电力系统继电保护第四章4-1、4-2

合集下载

电力系统继电保护4-6章习题解答(DOC)

电力系统继电保护4-6章习题解答(DOC)

第4章输电线路的差动保护和高频保护 思考题与习题的解答4-1 分别画出纵差保护在被保护线路外部、内部发生短路故障时的电流分布,并说明工作原理答:图4-1(a )和(b )分别为纵差保护内部故障和外部故障时的电流分布。

图4-1 纵差保护原理接线图(a )外部故障时;(b )内部故障时从图4-1(a )中可见在正常运行或外部故障时,在理想条件下,差动继电器KD 中流过大小相等、方向相反的两个电流互相抵消,即221()0r I II I II TAI I I I I K =-=-= 所以继电器KD 不动作。

当发生内部故障时,见图7-1(b )所示流入继电器电流为:221()K r II I II TA TAI I I I I I K K I /=+=+= 当.r op r I I >(继电器动作电流),故继电器动作,将故障线路两端断路器跳开。

4-2纵联差动保护与阶段式电流保护的差别是什么?说明纵联差动保护的优点?答:纵联差动保护与阶段式电流保护的差别是差动保护的速动性好,没有死区。

不需要考虑与相邻元件的配合问题。

优点是可以全线快速切除故障。

4-3 纵差保护中不平衡电流是由于什么原因产生的,不平衡电流暂态过程中有哪些特性,它对保护装置有什么影响?答:不平衡电流是由纵差保护线路两端互感器的励磁特性不完全相同,在短路故障时通过很大一次电流使两个电流互感器的铁芯饱和程度不同,造成TA 二次电流差别较大,产生不平衡不平衡电流在暂态起始段和结束段都不大,最大不平衡电流发生在暂态过程中段。

因纵差保护要躲过不平衡电流,不平衡电流过大将使保护装置灵敏系数降低。

4-4纵差保护动作电流在整定计算中应考虑哪些因素,为什么?纵差保护动作电流整定要考虑两个因素,即躲过保护区外短路的最大不平衡电流和躲过被保护线路的最大负荷电流。

这样可提高纵差保护的灵敏系数。

4-5 说明横差方向保护的工作原理,为什么能有选择性地切除故障线路,为什么在直流操作电源中采用闭锁装置?答:横差方向保护是基于反应两回路中电流之差的大小及方向的一种保护。

继电保护第四章要点总结

继电保护第四章要点总结

纵联保护的基本原理:保护原理的本质是甄别系统正常和故障状态下电气量或非电气量之间的差别,纵联保护也不例外。

输电线路的纵联保护就是利用线路两端的电气量在故障与非故障时的特征差异构成的。

当线路发生区内故障、区外故障时,电力线两端电流波形、功率、电流相位以及两端的测量阻抗都有明显的差异,利用这些差异就可以构成不同原理的纵联保护。

特征:1.两侧电流量特征2.两侧电流相位特征3.两侧功率方向特征4.两侧测量阻抗值特征纵联保护的分类:纵联保护按照所利用信息通道的不同类型可以分为导引线纵联保护、电力线载波纵联保护、微波纵联保护和光纤纵联保护四种。

纵联保护按照保护动作原理,可以分为方向比较式纵联保护和纵联电流差动保护两类。

通信通道的构成1.导引线通道特点:信息无须加工,直接传送至对端,因而基本不存在同步问题保护原理一般采用电流差动原理,故也称导引线差动保护。

简单可靠,不受系统运行方式影响,不受振荡影响缺点:需铺设专门的导引线,投资高,互感器二次负载较大。

导引线本身的故障,会引起保护的拒动或误动。

2.电力线载波(高频)通道:1—阻波器;阻波器是由一个电感线圈与可变电容器并联组成的回路。

2—结合电容器;结合电容器与连接滤过器共同配合将载波信号传递至输电线路,同时使高频收发信机与工频高压线路绝缘。

3—连接滤波器;连接滤波器由一个可调节的空心变压器及连接至高频电缆一侧的电容器组成。

4—电缆;5—高频收发信;发信机部分系由继电保护装置控制,通常都是在电力系统发生故障时,保护起动之后它才发出信号。

6—刀闸优点:无中继通信距离长;经济,使用方便;工程施工比较简单缺点:由于其直接通过高压输电线路传送高频载波信号,因此高压输电线路上的干扰直接进入载波通道,高压输电线路的电晕、短路、开关操作等都会在不同程度上对载波信号进行干扰电力线载波通道工作方式:正常有高频电流方式(长期发信方式)正常无高频电流方式(故障启动发信方式)移频方式特点通信通道独立于输电线路通信频带宽,300-30000MHz ,传输速度快受外界干扰的影响小传输距离有限4.光纤通道特点通信容量大,光纤通信的经济性佳光纤通信还有保密性好光纤最重要的特性之一是无感应性能通信距离有限高频信号的分类1.闭锁信号:即无闭锁信号是保护作用于跳闸的必要条件,或者说闭锁信号是阻止保护动作于跳闸的信号。

