整数规划
第8章_整数规划(带答案)
1 2 3 4 5 6
1 2 3 0 10 16 10 0 24 16 24 0 28 32 12 27 17 27 20 10 21
4 28 32 12 0 15 25
5 27 17 27 15 0 14
6 20 10 21 25 14 0
18
二、背包问题(补充)
背包可装入 8 单位重量, 10 单位体积物品。若 背包中每件物品至多只能装一个,怎样才能使背包 装的物品价值最高。 物品 名称 重量 体积 价值
4
§1 整数规划的图解法
例1. 某公司拟用集装箱托运甲、乙两种货物, 这两种货物每件的体积、重量、可获利润以及 托运所受限制如表所示。
货物
甲 乙 托运限制
每件体积 (立方米) 195 273 1365
每件重量 (百千克) 4 40 140
每件利润 (百元) 2 3
甲种货物至多托运 4 件,问两种货物各托运多 少件,可使获得的利润最大。
例6.有四个工人,要分别指派他们完成四项 不同的工作,每人做各项工作所消耗的时间 如下表所示,问应如何指派工作,才能使总 的消耗时间为最少。
工作 工人 甲 乙 丙 丁 A 15 19 26 19 B 18 23 17 21 C 21 22 16 23 D 24 18 19 17
1 2 3 4 5 6
1 2 3 0 10 16 10 0 24 16 24 0 28 32 12 27 17 27 20 10 21
4 28 32 12 0 15 25
5 27 17 27 15 0 14
6 20 10 21 25 14 0
第2个地区建一个(地区1、2、6都解决了)
第4个地区建一个(地区3、4、5都解决了)
第4章 整数规划
第4章 整数规划判断:用分枝定界法求解一个极大化的整数规划问题,任何一个可行解的目标函数值是该问题目标函数值的下界;指派问题数学模型的形式同运输问题十分相似,故也可以用表上作用法求解;效率矩阵的任一行(或列)减去(或加上)任一常数,指派问题最优解不会受到影响; 匈牙利法只能用于平衡分配问题;对于极大化问题,匈牙利法不能直接求解。
整数规划问题解的目标函数值优于其相应的线性规划问题的解的目标函数。
用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解。
用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,在进行比较剪枝。
分配问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
分配问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
分配问题域运输问题的数学模型结构形式十分相似,故也可以用表上作业法求解。
隐枚举法也可以用来求解分配问题简答试述分枝定界法求解问题的主要思想。
试述隐枚举法的步骤。
试讲述割平面方法的基本原理. 试例举三种应该剪枝的情况。
计算题分枝定界法用分枝定界法求解下列整数规划问题12max Z x x =+1212129511414123,x x x x x x +≤-+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 32Z x x =+121212231429,x x x x x x +≤+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 2010Z x x =+1232312312324434323,,x x x x x x x x x x x ++≤≤+≤≥---0且为整数用分枝定界法求解下列整数规划问题12max 79Z x x =+121212136735,x x x x x x x +≤+≤≥-0,且为整数用分枝定界法求解下列整数规划问题123max 33Z x x x =++123231231231324432323,,,x x x x x x x x x x x x x ++≤≤+≤≥---0,且为整数用分枝定界法解下列整数规划问题:1212121212232478188..3219,0MaxZ x x x x x x s t x x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题1212121212250..6221,0MaxZ x x x x x x s t x x x x =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题12312121225231050..7228,0,MaxZ x x x x x s t x x x x x =-+-+≤⎧⎪-≤⎨⎪≥⎩为整数用分枝定界法解下列整数规划问题12312341234345272222..0,1,2,3,4,5,j MaxZ x x x x x x x x x x x s t x j x x =-+-⎧-+-+=⎪⎪⎪-++=⎨⎪≥=⎪⎪⎩为整数用分枝定界法求解下列整数规划模型12max 23z x x =+121257354936x x x x +≤+≤12,0x x ≥且为整数有如下整数规划问题12max z x x =+12129511414123x x x x +≤-+≤12,0x x ≥且为整数试用分枝定界法求其最优解。
整数规划
比如下面的例子:
例1.某厂拟用集装箱托运甲乙两种货物,每箱 的体积、重量、可获利润以及托运所受限制如 下表:
货物 体积(每 箱M3) 5 甲 4 乙 托运限制 24 重量(每箱 50kg) 2 5 13 利润(每 箱百元) 20 10
问两种货物各托运多少箱,可使利润最大?
