导数综合练习题(基础型)
《导数》基础训练题(1)答案
![《导数》基础训练题(1)答案](https://img.taocdn.com/s3/m/ee428090a5e9856a57126030.png)
高考数学模拟卷基础题型训练(1)姓名:导数概念公式【笔记】课堂练习1、在曲线2y x =上切线倾斜角为4π的点是( D ) A .(0,0) B .(2,4) C .11(,)416 D .11(,)24【笔记】 2、曲线221y x =+在点(1,3)P -处的切线方程为( A )A .41y x =--B .47y x =--C .41y x =-D .47y x =+【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10【笔记】4、函数1y x x=+的导数是( A ) A .211x -B .11x -C .211x + D .11x+ 【笔记】5、函数cos xy x=的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2cos cos x x xx+- 【笔记】6、函数sin (cos 1)y x x =+的导数是( C )A .cos2cos x x -B .cos2sin x x +C .cos2cos x x +D .2cos cos x x +【笔记】课后作业(1) 姓名:1、32()32f x ax x =++,若'(1)4f -=,则a 的值等于( D )A .319 B .316 C .313 D .3102、函数sin 4y x =在点(,0)M π处的切线方程为( D )A .y x π=-B .0y =C . 4y x π=-D .44y x π=- 3、求下列函数的导数:(1)12y x =; (2)41y x=; (3)y 【答案】(1)11'12x y =, (2)54--=x y ;(3)5253-=x y4、若3'0(),()3f x x f x ==,则0x 的值为_________1±________5、函数sin x y x =的导数为___________2'sin cos xx x x y -=__________ 6、与曲线y =1ex 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底)高考数学模拟卷基础题型训练(2)姓名:1、已知曲线3:C y x =。
高中数学导数练习题
![高中数学导数练习题](https://img.taocdn.com/s3/m/45d97ca30342a8956bec0975f46527d3250ca61e.png)
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
导数基础题训练文(含答案)
![导数基础题训练文(含答案)](https://img.taocdn.com/s3/m/6ae7b61259eef8c75fbfb396.png)
导数及其应用一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;3.函数sin x y x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
导数数学试题及答案
![导数数学试题及答案](https://img.taocdn.com/s3/m/e23e82f1d0f34693daef5ef7ba0d4a7303766c7a.png)
导数数学试题及答案一、选择题1. 函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数是:A. \( 6x + 4 \)B. \( 6x^2 + 2 \)C. \( 3x + 2 \)D. \( 6x - 1 \)2. 如果 \( f(x) \) 的导数为 \( f'(x) = 4x^3 - 6x^2 + 8x - 10 \),那么 \( f'(1) \) 的值是:A. -2B. 0C. 2D. 4二、填空题3. 求函数 \( g(x) = x^3 - 4x + 1 \) 的导数,并计算 \( g'(2) \) 。
\( g'(x) = \) ________ , \( g'(2) = \) ________ 。
4. 若 \( h(t) = t^4 + 3t^2 + 2 \),求 \( h'(t) \) 。
\( h'(t) = \) ________ 。
三、解答题5. 已知 \( f(x) = \ln(x) + 2x \),求 \( f'(x) \) 并找出\( f'(x) \) 的零点。
6. 给定函数 \( y = \frac{1}{x} \),求其导数,并讨论其在 \( x= 1 \) 处的切线斜率。
四、应用题7. 一个物体从静止开始,其速度随时间变化的函数为 \( v(t) =3t^2 - 2t \),求其加速度函数 \( a(t) \) 并计算 \( t = 2 \) 秒时的加速度。
8. 一个物体在 \( x \) 轴上的位移函数为 \( s(x) = x^3 - 6x^2 + 11x + 10 \),求其速度函数 \( v(x) \) 并找出 \( x = 2 \) 时的速度。
答案:一、选择题1. A. \( 6x + 4 \)2. C. 2二、填空题3. \( g'(x) = 3x^2 - 4 \) , \( g'(2) = 8 \)4. \( h'(t) = 12t^3 + 6t \)三、解答题5. \( f'(x) = \frac{1}{x} + 2 \),令 \( f'(x) = 0 \) 解得\( x = 1 \)。
导数基础练习题
![导数基础练习题](https://img.taocdn.com/s3/m/ec9187821711cc7930b71687.png)
导数基础练习题1若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( A ) A .430x y --= B .450x y +-=C .430x y -+= D .430x y ++=2曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为BA .y =3x -4 B.y =-3x +2 C.y =-4x +3 D 。
y =4x -5 3函数)1()1(2-+=x x y 在1=x 处的导数等于( D ) A .1B .2C .3D .44若函数f (x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( A )5曲线324y xx =-+在点(13),处的切线的倾斜角为( B ) A .30°B .45°C .60°D .120°6设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( A )A .1B .12C .12-D .1-7已知曲线3lnx 4x y 2-=的一条切线的斜率为21,则切点的横坐标为( A ) A 。
3 B.2C 。
1 D 。
错误! 8曲线21xy x =-在点()1,1处的切线方程为 (B ) A 。
20x y --= B 。
20x y +-= C.450x y +-= D. 450x y --= 9。
设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12nx x x ⋅⋅⋅的值为(B ) (A )1n (B) 11n + (C ) 1nn + (D )110设f(x )、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '+'>0。
且()03g =-,.则不等式f (x)g(x )<0的解集是(D )A ),3()0,3(+∞⋃-B .)3,0()0,3(⋃-C .),3()3,(+∞⋃--∞D .)3,0()3,(⋃--∞12已知函数)(x f x y '=的图像如右图所示(其中)(x f '是函数))(的导函数x f ,下面四个图AxDC x B象中)(x f y =的图象大致是 ( C )13设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数,则函数f (x )的解析式为_____()323()f x x x x R =-∈14.函数y =223a bx ax x x f +++=)(在1=x 时, 有极值10, 那么b a ,的值为 。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)
![2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)](https://img.taocdn.com/s3/m/53866ab3a1116c175f0e7cd184254b35eefd1aca.png)
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
导数基础练习题高中
![导数基础练习题高中](https://img.taocdn.com/s3/m/62c24ef568dc5022aaea998fcc22bcd126ff422c.png)
导数基础练习题高中一. 概念回顾在开始解答导数基础练习题之前,我们先回顾一下导数的基本概念。
导数的定义如下:设函数y = f(x)在点x₀处可导,则它在该点的导数记作f'(x₀),定义为:f'(x₀) = lim┬(△x→0)(f(x₀+△x)-f(x₀))/△x二. 导数基本运算法则在求解导数的过程中,我们需要熟悉导数的基本运算法则,包括常数法则、幂函数法则、和差法则、积法则和商法则。
接下来,我们通过练习题来巩固对这些法则的理解。
1. 设y = 2x² + 3x - 5,求y'。
解:根据幂函数法则和和差法则,我们有:y' = (2·2x^(2-1)) + (3·1x^(1-1)) + (0·(-5)^(0-1))= 4x + 32. 设y = √x + 1/x,求y'。
解:根据幂函数法则、和差法则和商法则,我们有:y' = (1/2)·(x^(-1/2)) + (-1/x^2)= 1/(2√x) - 1/x²三. 求导法则的应用在实际问题中,我们经常需要利用求导法则来解决相关的数学问题。
下面我们通过一些例题来应用求导法则,加深对其应用的理解。
1. 曲线y = x³ - 3x² + 2x的切线方程在x = 2处的斜率为多少?解:首先,我们先求出函数y = x³ - 3x² + 2x的导数:y' = 3x² - 6x + 2然后,代入x = 2,得到切线斜率:y'(2) = 3(2)² - 6(2) + 2 = 102. 曲线y = e^x在点x = 0处的切线方程为y = 2x + 1,求e的值。
解:根据切线方程的斜率和点的定义,我们有:y'(0) = 2而y = e^x的导数为:y' = e^x将x = 0代入导数表达式,得到y'(0) = e^0 = 1因此,根据等式2 = 1,我们得到e = 2。
2019年《导数的四则运算法则练习题一.doc
![2019年《导数的四则运算法则练习题一.doc](https://img.taocdn.com/s3/m/f6f9cd3f69eae009591bec6b.png)
