电力拖动自动控制系统PPT
合集下载
电力拖动及自动控制原理基本知识及应用知识 ppt课件
图1.1 磁力线与电流之间的右螺旋关系
ppt课件
18
直流电机的基本工作原理
简化为一对磁极,一个线圈
发电机
电动机
ppt课件
19
第三节:常用低压电器
低压电器简介
配
开关
电
熔断器
低
电
……
压
器
电 器
控 制
接触器 继电器
时间继电器 热继电器
电
起动器 ……
器
……
ppt课件
20
低压电器的分类
生产机械中所用的控制电器多属于低压电器,它 是指在电压在500V以下、用来接通或断开电路,以及 来控制、调节和保护用电设备的电气器具。 电器按动作性质可分为以下两类:
ppt课件
8
三三相相五四线线制
L1 L2 L3 N P E
M 三相
两相
单相
ppt课件
9
三相四线制
在低压配电网中,输电线路一般采用三相四线制,
三条线路分别代表A,B,C三相,另一条是中性线N,亦即 零线,在进入用户的单相输电线路中,有两条线,一条我 们称为火线,另一条我们称为零线,零线正常情况下要通
自动控制系统的基本组成图
ppt课件
5
自动控制系统的基本组成部分定义
反馈环节 — 对系统的输出量的实际值进行测量,将它转换成反馈 信号,并使反馈信号成为与给定信号同类型、同数量级的物理量。
比较器 — 将给定信号和反馈信号进行比较,产生偏差信号。 控制器 — 根据输入的偏差信号,按一定的控制规律产生相应的 控制信号。
过电流以构成单相线路中电流的回路。而三相系统中,三
相平衡时,中性线(零线)是无电流的,故称三相四线制 ;
电力拖动自动控制系统PPT课件
晶闸管整流器是毫秒级,这将大大提高系统的
动态性能。
2021/3/8
42
• V-M系统的问题
– 由于晶闸管的单向导电性,它不允许电 流反向,给系统的可逆运行造成困难。
– 晶闸管对过电压、过电流和过高的dV/dt 与di/dt 都十分敏感,若超过允许值会在 很短的时间内损坏器件。
– 由谐波与无功功率引起电网电压波形畸 变,殃及附近的用电设备,造成“电力 公害”。
本章提要11直流调速系统用的可控直流电源12晶闸管电动机系统vm系统的主要问题13直流脉宽调速系统的主要问题14反馈控制闭环直流调速系统的稳态分析和设计15反馈控制闭环直流调速系统的动态分析和设计16比例积分控制规律和无静差调速系统11直流调速系统用的可控直流电源根据前面分析调压调速是直流调速系统的主要方法而调节电枢电压需要有专门向电动机供电的可控直流电源
电力拖动自动控制系统
电气信息学院
2021/3/8
1
绪论
自动控制系统的几个概念 自动控制系统的分类 自动控制系统的组成 自动控制系统的性能指标 研究自动控制系统的方法 本课程与其它课程的连接本课程的主要内容 计算机控制系统的概念
2021/3/8
2
一.自动控制系统的几个概念
1.自动控制 Automatic control 在无人直接参与的情况下,利用控制装
例子:计算机控制系统。 数学模型用差分方程描述
2021/3/8
13
二.自动控制系统的分类
4.按系统有无反馈环节分类 ①开环控制系统 ②闭环控制系统
5.按系统控制对象和方式分类,又可分为 拖动控制系统(电气控制系统、机械控 制系统)和过程控制系统(石油,化工, 制药等)
2021/3/8
电力拖动自动控制系统(陈伯时)ppt5-交流拖动控制系统
如果换成交流调速系统,把消耗在挡板和阀门上 的能量节省下来,每台风机、水泵平均都可以节 约 20~30% 以上的电能,效果是很可观的。
但风机、水泵的调速范围和对动态快速性的要求 都不高,只需要一般的调速性能。
电力拖运动控自制动控系制统系统
7
许多在工艺上需要调速的生产机械过去多 用直流拖动,鉴于交流电机比直流电机结 构简单、成本低廉、工作可靠、维护方便、 惯量小、效率高,如果改成交流拖动,显 然能够带来不少的效益。
在同步电机的变压变频调速方法中,从频
率控制的方式来看,可分为他控变频调速 和自控变频调速两类。
电力拖运动控自制动控系制统系统
20
自控变频调速 利用转子磁极位置的检测信 号来控制变压变频装置换相,类似于直流电 机中电刷和换向器的作用,因此有时又称作 无换向器电机调速,或无刷直流电机调速。
开关磁阻电机 是一种特殊型式的同步电机, 有其独特的比较简单的调速方法,在小容量 交流电机调速系统中很有发展前途。
n
n0
恒转矩负载特性
A
B
0.5UsN C
UsN
0.7UsN
O
TL
Te
图5-5 高转子电阻电动机(交流力矩电动机)
在不同电压下的机械特性
电力拖运动控自制动控系制统系统
39
5.3 闭环控制的变压调速系统及其 静特性
采用普通异步电机的变电压调速时,调速范 围很窄,采用高转子电阻的力矩电机可以增 大调速范围,但机械特性又变软,因而当负 载变化时静差率很大,开环控制很难解决这 个矛盾。
2%——交流可调速传动
电力拖运动控自制动控系制统系统
3
直流电机的不足