第四章-继电保护2精讲

第四章-继电保护2精讲

Ir2≥1.2[Ist.M+Ic(n-1)]
线路上最大一台电动机的 起动电流周期分量有效值
除这台电动机以外的 线路计算电流
Ir2还应满足与下级线路保护电器的选择性配合要求。 短延时过电流脱扣器的整定时间通常有0.1s~0.5s不等,根 据选择性要求确定。
3).瞬时过电流脱扣器整定电流Ir3
线路上最大一台电动机 的全起动电流
(2)额定电流选择
熔断器额定电流
In≥Ir≥Ic
(3)分断能力选择
熔断器分断能力
Ib>Ik3
熔体额定电流 线路计算电流
安装处预期三相短 路电流有效值
低压熔断器
刀形触头熔断器
螺栓连接式熔断器
圆筒帽式熔断器
螺旋式熔断器
4.上、下级均选用熔断器
(四)、低压断路器的选择与整定
先按一般要求初步选择类别、极数、额定电流、分断能力及 附件,然后根据保护特性要求确定断路器过电流脱扣器的额定 电流并整定其动作电流。
当工作电源WL1断电 时 , QF1 跳 闸 → QF13-4 断开,使KT断电。 KT的延时断开触点尚 未 断 开 前 , 由 于 QF11-2 闭 合 → KO 通 电 → YO 通 电 → QF2 合 闸 , 使 备 用 线路WL2投入运行。
图4-36备用电源自动投入装置原理电路图
对备用电源自动投入装置应满足以下基本要求
➢应采用控制开关手柄位置与断路器位置“不对应原则”起 动ARD;ARD的起动条件为:SA在“合闸后”位置,QF在“跳闸”位 ➢用控制置开。关或遥控装置将断路器断开时,ARD不应起动;
➢手动合闸于故障线路不重合;
➢ARD只能动作一次;
➢ARD动作后应能自动复归,准备再次动作;

电力系统继电保护原理(第四版)-4(最详细版)

电力系统继电保护原理(第四版)-4(最详细版)

一、中性点接地方式与接地故障种类 按单相接地短路时接地电流的大小分 大电流接地方式中性点直接接地中性点经小电阻接地小电流接地方式中性点不接地中性点经消弧线圈接地国际上的定量标准不同接地方式下的接地故障特点大电流接地方式不同接地方式下的接地故障保护策略零序分量特征零序分量的参数特点零序电压故障点零序电压最高,距离故障点越远零序电压越低零序电流零序电流超前于零序电压其分布取决于线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数目和位置无关零序功率方向故障线路,两端零序功率的方向与正序功率的相反零序电压、电流的相位关系系统运行方式的影响系统运行方式变化时,只要送电线路和中性点接地变压器数目不变,零序阻抗和零序网络就不变。

12二、中性点有效接地系统的接地保护1.零序电流瞬时速断(零序I段)保护采用单相自动重合闸时2.零序电流限时速断(零序II 段)保护 工作原理与相间限时电流速断保护一样其启动电流首先考虑和下一条线路的零序电流速断配合并线路的零序电流速断配合,并延迟一个时限以保证动作的选择性。

整定原则:12⋅⋅′′′=′′act rel act I K I 当保护间的变电站母线上接有中性点接地变压器时,存在“助增电流”,整定原则变为:210rel act act brK I I K ⋅⋅⋅′′′′′=000k BCbr k ABI K I ⋅⋅⋅= 分支系数零序II 段的灵敏系数校验3. 零序过电流(零序III段)保护保护只需从该变压器高压侧开始考虑动作延时的配合 在同一线路上零序过电流保护比相间短路过电流保护具有较小的动作延时4.方向性零序电流保护零序电流实际的流向是由故障点流向各个中性点接地的变压器,在变压器接地数目较多的复杂网络,需要考虑零序电流保护动作的方向性。