2019年《导数的四则运算法则练习题一篇一:《导数的四则运算法则练习题一导数练习题一一、基础过关1.下列结论不正确的是()A.若y=3,则y′=0B.若f(x)=3x+1,则f′(1)=31C.若yx+x,则y′=-+12D.若y=sinx+cosx,则y′=cosx+sinxx2.函数y=的导数是1-cosx1-cosx-xsinx1-cosx-xsinx1-cosx+sinxA.B.C.1-cosx?1-cosx??1-cosx?3.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于b12.设函数f(x)=ax-y=f(x)在点(2,f(2))处的切线方程为7x-4y -12=0.x()(1)求f(x)的解析式;1-cosx+xsinxD.?1-cosx?()A.-1B.-2C.2D.0x+14.设曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于()x-111A.2B.C.-D.-2225.已知a为实数,f(x)=(x2-4)(x-a),且f′(-1)=0,则a=________.6.若某物体做s=(1-t)2的直线运动,则其在t=1.2s时的瞬时速度为________.7.求下列函数的导数:(1)y=(2x2+3)(3x-1);(2)y=(x-2)2;xx(3)y=x-sin.228.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为A.4 110.若函数f(x)x3-f′(-1)·x2+x+5,则f′(1)=________.311.设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,求f(x)的表达式.第1页共2页()1D.-21B.-4C.2练习题一答案1.D2.B3.B4.D5.126.0.4m/s7.解(1)方法一y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.方法二∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,∴y′=(6x3-2x2+9x-3)′=18x2-4x+9.(2)∵y=(x-2)2=x-4x+4,∴y′=x′-x)′+4′=1-1112x-2=1-2x2(3)∵y=x-sinx2cosx2=x-12sinx,∴y′=x′-(112sinx)′=12x.8.A10.611.解设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b.又已知f′(x)=2x+2,∴a=1,b=2.∴f(x)=x2+2x+c.又方程f(x)=0有两个相等实根,∴判别式Δ=4-4c=0,即c=1.故f(x)=x2+2x+1.12.(1)解由7x-4y-12=0得y74-3.当x=2时,y=112∴f(2)2①又f′(x)=a+bx,∴f′(2)74②?2a-b1由①②得?22??a=1?ab7解之得???b=3.44故f(x)=x-3练习题二答案1.A2.D3.A4.B5.??-13,1??∪[2,3)6.?π?3,5π37.解由y=f′(x)的图象可以得到以下信息:x2时,f′(x)0,得x>1;由y′0,得x1+2;令f′(x)0,即3mx2-6mx>0,当m>0时,解得x2,则函数f(x)的单调增区间是(-∞,0)和(2,+∞);当m当m第2页共2页篇二:《导数的四则运算法则练习题一导数练习题一一、基础过关1.下列结论不正确的是()A.若y=3,则y′=0B.若f(x)=3x+1,则f′(1)=31C.若yx+x,则y′=-+12D.若y=sinx+cosx,则y′=cosx+sinxx2.函数y=的导数是1-cosx1-cosx-xsinx1-cosx-xsinx1-cosx+sinxA.B.C.1-cosx?1-cosx??1-cosx?3.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于12.设函数f(x)=ax-y=f(x)在点(2,f(2))处的切线方程为7x-4y -12=0.x()(1)求f(x)的解析式;1-cosx+xsinxD.?1-cosx?()A.-1B.-2C.2D.0x+14.设曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于()x-111A.2B.C.-D.-2225.已知a为实数,f(x)=(x2-4)(x-a),且f′(-1)=0,则a=________.6.若某物体做s=(1-t)2的直线运动,则其在t=1.2s时的瞬时速度为________.7.求下列函数的导数:(1)y=(2x2+3)(3x-1);(2)y=(x-2)2;xx(3)y=x-sin.228.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为A.4 110.若函数f(x)x3-f′(-1)·x2+x+5,则f′(1)=________.311.设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,求f(x)的表达式.第1页共2页()1D.-21B.-4C.2练习题一答案1.D2.B3.B4.D5.126.0.4m/s7.解(1)方法一y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.方法二∵y=(2x2+3)(3x-1)=6x3-2x2+9x-3,∴y′=(6x3-2x2+9x-3)′=18x2-4x+9.(2)∵y=(x-2)2=x-4x+4,∴y′=x′-x)′+4′=1-1112x-21-2x-2(3)∵y=x-sinx2cosx2=x-12sinx,∴y′=x′-(112sinx)′=12x.8.A10.611.解设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b.又已知f′(x)=2x+2,∴a=1,b=2.∴f(x)=x2+2x+c.又方程f(x)=0有两个相等实根,∴判别式Δ=4-4c=0,即c=1.故f(x)=x2+2x+1.12.(1)解由7x-4y-12=0得y74-3.。
(完整)导数基础练习题
![(完整)导数基础练习题](https://img.taocdn.com/s3/m/317804fe6c85ec3a86c2c538.png)
导数基础题 一1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 ( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x2. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .43.过抛物线2x y =上的点M (41,21-)的切线的倾斜角为( )A .4πB .3πC .43πD .2π4.函数331x x y -+=有( )(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值31、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定3、y = ) A .23xB .213x C .12- D4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -=7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫⎪⎝⎭D .11,24⎛⎫ ⎪⎝⎭ 8、已知()53sin f x x x -=+,则()f x '等于( )A .653cos x x ---B .63cos x x -+C .653cos x x --+D .63cos x x --9、函数2cos y x -=的导数是( ) A .2cos sin x x -B .4sin 2cos x x -C .22cos x -D .22sin x -10、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '⋅ C .()sin sin f x x '⋅ D .()cos cos f x x '⋅ 11、函数()22423y x x =-+的导数是( )A .()2823x x -+B .()2216x -+C .()()282361x x x -+-D .()()242361x x x -+-12、22sin 35cos y x x =+的导数是( )A .22sin 35sin x x -B .2sin 610sin x x x -C .23sin 610sin x x x +D .23sin 610sin x x x - 13、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-14、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________. 17、正弦曲线sin y x =上切线斜率等于12的点是___________.18、函数lg y x =在点()1,0处的切线方程是__________________________.导数练习题(B )1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示.(I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I)求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >;(II )讨论函数)(x g y =在区间),1(a e 上零点的个数.5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II )若函数()f x 没有零点,求实数k 的取值范围;6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I)求实数a 的值;(II)求函数()f x 在]3,23[∈x 的最大值和最小值.7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I)当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值.8.(本小题满分12分)已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I)求实数a 的取值范围;(II )若()f x '是()f x 的导函数,设22()()6g x f x x '=+-,试证明:对任意两个不相等正数12x x 、,不等式121238|()()|||27g x g x x x ->-恒成立.9.(本小题满分12分)已知函数.1,ln )1(21)(2>-+-=a x a ax x x f(I)讨论函数)(x f 的单调性;(II )证明:若.1)()(,),,0(,,521212121->--≠+∞∈<x x x f x f x x x x a 有则对任意10.(本小题满分14分)已知函数21()ln ,()(1),12f x x a xg x a x a =+=+≠-.(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取值范围; (II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.11.(本小题满分12分)设曲线C :()ln f x x ex =-( 2.71828e =⋅⋅⋅),()f x '表示()f x 导函数. (I )求函数()f x 的极值;(II)对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '.12.(本小题满分14分)定义),0(,,)1(),(+∞∈+=y x x y x F y ,(I)令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域; (II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.导数练习题(B )答案1.(本题满分12分)已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值;(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式;(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(31的图象有三个不同的交点,求m 的取值范围.