具有电刷和换向器,必须经常检查 维修。
换向火花使其应用环境受到限制。 换向能力限制电机的容量和速度 (极限容量转速约为106 kW r / min )。
但风机、水泵的调速范围和对动态快速性的要求 都不高,只需要一般的调速性能。
电力拖运动控自制动控系制统系统
7
许多在工艺上需要调速的生产机械过去多 用直流拖动,鉴于交流电机比直流电机结 构简单、成本低廉、工作可靠、维护方便、 惯量小、效率高,如果改成交流拖动,显 然能够带来不少的效益。
在同步电机的变压变频调速方法中,从频
率控制的方式来看,可分为他控变频调速 和自控变频调速两类。
电力拖运动控自制动控系制统系统
20
自控变频调速 利用转子磁极位置的检测信 号来控制变压变频装置换相,类似于直流电 机中电刷和换向器的作用,因此有时又称作 无换向器电机调速,或无刷直流电机调速。
开关磁阻电机 是一种特殊型式的同步电机, 有其独特的比较简单的调速方法,在小容量 交流电机调速系统中很有发展前途。
n
n0
恒转矩负载特性
A
B
0.5UsN C
UsN
0.7UsN
O
TL
Te
图5-5 高转子电阻电动机(交流力矩电动机)
在不同电压下的机械特性
电力拖运动控自制动控系制统系统
39
5.3 闭环控制的变压调速系统及其 静特性
采用普通异步电机的变电压调速时,调速范 围很窄,采用高转子电阻的力矩电机可以增 大调速范围,但机械特性又变软,因而当负 载变化时静差率很大,开环控制很难解决这 个矛盾。
2%——交流可调速传动
电力拖运动控自制动控系制统系统
3
直流电机的不足
具有电刷和换向器,必须经常检查 维修。
换向火花使其应用环境受到限制。 换向能力限制电机的容量和速度 (极限容量转速约为106 kW r / min )。
电力拖动自动控制系统PPT课件
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
– 异步电动机变压变频调速时需要进行电压(或 电流)和频率的协调控制,有电压(或电流) 和频率两种独立的输入变量。在输出变量中, 除转速外,磁通也是一个输出变量。
2021/1/21
7
6.1 异步电动机动态数学模型的 性质
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
• 作如下的假设:
– 忽略空间谐波,三相绕组对称,产生的磁动势 沿气隙按正弦规律分布。
– 忽略磁路饱和,各绕组的自感和互感都是恒定 的。
– 忽略铁心损耗。 – 不考虑频率变化和温度变化对绕组电阻的影响
。
2021/1/21
9
6.2 异步电动机的三相数学模型
• 无论异步电动机转子是绕线型还是笼型的 ,都可以等效成三相绕线转子,并折算到 定子侧,折算后的定子和转子绕组匝数相 等。
• 定、转子相对位置变化产生的与转速成正 比的旋转电动势
dL i d
2021/1/21
24
电压方程
• 转矩方程
T e n p L m ( i A s i a i B i b i C i c ) si ( n i A i b i B i c i C i a ) si 1 n ) 2 ( ( i A i c i B i a i C i b ) si 1 n ) 2 ( 0
ia R r
d a dt
ub
ib R r
d b dt
uc
ic R r
d c dt
2021/1/21
21
电压方程
• 将电压方程写成矩阵形式
u
Ri
dψ
dt
uA Rs 0 0 0 0 0 iA
– 异步电动机变压变频调速时需要进行电压(或 电流)和频率的协调控制,有电压(或电流) 和频率两种独立的输入变量。在输出变量中, 除转速外,磁通也是一个输出变量。
2021/1/21
7
6.1 异步电动机动态数学模型的 性质
• 异步电动机的动态数学模型是一个高阶、 非线性、强耦合的多变量系统。
• 作如下的假设:
– 忽略空间谐波,三相绕组对称,产生的磁动势 沿气隙按正弦规律分布。
– 忽略磁路饱和,各绕组的自感和互感都是恒定 的。
– 忽略铁心损耗。 – 不考虑频率变化和温度变化对绕组电阻的影响
。
2021/1/21
9
6.2 异步电动机的三相数学模型
• 无论异步电动机转子是绕线型还是笼型的 ,都可以等效成三相绕线转子,并折算到 定子侧,折算后的定子和转子绕组匝数相 等。
• 定、转子相对位置变化产生的与转速成正 比的旋转电动势
dL i d
2021/1/21
24
电压方程
• 转矩方程
T e n p L m ( i A s i a i B i b i C i c ) si ( n i A i b i B i c i C i a ) si 1 n ) 2 ( ( i A i c i B i a i C i b ) si 1 n ) 2 ( 0
ia R r
d a dt
ub
ib R r
d b dt
uc
ic R r
d c dt
2021/1/21
21
电压方程
• 将电压方程写成矩阵形式