在零序电流保护的基础上增加零序功率方向元件,利用正反方向故障时,零序功率方向的差别,闭锁可能误动作的保护,保证动作的选择性。

零序方向元件的电压死区问题5. 零序电流保护的优缺点三、零序电压、电流的获取实现接地短路零序保护的关键零序电压过滤器3U U U U &&&&=++ 加法器0C B A各种获取方式电压互感器开口三角形接法电压互感器接于发电机中性点集成电路和微机保护中的加法器实现电压互感器开口三角形接法电压互感器接于发电机中性点零序电流过滤器3I I I I C B A &&&&=++零序电流的获取获取方式电流互感器三相星形接法电缆的零序电流互感器 不平衡电流问题由电流互感器的传变特性不一致产生致产生相间故障时最严重一、高阻接地故障二、零序反时限过电流保护为提高灵敏度,起动电流按躲开正常运行时的不平衡电流整定动作延时采用甚反时限特性.relk act unbreK I I K =13.51Kt I =−25.()k actI单相接地时(A 相)A 相对地电压为零对地电一、中性点不接地电网中单相接地故障的特点正常时,线电压对称,每相负荷电流和对地电容电流均对称,三相电流之和(零序)为零⎧=−0D A U & 相对地电压为零,对地电容短接3 B 、C 相对地电压和电容电流增倍三相负荷电流和线电压仍然对称具体分析:相接地后各⎪⎨=−==°−1503j e E E E U U &&&&& A 相接地后,各&&&C B D I I I +=03C U I D ωϕ=AE &E &ADB U −&DC U −&I & 从接地点流回的电流为线路端的零序电流?030=I&D 0A D U −=&BE &CCBBC U &B CI &BI &CI &D I &DI &−实际的网络存在发电机和多条支路CIBI I 0IC 0ω0=AII &电容性无功功率从母线路始端存在零序电D BI CI BII CII BG CG故障线路II :II C U I 0033ωϕ=&&&&&−=3)C C (U I II II 00033−=∑ωϕ0=AII &电容性无功功线路始端存在零序电流,其大小为全系统非故障元件对地电容电流之总和电容性无功功率)I I I I (I CGBG CI BI II +++0率从线路流向母线DAII I I &&−=电容性无功功率发电机G 的特征与非故障线路相同件的对地电容构成32中性点不接地电网的单相接地特点:二、中性点不接地系统中的单相接地保护利用接地后出现的零序电压带延时动作于信号不能实现故障选线——无法知道故障是在那一条线路34点实现有选择性地发出信号或动作于跳闸为了提高可靠性和灵敏性——采用延时和电流元件控制方向元件相位比较回路的方案36一、中性点经消弧线圈接地电网的单相接地故障特点电弧,引起弧光过电压,从而对电网造成进步破坏。

电力系统继电保护-第四章

电力系统继电保护-第四章
I I I M N 0
由于受TA的误差、线路分布电容等因素影响, 实际上其二次电流相量和可能不为0。 纵联电流差动保护动作判据可写为:
I M I N I set
IM IN



两侧电流的相量和 差动保护整定值
I set
2. 方向比较式纵联保护
线路发生内部故障时: M侧和N侧功率方向元件均为正;
1. 电流全量特征
根据基尔霍夫电流定律 (KCL)可知:
在集总参数电路中,任何时刻, 对任意一节点,所有支路电流相 量和等于零。用数学表达式表示 如下: I 0
M
U M
I M
k1
N I N
U N
内部故障
M
I M
I N
N
k2
区外故障
对于输电线路MN可以认为是一个节点。 内部故障 外部故障
线路发生外部故障时: 一端电流为母线流向线路,另一端为由线路流 向母线,于是两端电流相位相反 180 。
因此可以根据两侧电流的相位差来判 别线路内部或者外部短路。
考虑到TV、TA的相角误差以及输电线分布电容等影 响,当线路发生区外故障时两侧二次电流的相角差并不 刚好等于1800,而是近似为1800,且在故障前两侧电动势 有一定的相角差,这样在区内短路时两侧电流也不完全 同相位。 当两侧电流的相位差
I N
外部故障
I M
I N
iM
t
I M
I N

iN
iM
t
0
0
I M
t
I N
iN
t
180
IM IN

arg
IM IN

电力系统继电保护 第四章输电线路的纵联保护

电力系统继电保护 第四章输电线路的纵联保护
只有在两端保护的I段有重叠区时才能实现全线速动。
3 微波通信
频段为300~30000MHz,超短波的无线电波,频带宽,信息传输容量大,传 输距离不超过40~60km;距离较远时,要装设微波中继站,以增强和传递微 波信号。通信速率快,可用于纵联电流差动原理的保护。
4 光纤通信
1.光纤通信的构成
光发射机、光纤、中继器和光接收机。
(2)正常时有高频电流方式(长时发信) 在正常工作条件下发信机始终处于发信状态,沿高 频通道传送高频电流。
优点:高频通道部分经常处于监视的状态,可靠性高;且无 需收、发信机启动元件,简化装置。 缺点:经常处于发信状态,增加了对其他通信设备的干扰时 间;也易受外界高频信号干扰,应具有更高的抗干扰能力。
(希望不动) 一侧为正 一侧为负
内部故障 (希望动作)
两侧均为正
一侧动作 一侧不动作
两侧均动作
电流相位 相位差 180
接近同相
如何应用这些特征?后面陆续予以介绍。
纵联保护:用某种通信信道将输电线 路两端的保护装置纵向联结起来,将 一端电气量(电流、功率方向等)传 到对端进行比较,判断故障在本线路 范围内还是范围之外,从而决定是否 切除被保护线路。
根据通道的构成,输电线路载波通信分为: “相-相”式 连接在两相导线之间 “相-地”式 连接在输电线一相导线和大地之间
1、输电线路载波通信的构成
继电
部分
G R
输电线路
高频阻波器 耦合电容器
连接滤波器 高频电缆
G 高频通道部分 R
接 地 开 关
继电
部分
(1)阻波器:阻波器是由 一电感线圈与可变电容器 并联组成的回路。当并联 谐振时,它所呈现的阻抗 最大(1000Ω以上),利 用这一特性,使其谐振频 率为所用的载波频率。这 样的高频信号就被限制在 被保护输电线路的范围以 内,而不能穿越到相邻线 路上去。但对工频电流而 言,阻波器仅呈现电感线 圈的阻抗,数值很小(约 为0.04Ω左右),并不影 响它的传输。

