度为:(100-90)÷(20-15)=2原有水为:100-2×20=6060÷6=10(台)10+2=12(台).(24)解:设1头牛1天吃1份牧草那么16头牛20天一共吃了16×20=320份草20头牛12天吃了240份草每天长草量为(320-240)÷(20-12)=10份草原有的草量为320-10×20=120份草现在有10+15=25头牛,其中吃原有草的牛有25-10=15头那么可以吃120÷15=8天.(25)解:把一头牛一周所吃的牧草看作1,那么就有:10头牛20周所吃的牧草为:10×20=200 (这200包括牧场原有的草和20周新长的草)15头牛10周所吃的牧草为:15×10=150(这150包括牧场原有的草和10周新长的草)1周新长的草为:(200-150)÷(20-10)=5牧场上原有的草为:10×20-5×20=100每周新长的草不够250头牛吃,25头牛减去20头,剩下5头吃原牧场的草:100÷(25-5)=100÷20=5(周)答:可供25头牛吃5周.(26) 解:设1头牛1周吃的草为1份牧场每周新长草(23×9-27×6)÷(9-6)=15(份)草地原有草(27-15)×6=72(份)可供21头牛吃72÷(21-15)=12(周)(27) 解:假设每头牛每天吃青草1份青草的生长速度:(15×15-20×8)÷(20-15)=65÷5=13(份)草地原有的草的份数:15×15-13×15=225-195=30(份)每天生长的13份草可供13头牛去吃,那么剩下的16-13=3头牛吃30份草: 30÷(16-13)=30÷3=10(天)答:这片草地可供16头牛吃10天.(28) 解:6天时共有草:24×6=14410天时共有草:20×10=200草每天生长的速度为:(200-144)÷(10-6)=14原有草量:144-6×14=60可供19头牛: 60÷(19-14)=12(天).(29) 解:设1头牛1天吃草量为"1",将它们转化为如下形式方便分析.45天牛和羊吃草量=原有草量+45天新长草量 ①60天牛和鹅吃草量=原有草量+60天新长草量 ②90天牛(鹅和羊)吃草量=原有草量+90天新长草量 ③由①×②-③可得: 90天羊吃草量=原有草量,羊每天吃草量=原有草量÷90 由(3)分析知道:90天鹅吃草量=90天新长草量,鹅每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=60,带入③得90天羊吃草量=60,羊每天吃草量=32 这样如果牛,羊和鹅一起吃,可以让鹅去吃新生草,牛和羊吃原有草可以吃:60÷(1+32)=36(天). (30) 解:设1匹马1天吃草量为"1",将它们转化为如下形式方便分析:15天马和牛吃草量=原有草量+15天新长草量 ①20天马和羊吃草量=原有草量+20天新长草量 ②30马(牛和羊)吃=原有草量+30天新长草量 ③由①×②-③可得: 30天牛吃草量=原有草量,牛每天吃草量=原有草量÷30;由③分析知道:30天羊吃草量=30天新长草量,羊每天吃草量=每天新长草量;将分析的结果带入②得:原有草量=20,带入③30天牛吃草量=20,得牛每天吃草量=32,这样如果马,牛和羊一起吃,可以让羊去吃新生草,马和牛吃原有草可以吃:20÷(1+32)=12(天). (31) 解:25分钟共抽水:(18+12)×25=750(桶)25分钟共漏水:750-500=250(桶)每分钟漏水:250÷25=10(桶).(32) 解:设每人每小时淘水1份.(1×10-5×8)÷(10-5)=10÷5=2(份)(30+2×2)÷2=34÷2=17(人)答:现在要想在2小时内淘完,需要17人.(33) 解:(30×15-20×20)÷(20-15)=1020×20+10×20=600600÷(10+10)=30(天)答:10头牛去吃30天可吃完.(34) 解:设1头牛1天吃1份牧草,则20头牛5天吃掉20×5=100份牧草,16头牛6天吃掉16×6=96份牧草,说明6-5=1天牧场上的牧草减少100-96=4份,我们可以假设有4头牛来帮忙把这部分草给吃了.牧场上的原有草量是:100+4×5=120份.原来有11头牛,现在又有4头牛来帮忙吃,所以可维持120÷(11+4)=8天.(35) 解:设1头牛1天吃的草为1份.20头牛5天吃100份,15头牛6天吃90份,100-90=10(份),说明寒冷使牧场1天减少青草10份,也就是说,寒冷相当于10头牛在吃草.由"草地上的草可供20头牛吃5天",再加上"寒冷"代表的10头牛同时在吃草,所以牧场原有草(20+10)×5=150(份).由 150÷10=15知,牧场原有草可供15头牛吃 10天,寒冷占去10头牛,所以,可供5头牛吃10天.(36) 解:设1头牛1天的吃草量为"1",将它们转化为如下形式方便分析,根据甲的面积是乙的3倍可以将关系(将乙看成1份,则甲就是3份)进行转化.甲: 30头牛12天30×12=360:甲原有草量+12天甲地自然增加的草量,甲转化为:10 头牛 12天10×12=120:乙原有草量+12天乙地自然增加的草量乙转化为: 20头牛4天20×4 = 80乙原有草量+ 4天乙地自然增加的草量.