3.2整数规划的求解方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 ,x1 1, x2 2
用单纯形法可解得相应的(P11) 的最优解(1,2) Z=10
(P1)两个子问题:
(P12)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 ,x1 1, x2 3
源自文库4
为空集
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 P p1
(P1)
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0 x1 3
用单纯形法可解得(P1)的最优解 (3,3/2)Z=9
(P2) Min Z= x1+4x2 s.t. 2x1+ x2 8
x1,x2 0,且取整数值
可行域OABD内整数点,放弃整数要求 后,最优解B(9.2,2.4) Z0=58.8,而原 整数规划最优解I(2,4) Z0=58,实际上 B附近四个整点(9,2)(10,2)(9,3)(10,3)都 x2 不是原规划最优解。
5 D 4 3 2 1 O 1 2 3 4 5 6 7 A8 9 10 x1 I(2,4)
例 用分枝定界法求解:
Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 整数
用单纯形法可解得相应的松驰问题 的最优解(6/5,21/10)Z=111/10 为各分枝的上界。
分枝:X1 1,x1 2
x2 4 3 2
P1
1
0
1
P2 2
3
4
例 用分枝定界法求解:
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0 整数
用单纯形法可解得相应的松驰问题 的最优解(10/3,4/3)Z=26/3为 各分枝的下界。
x2 8
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 p
选 x1进行分枝: (P1) x1 3 x2 8 (P2) x1
最通常的松驰问题是放弃变 量的整数性要求后,(P)为线性 规划问题。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
分枝定界法步骤 一般求解对应的松驰问题,可能 会出现下面几种情况: 若所得的最优解的各分量恰好是 整数,则这个解也是原整数规划 的最优解,计算结束。
若松驰问题无可行解,则原整数 规划问题也无可行解,计算结束。
若松驰问题有最优解,但其各分 量不全是整数,则这个解不是原 整数规划的最优解,转下一步。
若松驰问题有最优解,但其各分 量不全是整数,则这个解不是原 整数规划的最优解,转下一步。 从不满足整数条件的基变量中任 选 一个xl进行分枝,它必须满足xl [xl ] 或xl [xl ] +1中的一个,把这 两个约束条件加进松弛问题P中, 形成两个互不相容的子问题P1和 P2,即改进的松弛问题 。
x1+2x2 6
x1,x2 0 x1 4 无可行解,剪去。
对(P1) x1 3 选 x2进行分枝: x2 8
(P11) x2 1无可行解 (P12) x2
2
7
6 5 4 3 2 1 0 1 2 3 4 5 6 x1 Pp 12
(P11) Min Z= x1+4x2 s.t. 2x1+ x2 8
B(9.2,2.4)
X1 2 X2 3 X1 6 P
P1
P2 P3
X2
X1
3
X1
X2 2
4
P4
7
X2
3
P5
2 分枝定界解法 (Branch and Bound Method) 原问题的松驰问题:任何整数规 划(IP),凡放弃某些约束条件 (如整数要求)后,所得到的问 题(P) 都称为(IP)的松驰问题。
x1
两个子问题:
(P1)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9 x1,x2 0 , x1 1
用单纯形法可解得相应的(P1)的 最优解(1,9/4) Z=10(3/4)
(P2)Max Z=4x1+3x2
s.t. 3x1+4x2 12
4x1+2x2 9
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 (对目标求max的ILP问题,松弛问 题的最优值是ILP的最优值的一个 上界,松弛问题的任一整数可行 解对应的目标函数值都是ILP的一 个下界)
定界:把满足整数条件各分枝的 最优目标函数值作为上(下)界, 用它来判断分枝是保留还是剪枝。 剪枝:把那些子问题的最优值与 界值比较,凡不优或不能更优的 分枝全剪掉,直到每个分枝都查 清为止。
x1+2x2 6
x1,x2 0, x1 3 ,x2 1 无可行解,剪去。
(P12)
Min Z= x1+4x2
s.t. 2x1+ x2 8
x1+2x2 6 x1,x2 0, x1 3 ,x2 2
用单纯形法可解得(P12)的最优 解(2,2)Z=10
X1
4
X2 1
x1,x2 0 , x1 2
用单纯形法可解得相应的(P2)的 最优解(2,1/2) Z=9(1/2)
再对(P1)分枝:X1 1
x2 4 3 2 P12
(P11) x2 2
(P12) x2 3
P1
1 P11 0 1
P2 2
3
4
x1
(P1)两个子问题:
(P11)Max Z=4x1+3x2
B(9.2,2.4)
假如能求出可行域的“整点凸包” (包含所有整点的最小多边形 OEFGHIJ),则可在此凸包上求线性 规划的解,即为原问题的解。但当决 x2 策变量多时求“整点凸包”十分困难。
5 D 4 3 2 1 O 1 2 3 4 5 I(2,4) J I
H
G F 6 E 7 A8 9
B(9.2,2.4)
用单纯形法可解得相应的(P12) 的最优解(0,3) Z=9
X1
2
P2:(2,1/2) Z=9(1/2)
P:(6/5,21/10) Z=111/10 X1 1 P1:(1,9/4) Z=10(3/4)
X2 2 P : (1,2) Z=10 11
X2
3 P
12:
(0,3) Z=9
原问题的最优解(1,2) Z=10
先放弃变量的整数性要求, 解一个线性规划问题,然后 用“四舍五入”法取整数解, 这种方法,只有在变量的取 值很大时,才有成功的可能 性,而当变量的取值较小时, 特别是0-1规划时,往往不能 成功。
整数规划的图解法
例 求下列问题:
Max Z=3x1+13x2
s.t.2x1+9x2 40 11x1-8x2 82
P2:无可行解
P:(10/3,4/3) Z=26/3 X1 3 P1:(3,3/2) Z=9
P11:无可行解
X2
2
P12:(2,2) Z=10
原问题的最优解(2,2) Z=10
注:求解混合整数规划问题,只对整数变 量分支,对非整数变量不分支。
10
x1
假如把可行域分解成五个互不相交的 子问题P1 P2 P3 P4 P5之和, P3 P5的定义 域都是空集,而放弃整数要求后P1最优 解I(2,4),Z1=58 P2最优解(6,3),Z2=57 P4 x2 最优解(98/11,2),Z =52(8/11) 4
5 D 4 3 2 1 O 1 2 3 4 P1 P2 P4 5 6 7 A8 9 10 x1 I(2,4)
解法概述
当人们开始接触整数规划问题 时,常会有如下两种初始想法: 因为可行方案数目有限,因此 经过一一比较后,总能求出最 好方案,例如,背包问题充其 量有2n-1种方式;连线问题充其 量有n!种方式;实际上这种方法 是不可行。
设想计算机每秒能比较 1000000个方式,那么要比较 完20!(大于2*1018)种方式, 大约需要800年。比较完260 种方式,大约需要360世纪。
相关文档
最新文档