u
Ri
dψ
dt
uA Rs 0 0 0 0 0 iA
电力拖动自动控制系统第三十六讲-PPT精品
• 第二项np(Lsd-Lsq)idiq是由凸极效应造成的
磁阻变化在电枢反应磁动势作用下产生的 转矩,称作反应转矩或磁阻转矩,这是凸 极电机特有的转矩,在隐极电机中,Lsd= Lsq ,该项为0。
• 第三项np(LmdiDiq-LmqiQid)是电枢反应磁动
势与阻尼绕组磁动势相互作用的转矩,如
果没有阻尼绕组,或者在稳态运行时阻尼
化;
• B.忽略阻尼绕组的效应; • C.忽略磁化曲线的饱和非线性因素; • D.暂先忽略定子电阻和漏抗的影响。 • 其他假设条件和研究异步电动机数学模型
时相同,见第6.6.2 节。
• ②二极同步电机物理模型
图8-4 二极同步电 动机的物理模型
• ③模型描述
• 图中,定子三相绕组轴线A、B、C是静止
• If if2mif2t • iR=ism+ifm • ist =-ift • ism=iscosθs • ifm=ifcosθf
(8-2) (8-3) (8-4) (8-5) (8-6) (8-7)
• ③定子电压方程 • 在图8-5b中画出了定子一相绕组的电压、电
流与磁链的时间相量图。
图8-5(b) 电压、电流和磁链的时间相量图
• ②磁通和电流控制
• A 乘以系数KΦ即得合成励磁电流的给定
信号
i
R
,另外,按功率因数要求还可得定
子电流励磁分量给定信号 i
sm
。
•B
将i
R
、
、 i
st
i
sm
和来自位置传感器BQ的旋转
坐标相位角一起送入矢量运算器,按式(8-
7)以及式(8-9)、(8-10)计算出定子三
• ②坐标变换
《电力拖动自动控制》课件
传感器
选择合适的传感器,如光电编码器、 压力传感器等,用于检测设备的状态 和参数。
电源和安全保护装置
为控制系统提供稳定的电源,并配备 必要的安全保护装置,如过载保护、 短路保护等。
控制系统的软件实现
编程语言
算法设计
选择适合的编程语言,如C、C、PLC编程 语言等,用于编写控制系统的软件程序。
根据控制需求设计合适的算法,如PID控制 算法、模糊控制算法等,用于实现设备的 精确控制。
控制系统的分类
根据控制方式的不同,控 制系统可以分为开环控制 系统和闭环控制系统。
控制系统的设计方法
解析法
通过数学模型对系统进行分析,设计控制算法,以达到预期的控 制效果。
实验法
通过实验测试和调整控制参数,以达到预期的控制效果。
现代控制理论设计法
基于状态空间模型,采用最优控制、鲁棒控制等方法进行控制系统 设计。
控制系统的性能指标
稳定性
控制系统在受到扰动后能够恢复到稳定状态 的性能指标。
准确性
控制系统输出与预期目标之间的误差大小。
快速性
控制系统能够快速响应输入变化的能力。
抗干扰性
控制系统对外部干扰的抑制能力。
控制系统的稳定性分析
稳定性判据
根据系统特征根的位置来判断系统的 稳定性,特征根位于左半平面表示稳 定,位于右半平面表示不稳定。
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
电力拖动自动控制的未 来展望
新技术发展对电力拖动自动控制的影响
人工智能技术
AI算法在电力拖动自动控 制中的应用,如预测性维 护、故障诊断和优化控制 策略。
物联网技术
《电力拖动自动控制》课件
二、电力拖动原理
1 电力拖动的基本原理解释电力拖动的基本工作来自理,包括电动机和传动装置的作用。
2 电机的参数和性能指标
介绍电机的关键参数,如功率、效率和转速,并解释这些指标在电力拖动中的意义。
三、电力拖动控制方法
1
开环控制和闭环控制
比较开环控制和闭环控制的优缺点,讨论何时使用哪种控制方法。
2
速度控制和位置控制
《电力拖动自动控制》 PPT课件
欢迎大家参加《电力拖动自动控制》课程,本课程将介绍电力拖动的背景、 原理、控制方法、应用案例和未来发展趋势。
一、背景
电力拖动的概念和应用领域
介绍电力拖动的定义和广泛应用的领域,如工 业生产和交通运输。
电力拖动自动控制的需求和意义
讨论为什么自动控制对电力拖动系统至关重要, 以及自动控制的优势和好处。
2 电力拖动技术的发展前景
回顾电力拖动技术的发展历程,并展望其未 来在工业领域的发展前景。
详细说明速度控制和位置控制的原理和实现方法,以及它们在不同应用中的应用。
3
电力拖动的其他控制方法
介绍其他常用的电力拖动控制方法,如扭矩控制和力矩控制。
四、控制器的设计和实现
控制器的功能和结构
探讨控制器的基本功能和结构,包括输入输出接口 和信号处理。
控制器的算法和调试
介绍控制器的算法设计和调试方法,确保系统稳定 和可靠。
五、电力拖动系统的应用案例
1 电梯控制系统
解释电梯控制系统如何应 用电力拖动和自动控制, 提高安全性和效率。
2 机床加工中心
讨论机床加工中心如何使 用电力拖动实现高精度和 高效率的自动化加工。
3 输送机及自动化生产