解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f得 ⎩⎨⎧==⇒⎩⎨⎧=--++=03023233c d b a c b a d …………(4分)(II )依题意 3)2('-=f 且5)2(=f⎩⎨⎧=+--+-=--+534648323412b a b a b a b a 解得 6,1-==b a所以396)(23++-=x x x x f …………(8分)(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;2'()m g m g --=-=⎪⎭⎫ ⎝⎛164,276832. …………(10分) 当且仅当()01640276832<--=>-=⎪⎭⎫ ⎝⎛m g m g 且时,有三个交点,故而,276816<<-m 为所求. …………(12分)2.(本小题满分12分)已知函数)(3ln )(R a ax x a x f ∈--=.(I)求函数)(x f 的单调区间;(II )函数)(x f 的图象的在4=x 处切线的斜率为,23若函数]2)('[31)(23mx f x x x g ++=在区间(1,3)上不是单调函数,求m 的取值范围.解:(I))0()1()('>-=x xx a x f(2分) 当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞<x f a 当a=1时,)(x f 不是单调函数 (5分)(II)32ln 2)(,22343)4('-+-=-==-=x x x f a a f 得2)4()(',2)22(31)(223-++=∴-++=∴x m x x g x x mx x g (6分)2)0(',)3,1()(-=g x g 且上不是单调函数在区间⎩⎨⎧><∴.0)3(',0)1('g g (8分)⎪⎩⎪⎨⎧>-<∴,319,3m m (10分))3,319(--∈m (12分)3.(本小题满分14分)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围;(II)若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值,所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;…………(4分)(II )由下表:依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=…………(10分)(III)对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα 在区间[—2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81,所以81|)sin 2()sin 2(|≤-βαf f .…………(14分)4.(本小题满分12分)已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >;(II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分)∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分)(II )xa x a x x a x x g )22)(22(22)(-+=-=',由0)(='x g ,得22a x =,列表 x )22,0(a 22a ),22(+∞a )(x g ' - 0 + )(x g 单调递减 极小值 单调递增当22ax =时,函数)(x g y =取极小值)2ln 1(2)22(a a a g -=,无极大值. …………(6分)由(I)a e a >,∵⎪⎩⎪⎨⎧>>22aa e e aa ,∴22a e a>,∴22a e a > 01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a…………(8分)(i )当122≤a,即20≤<a 时,函数)(x g y =在区间),1(a e 不存在零点 (ii)当122>a,即2>a 时若0)2ln 1(2>-aa ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点若0)2ln 1(2=-aa ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;若0)2ln 1(2<-aa ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;综上所述,)(x g y =在(1,)a e 上,我们有结论:当02a e <<时,函数()f x 无零点; 当2a e = 时,函数()f x 有一个零点;当2a e >时,函数()f x 有两个零点.…………(12分) 5.(本小题满分14分)已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;(II)若函数()f x 没有零点,求实数k 的取值范围;解:(I )当1k =时,2()1xf x x -'=-)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<, ∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,∴函数()f x 有零点,不合要求; ………………(8分)②当0k >时,1()11()111kk x k kx k f x k x x x +-+-'=-==---- ………………(6分) 令1()0,k f x x k +'==得,∵1(1,),()0,k x f x k +'∈>时1(1,),()0x f x k '∈++∞<时,∴1()(1,1)f x k +在内是增函数,1[1,)k++∞在上是减函数,∴()f x 的最大值是1(1)ln f k k+=-,∵函数()f x 没有零点,∴ln 0k -<,1k >,因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(⋅⋅⋅=718.2e ). (I)求实数a 的值;(II)求函数()f x 在]3,23[∈x 的最大值和最小值.解:(I )由2()(23)x f x x ax a e =+--可得22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分) ∵2x =是函数()f x 的一个极值点,∴(2)0f '= ∴2(5)0a e +=,解得5a =- ……………(6分) (II)由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,由0)(<'x f ,得)(x f 在在)2,1(递减∴2)2(e f =是()f x 在]3,23[∈x 的最小值; ……………(8分)2347)23(e f =,3)3(e f = ∵)23()3(,0)74(4147)23()3(23233f f e e e e e f f >>-=-=- ∴()f x 在]3,23[∈x 的最大值是3)3(e f =. ……………(12分)7.(本小题满分14分)已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2--=,xx x x x x f )4)(2(21642)('-+=--= 2分由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-<x注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('<x f 得0)4)(2(<-+x x ,解得-2<x <4, 注意到0>x ,所以函数)(x f 的单调递减区间是]4,0(。
(完整版)导数的运算经典习题
![(完整版)导数的运算经典习题](https://img.taocdn.com/s3/m/d008de3e03020740be1e650e52ea551810a6c93b.png)
(完整版)导数的运算经典习题1. 概述本文档列举了一些有关导数的运算的经典题,以帮助读者巩固和提高对该知识点的理解和应用能力。
2. 题集2.1 一阶导数1. 计算函数 $f(x) = 3x^2 + 2x + 1$ 的导函数 $f'(x)$。
2. 求函数 $g(x) = \sqrt{x}$ 的导数 $g'(x)$。
3. 计算函数 $h(x) = e^x - \sin(x)$ 在 $x = 0$ 处的导数 $h'(0)$。
4. 求函数 $k(x) = \ln(x)$ 的导函数 $k'(x)$。
2.2 高阶导数1. 计算函数 $f(x) = \cos(x)$ 的二阶导数 $f''(x)$。
2. 求函数 $g(x) = \frac{1}{x^2}$ 的二阶导数 $g''(x)$。
3. 计算函数 $h(x) = e^x \cos(x)$ 的二阶导数 $h''(x)$。
4. 求函数 $k(x) = \ln(x^2)$ 的二阶导数 $k''(x)$。
2.3 乘积法则和商积法则1. 使用乘积法则计算函数 $f(x) = (3x^2 + 2x + 1)(4x + 1)$ 的导函数 $f'(x)$。
2. 使用商积法则计算函数 $g(x) = \frac{x^2 + 1}{x}$ 的导数$g'(x)$。
2.4 链式法则1. 使用链式法则计算函数 $f(x) = \sin(3x^2 + 2x + 1)$ 的导数$f'(x)$。
2. 使用链式法则计算函数 $g(x) = e^{2x^3}$ 的导函数 $g'(x)$。
3. 总结本文档提供了一些有关导数的运算的经典习题,涵盖了一阶导数、高阶导数、乘积法则和商积法则、链式法则等知识点。
通过完成这些习题,读者可以巩固对导数运算的理解,并提高应用能力。
希望这些习题对您有所帮助!。
(整理)导数综合练习题(基础型).
![(整理)导数综合练习题(基础型).](https://img.taocdn.com/s3/m/6be7583977232f60ddcca1f2.png)
【解析】由题意知方程2x3+1=3x2-b,
即2x3-3x2+1=-b有三个不相同的实数根,
令f(x)=2x3-3x2+1,
即函数y=f(x)=2x3-3x2+1与直线y=-b有三个交点.
由f'(x)=6x2-6x=6x(x-1)知,函数y=f(x)在区间(-∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,故f(0)是函数的极大值,f(1)是函数的极小值,若函数y=f(x)=2x3-3x2+1与直线y=-b有三个交点,则f(1)<-b<f(0),解得-1<b<0.
3.已知点P在曲线 上, 为曲线在点P处的切线的倾斜角,则 的取值范围是()
A. B. C. D.[0, )
4.已知函数f(x)(x∈R)满足 >f(x),则()
A.f(2)< f(0)B.f(2)≤ f(0)
C.f(2)= f(0)D.f(2)> f(0)
5.对于R上可导的任意函数 ,若满足 ,则必有()
23.已知函数f(x)=ex+2x,若f′(x)≥a恒成立,则实数a的取值范围是________.
24.若函数f(x)=x(x-c)2在x=2处有极大值,则常数c的值为.
25.设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0, ],则点P到曲线y=f(x)的对称轴的距离的取值范围为.
考点:函数导数的性质
6.C
【解析】
试题分析:由 可得 ,即 ,所以 ,又 ,所以 ,所以 .
考点:导数的几何意义
7.
【解析】
试题分析: , ,所以函数的递增区间为: .