由此可以看出(12-4)=8天乙地长草量为(120-80)=40,即1天乙地长草量为40÷8=5;乙地的原有草量为:120-5×12=60;则甲,乙两地1天的新生草为:5×(3+1)=20,原有草量为:60×(3+1)=240;10天甲,乙两地共提供青草为:240+20×10=440,需要:440÷10=44(头)牛.(37)解:24×6=144(千米)10×20=200(千米)(200-144)÷(10-6)=14(千米)200-10×14=60(千米)60÷12+14=19(千米).(38)解:设1头牛1周吃1份牧草.24头牛6周吃掉24×6=144份,说明每公顷草地6周提供144÷4=36份牧草;36头牛12周吃掉36×12=432份,说明每公顷草地12周提供432÷8=54份牧草.每公顷草地12-6=6周多提供54-36=18份牧草,说明每公顷草地每周的牧草生长量是18÷6=3份,原有草量是36-3×6=18份.10公顷草地原有18×10=180份牧草,每周新增3×10=30份,可供50头牛吃180÷(50-30)=9周.(39)解:设每头牛每天的吃草量为1则每亩30天的总草量为:10×30÷5=60每亩45天的总草量为:28×45÷15=84那么每亩每天的新生长草量为(84-60)÷(45-30)=1.6每亩原有草量为:60-1.6×30=12那么24亩原有草量为:12×24=28824亩80天新长草量为24×1.6×80=307224亩80天共有草量3072+288=3360所以有3360÷80=42(头)答:第三块地可供42头牛吃80天.(40)解:30×10÷5=6028×45÷15=84(84-60)÷(45-30)=1.61.6×25=4060-1.6×30=1212×25=300300÷60=5(头)40+5=45(头).(41)解:因为5公顷草地可供11头牛吃10天, 120÷5=24,所以120公顷草地可供11×24=264(头)牛吃10天.因为6公顷草地可供12头牛吃14天,120÷6=20,所以120公顷草地可供12×20=240(头)牛吃14天.120÷8=15,问题变为: 120公顷草地可供19×15=285(头)牛吃几天?因为草地面积相同,可忽略具体公顷数,所以原题可变为:"一块匀速生长的草地,可供264头牛吃10天,或供240头牛吃14天,那么可供285头牛吃几天?"设1头牛1天吃的草为1份.每天新长出的草有(240×14-264×10)÷(14-10)=180(份).草地原有草(264—180)×10=840(份).可供285头牛吃840÷(285—180)=8(天).所以,第三块草地可供19头牛吃8天.(42)解:设1台抽水机1小时抽出1单位的水,那么5台抽水机20小时抽出5×20=100单位的水,8台抽水机15小时抽出8×15=120单位的水,说明池底的出水口20-15=5小时漏出120-100=20单位的水,则出水口的出水速度是每小时20÷5=4单位,水池中原有100+4×20=180单位的水,如果仅靠出水口出水,需要180÷4=45小时.(43)解:每小时新注入的水量是:(5×8-10×3)÷(10-5)=(40-30)÷5=10÷5=2(个)排水前原有的水量是:10×3-2×3=30-6=24(个)蓄水池2小时的总水量是:24+2×2=28(个)2小时把池内的水排完需要安排同样的出水管数是:28÷2=14(个)答:要想2小时内把池内的水排完需要安排同样的14个出水管.(44)解:7小时共注水:7×30=210(立方米)4.5小时共注水:(7-2.5)×45=202.5(立方米)排水速度为:(210-202.5)÷(7-4.5)=3(立方米).(45)解:设每台抽水机每分钟的抽水量为1份.井每分钟涌出的水量为:(4×40-6×24)÷(40-24)=16÷16=1(份)井里原有水量为:4×40-40×1=120(份)或6×24-24×1=120(份);井每分钟涌出的水即1份,要用1台抽水机去抽,剩下5-1=4(台)抽水机就要去抽原有的水:120÷(5-1)=120÷4=30(分钟)答:同样用抽水机5部,30分钟可以抽干.(46)解:36分钟时的总水量为:3×36=10820分钟时的总水量为:5×20=100涌水的速度为:(108-100)÷(36-20)=0.5原水量为:100-20×0.5=9090÷12=7.5 (台)7.5+0.5=8(台).(47)解:设1头牛1天吃1份草则牧草每天的生长量:(17×30-19×24)÷(30-24)=9份原有草量:17×30-9×30=240份假设牛的数量保持不变,连续吃6+2=8天共需要牧草240+9×8+4×2=320份因此有牛320÷8=40头.(48)解:设1头牛1天吃1份的草,求两个总量,27×6=162,23×9=207,总量的差÷时间差=每天长草量=安排去吃新草的牛数(207-162)÷(9-6)=15.每天长草量×天数=总共长出来的草15×6=90,草的总量-总共长出来的草=原有。