线
探讨输送机和自动化生产 线如何利用电力拖动提高 物料输送和生产效率。
电力拖动自动控制系统(陈伯时)ppt1-2-3直流拖动控制系统
n
2U 2
cos[sin(
6
)
sin(
6
)ectg
]
Ce (1 ectg )
(1-10)
Id
3 2U2
2R
[cos(
6
) cos(
6
)
Ce n]
2U 2
式中 arctg L ; — 一个电流脉波的导通角。
R
89电电力力拖传动动自控动制控系制统系统
21
(3)电流断续机械特性计算
当阻抗角 值已知时,对于不同的控制 角 ,可用数值解法求出一族电流断续时的
1
LP
VT
T
c1
2
c2
L
b1 a1
b2 M
a2
并联多重联结的12脉波整流电路
89电电力力拖传动动自控动制控系制统系统
17
1.2.4 晶闸管-电动机系统的机械特性
当电流连续时,V-M系统的机械特性方程式为
n
1 Ce
(U d0
Id R)
1 Ce
m ( π Um
sin
π m
cos
Id R)
(1-9)
式中 Ce = KeN —电机在额定磁通下的电动势系数。 式(1-9)等号右边 Ud0 表达式的适用范围如第1.2.1节
R— 主电路等效电阻;
且有 R = Rrec + Ra + RL;
89电电力力拖传动动自控动制控系制统系统
8
对ud0进行积分,即得理想空载整流电 压平均值Ud0 。
用触发脉冲的相位角 控制整流电压的平 均值Ud0是晶闸管整流器的特点。
Ud0与触发脉冲相位角 的关系因整流电
路的形式而异,对于一般的全控整流电路,
电力拖动自动控制系统(陈伯时)ppt,按转子磁链定向的矢量控制系统
来看,是解耦的,但由于Te同时受到 ist 和 r
的影响,两个子系统仍旧是耦合着的。
电电力力拖传动动自控动制控系制统系统
8
带除法环节的解耦矢量控制系统 (采用电流控制变频器)
r AR
ASR
Lr n p Lm
ism
i
A
iA
r
异步电机
i
CB 2r /3s
电流 控制
iB
矢量
÷
电电力力拖传动动自控动制控系制统系统
4
按转子磁链定向后的系统模型
代入转矩方程式和状态方程式,并 用m,t替代d,q,即得
Te
n p Lm Lr
ist r
d r
dt
1 Tr
r
Lm Tr
ism
0
(1
) r
Lm Tr
ist
电电力力拖传动动自控动制控系制统系统
5
矢量控制方程
1
i1
im1
等效直流
3/2 iβ1 VR
电机模型
异步电动机 it1
反馈信号
这样的矢量控制交流变压变频调速系统在静、 动态性能上完全能够与直流调速系统相媲美。
电电力力拖传动动自控动制控系制统系统
3
6.7.2按转子磁链定向
(Field Orientation)
rd rm r rq rt 0
14
• 在两相静止坐标系上的转子磁链模型
is
Lm
+
1
r
-
Tr p+1
Tr
isβ
Lm
+
1
的影响,两个子系统仍旧是耦合着的。
电电力力拖传动动自控动制控系制统系统
8
带除法环节的解耦矢量控制系统 (采用电流控制变频器)
r AR
ASR
Lr n p Lm
ism
i
A
iA
r
异步电机
i
CB 2r /3s
电流 控制
iB
矢量
÷
电电力力拖传动动自控动制控系制统系统
4
按转子磁链定向后的系统模型
代入转矩方程式和状态方程式,并 用m,t替代d,q,即得
Te
n p Lm Lr
ist r
d r
dt
1 Tr
r
Lm Tr
ism
0
(1
) r
Lm Tr
ist
电电力力拖传动动自控动制控系制统系统
5
矢量控制方程
1
i1
im1
等效直流
3/2 iβ1 VR
电机模型
异步电动机 it1
反馈信号
这样的矢量控制交流变压变频调速系统在静、 动态性能上完全能够与直流调速系统相媲美。
电电力力拖传动动自控动制控系制统系统
3
6.7.2按转子磁链定向
(Field Orientation)
rd rm r rq rt 0
14
• 在两相静止坐标系上的转子磁链模型
is
Lm
+
1
r
-
Tr p+1
Tr
isβ
Lm
+
1
电力拖动自动控制系统(陈伯时)ppt4-1,2可逆调速系统和位置随动系统
电力拖动自动控制系统
第 4章 可逆调速系统和位臵 随动系统
128电力拖动自动控制系统 电力传动控制系统
1
学习要点:
(1)掌握可逆线路的基本结构; (2)掌握V-M系统反并联可逆线路4象限运行的各 种工作状态; (3)掌握可逆系统的结构、工作原理、控制方式 和性能; 重点、难点: 1.可逆调速系统主回路的拓扑特征及回馈制动时对 电源的要求; 2.环流的产生、分类、对晶闸管可逆线路的影响。 3.有环流可逆调速系统的正反运转过程中,主电路 的能量变换、控制系统的调节等动态过程分析。
128电力拖动自动控制系统 电力传动控制系统
3
4.1.0 问题的提出(续)
以转速和电磁转矩的 坐标系表征之,就是 要求运动控制系统具 有在该坐标系上作四 象限运行的功能,由 于这样的调速系统转 速可以反向,故称作 可逆调速系统。