导数初学练习题
![导数初学练习题](https://img.taocdn.com/s3/m/f364b44117fc700abb68a98271fe910ef12daef3.png)
导数初学练习题导数是微积分的重要概念之一,它描述了函数在特定点的变化率。
对于初学者来说,练习解题是理解和掌握导数的关键。
本文将提供一些导数初学练习题,帮助读者加深对导数概念和计算方法的理解。
1. 计算下列函数关于自变量 x 的导数:(1) f(x) = 3x^2 - 2x + 1解析:首先将函数展开,得到 f(x) = 3x^2 - 2x + 1。
然后,按照导数的定义,对每一项进行求导:f'(x) = 2 * 3x^(2-1) - 1 * 2x^(1-1) + 0 = 6x - 2所以,f(x) = 3x^2 - 2x + 1 的导数为 f'(x) = 6x - 2。
(2) g(x) = sqrt(x) - 1解析:将函数展开为 g(x) = x^(1/2) - 1。
按照导数的定义,对每一项进行求导:g'(x) = (1/2) * x^((1/2)-1) - 0 = (1/2) * x^(-1/2)所以,g(x) = sqrt(x) - 1 的导数为 g'(x) = (1/2) * x^(-1/2)。
2. 求以下函数在指定点处的导数:(1) h(x) = 2x^3 + 3x^2 - 4x, 在 x = 2 处的导数。
解析:根据导数的定义,我们需要计算 h(x) 在 x = 2 处的斜率。
这可以通过求 h(x) 在 x = 2 处的导数来实现。
首先,我们计算 h'(x) = 6x^2 + 6x - 4。
然后,代入 x = 2,得到:h'(2) = 6 * 2^2 + 6 * 2 - 4 = 32所以,h(x) = 2x^3 + 3x^2 - 4x 在 x = 2 处的导数为 32。
(2) m(x) = e^x, 在 x = 0 处的导数。
解析:函数 m(x) = e^x 的导数等于其本身,即 m'(x) = e^x。
因此,在 x = 0 处的导数为:m'(0) = e^0 = 1所以,m(x) = e^x 在 x = 0 处的导数为 1。
导数基础练习题
![导数基础练习题](https://img.taocdn.com/s3/m/403911380508763230121281.png)
2导数基础练习题一选择题1函数f (x) =(2nx )的导数是(C )2 2(A) f (x) =4二x (B) f (X) =4二x (C) f (x) =8二x (D) f (x) =16二x2.函数f(x)二X €公的一个单调递增区间是( A )(A) 1-1,0 1 (B) 2,8 1 (C) 1,21 (D) 0,213 .已知对任意实数x,有f(-x)--f( ,x) g卜x)二g(且x 0时,f ( x) ,0 g (x ),则x 0 时(B )A. f (x) 0, g (x) 0B. f (x) 0, g (x) :: 0C. f (x) :: 0, g (x) 0D. f (x) ::0, g (x) :: 034.若函数f (x) = x -3bx 3b在0,1内有极小值,则(A )1(A) 0 : b :1 (B) b 1(C) b 0 (D) b :-25•若曲线y =x4的一条切线I与直线x • 4y-8 = 0垂直,则I的方程为(A )A. 4x-y-3=0 B . x 4y-5=0 C . 4x-y 3 = 0 D . x 4y 3 = 06.曲线y =e x在点(2, e2)处的切线与坐标轴所围三角形的面积为( D )2A.2 2B. 2e c. eD.7.设f (x)是函数f (x)的导函数,将y 二f (x)和y 二f(x)的图象画在同一个直角坐标系 B. C. D.f (x)的极小值2&已知二次函数f(x)=ax bx c 的导数为f'(x) , f'(O).O ,对于任意实数 x 都有f (x) Z 0,则丄^的最小值为(C )f'(0)c5 c3A . 3B .C . 2D .-2 29.设 p: f (x^ e x ln x • 2x 2 mx 1 在(0, •::)内单调递增,q : m > -5,则 p 是 q 的(B )A.充分不必要条件E.必要不充分条件C.充分必要条件D.既不充分也不必要条件10. 已知函数f (x^ax 3 bx 2 c ,其导数f (x)的图像如图所示,则函数 是( )A. a b cB. 3a 4b cC. 3a 2bD. c11. 函数y=f(x)的图象如图所示,则导函数 y = f (x)的图象可能是()12.函数f(x)=(x-3)的单调递增区间是( )A. (2, ::)B. (0,3)C. (1,4)D. (一::,2)13.函数f (x) =2x 3 -6x 2 m ( m 为实数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为A -3B -27C -37D -5414三次函数 f(x)3 .. =mx — x 在(—8,+^ )上是减函数,则 m 的取值范围是()A. m<0B. m<1C. m< 0D. mC 1[答案]A[解析]f ' (x) =3mx — 1,由条件知f ' (x) <0在(—8,+8 )上恒成立,yxm<0△ = 12m<0,二m<0,故选A.15曲线y= ]x3+ x在点j1, 4处的切线与坐标轴围成的三角形面积为3 i 3 ;A. 11 B.91 C.32 D.3[答案][解析]••• y'= x2+ 1,•••曲x=1 = 1 + 1 = 2,A.-2 x3+1B.-X+1C.-4xD.-3x3+xL的倾斜角的范围A [0,-][注二)B [0,二)C4 4 n [419 y x =3处的导B. -D.-20若曲线y= x2+ ax+ b在点(0, b)处的切线方程是x—y+ 1 = 0,则(y = 3x3+ x在点(1 , 4)处的切线斜率k = y,|3 34• k= 2,切线方程为y —3= 2(x —1),即6x —3y —2= 0,2 1 112 1令x = 0 得y = —3,令y = 0 得x =命二S= X3 X 2= &216.若函数f(x)的导数为.f'(x)=-2x+1,则f(x)可能是 ( D )17.已知曲线y=£-3lnx的一条切线的斜率为J,则切点的横坐标为(BA -2B 3C 118.正弦曲线y二sinx上一点P,以点P为切点的切线为直线L,则直线是(A )A . a= 1, b= 1b= 1C. a = 1, b=—1 D . a =—1, b=—121已知直线y= x+ 1与曲线y= In(x+ a)相切,则a的值为(C. —1222已知函数f(x)在R上满足f(x)=2f(2-x)-x &-8,则曲线y= f(x)在点(1,f(1))处的切线方程是 () A 『=2X — 1 B 『=x c y=3x-2D y = -2 x + 3 23•函数f(x)的定义域为开区间(a,b),导函数f (x)在(a,b)内的图象如图所示, 极小值点 (f(x) 4 B.—312 D.—325.以下四图, 的序号是都是同一坐标系中三次函数及其导函数的图像, 、④ 1.函数f(x)=xlnx(x 0)的单调递增区间是.二.填空题32 •已知函数 f(x)二x -12x 8在区间[-3, 3]上的最大值与最小值分别为 M,m ,则M -m= —32.3 23.点P 在曲线y = x —x —上移动,设在点P 处的切线的倾斜角为为 〉,则〉的取值范3围是 ------------------------------ 0/ |; ” ,|—,二 --------IL 2 _41 3 24 •已知函数y x x • ax -5(1)若函数在-:= 总是单调函数,则 a 的取值范围3是 _________ a^1 ______ .⑵若函数在[1,+处)上总是单调函数,则 a 的取值范围(3 )若函数在区间(-3 ,1 )上单调递减,则实数a 的取值范围是内有 8 C.—324.如图是函数2A.—3=x 34个bx 2 cx d 的大致图象,则x其中一定不正确④① ②③ C . D . 3a _ -3. _________ .5. 函数f(x)=x3—ax在[1 , +m)上是单调递增函数,则a的取值范围是__________________ 。
导数基础复习题
![导数基础复习题](https://img.taocdn.com/s3/m/4fe6266b27d3240c8447efa7.png)