电力系统继电保护第四章 4-3,4-4

电力系统继电保护第四章 4-3,4-4

U ca = U c − U a ≈ Ec − Ea = Eca U ab = U a − U b ≈ Ea − Eb = Eab U bc = U b − U c ≈ Eb − Ec = Ebc
当ϕ k 在0 ~ 90 0 变化时, − 120 0 ≤ ϕ g ≤ −30 0
0
• • • • • • • • • • • •






• a
不动作。 不动作 = 0 1KW不动作。

2KW: I gb = I b :
U gb = U ca ≈ E ca



ϕ gb = −(900 + 300 − ϕ k ) = −(1200 − ϕ k )
− 900 ≤ ϕ k − 1200 + α ≤ 900 30 ϕ k = 00 时, 0 ≤ α ≤ 2100
就可使可使继电器处于最灵敏状 态附近。
三相短路时KW KW的电 图4-13 三相短路时KW的电 流、电压向量图
中国电力出版社
(一)三相短路
三相短路时能使继电器动作的内角的取值范围 ϕ g = −(90o − ϕ k ) − (90 0 + α ) ≤ ϕ g ≤ 900 − α
& Ug − 90° − α ≤ arg ≤ 90° − α & I
c b
接入各相继电器的 电压分别为: 电压分别为:
1 • U b = U c = − Ea 2


中国电力出版社

· ·
Uab=1.5Ea
· ·
·
Uab
·
·
Ic φ rc
Ua =Ea

电力系统继电保护_中国电力出版社纵联(4)

电力系统继电保护_中国电力出版社纵联(4)

第四章输电线路纵联保护4.1.1 输电线纵联保护概述仅利用线路一侧的电气量所构成的继电保护(单端电气量),无法区分本线路末端与相邻线路(或元件)的出口故障,如:电流保护、阻抗保护。

为此,设法将被保护元件两端(或多端)的电气量进行同时比较,以便判断故障在区内?还是区外?将两端保护装置的信号纵向联结起来,构成纵联保护。

——与横向故障的称谓进行对应比较(后面再用图例说明“纵、横”的区别)。

单端电气量保护:仅利用被保护元件的一侧电气量,无法区分线路末端和相邻线路的出口短路,可以作为后备保护或出口故障的第二种保护。

(通常设计为:三段式)。

纵联保护:利用被保护元件的各侧电气量,可以识别:内部和外部的故障,但是,不能作为后备保护。

输电线路纵联保护结构框图在设备的“纵向”之间,进行信号交换横向关系通信设备通信设备通信通道继电保护装置继电保护装置TATATVTV(如:横向故障)纵联保护有多种分类方法,可以按照通道类型或动作原理进行分类。

1)通道类型:导引线电力线载波微波光纤⎪⎩⎪⎨⎧2)动作原理:比较方向比较相位基尔霍夫电流定律(差电流)⎧⎪⎨⎪⎩还可以将通道类型与动作原理结合起来进行称呼。

如:光纤电流差动(简称:光差),高频距离。

通道(信号交换手段)4.1.2 两侧电气量的特征分析、讨论特征的目的:寻找内部故障与其他工况(正常运行、外部故障)的特征区别和差异——>提取判据,构成继电保护原理。