奥数牛吃草10题

奥数牛吃草10题

牛吃草问题10题:1、一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天。

那么它可供几头牛吃20天?可供29头牛吃几天?2、牧场上长满牧草,每天牧草都匀速生长。

这片牧场可供10头牛吃20天,可供15头牛吃10天。

那么这片牧场可供几头牛吃25天?3、由于天气逐渐变冷,牧场上的草每天以均匀的速度减少。

经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天。

那么,可供11头牛吃几天?4、有一片草场,草每天的生长速度相同。

若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊1天的吃草量相当于1头牛1天的吃草量)。

那么,17头牛和20只羊多少天可将草吃完?5、.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供21头牛吃几周?6、有三块草地,面积分别为5公顷、15公顷和24公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。

问:第三块草地可供多少头牛吃80天?7、有三块草地,面积分别为5,6和8公顷。

草地上的草一样厚,而且长得一样快。

第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。

问:第三块草地可供19头牛吃多少天?8、一个水池装一个进水管和三个同样的出水管。

先打开进水管,等水池存了一些水后,再打开出水管。

如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空。

那么出水管比进水管晚开多少分钟?9、一个水池有一根进水管不间断地进水,还有若干根相同的抽水管若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可把池中的水抽干。

若用16根抽水管,需要 ____小时可把水池中的水抽干。

10、画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队。

五年级下册奥数试题-牛吃草问题

五年级下册奥数试题-牛吃草问题

牛吃草问题基础练习1、牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?2、一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?3、由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?4、自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走20级梯级,女孩每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩用了6分钟到达楼上.问:该扶梯共有多少级?5、某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?6、有三块草地,面积分别为5,6和8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?7、牧场上的牧草每天均匀生长,这片草地可供17头牛吃6天,可供13头牛吃12天.问多少头牛4天把草地的草吃完?8、有-牧场,21头牛20天可将草吃完,25头牛则15天可将草吃完,现有牛若干头,吃6天后卖了4头,余下的牛再吃2天则将草吃完,问原有牛多少头?9、22头牛,吃33公亩牧场的草54夭可吃尽, 17头牛吃同样牧场28公亩的草,‘84天可吃尽.请问几头牛吃同样牧场40公亩的草,24天可吃尽? 10、某火车站检票口,在检票开始前已有-些人排队,检票开始后每分钟有10人前来排队检票,-个检票口每分钟能让25人检票进站.如果只有-个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后多少分钟就没有人排队?11、甲、乙、丙三个仓库,各存放着同样数量的大米,甲仓库用皮带输送机-台和12个工人5小时把甲仓库搬空,乙仓库用皮带输送机-台和28个工人3小时把乙仓库搬空.丙仓库有皮带输送机2台,如果要2小时把丙仓库搬空,同时还需要多少名工人?12、牧场上-片牧草,可供27只羊吃6天;或者供23只羊吃9天,如果牧草每周匀速生长,可供21只羊吃几天?13、-片牧草,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者可供80只羊吃12天.如果l头牛的吃草量等于4只羊的吃草量,那么lO 头牛与60只羊-起吃可以吃多少天?14、陕北某村有-块草场,假设每天草都均匀生长,这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草地最多可以放牧多少只羊?(注意:要防止草场沙化就应该使草场的草永远吃不完)15、12头牛28天可吃完10公亩牧场上全部牧草,21头牛63天可吃完30公亩牧场上全部牧草.