(三)练习1、求下列各函数的导数(1)()2f x x = (2) 3()f x x = (3) 3()f x x= (4)3()f x x = (1)()f x π= (2)4()f x x = (3)()f x x = (4)()sin f x x =(5)()cos f x x =- (6)()3x f x = (7)()x f x e = (8)2()log f x x =(9)()ln f x x = (10)1()f x x =(11)31cos 44y x =+(12)1x y x=+ (13)lg x y x e =- (14)3cos y x x =5.求曲线3)(x x f y ==在点(1,1)处的切线.2、求曲线y x =在点(4,2)处的切线3、求与曲线1y x =相切且过点(12-,4)的切线方程5、已知点P 和Q 是曲线223y x x =--上的两点,且点P 的横坐标是1,点Q 的横坐标是4,求:①直线PQ 的斜率;②点P 处的切线方程7.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;9、曲线x y e =在(2,2e )处的切线与坐标轴所围三角形的面积为多少?三、函数的单调性与导数1、函数的单调性与导数的关系:在某个区间(,)a b 内,如果 ,那么函数()y f x =在这个区间内单调 ;如果 ,那么函数()y f x =在这个区间内单调 .说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是2、证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'f x 在(),a b 内的符号;(3)做出结论:()'0f x >为增函数,()'0f x <为减函数练习:1.(8分钟合作完成)判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+2、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.3.求下列函数的单调区间(1)f (x )=2x 3-6x 2+7 (2)f (x )=x1+2x(3) f (x )=sin x , x ]2,0[π∈ (4) y=xlnx4、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.四、函数的极值与导数.求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数f ′(x )(2)求方程f ′(x )=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x )在这个根处无极值求函数()y f x =的极值的方法:解方程()0,f x '=当0()0f x '=时:1、如果在0x 附近的左侧()0,f x '>右侧()0,f x '<那么0()f x 是 值;2、如果在0x 附近的左侧()0,f x '<右侧()0,f x '>那么0()f x 是 值练习1、求()31443f x x x =-+的极值2、求下列函数的极值:(1)2()62f x x x =-- (2) 3()27f x x x =-(3)3()612f x x x =+- (4)3()3f x x x =-3、填空题(独立完成10分钟)1)函数32()39f x x ax x =++-在3x =-处取极值,则a = 。
导数基础训练试题及答案
![导数基础训练试题及答案](https://img.taocdn.com/s3/m/d45be57aa66e58fafab069dc5022aaea988f4156.png)
导数基础训练试题及答案一、单项选择题(每题3分,共30分)1. 函数f(x)=x^2在x=1处的导数是()。
A. 0B. 1C. 2D. 32. 函数f(x)=3x^3+2x^2+5的导数是()。
A. 9x^2+4xB. 9x^2+4x+5C. 3x^2+4xD. 3x^2+4x+53. 函数f(x)=sin(x)的导数是()。
A. cos(x)B. sin(x)C. -cos(x)D. -sin(x)4. 如果函数f(x)的导数为f'(x)=6x,那么f(x)可能是()。
A. 3x^2+CB. 2x^3+CC. x^3+CD. x^2+C5. 函数f(x)=e^x的导数是()。
A. e^xC. -e^xD. -e^(-x)6. 函数f(x)=ln(x)的导数是()。
A. 1/xB. xC. ln(x)D. 17. 函数f(x)=x^(1/3)的导数是()。
A. 1/3x^(-2/3)B. 1/3x^(1/3)C. x^(-2/3)D. x^(2/3)8. 函数f(x)=sqrt(x)的导数是()。
A. 1/(2sqrt(x))B. 1/2sqrt(x)C. 2/sqrt(x)D. 2sqrt(x)9. 函数f(x)=x^5-5x^3+x的导数是()。
A. 5x^4-15x^2+1B. 5x^4-15x^2+xC. 5x^4-15x^2+1+xD. 5x^4-15x^210. 函数f(x)=cos(x)的导数是()。
A. -sin(x)B. sin(x)D. cos(x)二、填空题(每题4分,共20分)1. 函数f(x)=x^3的导数是______。
2. 函数f(x)=1/x的导数是______。
3. 函数f(x)=tan(x)的导数是______。
4. 函数f(x)=x^2-6x+10的导数是______。
5. 函数f(x)=ln(x)+x的导数是______。
三、解答题(每题10分,共50分)1. 求函数f(x)=x^2+3x-5在x=2处的导数值。
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案
![同步练习】基本初等函数的导数公式及运算法则基础练习题及答案](https://img.taocdn.com/s3/m/fb12fadbafaad1f34693daef5ef7ba0d4a736da7.png)
同步练习】基本初等函数的导数公式及运算法则基础练习题及答案1.函数$y=x^2$在点$x=1$处的导数是2.2.函数$f(x)=(2x+1)^2(4x-2x+1)$的导数是$24x^2-1$。
3.函数$f(x)=(x+2a)(x-a)^2$的导数为$f'(x)=2(x^2-a^2)+2(x-a)\cdot 2x=2(3x^2-2ax-a^2)$。
4.函数$f(x)=1+\sin x$,其导函数为$f'(x)=\cos x$,则$f'(\pi/3)=1/2$。
5.已知函数$f(x)=3x^2$,则$f'(3)=18$。
6.函数$f(x)=(2e^x)+\sin x$的导数是$f'(x)=2e^x+\cos x$。
7.已知$f(x)=\sin x+\cos x+\pi/2$,则$f'(\pi/2)=-1$。
8.已知函数$f(x)=2\sin x+\cos x$,则$f'(\pi)=-2$。
9.已知函数$f(x)=\frac{1}{2}x^2$,则$f(x)=\frac{1}{2}x^2+C$,其中$C$为常数。
10.某物体的瞬时速度为0时,$t=2$。
11.已知函数$f(x)=ax^2+b$的图像开口向下,$\lim\limits_{\Delta x\rightarrow 0}\frac{f(a+\Delta x)-f(a)}{\Delta x}=4$,则$a=-2$。
12.已知函数$f(x)=x^4+ax^2-bx$,且$f'(-1)=-13$,$f'(-1)=-27$,则$a+b=-18$。
13.已知函数$f(x)=x\sin x+\cos x$,则$f'(\frac{\pi}{2})=-1$。
14.函数$f(x)=x\mathrm{e}^x$的导函数为$f'(x)=(x+1)\mathrm{e}^x$,所以$f'(x)>0$的解集为$(0,+\infty)$。
导数专项训练及答案
![导数专项训练及答案](https://img.taocdn.com/s3/m/821c2de3866fb84ae55c8d5b.png)
导数专项训练 例题讲解【1】导数的几何意义及切线方程1.已知函数()a f x x =在1x =处的导数为2-,则实数a 的值是________.2. 曲线y =3x -x 3上过点A (2,-2)的切线方程为___________________.3. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 . 4.若直线y =kx -3与曲线y =2ln x 相切,则实数k =_______.5.已知直线2+=x y 与曲线()a x y +=ln 相切,则a 的值为 _______. 6. 等比数列{}n a 中,120121,9a a ==,函数122012()()()()2f x x x a x a x a =---+,则曲线()y f x =在点(0,(0))f 处的切线方程为_____________.7.若点P 是曲线y=x 2-ln x 上的任意一点,则点P 到直线y=x-2的最小距离为________. 8. 若点P 、Q 分别在函数y =e x 和函数 y =ln x 的图象上,则P 、Q 两点间的距离的最小值是_____. 9. 已知存在实数a ,满足对任意的实数b ,直线y x b =-+都不是曲线33y x ax =-的切线,则实数a 的取值范围是_________.10. 若关于x 的方程3x e x kx -=有四个实数根,则实数k 的取值范围是_____________. 11. 函数f (x)=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g(x )在它们的交点(1, c )处具有公 共切线,则c 的值是___________.【2】常见函数的导数及复合函数的导数1.f(x)=2 , 则f ’(2) =______. 2. 设曲线y =ln 1xx +在点(1, 0)处的切线与直线x -ay +1=0垂直,则a =_______.3.函数333()(1)(2)(100)f x x x x =+++在1x =-处的导数值为___________.4. 已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1, f (1))处的切线方程是____________.5. 若函数()1*()n f x x n N +=∈的图像与直线1x =交于点P ,且在点P 处的切线与x 轴交点的横坐标为n x ,则20131201322013320132012log log log log x x x x ++++的值为 .6. 