为了满足整数解得要求,初看,似乎只要把已得到的分 数或小数, “舍入化整”就可以了。但是,这常常是不行的, 因为化整后,不一定是可行解,或者虽是可行解,但不一定 是最优解。
整数规划
§1 整数规划及其解法 §2 0-1型整数规划 §3 指派问题
整数规划
1、理解整数规划、0-1规划和指派问题的数学 模型 2、理解整数规划模型的类型 3、理解整数规划的求解方法:分支定界法和割 平面法、0-1规划的隐枚举法和指派问题的 匈牙利法的思想和步骤
求解方法
1、分支定界法 2、割平面法
a x
i 1 ij
n
j
bi yi M (i 1,, m)
y1 + y2 + „ + ym = m –1, yi = 0 或 1 (i=1,„,m)
3、关于固定费用问题
• 在讨论线性规划时,有些问题是要求使 成本最少的方案,那时总设固定成本为 常数,并在线性规划的模型中不必明显 列出。但有些固定成本的问题不能用一 般线性规划来描述,但可改为混合整数 规划来解决。
aj
值最大?
解:设 x j 为决策变量,且 x j 满足如下限制
xj {
1,携带第j件物品 0,不携带第j件物品
,j 1,2, n
则问题的数学模型为
x c j x j max
j 1
n
运筹学整数规划
运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
第5讲 整数规划、非线性规划、多目标规划1
第5讲整数规划、非线性规划、多目标规划一、整数规划1、概念数学规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
整数规划的分类:如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1)变量全限制为整数时,称纯(完全)整数规划。
2)变量部分限制为整数的,称混合整数规划。
2、整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1原线性规划为21min x x z +=s.t.⎩⎨⎧≥≥=+0,05422121x x x x 其最优实数解为:01=x ,452=x ,45min =z ③有可行解(当然就存在最优解),但最优值变差。
例2原线性规划为21min x x Z +=s.t.⎩⎨⎧≥≥=+0,06422121x x x x 其最优实数解为:01=x ,232=x ,23min =z 若限制整数得:11=x ,12=x ,2min =z 。
(ii )整数规划最优解不能按照实数最优解简单取整而获得。
3、0-1整数规划0−1型整数规划是整数规划中的特殊情形,它的变量j x 仅取值0或1。
这时j x 称为0−1变量,或称二进制变量。
j x 仅取值0或1这个条件可由下述约束条件:10≤≤j x ,且为整数所代替,是和一般整数规划的约束条件形式一致的。
在实际问题中,如果引入0−1变量,就可以把有各种情况需要分别讨论的线性规划问题统一在一个问题中讨论了。
引入10-变量的实际问题:(1)投资场所的选定——相互排斥的计划例3某公司拟在市东、西、南三区建立门市部。
拟议中有7个位置(点))7,,2,1( =i A i 可供选择。
规定在东区:由321,,A A A 三个点中至多选两个;在西区:由54,A A 两个点中至少选一个;在南区:由76,A A 两个点中至少选一个。
第五章整数规划
第五章 整数规划主要内容:1、分枝定界法; 2、割平面法; 3、0-1型整数规划; 4、指派问题。
重点与难点:分枝定界法和割平面法的原理、求解方法,0-1型规划模型的建立及求解步骤,用匈牙利法求解指派问题的方法和技巧。
要 求:理解本章内容,熟练掌握求解整数规划的方法和步骤,能够运用这些方法解决实际问题。
§1 问题的提出要求变量取为整数的线性规划问题,称为整数规则问题(简称IP )。
如果所有的变量都要求为(非负)整数,称之为纯整数规划或全整数规划;如果仅一部分变量要求为整数,称为混合整数规划。
例1 求解下列整数规划问题211020m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,13522445x x x x x x x x 如果不考虑整数约束,就是一个线性规划问题(称这样的问题为原问题相应的线性规划问题),很容易求得最优解为:96m ax ,0,8.421===z x x 。
用图解法将结果表示于图中画“+”号的点都是可行的整数解,为满足要求,将等值线向原点方向移动,当第一次遇到“+”号点(1,421==x x )时得最优解为1,421==x x ,最优值为z=90。
由上例可看出,用枚举法是容易想到的,但常常得到最优解比较困难,尤其是遇到变量的取值更多时,就更困难了。
下面介绍几种常用解法。
§2 分枝定界法分枝定界法可用于解纯整数或混合的整数规划问题。