多少头牛126天可吃完72公亩牧场上全部牧草?(每公亩牧场上原有的草量相等,且每公亩牧场上每天草的生长量相同)牛吃草问题巩固练习16、-只船发现漏水时,已进了-些水,现在水匀速进入船内.如果lO人舀水,3小时可舀完:5人舀水8小时可舀完.如果要求2小时舀完,要安排多少人舀水?17、.-水库水量-定,河水均匀入库,5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?18、-片草地如果9头牛吃.12天吃完所有的草,如果8头牛吃,16天吃完所有的草.现在开始只有4头牛,从第7天起又增加了.若干头牛,再6天吃完所有草.问增加了多少头牛?19、某游乐场在开门前有400人排队等待,开门后每分钟来的人数是固定的.-个入口每分钟可以进入10个游客.如果开放4个入口20分钟就没有人排队,现在开放6个入口,那么开门后多少分钟就没有人排队?20、画展9点开门,但早有人来排队等候入场,从第-个观众来到时起,每分钟来的观众人数-样多,如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有排队:那么第-个观众到达的时间是8点几分?21、某水库建有lO个泄洪闸;现有水库的水位已经超过安全线,上游河水还在按不变的速度增加,为了防洪,需调节泄洪速度,假设每个闸门排洪的速度相等,经测算,若打开-个泄洪闸,30·小时水位降至安全线;若打开两个泄洪闸.10小时水位降至安全线.现在抗洪指挥部队要求5.5小时使水位降至安全线以下.问至少要同时打开几个闸门?22、由于天气渐凉,草场上的草每天都以相同的数量减少.为此某草场上的草可供33头牛吃5天;或可供24头牛吃6天.问为此某草场上的草可供多少头牛吃10天?23、某列车8点开车,7点30分开始检票,7点50分检票结束.在开始检票时已有部分旅客在等候,且旅客每分钟以相同的数量到检票口来检票,旅客在7点45分都能到检票口. 经测算,若同时开4个检票口需30分检完;如果同时开5个检票口需20分检完.现打算15分检完,问需同时开多少个检票口?24、邮展定于早9点开始开门入场,但早已有参观者排队等候入场.每分钟观众来的一样多.如果开3个入场口,则9点9分就再无人排队;如果开5个入场口,则9点5分就再无人排队.求第一个观众是什么时间到的?25、甲、乙、丙三辆汽车速度分别为每小时48千米、40千米、38千米.从某地出发追赶已出发多时的自行车,甲3小时可追上,乙5小时可追上,问丙几小时可追上?26、有一水池,池底有泉水不断涌出.要想把水池的水抽干,10台抽水机需抽8时,8台抽水机需抽12时.如果用6台抽水机,那么需抽多少小时?27、春节期间,某火车站已有不少的旅客在候车室等候验票,并且前来验票上车的旅客按照一定的速度在增加,如果只开放一个窗口验票,需要半小时全部旅客才能进站上车;如果开放两个窗口,则需要10分钟全部旅客就可进站上车了.然而,现在等候上车的时一列加班车,必须在5分钟内全部上车,准点上车.那么这个火车站至少要同时开放多少个窗口?28、一块草地可供58头羊吃7天,或供50头羊吃9天,如果这片草地的生长量每天相等,这片草地最多能养活多少头羊?29、村民组织抗旱,从一个地下泉水挑水浇地.如果50人挑,20小时就把水挑完;如果70人挑水,10小时也可挑完.现在有130人挑,几小时可把水挑完?牛吃草问题加强练习1、牧场上长满牧草,每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天.可供25头牛吃几天?2、一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周,或供23头牛吃9周.那么可供21头牛吃几周?3、一片牧场可供24头牛吃6周,20头牛吃10周,这片牧场可供18头牛吃几周?4、有一水井,继续不断涌出泉水,每分钟涌出的水量相等.如果使用3架抽水机来抽水,36分钟可以抽完,如果使用5架抽水机来抽水,20分钟可抽完.现在12分钟内要抽完井水,需要抽水机多少架?5、有一水池,池底有泉水不断涌出.要想把水池的水抽干,如用10台抽水机需抽8小时;如用8台抽水机需抽12小时.那么,如果用6台抽水机,需抽多少小时?6、有一牧场长满草,每天牧草匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有牛若干头在吃草,6天后,杀了4头牛,余下的牛吃了2天将草吃完.问原来有牛多少头?7、有3个牧场长满草,第一牧场33公亩,可供牛22头吃54天;第二牧场28公亩,可供17头牛吃84天,第三牧场40公亩,可供多少头牛吃24天?(每块地每公亩草量相同且都是匀速生长)8、有一片牧场,24头牛6天可以将草吃完,或21头牛8天可以吃完.要使牧草永远吃不完,至多可以放牧几头牛?9、禁毒图片展8点开门,但很早便有人排队等候入场.从第一个观众到达时起,每分钟来的观众人数一样多.如果开3个入场口,8点9分就不再有人排队;如果开5个入场口,8点5分就没有人排队.第一个观众到达时距离8点还有多少分钟?