当然,构成原理后,再分析影响因素;并研究消除影响因素的对策、措施(需要权衡利弊)。

一、两侧电流相量和(瞬时值和)的故障特征基尔霍夫电流定律:在一个节点中,流入的电流等于流出的电流。

按照继电保护规定的正方向:——指向被保护元件。

那么,基尔霍夫电流定律可以修改为:在任何一个节点中,流入的电流之和等于0。

下面,用图例说明。

基尔霍夫电流定律:53241I I I I I++=+053241=---+I I I I I改写为:此式表明:流入节点的电流之和等于0。

电力系统继电保护测试考核复习题解第四章

电力系统继电保护测试考核复习题解第四章

第四章线路保护一.判断题4.1.1 相-地制通道,即在输电线同一相作为高频通道。

(对)4.1。

2 高频保护采用相—地制高频通因为相—地制通道损耗小(错)4。

1。

3 允许式高频保护必须使用双频制,而不能使用单频制。

(对)4.1。

4 高频保护通道输电线衰耗与它的电压等级、线路长度及使用频率有关,使用频率越高,线路每单位长度衰耗越小。

(错)4。

1。

5 输电线传输高频信号时,传输频率越高则衰耗越大。

(对)4.1.6 输电线路的特性阻抗大小与线路的长度有关。

(错)4.1。

7 耦合电容器对工频电流具有很大的阻抗,可防止工频高压侵入高频收发信机。

(对) 4。

1.8 结合滤波器和耦合电容器组成的带通滤波器对50HZ工频应呈现极大的衰耗,以阻止工频串入高频装置。

(对)4。

1.9 在高频保护的通道加工设备中的结合滤波器主要是起到阻抗匹配的作用,防止反射,以减少衰耗。

(对)4.1.10 高频保护用的高频同轴电缆外皮应在两端分别接地,并紧靠高频同轴电缆敷设截面不小于100MM2两端接地的铜导线。

(对)4。

1。

11 高频通道反措中,采用高频变量器直接耦合的高频通道,要求在高频电缆芯回路中串接一个电容的目的是为了高频通道的参数匹配。

(错)4。

1。

12 在结合滤波器与高频电缆之间串入电容,主要是为了防止工频地电流的穿越使变量器饱和、发信中断从而在区外故障时正方向侧纵联保护的误动.(对)4。

1。

13 高频收发信机的内阻是指从收发信机的通道入口处加高频信号,在通道入口处所测得的输入阻抗。

(错)4。

1。

14 本侧收发信机的发信功率为20W,如对侧收信功率为5W,则通道衰耗为6dB。

(对)4。

1.15 在电路中某测试点的电压UX和标准比较电压U0=0.775V之比取常用对数的20倍,称为该点的电压绝对电平。

(对)4。

1.16 利用电力线载波通道的纵联保护为保证有足够的通道裕度,只要发信端的功放元件允许,接收端的接收电平越高越好。

(错)4。

继电保护第四章-纵联保护

继电保护第四章-纵联保护

4. 输电线路纵联保护(Unit Protection)结构
继电保 护装置
通信设备
• 导引线 • 载波 • 光通信纤信道 • 微波
继电保 护装置
通信设备
继电保护装置
实现电气量采集并形成电气量特征,完成保护任务。
通信设备
将上述信息发送至对端的保护设备,同时接收对端保护发送的
信息并送至本端保护单元
通信信道
故障分量方向元件的特点
不受负荷状态的影响 不受故障点过渡电阻的影响 正、反方向短路时,方向性明确 无电压死区 不受系统振荡影响
(二) 闭锁式方向纵联保护
1. 工作原理
以高频通道经常无电流而在外部故障时发出闭
锁信号的方式构成。
闭锁信号
A1
B
2
3
闭锁信号
C
4
5
6D
F
对AB线路为外部故障,2处功率方向均为 负,发闭锁信号,1、2保护被闭锁。
导引线通信应用:
高压电网超短线路(几公里)。 用于变压器、发电机等电力设备和母线。
(二) 电力线载波通信
采用输电线路本身作为信息传输媒介,在传输电能的同时 完成两端信息的交换。 (一)通道的构成
1
2 76
3 45 89
3
2
4 5
67
98
1.传输线 2.阻波器 3.结合电容器 4.连接滤波器 5.高频电 缆 6.保护间隙 7.安全接地开关 8. 高频收发信机 9.保护 继电器
3. 电气元件故障时两端电气量的特征分析
所选电气量
区内故障 特征
区外或正常 运行时特征
保护原理
功率方向
均指向被保 护元件
一端指向被 保护元件反

继电保护原理基础_第四章

继电保护原理基础_第四章
故障S+起延:动延时保元时t护1件t返2正I的回1方,作的向I用2作灵故:用敏障:度时不动同作:的功率方向元件 区区内外远锁故故护回区防II故对障障口时12为为区通外止障侧::,引灵不外道故近侧两侧可故作、元流,时后保S靠障时+I件元远t,护2收2端,不动,件故;近I到误1近动作先起,障故对动故作后返动开端障侧障,停回发放S端的侧+I讯(讯功保1闭、I动,停1率护必锁I作经2止方继然信动后t发向2续动号作延起讯元发作,时动)件讯,需后发、,可经t出讯1远区靠时t口2闭故外延起间跳锁障故时动,闸对端障才发以侧S时能讯闭+,出闭锁、对I2 端后保返
负序功率方向元件的特点
(1)可反应所有不对称故障; 增加电压记忆后,也可 反应三相对称故障;
(2)没有电压死区; 保护区外故障时, 近故障侧负 序电压( 功率 )高于远故障侧负序电压 ( 功率 ), 容易实现灵敏度配合
(3)系统振荡时三相对称,不存在负序分量,负序功 率方向元件不误动
因此,负序功率方向元件在高频闭锁保护中得 到了广泛的应用
由精于度电的电流流互互感感器器,励在磁必要回时路.以还可及采二次回路电
感用中铁的心磁磁路通中不有小能气突隙变的电,流在互二感器次。回路中引起
自由非周期分量电流。
在暂态过程中,励磁电流大大超过其稳态 值,并含有大量缓慢衰减的非周期分量, 这将使不平衡电流大为增加。
第二节 输电线的高频保护
一、高频保护概述
离I段启动发讯,当其保护范围内部故 障动作于跳闸的同时,还向对端发出 跳闸信号,可以不经过其它控制元件 而直接使对端的断路器跳闸,即收讯 即可跳闸。 两端保护的构成比较简单,无需互相 配合,必须要求每端发送跳闸信号保 护的动作范围小于线路的全长.而两 端保护动作范围之和应大干线路的全 长。前者是为厂保证动作的选择性, 后者则是为了保证全线上任一点故障 的快速切除。