基本思路:设有最大化的整数规划问题A ,与之相应的线性规划问题B ,从解B 开始,若其最优解不符合A 的整数条件,那么B 的最优值必是A 的最优值*z的上界,记为z ;而A 的任意可行解的目标函数值是*z的一个下界z ,采取将B 的可行域分枝的方法,逐步减少z 和增大z ,最终求得*z 。
现举例说明: 例2 求解A219040m ax x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,702075679x x x x x x x x 解:先不考虑条件⑤,即解相应的线性规划B (①--④),得最优解=1x 4.81, =2x 1.82,①② ③ ④ ⑤=0z 356(见下图)。
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
第四章 整数规划
√
√
27
17
结论: 结论: 最优解为x 最优解为 1=1、x2=1、x3=0,即对Ⅰ和Ⅱ两个 、 、 ,即对Ⅰ 项目投资,利润最大为27万元 万元。 项目投资,利润最大为 万元。
18
例2:用完全枚举法求解 型整数规划 :用完全枚举法求解0-1型整数规划
max f = 3x1 − 2 x2 + 5 x3 x1 + 2 x2 − x3 ≤ 2 x + 4x + x ≤ 4 2 3 1 x1 + x2 ≤ 3 4x + x ≤ 6 1 3 x1 , x2 , x3 = 0或1
① ② ③ ④
16
点
过滤条件 f≥16 × √ × √ f≥26 × √ √ f≥27 √
约束条件 ① ② ③ ④
f值 值
(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
√ √
√ √
√ √
√ √
16 26
√ √ ×
× √
35
min
第二步: 第二步:检验
行检验 列检验
0 * 8 11 0 * 2 3 0 11
第4章 整数规划
整数规划
整数规划问题的提出
整数规划模型与一般的线性规划模型 的区别仅在于: 的区别仅在于:整数规划的变量要求 部分的或全部的为整数。例如: 部分的或全部的为整数。例如:
m Z = x + x2 ax 1 14 1 x +9x2 ≤ 51 −6x +3x2 ≤1 1 x , x ≥ 0且 整 为 数 1 2
(纯整数规划问题) 纯整数规划问题)
解:设xi为第i天开始上班的人数: 为第i天开始上班的人数: Min: Min:z=x1+x2+x3+x4+x5+x6+x7 s.t. x1 +x4+x5+x6+x7≥17 +x5+x6+x7≥13 x1+x2 x1+x2+x3 +x6+x7≥15 x1+x2+x3+x4+ +x7≥19 x1+x2+x3+x4+x5 ≥14 x2+x3+x4+x5+x6 ≥16 x3+x4+x5+x6+x7≥11 xi≥0 ( i=1,2,…,7) i=1,2,…,7)
例:某市6 例:某市6个区,希望设 置最少消防站以便节省 费用。条件:
必须保证在城区任何地方发 生火警时,消防车能在15 生火警时,消防车能在15分 15分 钟之内赶到现场。各区之间 消防车行驶的时间见右表。
请确定设站方案。
布点问题的数学模型: 0-1规划 布点问题的数学模型:
设0−1为决策变量,当表示i地区设站,表示i 为决策变量,当表示i地区设站,表示i 地区不设站。这样根据消防车15分钟赶到现 地区不设站。这样根据消防车15分钟赶到现 场的限制,可得到如下模型
整数规划(整数规划)
在生产管理和经营活动中若要求解:
• 安排上班的人数 • 运输车辆台数
第八章
整数规划(IP)
(Integer Programming)
主要内容: §1 整数规划的模型(掌握) §2 整数规划的计算机求解(掌握) §3 整数规划的应用(掌握)
(补充指派问题的匈牙利解法)
一、整数规划的模型
(一)整数规划实例 例1:某公司拟用集装箱托运甲、乙两种货物, 这两种货物每件的体积、重量,可获利润以及 托运所受限制如表所示:
用 图 解法求出最优解 x1=3/2, x2 = 10/3 且有MaxZ = 29/6
x2
3
⑴
⑵
(3/2,10/3)
现求整数解(最优解): 如用“舍入取整法”可得 到4个点即(1,3) (2,3) (1,4)(2,4)。显然,它们 都不可能是整数规划的最 优解。
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点。故整数规划问题的可行解集 是一个有限集,如图所示。
工作 人
B1 a11 a21 a31
B2 a12 a22 a32
B3 a13 a23 a33
A1 A2 A3
要求:1.将此分配问题的求解转化为一个网络图中求始点 与终点之间的最短路问题,画出该网络图,注明 节点和边的含义,并标明每一条边的aij值; 2.以上述网络图为基础,利用0-1变量建立该最短 路问题的0-1整数规划模型,列出该模型的数学 表达式。
设决策变量
xij =
1
0
分配第i 个人去做第j 件工作
相反
n