牛吃草问题强化练习【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量.下面我们来看一下上述“牛吃草问题”解题方法,在真题中的应用.【例4】有一个灌溉用的中转水池,一直开着进水管往里灌水,一段时间后,用2台抽水机排水,则用40分钟能排完;如果用4台同样的抽水机排水,则用16分钟排完.问如果计划用10分钟将水排完,需要多少台抽水机?【广东2006上】A.5台B.6台C.7台D.8台【答案】B【例5】有一水池,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机,那么需抽多少小时?A.16B.20C.24D.28【答案】C【例6】林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果有33只猴子一起吃,则需要几周吃光?(假定野果生长的速度不变)A.2周B.3周C.4周D.5周【答案】C【例7】物美超市的收银台平均每小时有60名顾客前来排队付款,每一个收银台每小时能应付80名顾客付款.某天某时刻,超市如果只开设一个收银台,付款开始4小时就没有顾客排队了,问如果当时开设两个收银台,则付款开始几小时就没有顾客排队了A.2小时B.1.8小时C.1.6小时D.0.8小时【答案】D牛吃草问题深入练习1有一片牧场,草每天都匀速的生长,如果放牧24头牛,则6天吃完草;如果放牧21头牛则8天吃完草.设每头每天吃相等的,问2.如果放牧16头牛几天可吃完牧草?3.要使草永远吃不完,最多只能放牧几头牛?4,有一片牧草,如果养27头牛,这些牛6天可以把草吃尽,如果养23头牛,这些牛9天可以把草吃尽,如果养21头牛,这些牛几天可以把草吃尽?5,牧场上有一片牧草,供24头牛6周吃完,供18头牛10周吃完.假定草的生长速度不变,那么供19头牛需要几周吃完?6.有三块牧地,面积分别为3又1/3平方米,10平方米,24平方米,第一块牧地12头可吃4星期,第二块牧地21头可吃9星期,第三块牧地可供几头牛吃18星期?7.一批货物,用5匹马运,6天可以运完;用6头牛运,4天可以运完.如果用4匹马和4头牛同时运,几天可以运完?8,11头牛10天可吃完5公顷草,12头牛14天可吃完6公顷全部牧草,问8公顷草地可供19头牛吃多少天?(假设每块草地每公顷每天牧草长得一样快)9.一片牧场,草每天都在匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完草;如果每天放牧21头牛,则8天吃完草,设每头牛没天吃草量相同,问如果放牧16头牛,几天可以吃完牧草?10.一块草地上的青草,到处长得一样密,养牛户发现,他养的牛每天吃的草量是相同的,这块草地15头牛6天可吃完,10头牛10天可以吃完.那么每天生长出的草是原来草量的几分之几?牛吃草问题细致练习1、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问供25头牛可以吃多少天?2、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问可以供多少头牛吃上5天?3、一只船发现漏水时,已经进了一些水了,水是匀速进入船内,如果10人淘水的话,3小时可以淘完;如果是5人淘水的话,8小时可以完成.如果要求2小时淘完,要安排多少人淘水?4、有一片青草,每天的生长速度都是相同的,已知这片青草可供15头牛吃20天,或者是供76头牛吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃上多少天?5、经测算,地球上的资源可供100亿人生活100年或者是可供80亿人生活300年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?6、某车站在检票前若干分钟就开始排队,每分钟来的旅客是一样多(人数),若同时打开4个检票口,从开始检票到等候检票的队伍消失,需要30分钟,同时开5个检票口的话,需要20分钟.如果同时打开7个检票口的话,那么需要多少分钟?7、甲乙丙三辆车同时从同一地点出发,沿同一公路追赶前面的一骑自行车的人,这三辆车分别用3小时、5小时、6小时追上骑自行车的人,现在知道甲车每小时行了24千米,乙车每小时行20千米,你能知道丙车每小时多少千米?8、有一牧场长满牧草,每天牧场匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数.9、由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天,照此计算可供多少头牛吃10天?10、武钢的煤场,可储存全厂45天的用煤量.当煤场无煤时,如果用2辆卡车去运,则除了供应全厂用煤外,5天可将煤场储满;如果用4辆小卡车去运,那么9天可将煤场储满.如果用2辆大卡车和4辆小卡车同时去运,只需几天就能将煤厂储满?(假设全厂每天用煤量相等.)牛吃草问题课后练习1、牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧场生长的速度相同,那么这片牧场可以供21头牛吃几天?2、有一口井,井底有泉水不断地涌粗,每分钟涌出的水量相等.