电力系统继电保护——4输电线纵联保护

电力系统继电保护——4输电线纵联保护

高频信号
A
~1
B
k
C
2
3
4
5
D
6
~
Sk
Sk
Sk
Sk
动作原理
• 保护3和4的功率方向为正,不发出闭锁信号
• 保护2和5的功率方向为负,发出闭锁信号,被本端和 对端收信机接收,闭锁保护1、2、5、6
构成方式:高频通道经常无电流;外部故障时由 短路功率方向为负的一端发出闭锁信号
• 可以保证内部故障并伴随通道破坏时,保护仍然能够 正确动作
8. 高频闭锁距离保护的原理接线
tIII 0
跳闸
Z III
距离III段
0 t1
Z II
t2 0
距离II段(带方向)
&
GFX
通道
GSX
跳闸
&
tII 0
ZI
距离I段(带方向)
万一通信通道损坏,动作情况如何?请讨论
4.4 输电线纵联差动保护
——光纤纵差保护
1. 动作原理
(1) 正常运行或区外故障时
IM1
Y2
T2
D
6
~
Sk
GFX GSX
通道
Y3
跳闸
&
保护1:KW和KA2动作,准备好跳闸回路;可是,保护2的KW 功率方向为负,发出闭锁信号,该信号被两侧的保护的收信机 收到,Y3被闭锁,两侧保护均不能动作。
注意:保护2的发信机必须起动,以保证外部故障时不误动
4. 工作情况分析——两端供电内部故障
高频信号
正常运行或区


外故障时: I I M I N 0
差动保护补充概念
差动的含义:正常运行或者外部故障时,两个电

继电保护原理 第四章 第一、二节 线路电流保护

继电保护原理 第四章 第一、二节 线路电流保护


电流速断保护方向元件的装设原则
例如:
同一线路两侧,定值小者加方向元件,定值大者可不 加方向元件。
EI
k2
M 1 2
N
k1 E II
I I I set1 I set2
保护1可不加KW
(二)限时电流速断保护的整定计算
仍然是与下一级保护的第一段配合,但需考 虑保护安装点与短路点之间有分支电路的影响。 k C B A I AB I
o
Ik2
(2)功率方向继电器的动作方程 比相式动作方程:
e jα Ur 90 arg 90 Ir
Ur 90 arg 90 Ir
KU r I r cos( r ) 0
①四个角度: r: 加入功率方向继电器的电压和电流之夹角
I k1B
k1点短路时,若
I I I k1 A I set2
保护2误动;
EA
A
1
k2
B
2 3
k1
C
4 5 6
D EB
I k2 A
对电流速断保护: k2点短路时,若
I k2 B
I I I k2 B I set3 保护3误动;
EA
A
1 2
B
3
k1
4
C
5 6
D
EB
I k1 A
对过电流保护:
I k1B
动作
小结: 采用90°接线方式的优缺点 优点: ① 对各种两相短路都没有死区。 ② 适当选择内角α后,对线路上各种相 间故障都能保证动作的方向性。 缺点: 三相短路时仍有死区。
三、方向性电流保护整定计算特点
(一)电流速断保护的整定计算 k2