设f 1(x )=cos x ,定义)(1x f n +为)(x f n 的导数,即)(' )(1x f x f n n =+,n ∈N *,若ABC ∆的内角A 满足1220130f A f A f A ()()()+++=,则sin A 的值是______.【3】导数与函数的单调性22x xe e -⎛⎫+ ⎪⎝⎭1. 函数21ln 2y x x =-的单调递减区间为______. 2. 已知函数()ln ()f x x a R =∈,若任意12[2,3]x x ∈、且12x x >,t =()2121()f x f x x x --,则实数t的取值范围____________.3. 已知函数f (x )=x 3-6x 2+9x +a 在x R ∈上有三个零点,则实数a 的取值范是 .4.设'()f x 和'()g x 分别是f (x )和()g x 的导函数,若'()'()0f x g x ≤在区间I 上恒成立,则称f (x )和g (x )在区间I 上单调性相反.若函数f(x)=3123x ax -与g (x )=x 2+2bx 在开区间(a , b )上单调性相反(a >0),则b -a 的最大值为 . 【4】导数与函数的极值、最值1. 已知函数322()3f x x mx nx m =+++在1x =-时有极值0,则m n += . 2. 已知函数()2(1)ln f x f x x '=-,则()f x 的极大值为 .3. 已知函数f (x )=x 4+ax 3+2x 2+b ,其中a , b R ∈.若函数f (x )仅在x =0处有极值,则a 的取值范围是______________.4. 设曲线(1)x y ax e =-在点()10,y x A 处的切线为1l ,曲线()x e x y --=1在点02(,)B x y 处的切 线为2l .若存在030,2x ⎡⎤∈⎢⎥⎣⎦,使得12l l ⊥,则实数a 的取值范围为____________.5.已知函数f (x )=e x -1, g(x )= -x 2+4x -3若有f (a )=g (b ),则b 的取值范围为______.6. '()f x 是函数3221()(1)3f x x mx m x n =-+-+的导函数,若函数['()]y f f x =在区间[m ,m+1]上单调递减,则实数m 的取值范围是__________. 【解答题】1. 某企业拟建造如上图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左 右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造 费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米 建造费用为()3c c >.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2)求该容器的建造费用最小时的r2. 已知函数f (x )=2ax -(a +2)x +ln x .(1)当a =1时,求曲线y = f(x )在点(1, f(1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e )上的最小值为-2,求a 的取值范围.3. 已知函数x a x x f ln )()(-=,(0≥a ).(1)当0=a 时,若直线m x y +=2与函数)(x f y =的图象相切,求m 的值; (2)若)(x f 在[]2,1上是单调减函数,求a 的最小值;(3)当[]e x 2,1∈时,e x f ≤)(恒成立,求实数a 的取值范围.(e 为自然对数的底).4.已知函数2()ln ,af x x a x=+∈R . (1)若函数()f x 在[2,)+∞上是增函数,求实数a 的取值范围; (2)若函数()f x 在[1,]e 上的最小值为3,求实数a 的值.5.设函数2()1x f x e x ax =---(1)若0a =,求()f x 的单调区间; (2)若当0x ≥时()0f x ≥,求a 的取值范围导数专项练习答案 【1】导数的几何意义及切线方程1. 2;2. y =-2或9x +y -16=03.34; 4. 2e ; 5. 3; 6.201232y x =+; 7. 2; 8. 2; 9. 13a < 10. ()0,3e -11. 4【2】常见函数的导数及复合函数的导数 1. e -1e; 2. 12- 3. 3⨯99! 4. 2x -y -1=0; 5. -1 ; 6. 1;【3】导数与函数的单调性1. (0, 1);2. 11,32⎛⎫⎪⎝⎭; 3. (-4, 0); 4. 12【4】导数与函数的极值、最值1. 11;2. 2ln2-2;3. 88,33⎡⎤-⎢⎥⎣⎦; 4. 312a ≤≤; 5. []1,3 ; 6.0m ≥[5] 解答题 1. 答案解:(1)由题意可知()23480233r l r l r πππ+=≥,即2804233l r r r =-≥,则02r <≤. 容器的建造费用为2228042346433y rl r c r r r c rππππ⎛⎫=⨯+⨯=-+ ⎪⎝⎭, 即2216084y r r c rπππ=-+,定义域为{}02x r <≤. (2)2160168y r rc r πππ'=--+,令0y '=,得3202r c =-.令32022r c ==-,得92c =,①当932c <≤时,32022c ≥-,当02r <≤时,0y '<,函数单调递减,∴当2r =时y有最小值;②当92c >时,32022c <-,当32002r c <<-时,0y '<;当3202r c >-时,0y '>, ∴当3202r c =-时y 有最小值. 综上所述,当932c <≤时,建造费用最小时2r =;当92c >时,建造费用最小时3202r c =-2. 答案()()()()()()()22(2)2ln 0+22110220......5f x ax a x x ax a a f x ax a x x x =-++∞-+-'>=-++=>函数的定义域是,,当时,分()()()()()22212110=0,11..............................................................62ax a x ax f x f x x xx x a -+---''=====⋯⋯⋯令,即所以或分3. 解答4.若21a <,则20x a ->,即()0f x '>在[1,]e 上恒成立,此时()f x 在[1,]e 上是增函数.5. 解答导数专题复习(配详细答案)体型一:关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
(完整版)导数基础练习测试
![(完整版)导数基础练习测试](https://img.taocdn.com/s3/m/cdbcb1a43169a4517623a376.png)
导数基础练习(共2页,共17题)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0 3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx 5.的导数是()A.B.C.D.6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.17.函数y=cose xA.﹣e x sine x B.cose x C.﹣e x D.sine x8.已知,则f′()=()A.﹣1+ B.﹣1 C.1 D.09.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣811.设y=ln(2x+3),则y′=()A.B.C.D.12.已知函数,则f′(x)等于()A.B.C.0 D.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.714.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12) D.(2,4)二.填空题(共2题)15.求导:()′=_________.16.函数y=的导数是_________.三.解答题(共1题)17.求函数y=e x5 +2的导数.导数基础练习(试题解析)一.选择题(共14题)1.函数f(x)=sin2x的导数f′(x)=()A.2sinx B.2sin2x C.2cosx D.sin2x考点:简单复合函数的导数.考查学生对复合函数的认识,要求学生会对简单复合函数求导.分析:将f(x)=sin2x看成外函数和内函数,分别求导即可.解答:将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,∴可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x.∴选D.红色sin2x、蓝色sin2x2.曲线f(x)=lnx+2x在点(1,f(1))处的切线方程是()A.3x﹣y+1=0 B.3x﹣y﹣1=0 C.3x+y﹣1=0 D.3x﹣y﹣5=0考点:简单复合函数的导数;直线的点斜式方程.考查学生对切线方程的理解,要求写生能够熟练掌握.分析:先要求出在给定点的函数值,然后再求出给定点的导数值.将所求代入点斜式方程即可.解答:对f(x)=lnx+2x求导,得f′(x)=+2.∴在点(1,f(1))处可以得到f(1)=ln1+2=2,f′(1)=1+2=3.∴在点(1,f(1))处的切线方程是:y﹣f(1)=f′(1)(x﹣1),代入化简可得,3x﹣y﹣1=0.∴选B.3.