( I,j=1.2. …n )
min Z 其数学模型为:
c
整数规划知识点总结
整数规划知识点总结一、整数规划基本概念整数规划是指决策变量的取值受到整数限制的线性规划问题。
数学形式可以表示为:\[\min c^Tx\]\[ s.t. Ax \leq b\]\[x\geq0 \]\[x_i \in \{0, 1, 2, ...\}\]其中,c为目标函数系数,x是决策变量,A是约束系数矩阵,b是约束条件的右端向量,决策变量x是整数。
当所有的决策变量都是整数时,称为纯粹整数规划(Pure Integer Programming)。
当部分决策变量为整数,部分为连续变量时,称为混合整数规划(Mixed Integer Programming, MIP)。
二、整数规划解法整数规划问题的求解可以采用分支定界法、割平面法、隐枚举法等不同方法。
下面将对常用的整数规划解法进行简要介绍。
1.分支定界法分支定界法是一种求整数规划解的有效方法,它通过对决策变量进行分支,将整数规划问题不断分解为子问题,然后采用线性规划方法求解子问题。
具体步骤如下:1)求解线性规划松弛问题,得到一个整数解。
2)若解为整数,则成为可行解,否则确定需要分支的决策变量,分为两个子问题。
3)对子问题继续重复上述过程,直到无法再分或求解出整数解为止。
2.割平面法割平面法是在分支定界法的基础上进行改进,它在每一次迭代求解线性规划松弛问题后,引入一些额外的不等式(割平面)来改进松弛问题的界。
这些割平面是通过分析整数规划问题的特性产生的,可以有效提高整数规划问题求解的效率。
3.隐枚举法隐枚举法是一种通过隐藏对决策变量的枚举,将整数规划问题转化为线性规划问题进行求解的方法。
该方法可以高效地求解整数规划问题,是一种常用的整数规划求解算法。
以上是整数规划常用的三种求解方法,通过不同的算法可以解决不同种类的整数规划问题。
三、整数规划应用领域整数规划在实际决策问题中有着广泛的应用,如生产计划、运输调度、项目投资、资源配置等诸多领域。
下面将对整数规划在不同应用领域的具体案例进行介绍。
整数规划
i=1 j=1
整数规划的特点及应用
例1 现有资金总额为B。可供选择的投资项目有n个,项目 j所需投资额和预期收益分别为aj和cj(j=1,2,..,n),此 外由于种种原因,有三个附加条件: 若选择项目1,就必须同时选择项目2。反之不一定
7
项目3和4中至少选择一个;
项目5,6,7中恰好选择2个。 应该怎样选择投资项目,才能使总预期收益最大。
14
x2
3
⑴
⑵
(3/2,10/3)
标函数值最大,即为Z=4。
3
x1
整数规划的特点及应用
整数规划问题的求解方法: 分支定界法
15
割平面法
匈牙利法(指派问题)
分支定界法
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下一步; 2)分支与定界: 任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1 组成两个新的松弛问题,称为分枝。 新的松弛问题具有特征:当原问题是求最大值时,目标值是分枝问题的上界;当 原问题是求最小值时,目标值是分枝问题的下界。 3) 检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数值大于 (max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若还存在非整数 解并且目标值大于(max)整数解的目标值,需要继续分枝,再检查,直到得到最优 解。
整数规划的特点及应用
min z =
6
邋
4
4
c ij x ij + [1200y 1 + 1500y 2 ]
ì x 11 + x 21 + x 31 + x 41 = 350 ï ï ï ï x 12 + x 22 + x 32 + x 42 = 400 ï ï ï ï x 13 + x 23 + x 33 + x 43 = 300 ï ï ï x 14 + x 24 + x 34 + x 44 = 150 ï ï ï ï ï x 11 + x 12 + x 13 + x 14 = 400 s .t . í ï x 21 + x 22 + x 23 + x 24 = 600 ï ï ï x 31 + x 32 + x 33 + x 34 = 200y 1 ï ï ï ï x 41 + x 42 + x 43 + x 44 = 200y 2 ï ï ï x ij ? 0 (i , j 1, 2, 3, 4) ï ï ï ï y = 0,1 (i = 1, 2) ï ï î i
整数规划_精品文档
整数规划引言:整数规划是一类特殊的数学优化问题,其中一部份或者全部变量被限制为整数。
整数规划问题在许多领域都有广泛的应用,如物流、生产计划、金融投资等。
随着科技的不断发展,整数规划的应用场景和求解方法也在不断扩展和深化。