+n Ⅱ 正转 制动状态 -Te 反转 电动状态 Ⅲ -n 反转 制动状态 Ⅳ Ⅰ 正转 电动状态 +Te
128电力拖动自动控制系统 电力传动控制系统
33
三. 可逆V-M系统中的环流问题
1. 环流及其种类
环流的定义: 采用两组晶闸管反并联的可逆V-M系统, 如果两组装臵的整流电压同时出现,便会 产生不流过负载而直接在两组晶闸管之间 流通的短路电流,称作环流,如下图中所 示。
28
b) 反组晶闸管装置VR逆变
VR处于逆变状态:
当电动机需要回馈制动时, 由于电机反电动势的极性 此时,r 90°,当E > |Ud0r|, n 0 未变,要回馈电能必须产 电机输出电能实现回馈制动。 生反向电流
R
+
M
--
+
第 4章 可逆调速系统和位臵 随动系统
128电力拖动自动控制系统 电力传动控制系统
1
学习要点:
(1)掌握可逆线路的基本结构; (2)掌握V-M系统反并联可逆线路4象限运行的各 种工作状态; (3)掌握可逆系统的结构、工作原理、控制方式 和性能; 重点、难点: 1.可逆调速系统主回路的拓扑特征及回馈制动时对 电源的要求; 2.环流的产生、分类、对晶闸管可逆线路的影响。 3.有环流可逆调速系统的正反运转过程中,主电路 的能量变换、控制系统的调节等动态过程分析。
128电力拖动自动控制系统 电力传动控制系统
3
4.1.0 问题的提出(续)
以转速和电磁转矩的 坐标系表征之,就是 要求运动控制系统具 有在该坐标系上作四 象限运行的功能,由 于这样的调速系统转 速可以反向,故称作 可逆调速系统。
+n Ⅱ 正转 制动状态 -Te 反转 电动状态 Ⅲ -n 反转 制动状态 Ⅳ Ⅰ 正转 电动状态 +Te
128电力拖动自动控制系统 电力传动控制系统
33
三. 可逆V-M系统中的环流问题
1. 环流及其种类
环流的定义: 采用两组晶闸管反并联的可逆V-M系统, 如果两组装臵的整流电压同时出现,便会 产生不流过负载而直接在两组晶闸管之间 流通的短路电流,称作环流,如下图中所 示。
28
b) 反组晶闸管装置VR逆变
VR处于逆变状态:
当电动机需要回馈制动时, 由于电机反电动势的极性 此时,r 90°,当E > |Ud0r|, n 0 未变,要回馈电能必须产 电机输出电能实现回馈制动。 生反向电流
R
+
M
--
+
电力拖动自动控制系统第一章课件
工作条件: 保持电压 U =UN ; 保持电阻 R = R a ; 调节过程: 减小励磁 N n , n0 调速特性: 转速上升,机械特性 曲线变软。
n n0 n3 n2 n1 nN
N 1 2 3
O
TL
调压调速特性曲线
Te
三种调速方法的性能与比较 对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(额定转 速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以 调压调速为主。
1.1.1 旋转变流机组
图1-1 旋转变流机组和由它供电的直流调速系统(G-M系统)原理图
• G-M系统工作原理
由原动机(柴油机、交流异步或同步 电动机)拖动直流发电机 G 实现变流, 由 G 给需要调速的直流电动机 M 供电, 调节G 的励磁电流 if 即可改变其输出电 压 U,从而调节电动机的转速 n 。 这样的调速系统简称G-M系统,国际 上通称Ward-Leonard系统。
PWM系统的优点(续)
(5)功率开关器件工作在开关状态,导通
损耗小,当开关频率适当时,开关损
耗也不大,因而装置效率较高。
(6)直流电源采用不控整流时,电网功率
因数比相控整流器高。
小
结
三种可控直流电源,V-M系统在20 世纪60~70年代得到广泛应用,目前主要 用于大容量系统。 直流PWM调速系统作为一种新技术, 发展迅速,应用日益广泛,特别在中、 小容量的系统中,已取代V-M系统成为 主要的直流调速方式。
•V-M系统主电路的输出
ud
ua ub uc ud Ud E
n n0 n3 n2 n1 nN
N 1 2 3
O
TL
调压调速特性曲线
Te
三种调速方法的性能与比较 对于要求在一定范围内无级平滑调速 的系统来说,以调节电枢供电电压的方式 为最好。改变电阻只能有级调速;减弱磁 通虽然能够平滑调速,但调速范围不大, 往往只是配合调压方案,在基速(额定转 速)以上作小范围的弱磁升速。 因此,自动控制的直流调速系统往往以 调压调速为主。
1.1.1 旋转变流机组
图1-1 旋转变流机组和由它供电的直流调速系统(G-M系统)原理图
• G-M系统工作原理
由原动机(柴油机、交流异步或同步 电动机)拖动直流发电机 G 实现变流, 由 G 给需要调速的直流电动机 M 供电, 调节G 的励磁电流 if 即可改变其输出电 压 U,从而调节电动机的转速 n 。 这样的调速系统简称G-M系统,国际 上通称Ward-Leonard系统。