第四章输电线纵联保护

第四章输电线纵联保护

继电保护装置从TA,TV获取电压电流,形成或提取两端被比较的电气量特征,一方面 发送信息,一方面接收信息(通信通道),比较两端电气量特征,符合条件则动作 并告知对方。
Relay protection,copyright Zhang Jingjing I-2
4-1 输电线纵联保护概述
2、分类
A、按通道类型分 1)导引线纵联保护(需敷设导引线电缆) 2)电力线载波纵联保护(以线路为通道) 3)微波纵联保护 4)光纤纵联保护(短线路纵联保护主要通道形式) B、按保护动作原理分 1)方向比较式纵联保护(通道中传送逻辑信号) 2)纵联电流差动保护(通道中传送两侧电气量信号)
1、载波通道的构成 1)输电线路。 2)阻波器 由电感线圈和可变电容器并联组成的回路。f0为并联谐振的频率。 这样,高频讯号被限制在输电线范围内,而不穿越到相邻线路上。 50Hz工频电流阻波呈现较小阻抗,不影响其传输。
Relay protection,copyright Zhang Jingjing I-7
4-2 输电线纵联保护两侧信息的交换
8).高频收发讯机。 发讯机发出讯号,通过高频通道,送到对端收讯机中,也被自己的收讯机接收,高频 收讯机接收由本端和对端所发送的高频讯号,经过比较判断后,再动作于继电保护。 发讯分故障时发讯和长期发讯。
2、载波通道的特点
对于中长距离的输电线路,敷设专门的辅助导线,技术上、经济上是不合理的。 利用输电线路本身作为一个通道,在输电线传送50Hz工频电流的同时,迭加传送 一个讯号,以进行线路两端电气量的比较。讯号采用50~400kHz的高频电流。 1)无中继通信距离长(几百公里); 2)经济,使用方便; 3)工程施工比较简单
Relay protection,copyright Zhang Jingjing
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材配套电子教案
第四章 输电线路相间短路的方向 电流保护
第一节 方向问题的提出及方向电流的保护
中国电力出版社
一、方向问题的提出
K2
K1
图4-1两侧电源辐射形电网
如图4-1所示 在双侧电源电网或单侧电源环形网中.如图 所示,当在 1点发生短路时, 双侧电源电网或单侧电源环形网中 如图 所示,当在K 点发生短路时, 要求保护3、 动作 断开3、 两个断路器 如在K 点发生短路,要求保护1、 动作, 两个断路器; 要求保护 、4动作,断开 、4两个断路器;如在 2点发生短路,要求保护 、 2动作,断开 、2两个断路器。 动作, 两个断路器。 动作 断开1、 两个断路器 点短路, 对K1点短路,为实现选择性要求: 点短路 为实现选择性要求: 3 2 4 5
中国电力出版社

功率方向继电器的工作原理:实质就是判断母线电压和流入线路的电流 功率方向继电器的工作原理: 之间的相位角。动作方程可表示为: 之间的相位角。动作方程可表示为:

继电器动作的 临界情况是一 • 条与相量 U g 相垂直的直 线,通常称 为功率方向 继电器的动 作特性。
− 90 ≤ arg

− 90 0 ≤ arg
jK U g

≤ 900
I g Z br

jK 功率方向继电器的内角α = arg = 900 − ϕbr Z br
− (900 + α ) ≤ ϕ g ≤ 900 − α
− (900 + α ) ≤ arg
Ug

≤ 900 − α
Ig
中国电力出版社
(二) LG-11型功率方向继 型功率方向继 电器动作区和灵敏度
0
Ug

≤ 90 0
敏线 大灵 Ir最
Ig
Ir2
动作区
φr2=180°+ φk 非动作区
Ur
φr=φk
φm
Ur
Ir1
α
中国电力出版社
• 功率方向继电器可以直接比较 动作条件可以表示为: 动作条件可以表示为: 电气量Ug和 之间的相位 之间的相位, 电气量 和Ig之间的相位,也 • 可以间接比较电气量Ug和 的 可以间接比较电气量 和Ig的 UC − 900 ≤ arg • ≤ 900 线性函数 Uc和 UD之间相角来 和 UD 构成。 构成。 • • • jK U g U C = jK U g − 900 ≤ arg ≤ 900 jK • α = arg Z br I g • • Z br U D = Zbr I g • U
K2
WL1
ɺ I K1
ɺ IK 2
中国电力出版社
三、 方向电流保护单相原理接线图
• 方向过流保护装置由三个主要元件组成,启动元件(电流继电器), 方向过流保护装置由三个主要元件组成,启动元件(电流继电器), 功率方向元件(功率方向继电器)和时限元件(时间继电器)。 )。工作 功率方向元件(功率方向继电器)和时限元件(时间继电器)。工作 原理是方向元件KW和启动元件 构成与门,二者同时动作才能启动 和启动元件KA构成与门 原理是方向元件 和启动元件 构成与门, 时间继电器KT。 时间继电器 。
中国电力出版社
第一节方向问题的提出及方向电流保护
P1 ≻ 0
P 2 ≻ 0, P 3 ≺ 0P 4 ≻ 0 P 5 ≺ 0
K1
P6 ≻ 0
正方向的规定:短路功率的方向从母线指向线路 为正方向。
K1点短路时,保护1、2、4、6为正方向;保护 和 点短路时,保护 、 、 、 为正方向 保护3和 为正方向; 点短路时 5反方向,不应起动。 反方向,不应起动。 反方向
UC

UD
θ = 90
U A = UC+U D • • • U B = U C −U D
• • •
θ ≺ 90
θ ≺ 90

θ ≻ 90
UA > UB


θ ≻ 90
UA
<

θ = 90
U A = UB


UB
中国电力出版社
电气量间变换关系: 电气量间变换关系:
U A = jK U g + Z br I g • • • U B = jK U g − Z br I g
Ig2
π ϕ g = −( + α )
2
A
最灵敏线
Ug
Ig1
ϕ sen = −α
α
ϕ sen
ɺ I g (ϕ g = 0 0 )
ɺ Ug
jK U g + I g Z br



jK U g


ϕg =
π
2
−α
Ig
I g Z br
B
内角α = arg jK = 900 − ϕ br Z br
ϕ g = −α
KP
I2
I1 − I 2
• 动作量 A经整流滤波后得到电流 1,制动量 B经整流滤波后 动作量U 经整流滤波后得到电流I 制动量U 得到电流I 通过执行元件KP的电流为 的电流为I 得到电流 2,通过执行元件 的电流为 1—I2,继电器的动作 电流为I 则继电器动作条件为I 电流为 op.r,则继电器动作条件为 1—I2≥Iop.r, ,
− 900 − α ≤ arg
g •
≤ 900 − α
= 900 − ϕbr
Ig
中国电力出版社
(二)相位比较原理与幅值比较原 理的关系
• 功率方向继电器的幅值比较的两个电气量UA和UB,可以通过UC和UD经 过线性变换得到:
UA UC UD UB UC UD UA UC UB UD UB UA