一、整数规划的定义与分类定义:整数规划是一种特殊的数学优化问题,其目标是最小化或者最大化一个数学表达式(目标函数),同时满足一系列约束条件,且一部份或者全部决策变量被限制为整数。
分类:根据问题的特性,整数规划可以分为以下几种类型:0-1背包问题:决策变量只能取0或者1。
彻底背包问题:决策变量可以取任意非负整数。
整数线性规划:线性规划的变种,要求部份或者全部决策变量为整数。
二次整数规划:目标函数或者约束条件包含二次项。
二、整数规划的应用场景生产计划:在创造业中,整数规划可以用于优化生产流程、物料需求计划等。
物流优化:通过整数规划可以解决货物配送路线、车辆调度等问题。
金融投资:整数规划在投资组合优化、风险管理等领域有广泛应用。
资源分配:整数规划可用于解决资源分配问题,如人员调度、设备配置等。
组合优化:如旅行商问题(TSP)、装箱问题等,都是整数规划的典型应用场景。
三、整数规划的求解算法穷举法:通过逐个测试所有可能的解来找到最优解,但只适合于小规模问题。
分支定界法:一种基于树结构的搜索算法,能够处理较大规模的问题。
遗传算法:摹拟生物进化过程的优化算法,适合处理大规模问题。
摹拟退火算法:借鉴物理中退火过程的优化算法,具有避免陷入局部最优解的能力。
蚁群算法:摹拟蚂蚁觅食行为的优化算法,适合于求解具有离散变量的优化问题。
元胞遗传算法:将遗传算法和元胞自动机结合,能够处理更复杂的问题。
粒子群算法:摹拟鸟群觅食行为的优化算法,具有简单易实现的特点。
深度学习算法:利用神经网络进行求解,特别在处理大规模、高维度的问题时表现出色。
四、整数规划软件介绍CPLEX:由IBM开辟的商业优化软件,支持整数规划、线性规划、混合整数规划等多种优化问题。
整数规划
第二章整数规划§1 概论定义规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
目前所流行的求解整数规划的方法,往往只适用于整数线性规划。
目前还没有一种方法能有效地求解一切整数规划。
1.2 整数规划的分类如不加特殊说明,一般指整数线性规划。
对于整数线性规划模型大致可分为两类:1o 变量全限制为整数时,称纯(完全)整数规划。
2o 变量部分限制为整数的,称混合整数规划。
1.2 整数规划特点(i)原线性规划有最优解,当自变量限制为整数后,其整数规划解出现下述情况:①原线性规划最优解全是整数,则整数规划最优解与线性规划最优解一致。
②整数规划无可行解。
例1 原线性规划为 其最优实数解为:45min ,45,021===z x x 。
③有可行解(当然就存在最优解),但最优解值变差。
例2 原线性规划为 其最优实数解为:23min ,23,021===z x x 。
若限制整数得:2m in ,1,121===z x x 。
(ii ) 整数规划最优解不能按照实数最优解简单取整而获得。
求解方法分类:(i )分枝定界法—可求纯或混合整数线性规划。
(ii )割平面法—可求纯或混合整数线性规划。
(iii )隐枚举法—求解“0-1”整数规划:①过滤隐枚举法;②分枝隐枚举法。
(iv)匈牙利法—解决指派问题(“0-1”规划特殊情形)。
(v)蒙特卡洛法—求解各种类型规划。
下面将简要介绍常用的几种求解整数规划的方法。
§2 分枝定界法对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分枝与定界内容。
通常,把全部可行解空间反复地分割为越来越小的子集,称为分枝;并且对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。
在每次分枝后,凡是界限超出已知可行解集目标值的那些子集不再进一步分枝,这样,许多子集可不予考虑,这称剪枝。
整数规划PPT课件
混合整数规划
总结词
混合整数规划是同时包含连续变量和整数变量的规划问题。
详细描述
混合整数规划问题在数学上表示为在一定的约束条件下,求一组连续变量和整数变量的函数的最优解 。这类问题在现实生活中应用广泛,如生产计划、物流优化、金融投资等。求解混合整数规划问题需 要同时考虑连续变量和整数变量的特性,通常需要使用特殊的算法进行求解。
通过不断分割解空间并确 定可行解的范围,逐步逼 近最优解。
割平面法
通过添加割平面方程来不 断缩小解空间,直到找到 最优解。
迭代优化法
通过迭代优化算法不断逼 近最优解,适用于大规模 整数规划问题。
02 整数规划问题建模
线性整数规划
总结词
线性整数规划是整数规划的一种,其目标函数和约束条件都是线性函数,且决 策变量都是整数。
装箱问题
总结词
装箱问题是一个经典的整数规划问题, 旨在确定如何将一组物品装入有限容 量的容器中,以最小化装载成本。
详细描述
装箱问题需要考虑物品的尺寸、重量、价值 等多个因素,通过整数规划的方法,可以确 定最佳的装箱方案,包括每个容器的装载物 品和数量等,从而实现装载成本最小化。
THANKS FOR WATCHING
遗传算法
要点一