如果用4台抽水机来抽水,40分钟就可以完成;如果用5台抽水机来抽水,30分钟可以抽完.现在要求24分钟内抽完井水,需要多少台抽水机?3、一只船有一个漏洞,水以匀速的速度进入船内,发现漏洞时已经进入了一些水,如果用12个人一起舀水,3小时可以完成,如果用5个人的话,那么10小时才完成.现在要求2小时舀完水,那么需要多少人?4、有一个酒槽,每日泄露等量的酒量.如让6个人饮,则4天可以饮完,如让4人饮,则5天可以喝完.若每人的饮酒量是相同的,问每天的漏酒量是多少?5、一个水池安装有排水量相等的排水管若干根,一根进水管不断地往水池里放水,平均每分钟进水量是相等的.如果开放三根排水管的话,45分钟就可把池中的水放完;如果开放5根排水管,25分钟就可以把池水排完.如果开放八根排水管的话,那么几分钟排完池中的水?6、某个游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进入10个游客,如果开放4个入口,20分钟就没有人来排队.现在开放6个入口,那么开门后多少分钟就没有人排队?7、自动扶梯以均匀的速度往上行驶着,两个性急的小孩子要从扶梯上,已知男孩每分钟走20级扶梯,女孩每分钟走15级扶梯,结果男孩用了5分钟到达扶梯顶,女孩则用了6分钟到达扶梯顶,问扶梯一共多少级?8、有一片草地,草每天生长的速度相同.这片草地可供5头牛吃40天;或者是供6头牛吃上30天,如果4头牛吃了30天后,又增加了2头牛一起来吃,这片草地可以再吃几天?9、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不相同的,一只每天爬20分米,另一只爬15分米.黑夜里往下滑,两只蜗牛滑行的速度是相同的.结果一只蜗牛恰好用了5个昼夜到达了井底,另外一只蜗牛恰好用了6个昼夜到达井底.求井深?10、一个水库的贮水量是一定的,河水均匀进入水库,5台抽水机连续20天可以把水库的水抽干;6台抽水机连续15天可把水库的水抽干;如果要求6天抽干水库,需配几台抽水机?牛吃草问题精题练习1、牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧场生长的速度相同,那么这片牧场可以供21头牛吃几天?2、有一口井,井底有泉水不断地涌粗,每分钟涌出的水量相等.如果用4台抽水机来抽水,40分钟就可以完成;如果用5台抽水机来抽水,30分钟可以抽完.现在要求24分钟内抽完井水,需要多少台抽水机?3、一只船有一个漏洞,水以匀速的速度进入船内,发现漏洞时已经进入了一些水,如果用12个人一起舀水,3小时可以完成,如果用5个人的话,那么10小时才完成.现在要求2小时舀完水,那么需要多少人?4、有一个酒槽,每日泄露等量的酒量.如让6个人饮,则4天可以饮完,如让4人饮,则5天可以喝完.若每人的饮酒量是相同的,问每天的漏酒量是多少?5.哥哥沿着向上移动的自动扶梯从顶向下走到底,共走了100级.在相同的时间内,妹妹沿着自动扶梯从底向上走到顶,共走了50级.如果哥哥单位时间内走的级数是妹妹的2倍,那么当自动扶梯静止时,自动扶梯能看到的部分有多少级?6.两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒.问:该扶梯共有多少级梯级?7.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多.用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完.仓库里原有的存货若用1辆汽车运则需要多少天运完?8.画展9点开门,但早就有人排队等候入场了.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,则9点9分就不再有人排队,如果开5个入场口,则9点5分就没有人排队.那么第一个观众到达的时间是8点几分?9.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟.如果要使队伍10分钟消失,那么需同时开几个检票口?10.假设地球上新生成的资源的增长速度是一定的,照此测算,地球上的资源可供110亿人生活90年,或可供90亿人生活210年.为使人类能够不断繁衍,那么地球最多能养活多少亿人?11.有一牧场,17头牛30天可将草吃完.19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?12.有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?13.自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,已知小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?14.两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜.问井深是多少?15.画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.。