PWM系统的优点(续)
(5)功率开关器件工作在开关状态,导通
损耗小,当开关频率适当时,开关损
耗也不大,因而装置效率较高。
(6)直流电源采用不控整流时,电网功率
因数比相控整流器高。
小
结
三种可控直流电源,V-M系统在20 世纪60~70年代得到广泛应用,目前主要 用于大容量系统。 直流PWM调速系统作为一种新技术, 发展迅速,应用日益广泛,特别在中、 小容量的系统中,已取代V-M系统成为 主要的直流调速方式。
•V-M系统主电路的输出
ud
ua ub uc ud Ud E
第6章电力拖动自动控制系统运动控制系统第5版ppt课件
差功率、减小输出功率来换取转速的降低。
增加的转差功率全部消耗在转子电阻上,
这就是转差功率消耗型的由来。
6.2.2 异步电动机调压调速 的机械特性
增加转子电阻值, 临界转差率加大, 可以扩大恒转矩负 载下的调速范围, 这种高转子电阻电 动机又称作交流力 矩电动机。
缺点是机械特性
较软。
图6-6 高转子电阻电动机(交流力矩 电动机)在不同电压下的机械特性
6.2.3 闭环控制的调压调速系统
要求带恒转 矩负载的调 压系统具有 较大的调速 范围时,往 往须采用带 转速反馈的 闭环控制系 统。
图6-7 带转速负反馈闭环控 制的交流调压调速系统
6.2.3 闭环控制的调压调速系统
当系统带负载稳定时,如果负载增大或减 小,引起转速下降或上升,反馈控制作用 会自动调整定子电压,使闭环系统工作在 新的稳定工作点。
由于受电动机绝缘和磁路饱和的限制, 定子电压只能降低,不能升高,故又 称作降压调速。
异步电动机调压调速
调压调速的基本特征:电动机同步转速保 持额定值不变
n1
n1N
60 f1N np
气隙磁通
Φm
Us 4.44 f1NskNS
随定子电压的降低而减小,属于弱磁调速。
6.2.1 异步电动机调压调速 主电路
12
Lls
L'lr
2
异步电动机的机械特性
异步电动机传递的电磁功率
Pm
3I
'2 r
Rr'
s
机械同步角速度
m1
1
np
异步电动机的机械特性
异步电动机的电磁转矩(机械特性方程式 )
Te
Pm
m1
3n p
电力拖动自动控制系统课件
性度等特点。
场效应管
具有高速开关特性和低 噪声性能,常用于开关
电源和逆变器。
IGBT
大功率电子器件,广泛 应用于电机控制和电网
调节。
运算放大器
用于信号处理和运算, 具有高精度和低噪声特
性。
控制电路与保护电路
控制电路
用于实现各种控制逻辑和算法,如速度、位置和电流控制等。
保护电路
用于检测系统异常并采取相应措施,如过流、过压和欠压保护等。
电力拖动自动控制系统应用
工业自动化生产线控制
自动化生产线是电力拖动自动控制系统的重要应用领域之一 。通过使用电力拖动自动控制系统,可以实现生产线的自动 化控制,提高生产效率,降低人工成本。
电力拖动自动控制系统能够精确控制生产线上各个设备的运 行状态,确保生产过程的稳定性和可靠性,减少设备故障和 生产事故的发生。
Байду номын сангаас
工作原理与控制方式
工作原理
电力拖动自动控制系统通过控制器对电动机进行控制,实现 机械设备的运动。控制器根据传感器反馈的信息,对电动机 的输入电压或电流进行调整,以实现对机械设备运动的精确 控制。
控制方式
常见的控制方式包括开环控制、闭环控制和复合控制等。开 环控制方式简单,但精度较低;闭环控制方式精度较高,但 需要反馈传感器;复合控制方式结合了开环和闭环的优点, 具有更高的控制精度和稳定性。
05
电力拖动自动控制系统发展趋势与挑战
新型电机与电力电子器件的发展
永磁同步电机
具有高效率、高转矩密度和优秀的动 态性能,是现代电力拖动系统的重要 发展方向。
开关磁阻电机
电力电子器件
随着宽禁带半导体材料的发展,电力 电子器件的性能得到大幅提升,为电 力拖动系统的优化提供了更多可能性 。
场效应管
具有高速开关特性和低 噪声性能,常用于开关
电源和逆变器。
IGBT
大功率电子器件,广泛 应用于电机控制和电网
调节。
运算放大器
用于信号处理和运算, 具有高精度和低噪声特
性。
控制电路与保护电路
控制电路
用于实现各种控制逻辑和算法,如速度、位置和电流控制等。
保护电路
用于检测系统异常并采取相应措施,如过流、过压和欠压保护等。
电力拖动自动控制系统应用
工业自动化生产线控制
自动化生产线是电力拖动自动控制系统的重要应用领域之一 。通过使用电力拖动自动控制系统,可以实现生产线的自动 化控制,提高生产效率,降低人工成本。
电力拖动自动控制系统能够精确控制生产线上各个设备的运 行状态,确保生产过程的稳定性和可靠性,减少设备故障和 生产事故的发生。
Байду номын сангаас
工作原理与控制方式
工作原理
电力拖动自动控制系统通过控制器对电动机进行控制,实现 机械设备的运动。控制器根据传感器反馈的信息,对电动机 的输入电压或电流进行调整,以实现对机械设备运动的精确 控制。