总结词
一种基于生物进化原理的优化算法
要点二
详细描述
遗传算法是一种模拟生物进化过程的优化算法,通过选择 、交叉和变异等操作来逼近最优解。在整数规划问题中, 遗传算法将决策变量编码为染色体,通过不断进化染色体 群体来寻找满足整数约束的解。遗传算法具有全局搜索能 力强、能够处理多约束和离散变量等优点,因此在整数规 划问题中得到了广泛应用。
整数规划ppt课件
contents
整数规划
√
√ × √
×
√ × ×
√
√ √ √
√
√ √ √ √ 8 8
(二)0-1 整数规划——隐枚举法
首先,找到一个可行解,并计算其目标函数值;然后,以其目标值作为
一个过滤条件,优于其值的再判断约束条件,直到找到最优解。
满足约束条件(是∨ x1 . x2. x3 ( 0. ( 0. 0. 0. 0 ) 1) √ √ (1) √ √ (2) √ √ (3) √ √ 否×) (4)
目标函数: Max z = 2x1 +3 x2 约束条件: 195 x1 + 273 x2 ≤1365 4 x1 + 40 x2 ≤140 x1 ≤4 x1≥3 x2≥3 x1,x2 ≥ 0
无可行解
(四)比较子问题的最优解,判断是否还要继续分枝 因为Z21=14大于Z1=13.90,所以x1=3,x2=2是原 问题的最优整数解
过滤 条件
0 5 -2 3 3
max Z 3 x1 2 x2 5 x3 x1 2 x2 x3 2 (1) x1 4 x2 x3 4 (2) 3 (3) x1 x2 4 x2 x3 6 (4) x1 , x2 , x3 0或1
第五章 整数规划
在整数规划中,如果所有的变量都为非负整数,则 称为纯整数规划问题;如果有一部分变量为负整数,则 称之为混合整数规划问题。在整数规划中,如果变量的 取值只限于0和1,这样的变量我们称之为0-1变量。在 纯整数规划和混合整数规划问题中,如果所有的变量都 为0-1变量,则称之为0-1规划。 求整数解的线性规划问题,不是用四舍五入法或去 尾法对线性规划的非整数解加以处理都能解决的,而要 用整数规划的方法加以解决。
第四章 整数规划
第四章 整数线性规划(Inregre Linear Progemming )§1 整数规划特点及应用前面讨论的LP 的最优解可能是分数或小数。
但是在经济管理和工程实践中,常常会出现要求变量值取整数的现象。
如决策变量是机器台数、人数或车辆数等。
最初有些人认为:只要对非整数解“舍入取整”即可。
但后来发现这是不行的。
因为舍入取整后的解不见得是可行解,即使是可行解,也不一定是最优整数解。
因此,这里另设一章,研究此问题,并称这种求整数最优解的LP 问题为整数线性规划,简记为“ILP ”。
整数规划分为许多类型:通常把所有变量都要求取整数的整数规划,称其为全(纯)整数规划;把部分变量要求取整数的整数规划,称为混合型ILP 。
把所有变量取值均为0或1的整数规划称为0-1规划。
等等。
求解整数规划的一种简单方法是:先不考虑整数条件,直接求解相应的线性规划问题,当最优解为非整数且数值都较大时,把非整数最优解取整到最接近的整数可行解即可。
但是,当最优解为非整数且数值都较小时,这种舍入化整的办可能导致解的可行性被破坏。
例如,我们来研究下面整数规划问题。
例4-1求解下面ILP 问题: 相应的LP :⎪⎪⎩⎪⎪⎨⎧≥≤+≤++=为整数2121212121,0,5.45.0143223max x x x x x x x x x x z ⎪⎩⎪⎨⎧≥≤+≤++=0,5.45.0143223max 21212121x x x x x x x x z解:若先不考虑整数约束条件求解相应的LP问题,由图解法得可行域如图4-1。
最优解X*=(3.25,2.5)。
所谓整数解,即要求变量取整数值。
而由X*舍入化整得到的解,如(4,3)或(4,2)或(3,3)都不在可行域上,所以都不是可行解,而(3,2)虽是可行解,但它并不是最优整数解,因为该例有一个可行解X=(4,1),其目标值Z=14,大于可行解(3,2)的目标值13。
为了求得该整数规划的最优整数解,我们将经过B点的目标函数等值线向可行域内平行移动,首次碰到的整数点即为所求。
整数规划
概念
整数规划
(整数线性规划)
分枝定界解法
0-1型整数规划 指派问题 应用
第一节 概念
整数规划是一类要求变量取 整数值的数学规划,可分成线性 和非线性两类。
根据变量的取值性质,又可 以分为纯整数规划,混合整数规 划,0-1整数规划等。
整数规划是数学规划中一 个较弱的分支,目前只能解中 等规模的线性整数规划问题, 而非线性整数规划问题,还没 有好的办法。
第三节
0-1型整数规划
0-1变量的引入 1 采取方案j Xj=
0
不采取方案j
例1:相互排斥的决策参量
某公司要建立门市部,有七个备选地点: 东区:A1A2A3中至多选两个; 西区:A4A5中至少选一个 南区:A6A7中至少选一个 若选用Aj,投资费为bj,年获利为cj,投资总额不超 过B。如何定夺方案?