年级奥数牛吃草问题测习题及答案

年级奥数牛吃草问题测习题及答案

年级奥数牛吃草问题测习题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]年级奥数牛吃草问题练习题及答案(1)牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。

如果牧草每周匀速生长,可供21头牛吃几周?27×6=16223×9=207207-162=4545/(9-6)=15每周生长数162-15×6=72(原有量)72/(21-15)=12周(2)有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。

现在用水桶吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。

现在需要5分钟吊干,每分钟应吊多少桶水?4×15=608×7=5660-56=44/(15-7)=0.5(每分钟涌量)60-15×0、5=52、5(原有水量)52、5+/(5×0.5)/5=11桶(3)有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。

如果需要6天割完,需要派多少人去割草?17×30=51019×24=456510-456=5454/(30-24)=9每天生长量510-30×9=240原有草量240+6×9=294294/6=49人(4)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。

这桶酒每天漏掉的酒可供几人喝一天?6×4=244×5=2024-20=44/(5-4)=4每天漏掉数24+4×4=40原有数这桶酒每天漏掉的酒可供4人喝一天?(5)一水库存水量一定,河水均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。

若要6天抽干,需要多少台同样的抽水机?5×20=1006×15=90100-90=1010/(20-15)=2每天入库数100-20×2=60原有库存数60+2×6=7272/6=12台(6)自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,已知小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?20×4=8014×5=7080-70=1010/(5-4)=10每分钟减少数80+4×10=120原有数70+5×10=120(7):两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年级奥数牛吃草问题练习题及答案
(1)牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。

如果牧草每周匀
速生长,可供21头牛吃几周?
27×6=16223×9=207 207-162=45 45/(9-6)=15每周生长数
162-15×6=72(原有量)72/(21-15)=12周
(2)有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。