若函数f(x)=sin2x,则f′()的值为()A.B.0 C.1 D.﹣考点:简单复合函数的导数.计算题.求函数在某点处的导数值,应该先利用导数的运算法则及初等函数的导数公式求出导函数,再求导函数值.分析:先利用复合函数的导数运算法则求出f(x)的导函数,将x=代入求出值.解答:解:f′(x)=cos2x(2x)′=2cos2x,∴f′()=2cos=1,∴选C.红色sin2x、蓝色2cos2x4.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.x cosx﹣sinx D.c osx﹣sinx考点:导数的乘法与除法法则;导数的加法与减法法则.计算题.本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题.分析:利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解答:解:∵f(x)=xsinx+cosx,∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx,∴选B.红色xsinx+cosx、蓝色xcosx5.的导数是()A.B.C.D.考点:导数的乘法与除法法则.计算题.本题考查导数的除法运算法则,解题时认真计算即可,属于基础题.分析:利用导数的四则运算法则,按规则认真求导即可解答:解:y′===∴选A.红色、绿色y′=6.y=xlnx的导数是()A.x B.lnx+1 C.3x D.1考点:导数的乘法与除法法则.导数的综合应用.本题考查导数的乘法法则,考查了基本初等函数的导数公式,属于基础题.分析:直接由导数的乘法法则结合基本初等函数的导数公式求解.解答:解:∵y=xlnx,∴y′=(xlnx)′=x′lnx+x(lnx)′=.∴选B.红色xlnx、绿色lnx+17.函数y=cose x的导数是()A.﹣e x sine x B.cose x C.﹣e x D.sine x考点:导数的乘法与除法法则.导数的概念及应用.本题主要考查导数的基本运算,要求熟练掌握常见函数的导数公式以及导数的运算法则.分析:根据导数的运算法则即可得到结论.解答:解:函数的导数为f′(x)=﹣sine x(e x)′=﹣e x sine x,∴选A.红色cose x、绿色﹣e x sine x8.已知,则f′()=()A.﹣1+B.﹣1 C.1 D.0考点:导数的加法与减法法则.计算题.本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.分析:本题先对已知函数进行求导,再将代入导函数解之即可.解答:解:∴选B.红色、绿色-sinx9.函数的导数是()A.B.C.e x﹣e﹣x D.e x+e﹣x考点:导数的加法与减法法则.计算题.本题考查导数的运算,牢记求导公式是解本题的关键.分析:根据求导公式(u+v)′=u′+v′及(e x)′=e x即可求出函数的导数.解答:解:∵,∴y′==.∴选A.红色、蓝色10.函数y=x2﹣2x在﹣2处的导数是()A.﹣2 B.﹣4 C.﹣6 D.﹣8考点:导数的加法与减法法则.计算题;导数的概念及应用.本题考查导数的加法与减法法则,考查基本初等函数的导数公式,是基础的计算题.分析:求出原函数的导函数,在导函数解析中取x=﹣2计算即可得到答案.解答:解:由y=x2﹣2x,得y′=2x﹣2.∴y′|x=﹣2=2×(﹣2)﹣2=﹣6.∴选C.红色y=x2﹣2x、蓝色y′=2x﹣211.设y=ln(2x+3),则y′=()A.B.C.D.考点:导数的运算.导数的概念及应用.本题主要考查导数的计算,要求熟练掌握复合函数的导数公式,属于基础题.分析:根据复合函数的导数公式即可得到结论.解答:解:∵y=ln(2x+3),∴,∴选:D红色ln(2x+3)、蓝色12.已知函数,则f′(x)等于()A.B.C.0 D.考点:导数的运算.导数的概念及应用.本题考查了常数的导数,只要理解常数c′=0即可解决此问题.分析:我们知道:若函数f(x)=c为常数,则f′(x)=0,∴可得出答案.解答:解:∵函数,∴f′(x)=0.∴选C.13.曲线y=x2+3x在点A(2,10)处的切线的斜率k是()A.4 B.5 C.6 D.7考点:导数的几何意义.计算题.本题考查函数在某点导数的几何意义的应用.分析:曲线y=x2+3x在点A(2,10)处的切线的斜率k就等于函数y=x2+3x在点A(2,10)处的导数值.解答:解:曲线y=x2+3x在点A(2,10)处的切线的斜率,k=y′=2x+3=2×2+3=7,∴答案为7.红色x2+3x、蓝色2x+314.曲线y=4x﹣x2上两点A(4,0),B(2,4),若曲线上一点P处的切线恰好平行于弦AB,则点P的坐标为()A.(1,3)B.(3,3)C.(6,﹣12)D.(2,4)考点:导数的几何意义.考核导数的几何意义及两条直线平行斜率的关系.分析:首先求出弦AB的斜率,再利用导数的几何意义求出P点坐标.解答:解:设点P(x0,y0),∵A(4,0),B(2,4),∴kAB==﹣2.∵过点P的切线l平行于弦AB,∴kl=﹣2,∴根据导数的几何意义得知,曲线在点P的导数y′=4﹣2x=4﹣2x=﹣2,即x0=3,∵点P(x0,y)在曲线y=4x﹣x2上,∴y0=4x0﹣x02=3.∴选B.红色4x ﹣x 2、蓝色4﹣2x二.填空题(共2题)15.求导:()′=, .考点: 简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式是解决本题的关键.分析: 根据复合函数的导数公式进行求解即可. 解答: 解:=(x 2+1)21,则函数的导数为y′=(x 2+1)21-(x 2+1)′=(x 2+1)21-×2x =,∴答案为:红色、蓝色精心整理16.函数y=的导数是.考点:简单复合函数的导数.导数的概念及应用.本题主要考查导数的计算,根据复合函数的导数公式进行计算是解决本题的关键.分析:根据复合函数的导数公式进行计算即可.解答:解:函数的导数为y′==,∴答案为:红色、蓝色三.解答题(共1题)17.求函数y=e x5-+2的导数.考点:简单复合函数的导数.导数的概念及应用.本题考查导数的运算,以及导数基本知识的考查.分析:直接利用复合函数的导数求解运算法则求解即可.解答:解:函数y=e x5-+2的导数:y′=﹣5e x5-.∴答案为:y′=﹣5e x5-.红色e x5-+2、蓝色﹣5e x5-。
(完整版)导数基础题
![(完整版)导数基础题](https://img.taocdn.com/s3/m/670990a2e2bd960591c67771.png)
导数公式及导数的运算法则1.给出下列结论:①x x sin )(cos '=; ②3cos )3(sin 'ππ=; ③x x 1)1('2-=; ④xx x 21)1('=- 其中正确的个数是______。
A .0B .1C .2D .32.函数x x y cos 2•=的导数为_________。
A .x x x x y sin cos 22'-=B .x x x x y sin cos 22'+=C .x x x x y sin 2cos 2'-=D .x x x x y sin cos 2'-=3.已知3)(x x f =,6)(0'=x f ,则_______0=x 。
A .2 B .2-C .2±D .1± 4.函数x y cos =在6π=x 处的切线的斜率为______。
A .23B .23-C .21D .21- 5.曲线423+-=x x y 在点)3,1(处的切线的倾斜角为_______。
A .030B .045C .060D .01206.已知x x x f 2)(2+=,则_______)0('=f 。
7.已知曲线)(x f y =在2-=x 处的切线的倾斜角为43π,则_______)2('=-f 。
8.已知x x x x f cos sin )(-•=,则_______)('=πf 。
9.函数x x f xln 2)(•=在2=x 处的导数为___________。
10.求下列函数的导数: ①x x x x f 52131)(23++=; ②x x x y ln •+=; ③x e x f x =)(11.求下列函数的导数:①xe x xf •=2)(; ②x x f 8log )(= ③x x x f sin )(2=12.求曲线122+=x y 在点)3,1(-P 处的切线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.曲线31y x =+在点(1,0)-处的切线方程为A .330x y ++=B .330x y -+=C .30x y -=D .330x y --= 2.函数2sin y x =的导数y '=A.2cos xB.2cos x -C.cos xD.cos x - 3.已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值围是( ) A.3[,)4ππ B.[,)42ππ C.3(,]24ππ D.[0,4π) 4.已知函数f (x )(x ∈R )满足()f x '>f (x ),则 ( ) A .f (2)<2e f (0) B .f (2)≤2e f (0) C .f (2)=2e f (0) D .f (2)>2e f (0)5.对于R 上可导的任意函数)(x f ,若满足0)('1≤-x f x,则必有 ( ) A .)1(2)2()0(f f f <+ B .)1(2)2()0(f f f ≤+ C .)1(2)2()0(f f f >+ D .)1(2)2()0(f f f ≥+6.