车运 5 4
船运 7 3 45
利润 20 10
乙
托运限制 24
0
y=
采用车运
采用船运
1
5X1+4X2≤24+yM (1’) 7X1+3X2 ≤ 45+(1-y)M (2’) y=0或1
当y=0采用车运,(1’)= (1);(2’)显然成立,是多余条件。 当y=1采用船运,(2’)= (2);(1’)显然成立,是多余条件。
例2 背包问题( Knapsack
Problem)
一个旅行者,为了准备旅行的必须用品,要 在背包内装一些最有用的东西,但有个限 制,最多只能装b公斤的物品,而每件物品 只能整个携带,这样旅行者给每件物品规 定了一个“价值”以表示其有用的程度, 如果共有n件物品,第j件物品aj公斤,其价 值为cj.问题变成:在携带的物品总重量不 超过b公斤条件下,携带哪些物品,可使总 价值最大?
整数规划(PDF)
例4-2:求解整数规划问题
s.t. 4x1 2x2 1 4x1 2x2 11
2x2 1
c=[-1;-1];
x1, x2 0, 且取整数值
A=[-4 2;4 2;0 -2];
b=[-1;11;-1];
lb=[0;0];
M=[1;2];
%均要求为整数变量
Tol=1e-8; [x,fval]=linprog(c,A,b,[],[],lb,[]) [x1,fval1]=intprog(c,A,b,[],[],lb,[],M,Tol)
可行否
枚举法随着变量维数增加呈指数增长,不可行!
四舍五入可能都不是可行解,不可行!
max s.t.
f 5x1 8x2 x1 x2 6 5x1 9x2 45 x1, x2 0, 且取整数值
x* f*
9 15 T 44 165 4
x [2 4]
四舍五入后的解 不是可行解!
一般整数规划问题的MATLAB求解
输入参数
MATLAB工具箱中的bintprog函数在求0-1规划问题时,提供的参数有如下几种 模型参数: x、c、b、beq、A和Aeq 初始解参数:x0 算法控制参数: options,我们可以通过optimset命令对这些具体的控制参数进
行设臵,其中主要参数的设臵方法如下一页的表格所示
调用格式 [x,fval,exitflag]=intprog(c,A,b,Aeq,beq,lb,ub,M,TolXInteger)
一般整数规划问题的MATLAB求解
标准形式
min f cT x s.t. Ax b
Aeq x beq lb x ub xi 0 (i 1, 2,...,n) x j 取整数值 (j M )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
6
7
物品
食品
氧气
冰镐
绳索
帐篷
照相器材
通信设备
重量/Kg
5
5
2
6
12
2
4
重要性系数
20
15
18
14
8
4
10
解:引入0—1变量xi,xi=1表示应携带物品i,,xi=0表示不应携带物品I
集合覆盖和布点问题
某市消防队布点问题。该市共有6个区,每个区都可以建消防站,市政府希望设置的消防站最少,但必须满足在城市任何地区发生火警时,消防车要在15min内赶到现场。据实地测定,各区之间消防车行驶的时间见表,请制定一个布点最少的计划。
工程
费用
期望收益
第1年
第2年
第3年
1
5 1 8
4 7 10
3 9 2
8 6 10
20
40
20
30
2
3
4
可用资金
18
22
24
为解决污水对河流的污染问题,某城市拟建污水处理站,备选的站址有A、B、C三个,其投资等技术经济参数如下表:
投资(万元)
处理能力(万吨∕年)
水处理成本(元∕万吨)
水处理指标(吨∕万吨)
表5-13
货物
1
2
3
4
5
6
重量(吨)
5
9
8
7
10
23
收入(万元)
1
4
4
3
5
7
5.11 运筹学中著名的旅行商贩(货朗担)问题可以叙述如下:某旅行商贩从某一城市出发,到其他几个城市推销商品,规定每个城市均需到达且只到达一次,然后回到原出发城市。已知城市i和城市j之间的距离为dij问商贩应选择一条什么样的路线顺序旅行,使总的旅程最短。试对此问题建立整数规划模型。
解:
5.4 某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用最小。若10个井位的代号为s1,s2,…s10,相应的钻探费用为c1,c2,…,c10,并且井位选择上要满足下列限制条件:
(1)或选择s1和s7,或选择钻探s8;
(2)选择了s3或s4就不能选择s5,或反过来也一样;
整数规划