控制方式
常见的控制方式包括开环控制、闭环控制和复合控制等。开 环控制方式简单,但精度较低;闭环控制方式精度较高,但 需要反馈传感器;复合控制方式结合了开环和闭环的优点, 具有更高的控制精度和稳定性。
05
电力拖动自动控制系统发展趋势与挑战
新型电机与电力电子器件的发展
永磁同步电机
具有高效率、高转矩密度和优秀的动 态性能,是现代电力拖动系统的重要 发展方向。
开关磁阻电机
电力电子器件
随着宽禁带半导体材料的发展,电力 电子器件的性能得到大幅提升,为电 力拖动系统的优化提供了更多可能性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m1
Pm
R I 1 s
'2 r
3np
' r
3npU s2 Rr' / s
' 2 2 Rr 2 ' 1 R L L 1 ls lr s s
(5-3)
式(5 - 3)就是异步电机的机械特性方 程式。它表明,当转速或转差率一定时, 电磁转矩与定子电压的平方成正比。 这样,不同电压下的机械特性便如图5-4 所示,图中,UsN表示额定定子电压。
闭环控制的异步电动机变压调速系统
—— 一种转差功率消耗型调速系统
本章提要
异步电动机变压调速电路 异步电动机改变电压时的机械特性
闭环控制的变压调速系统及其静特性
闭环变压调速系统的近似动态结构图
转差功率损耗分析
变压控制在软起动器和轻载降压节能运行 中的应用
5.1 异步电动机变压调速电路
交流调速系统的主要类型
交流电机主要分为异步电机(即感应电 机)和同步电机两大类,每类电机又有不 同类型的调速系统。 现有文献中介绍的异步电机调速系统种 类繁多,可按照不同的角度进行分类。
•按电动机的调速方法分类
常见的交流调速方法有: ①降电压调速; ②转差离合器调速; ③转子串电阻调速; ④绕线电机串级调速或双馈电机调速; ⑤变极对数调速; ⑥变压变频调速等等。
直到20世纪60~70年代,随着电力电子 技术的发展,使得采用电力电子变换器的 交流拖动系统得以实现,特别是大规模集 成电路和计算机控制的出现,高性能交流 调速系统便应运而生,一直被认为是天经 地义的交直流拖动按调速性能分工的格局 终于被打破了。
这时,直流电机具有电刷和换相器因而 必须经常检查维修、换向火花使直流电机 的应用环境受到限制、以及换向能力限制 了直流电机的容量和速度等缺点日益突出 起来,用交流可调拖动取代直流可调拖动 的呼声越来越强烈,交流拖动控制系统已 经成为当前电力拖动控制的主要发展方向。
高性能的交流调速系统和伺服系统(续) 20 世纪 70 年代初发明了矢量控制技术, 或称磁场定向控制技术,通过坐标变换, 把交流电机的定子电流分解成转矩分量和 励磁分量,用来分别控制电机的转矩和磁 通,就可以获得和直流电机相仿的高动态 性能,从而使交流电机的调速技术取得了 突破性的进展。
高性能的交流调速系统和伺服系统(续)
电力拖动自动控制系统
第 2 篇
交流拖动控制系统
内容提要
概述
交流调速系统的主要类型
交流变压调速系统
交流变频调速系统 *绕线转子异步电机双馈调速系统—— 转差功率馈送型调速系统 *同步电动机变压变频调速系统
概
述
直流电力拖动和交流电力拖动在19世纪先 后诞生。在20世纪上半叶的年代里,鉴于直 流拖动具有优越的调速性能,高性能可调速 拖动都采用直流电机,而约占电力拖动总容 量80%以上的不变速拖动系统则采用交流电 机,这种分工在一段时期内已成为一种举世 公认的格局。交流调速系统的多种方案虽然 早已问世,并已获得实际应用,但其性能却 始终无法与直流调速系统相匹敌。
制动运行方式 当需要能耗制动时,可以根据制动电 路的要求选择某几个晶闸管不对称地工作, 例如让 1,2,6 三个器件导通,其余均关 断,就可使定子绕组中流过半波直流电流, 对旋转着的电动机转子产生制动作用。必 要时,还可以在制动电路中串入电阻以限 制制动电流。
5.2 异步电动机改变电压时的机械特性
2.转差功率馈送型调速系统 在这类系统中,除转子铜损外,大部分 转差功率在转子侧通过变流装置馈出或馈 入,转速越低,能馈送的功率越多,上述 第④种调速方法属于这一类。无论是馈出 还是馈入的转差功率,扣除变流装置本身 的损耗后,最终都转化成有用的功率,因 此这类系统的效率较高,但要增加一些设 备。
3. 转差功率不变型调速系统 在这类系统中,转差功率只有转子铜 损,而且无论转速高低,转差功率基本 不变,因此效率更高,上述的第⑤、⑥ 两种调速方法属于此类。其中变极对数 调速是有级的,应用场合有限。只有变 压变频调速应用最广,可以构成高动态 性能的交流调速系统,取代直流调速; 但在定子电路中须配备与电动机容量相 当的变压变频器,相比之下,设备成本 最高。
其后,又陆续提出了直接转矩控制、 解耦控制等方法,形成了一系列可以 和直流调速系统媲美的高性能交流调 速系统和交流伺服系统。