θ = arg
K1
WL2
ɺ I K1
ɺ IK 2
ቤተ መጻሕፍቲ ባይዱ
中国电力出版社
第一节 方向电流保护的工作原理
• WL1上K2点短路时,只有保护 、2、4和6能启动,其中按动作方向 上 点短路时 只有保护1、 、 和 能启动 点短路时, 能启动, 时限最短的保护1和 动作 跳开断路器1和 ,将故障线路WL1切除, 动作, 切除, 时限最短的保护 和2动作,跳开断路器 和2,将故障线路 切除 保护4和 便返回 同样保证了动作的选择性。 便返回, 保护 和6便返回,同样保证了动作的选择性。
中国电力出版社
二、解决问题的措施:方向电流保护 解决问题的措施:
P 2 P3
K2
方向电流保护:是在过电流保护基础上加装方向元件 方向电流保护:
的保护。 的保护。 在一般过流保护2 在一般过流保护2和3上各加一个方向元件(功率方向继电 上各加一个方向元件( ),它只有当短路功率由母线流向线路时 它只有当短路功率由母线流向线路时, 器),它只有当短路功率由母线流向线路时,才允许保护 动作, 动作,这样就解决了过流保护的选择性问题
中国电力出版社
双侧电源电网线路方向过流保护时 限特性
G1 ~ 1QF 1 WL1 k2 2QF 2 3QF WL2 3 k1 4QF 4 5QF 5 WL3 6QF 6 G2 ~
△t
t1 t2
△t
t3 t4
△t
△t
t5 t6
t
• 图4-2 双侧电源电网线路方向过流保护的时限特性
中国电力出版社
• WL2上K1点短路时,保护1、3、4、6因短路功率由母线 流向线路,故都能启动,而其中按动作方向时限最短的保 护3和4动作,跳开断路器3、4,将故障线路WL2切除, 保护1和6便返回,从而保证了动作选择性。
中国电力出版社
二、LG-11功率方向继电器 功率方向继电器
(一) LG-11型功率方向继电器工作原理
UR
5
UA
1
N
Iɺ g
2
Z
br
Iɺ g
Z
br
jK Uɺ
7
g
IɺU
UA

R2
g
Iɺ g
jK Uɺ
N
g
1
N
3
8
U
N4
6
B
30
0
Rϕ1

2
45
R4
0
• • • U A = jK U g + Z br I g • • • U B = jK U g − Z br I g
− ( jK U g − I g Z br )
jK U g

≤ 900
Z br I g

α = arg
≤ 900 − α
− 900 − α ≤ arg
Ug

jK Z br
Ig − 900 ≤ ϕ g + α ≤ 900
= 900 − ϕ br
中国电力出版社
(三)环流法幅值比较回路
Z1 UA U1 R1 I1 C1 R2 U2 UB C2 Z2
QF
QF 1
TQ
信号
KA
I
KW
KT
t
KS
TA
图4-3方向过流保护原理接线图
中国电力出版社
KA KW
&
KT
KS
KCO
出口
中国电力出版社
第一节 方向电流保护的工作原理
在双侧电源线路上, 在双侧电源线路上,并不是所有过流保护装置中都需要装 仅靠时限不能满足动作选择性时 设功率方向元件,只有在仅靠时限不能满足动作选择性时, 设功率方向元件,只有在仅靠时限不能满足动作选择性时, 才需要装设功率方向元件。 才需要装设功率方向元件。 1. I段电流保护用于双侧电源线路时,需要在小电 段电流保护用于双侧电源线路时, 段电流保护用于双侧电源线路时 源一侧采用方向电流速断保护,保护2、保护4要装方 源一侧采用方向电流速断保护,保护 、保护 要装方 向保护 2.定时限过电流保护要根据动作时限判断是否装设方向保护 定时限过电流保护要根据动作时限判断是否装设方向保护 接于同一变电所母线的各电源线路的过电流保护, 接于同一变电所母线的各电源线路的过电流保护,时 限大者可不装设方向元件,时限小者应装设方向元件, 限大者可不装设方向元件,时限小者应装设方向元件, 时限相等者都应装设方向元件。保护5,保护2要装方向保护 时限相等者都应装设方向元件。保护 ,保护 要装方向保护
相关文档
最新文档