若某钻井队要从以下10个可供选择的井位中确定5个钻井探油。使总的钻探费用为最小。若10个井位的代号为S1,S2.…,S10相应的钻探费用为C1,C2,…C10,并且井位选择要满足下列限制条件:
(1)在s1,s2,S4中至多只能选择两个;
(2)在S5,s6中至少选择一个;(3)在s3,s6,S7,S8中至少选择两个。
5.3 某科学实验卫星拟从下列仪器装置中选若干件装上。有关数据资料见表5-1
表 5-1
仪器装置代号
体积
重量
实验中的价值
A1
A2
A3
A4
A5
A6
v1
v2
v3
v4
v5
w6
c1
c2
c3
c4
c5
c6
要求:(1)装入卫星的仪器装置总体积不超过V,总质量不超过W;(2)A1与A3中最多安装一件;(3)A2与A4中至少安装一件;(4)A5同A6或者都安上,或者都不安。总的目的是装上取的仪器装置使该科学卫星发挥最大的实验价值。试建立这个问题的数学模型。
5.2某市为方便学生上学,拟在新建的居民小区增设若干所小学。已知备选校址代号及其能覆盖的居民小区编号如表5–2所示,问为覆盖所有小区至少应建多少所小学,要求建模并求解。
表5–12
备选校址代号
覆盖的居民小区编号
A
1,5,7
B
1,2,5
C
1,3,5
D
2,4,5
E
3,6,
F
4,6,
5.3一货船,有效载重量为24吨,可运输货物重量及运费收入如表5-13所示,现货物2、4中优先运2,货物1、5不能混装,试建立运费收入最多的运输方案。
地区1
地区2
地区3
地区4
地区5
地区6
地区1
地区2
地区3
地区4
地区5
地区6
0
10
16
28
27
20
10
0
24
32
17
10
16
24
0
12
27
21
28
32
12
0
15
25
27
17
27
15
0
14
20
10
21
25
14
0
解:引入0—1变量xi,xi=1表示在该区设消防站,,xi=0表示不设
解得:X*=(0,1,0,1,0,0)’ Z*=2
投资(万元)
处理能力(万吨∕年)
水处理成本(元∕万吨)
水处理指标(吨∕万吨)
污染物1
污染物2
A
500
800
500
80
60
B
400
500
800
50
40
C
300
400
1000
40
50
按环保部门的要求,每年至少要从污水中清除8万吨的污染物1和6万吨的污染物2,构建一个整数规划模型,在满足环保要求的前提下使投资和运行费用最少。
某公司现有5个项目被列入投资计划,各项目的投资额和期望的投资收益如下表所示:
项目编号
投资额(万元)
投资收益(万元)
1
2
3
4
5
210
300
100
130
260
150
210
60
80
180
该公司只有600万元资金可用于投资,由于技术上的原因,投资受到以下条件的约束:(1)在项目1、2和3中必须有一项被选中,(2)项目3和项目4只能选中一项,(3)项目5被选中的前提是项目1必须被选中。试就这一问题建立运筹学研究模型。
试建立这个问题的整数规划模型
解:设xj(j=1,…,10)为钻井队在第i个井位探油
minZ=
背包问题:一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试选择该队员所应携带的物品。
序号
1
2
3
污染物1
污染物2
A
500
800
500
80
60
B
400
500
800
50
40
C
300
400
1000
40
50
按环保部门的要求,每年至少要从污水中清除8万吨的污染物1和6万吨的污染物2,构建一个整数规划模型,在满足环保要求的前提下使投资和运行费用最少。
为解决污水对河流的污染问题,某城市拟建污水处理站,备选的站址有A、B、C三个,其投资等技术经济参数如下表:
有一组物品S,共有9件,其中第i件重 ,价值 ,从S中取出一些物品出来装背包,使总价值最大,而不超过总重量的给定上限30kg。
i
1
2
3
4
5
6
7
8
9
(kg)
2
1
1
2.5
10
6
5
4
3
(元)
10
45
30
100
150
90
200
180
300
工程上马的决策问题
某部门三年内有四项工程可以考虑上马,每项工程的期望收益和年度费用(千元)如下表所示:假定每一项已选定的工程要在三年内完成,是确定应该上马哪些工程,方能使该部门可能的期望收益最大。
第五章 整数规划习题
5.1 考虑下列数学模型
且满足约束条件
(1)或 ,或 ;
(2)下列各不等式至少有一个成立:
(3) 或5或10
(4) ,
其中
=
将此问题归结为混合整数规划的模型。
解:
5.2 试将下述非线性的0-1规划问题转换成线性的0-1规划问题
解:令
故有 ,又 , 分别与 , 等价,因此题中模型可转换为