3. 特大容量、极高转速的交流调速 直流电机的换向能力限制了它的容量转 速积不超过106 kW ·r /min,超过这一数值 时,其设计与制造就非常困难了。 交流电机没有换向器,不受这种限制, 因此,特大容量的电力拖动设备,如厚板 轧机、矿井卷扬机等,以及极高转速的拖 动,如高速磨头、离心机等,都以采用交 流调速为宜。
~ Pm
Pmech
Ps
即
Pm = Pmech + Ps
Pmech = (1 – s) Pm
Ps = sPm 从能量转换的角度上看,转差功率是否 增大,是消耗掉还是得到回收,是评价调 速系统效率高低的标志。从这点出发,可 以把异步电机的调速系统分成三类 。
1. 转差功率消耗型调速系统 这种类型的全部转差功率都转换成热能 消耗在转子回路中,上述的第①、②、③ 三种调速方法都属于这一类。在三类异步 电机调速系统中,这类系统的效率最低, 而且越到低速时效率越低,它是以增加转 差功率的消耗来换取转速的降低的(恒转 矩负载时)。可是这类系统结构简单,设 备成本最低,所以还有一定的应用价值。
在研究开发阶段,人们从多方面探索调 速的途径,因而种类繁多是很自然的。现 在交流调速的发展已经比较成熟,为了深 入掌握其基本原理,就不能满足于这种表 面上的罗列,而要进一步探讨其本质,认 识交流调速的基本规律。
•按电动机的能量转换类型分类 按照交流异步电机 的原理,从定子传入 转子的电磁功率可分 成两部分:一部分是 拖动负载的有效功率, 称作机械功率;另一 部分是传输给转子电 路的转差功率,与转 差率 s 成正比。
Is I
' r
Us R Rs s
' r
2 ' L L 1 ls lr
2
2
(5-2)
• 转矩公式
令电磁功率 Pm = 3Ir'2 Rr' /s 同步机械角转速 m1 = 1 / np 式中 np —极对数,则异步电机的电磁转矩为
Te
•Y型接法
ia VT1
ua a Ua0
VT2
a)
b
ub
0
VT3
uc
c 负载
•型接法
ia ua b) b 负载 a
ub
c uc
• 交流变压调速系统可控电源
•利用晶闸管交流调 压器变压调速
~
•TVC——双向晶闸 管交流调压器
TVC
M 3~ 图5-1 利用晶闸管交流调压器变压调速
• 控制方式
TVC的变压控制方式
根据电机学原理,在下述三个假定条件下: • 忽略空间和时间谐波, • 忽略磁饱和, • 忽略铁损, 异步电机的稳态等效电路示于图5-3。
• 异步电动机等效电路
Rs
Lls Is
L’lr
I’r
Lm L m I0 R’r /s
Us
1
图5-3 异步电动机的稳态等效电路
• 参数定义
Rs、R’r ——定子每相电阻和折合到定子侧的 转子每相电阻; Lls、L’lr ——定子每相漏感和折合到定子侧的 转子每相漏感; Lm——定子每相绕组产生气隙主磁通的 等效电感,即励磁电感; Us、1 ——定子相电压和供电角频率; s ——转差率。
变压调速是异步电机调速方法中比较简 便的一种。 由电力拖动原理可知,当异步电机等效 电路的参数不变时,在相同的转速下,电 磁转矩与定子电压的平方成正比,因此, 改变定子外加电压就可以改变机械特性的 函数关系,从而改变电机在一定负载转矩 下的转速。
过去改变交流电压的方法多用自耦变压 器或带直流磁化绕组的饱和电抗器,自从 电力电子技术兴起以后,这类比较笨重的 电磁装置就被晶闸管交流调压器取代了。 目前,交流调压器一般用三对晶闸管反 并联或三个双向晶闸管分别串接在三相电 路中,主电路接法有多种方案,用相位控 制改变输出电压。
• 可逆和制动控制
电路结构:
采用晶闸管 反并联供电 方式,实现 异步电动机 可逆和制动。
图5-2 采用晶闸管反并联的异步电动机可逆和制动电路
反向运行方式
图5-2所示为采用晶闸管反并联的异步电 动机可逆和制动电路,其中,晶闸管 1~6 控制电动机正转运行,反转时,可由晶闸 管 1,4 和 7~10 提供逆相序电源,同时也 可用于反接制动。
• 交流拖动控制系统的应用领域
主要有三个方面:
一般性能的节能调速 高性能的交流调速系统和伺服系统 特大容量、极高转速的交流调速
1. 一般性能的节能调速 在过去大量的所谓“不变速交流拖动” 中,风机、水泵等通用机械的容量几乎占 工业电力拖动总容量的一半以上,其中有 不少场合并不是不需要调速,只是因为过 去的交流拖动本身不能调速,不得不依赖 挡板和阀门来调节送风和供水的流量,因 而把许多电能白白地浪费了。
• 同步电机的调速 同步电机没有转差,也就没有转差功率, 所以同步电机调速系统只能是转差功率不 变型(恒等于 0 )的,而同步电机转子极 对数又是固定的,因此只能靠变压变频调 速,没有像异步电机那样的多种调速方法。 在同步电机的变压变频调速方法中,从 频率控制的方式来看,可分为他控变频调 速和自控变频调速两类。
•电流公式
由图可以导出
I
' r
Us R 2 ' R C L C L 1 1 ls 1 lr s s