现在用水桶吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。

现在需要5分钟吊干,每分钟应吊多少桶水?
4×15=608×7=56 60-56=44/(15-7)=0.5(每分钟涌量)
60-15×0、5=52、5(原有水量)52、5+/(5×0.5)/5=11桶
(3)有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,
如果派19人去割草,则24天就能割完。

如果需要6天割完,需要派多少人去割草?
17×30=51019×24=456 510-456=54 54/(30-24)=9每天生长量
510-30×9=240原有草量240+6×9=294 294/6=49人
(4)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天
可喝完;如果由4人喝,5天可喝完。

这桶酒每天漏掉的酒可供几人喝一天?
6×4=244×5=20 24-20=44/(5-4)=4每天漏掉数
24+4×4=40原有数
这桶酒每天漏掉的酒可供4人喝一天?
(5)一水库存水量一定,河水均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水
机连续15天可抽干。

若要6天抽干,需要多少台同样的抽水机?
5×20=1006×15=90 100-90=10 10/(20-15)=2每天入库数
100-20×2=60原有库存数60+2×6=72 72/6=12台
(6)自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,已知小明每分钟走
20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求
扶梯共有多少级?
20×4=8014×5=70 80-70=10 10/(5-4)=10每分钟减少数
80+4×10=120原有数70+5×10=120
(7):两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只
蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。

问井深是多少?
20×5=100 15*6=90 100-90=10 10/(6-5)=10黒夜下滑数
100+5×10=15015×6+10×6=150
(8)一块1000平方米的牧场能让12头牛吃16个星期,或让18头牛吃8个星期,那么一块4000平方米的牧场6个星期能养活多少头牛?
12×16-18×8=192-144=48 48/(16-8)=6每星期生长数
192-16×6==96原有数96+6×6=132 132/6=22 22×4=88头
(9)有一只船有一个漏洞,水用均匀的速度进入船内,发现漏洞时已经进了一些水。

如果用12个人淘水,3小时可以淘完。

如果只有5个人淘水,要10小时才能淘完。

现在要想2小时淘完,需要多少人?
12×3=365×10=50 50-36=14 14/(10-3)=2每小时增加数
36-3×2=30原有30+2×2=34 34/2=17人
(10)有一个水井,水不断由泉涌出,井满则溢出。

若用4台抽水机,15小时可把井水抽干。

若用8台抽水机,7小时可把井水抽干。

现在要用几台抽水机,能5小时把井水抽干?
4×15=608×7=56 60-56=4 4/(15-7)=0.5
60-15×0.5=52.5 52.5+5×0.5=55 55/5=11台
(11)李村组织农民抗旱,从一个有地下泉的池塘担水浇地。

如果50人担水,20小时可把池水担完。

如果70人担水,10小时可把池水担完。

现有130人担水,几小时可把池水担完?
50×20=100070×10=700 1000-700=300 300/(20-10)=30每小时增加1000-30×20=400原有
400/(130-30)=4小时
不说永远,陪伴便是最长情的告白。

龙应台曾写过一段文字:“有一种寂寞,身边添一个可谈的人,或许就可以削减。

有一种寂寞,茫茫天地之间余舟一芥的无边无际无着落,人只能各自孤独面对,素颜修行。

”不同的寂寞有着不同的归途,其实赏心之人无须太多,关键是否能入心。

始终喜欢,一切纯善质朴的好,不论是人还是事,一份情深义重,才是水色尘心的悠远。

而一同走过的山山水水,都会是生命的记载。

如果可以,愿始终趋光而行,向着太阳升起的地方。

无论飘摇还是安逸,都要坚守住内心那道光,我们可以不完美,但灵魂必须向美而生。

有时,灵犀的相悦会铭记一生,我不知道岁月有多长,人生还会有多少未知。

只是希望自己能做个心思澄明,有着简单的小欢喜,不过多的忧思,也不给自己添加太多束缚的人。

阳光很暖,你也还在,如此,足够。

看多了花开花谢,聚散离合,便逐渐明白,我们最终想拥有的不过是一份寻常的烟火,简单而情重,朴素而感恩。

余生很长,从晨曦到日暮,就让我们一起慢慢走。

相关文档
最新文档