若曲线()cos f x a x =与曲线2()1g x x bx =++在交点(0,)m 处有公切线, 则a b += ( )(A )1- (B )0 (C )1 (D )27.函数()23x y x e =-的单调递增区是( ) A .(),0-∞B .()0,+∞C .(),3-∞ 和()1,+∞D .()3,1-8.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '得图像是( )9.设a R ∈,函数()x xf x e a e -=+⋅的导函数是()f x ',且()f x '是奇函数,则a 的值为( )A .1B .12-C .12D .1-10.函数)cos()(2x x x f +=导数是( )A.)sin(2x x +- B. )sin()12(2x x x ++- D. )sin()12(2x x x ++ C. )sin(22x x x +- 11.已知定义域为R 的奇函数f (x )的导函数为f ′(x ),当x ≠0时,f ′(x )+()f x x>0,若a =12f 12⎛⎫⎪⎝⎭,b =-2f (-2),c =ln 12f (ln 2),则下列关于a ,b ,c 的大小关系正确的是( )A .a >b >cB .a >c >bC .c >b >aD .b >a >c12.函数y=2x 3+1的图象与函数y=3x 2-b 的图象有三个不相同的交点,则实数b 的取值围是( )(A)(-2,-1) (B)(-1,0) (C)(0,1) (D)(1,2)13.已知定义在R 上的可导函数f(x)的导函数为f ′(x),满足f ′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<e x的解集为( ) (A)(-2,+∞) (B)(0,+∞) (C)(1,+∞) (D)(4,+∞)14.函数y=x ·e -x在x ∈[2,4]上的最小值为( )(A)0 (B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
15.如图,其中有一个是函数f(x)=错误!未找到引用源。
x 3+ax 2+(a 2-1)x+1(a ∈R,a ≠0)的导函数f ′(x)的图象,则f(-1)为( )(A)2 (B)-错误!未找到引用源。
(C)3 (D)-错误!未找到引用源。
16.若函数错误!未找到引用源。
在R 上可导,且()()222f x x f x m '=++,则( )A.错误!未找到引用源。
B. 错误!未找到引用源。
C.错误!未找到引用源。
D. 不能确定17.函数f(x)=3x 2+ln x -2x 的极值点的个数是( ) A .0 B .1C .2D .无数个18.已知函数2(0,)n n y a x a n N *=≠∈的图象在1x =处的切线斜率为121n a -+(*2,n n N ≥∈),且当1n =时,其图象经过()2,8,则7a =( )A.B .5C .6D .7 19.直线y =kx +b 与曲线y =x 3+ax +1相切于点(2,3),则b 的值为( ). A .-3 B .9 C .-15 D .-720.已知函数f (x )的导函数f ′(x )=a (x +1)(x -a ),若f (x )在x =a 处取到极大值,则a 的取值围是________.21.已知函数f (x )=x (x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________.22.函数f (x )=a >0)的单调递减区间是________.23.已知函数f(x)=e x+2x,若f ′(x)≥a 恒成立,则实数a 的取值围是________.24.若函数f(x)=x(x-c)2在x=2处有极大值,则常数c 的值为 .25.设a>0,f(x)=ax 2+bx+c,曲线y=f(x)在点P(x 0,f(x 0))处切线的倾斜角的取值围为[0,错误!未找到引用源。
],则点P 到曲线y=f(x)的对称轴的距离的取值围为 .26.设f(x)是偶函数,若曲线y =f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为________.27.已知函数12)(23+-+=ax x x x f 在区间(-1,1)上恰有一个极值点,则实数a 的取值围是 ____ .28.已知函数f(x)=aln x 2(a>0),若对定义域的任意x ,f ′(x)≥2恒成立,则a 的取值围是________.29.若曲线y =(1,k)处的切线平行于x 轴,则k =________.30.若函数f(x)32+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.31.若函数f (x )=ln x 2-2x (a ≠0)存在单调递减区间,则实数a 的取值围是______.32.已知函数f (x )=x g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值围是______.33.设函数()x f y =在其图像上任意一点00(,)x y 处的切线方程为()()0020063x x x x y y --=-,且()30f =,则不等式解集为 .34.函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是______.35.已知函数f (x )ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值围是______.2xx解不等式()()f x g x ≤;(4分)事实上:对于,x R ∀∈有()0f x ≥成立,当且仅当0x =时取等号.由此结论证明(6分)37.已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)求()f x 的单调区间;(2)若0a <,且()f x 在区间(0,]e 上的最大值为2-,求a 的值; (3)当1a =-时,试证明:()f x 1x =()f x b ()f x (2,2)-a39.设函数()()30f x ax bx c a =++≠为奇函数,其图象在点()()1,1f 处的切线与直线670x y --=垂直,导函数()f x ' 的最小值为12-. (1)求,,a b c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x在[]1,3-上的最大值和最小值. 40 (1)当1a =时,求曲线()f x 在1x =处的切线方程; (2时,求函数()f x 的单调区间; (3)在(2,若对于1x ∀∈[1,2],2x ∃∈[0,1],使()()12f x g x ≥成立,数b 的取值围.41.已知 (其中是自然对数的底) (1) 若在处取得极值,求的值; (2) 若存在极值,求a 的取值围42.已知f (x )=e x-ax -1. (1)求f (x )的单调增区间;(2)若f (x )在定义域R 单调递增,求a 的取值围.,],0(,ln 2)(2e x x ax xf ∈-=e )(x f 1=x a )(x f参考答案1.B 【解析】试题分析:∵'23y x =,由点斜式知切线方程为:()31y x =+,即330x y -+=.考点:导数的几何意义,切线的求法. 2.A 【解析】试题分析:根据导函数运算公式()''2sin 2cos y x x ==可知A 正确. 考点:导函数的计算公式. 3.A 【解析】试题分析:因为,所以A. 考点:导数的几何意义、正切函数的值域. 4.D 【解析】试题分析:函数f (x )(x ∈R )满足()()f x f x '>,则函数为指数函数,可设函数2()xf x e =,则导函数'2()2xf x e =,显然满足()()f x f x '>,4(2)f e =,22(0)e f e =,显然 42e e > ,即2(2)(0)f e f >,故选 B .本题入手点是根据函数导数运算法则,构造满足条件函数,从而解题。
考点:函数与导数运算法则,考查学生的基本运算能力以及转化与化归能力. 5.C【解析】试题分析:所以,1-x ≥0即x ≤1时,()f x '<0, 1-x ≤0即x ≥1时,()f x '>0,即函数)(x f 在 [1,+∞)上的单调增,在(-∞,1)上单调递减,所以f(0)>f(1),f(2)>f(1) f(0)+f(2)>2f(1) 所以f(0)+f(2)>=2f(1) ,故选C. 考点:函数导数的性质 6.C 【解析】试题分析:由()()b x x g x a x f +='-='2,sin 可得()()00||=='='=x x x g x f k 切,即b a +=-00sin ,所以0=b ,又()()100cos 00+=⇒==a g f m ,所以1=a ,所以1=+b a .考点:导数的几何意义 7.D 【解析】 试题分析:()()()()22232313x x x x y xe x e x x e x x e '=-+-=-+-=--+,031y x '>⇒-<<, 所以函数的递增区间为:()3,1- . 考点:导数的运算及应用. 8.A 【解析】考点:求导公式.9.A 【解析】试题分析:∵,要()f x '是奇函数,则, ∴,即,∴,故选A.考点:求导法则,奇函数的定义. 10.B 【解析】 试题分析:根据函数2222()cos()'()sin()[]'sin()(21)f x x x f x x x x x x x x =+∴=-++=-++,故可知答案为B.考点:导数的计算点评:主要是考查了三角函数的导数的求解,属于基础题。