华北电力大学电力系统继电保护课程教案
电力系统继电保护教案
电力系统继电保护教案第一章:继电保护概述1.1 继电保护的定义1.2 继电保护的基本原理1.3 继电保护的作用与重要性1.4 继电保护的发展历程与现状第二章:继电保护装置及其基本构成2.1 继电保护装置的定义与分类2.2 继电保护装置的基本构成2.3 继电保护装置的主要性能指标2.4 继电保护装置的选用原则第三章:电力系统短路故障及其保护3.1 短路故障的类型与特点3.2 短路故障的保护措施3.3 短路故障保护装置的原理与实现3.4 短路故障保护装置的配置与整定第四章:电力系统过电压保护4.1 过电压的类型与危害4.2 过电压保护的基本原理4.3 过电压保护装置的类型与选用4.4 过电压保护装置的配置与整定第五章:电力系统变压器保护5.1 变压器故障类型与保护需求5.2 变压器保护装置的原理与实现5.3 变压器保护装置的配置与整定5.4 变压器保护装置的运行与维护第六章:电力系统线路保护6.1 线路故障类型与保护需求6.2 线路保护装置的原理与实现6.3 线路保护装置的配置与整定6.4 线路保护装置的运行与维护第七章:电力系统母线与断路器保护7.1 母线故障类型与保护需求7.2 断路器故障类型与保护需求7.3 母线与断路器保护装置的原理与实现7.4 母线与断路器保护装置的配置与整定第八章:电力系统自动重合闸与备自投装置8.1 自动重合闸的原理与实现8.2 备自投装置的原理与实现8.3 自动重合闸与备自投装置的配置与整定8.4 自动重合闸与备自投装置的运行与维护第九章:电力系统继电保护的通信与监控9.1 继电保护通信系统的基本原理与结构9.2 继电保护监控系统的基本原理与功能9.3 继电保护通信与监控系统的配置与运行9.4 继电保护通信与监控系统的发展趋势第十章:电力系统继电保护的运行与管理10.1 继电保护运行与管理的基本要求10.2 继电保护运行与管理的组织与职责10.3 继电保护运行与管理的流程与方法10.4 继电保护运行与管理的问题与改进方向重点和难点解析一、继电保护的基本原理:理解继电保护的工作原理是学习继电保护的基础,包括电流、电压、时间和逻辑等方面的基本概念。
电力系统继电保护教案
电力系统继电保护教案章节一:继电保护概述1.1 继电保护的定义和作用1.2 继电保护的基本原理1.3 继电保护装置的基本组成1.4 继电保护的分类及其特点章节二:电流互感器和电压互感器2.1 电流互感器的工作原理和接线方式2.2 电压互感器的工作原理和接线方式2.3 互感器的主要参数和选用依据2.4 互感器在继电保护中的应用章节三:继电保护装置的构成及功能3.1 继电保护装置的构成要素3.2 继电保护装置的功能及其实现方式3.3 继电保护装置的主要性能指标3.4 继电保护装置的分类及特点章节四:常用的继电保护装置4.1 电流速断保护装置4.2 过电流保护装置4.3 差动保护装置4.4 接地保护装置4.5 距离保护装置章节五:电力系统继电保护的整定计算5.1 继电保护整定计算的基本原理5.2 继电保护整定计算的方法5.3 继电保护装置的调试与验收5.4 继电保护装置的运行维护与管理章节六:继电保护装置的继电器6.1 继电器的分类和工作原理6.2 继电器的电气特性及其参数6.3 继电器在继电保护中的应用6.4 继电器的选择和整定章节七:数字化继电保护技术7.1 数字化继电保护的基本原理7.2 数字化继电保护装置的构成和功能7.3 数字化继电保护的优势和应用前景7.4 数字化继电保护技术的发展趋势章节八:电力系统继电保护的配合与选择8.1 继电保护配合的原则和方法8.2 继电保护装置的选择依据8.3 继电保护装置的配合案例分析8.4 继电保护装置的选择和配合在实际工程中的应用章节九:电力系统继电保护的运行与维护9.1 继电保护装置的运行管理9.2 继电保护装置的故障处理与维修9.3 继电保护装置的定期检查与试验9.4 继电保护装置的性能评估与优化章节十:继电保护在电力系统中的应用案例分析10.1 继电保护在电力系统中的关键作用10.2 继电保护装置在电力系统中的应用案例10.3 继电保护装置在电力系统运行中的常见问题及解决方案10.4 继电保护技术在电力系统发展中的未来趋势重点和难点解析章节一:继电保护概述难点解析:理解继电保护在电力系统中的重要性,掌握不同类型继电保护的特点及应用场景。
电力系统继电保护》课程设计
《电力系统继电保护》课程设计班别:姓名:学号:指导老师:日期:2012年5月14日至5月27日目录设计的任务及其目的---------------------------------------------3§1 、背景资料--------------------------------------------------41.1主接线图及其数据依据---------------------------------41.2德保县电网主要参数------------------------------------5§2 、3~100kv电网继电保护装置运行整定规程----------8§3继电保护和安全自动装置技术规程----------------------11 §4 数据的整定过程-------------------------------------------124.1通过主接线图画出课程设计所需的系统图----------124.2短路阻抗计算-------------------------------------------134.3电流保护的整定----------------------------------------144.4保护定值表----------------------------------------------22§5 课程设计小结----------------------------------------------24 参考文献-----------------------------------------------------25设计的任务及其目的任务四:德保华银铝业原料车间保护误动作解决方案我们所选择的设计任务是解决德保华银铝业原料车间保护的误动作,确保原料车间的正常运行。
课程设计是教学过程中的重要环节。
电力系统继电保护教案
电力系统继电保护教案一、教学目标:1.了解电力系统继电保护的基本概念和作用;2.了解电力系统继电保护的分类和工作原理;3.掌握电力系统继电保护的常见故障检测和处理方法;4.了解电力系统继电保护的发展现状和未来趋势。
二、教学内容:1.电力系统继电保护的概念和作用;2.电力系统继电保护的分类和工作原理;3.电力系统继电保护的常见故障检测和处理方法;4.电力系统继电保护的发展现状和未来趋势。
三、教学方法:1.理论讲解结合实例分析的方法;2.教师讲解和学生互动的方法;3.小组讨论和展示的方法。
四、教学过程:第一课时:1.导入(5分钟)教师通过提出问题或故事情境,引发学生对电力系统继电保护的兴趣并进行预热。
2.理论讲解(15分钟)教师讲解电力系统继电保护的概念和作用,通过图示和实例说明电力系统继电保护在电力系统中的重要性。
3.案例分析(15分钟)教师提供一些真实的电力系统继电保护案例,让学生分析其中的故障和保护方法,并讨论可能的解决方案。
第二课时:1.理论讲解(10分钟)教师讲解电力系统继电保护的分类和工作原理,通过图示和实例说明各种继电保护装置的原理和作用。
2.小组讨论(15分钟)学生分成小组,就某种继电保护装置的原理和作用展开讨论,讨论结果交流并总结。
3.展示和讨论(10分钟)每个小组选择一种继电保护装置进行展示,并就其他小组的讨论结果进行点评。
第三课时:1.理论讲解(10分钟)教师讲解电力系统继电保护的常见故障检测和处理方法,通过图示和实例说明如何检测和处理电力系统中的故障。
2.案例分析(15分钟)教师提供一些真实的电力系统故障案例,让学生分析其中的故障原因和解决方法,并讨论可能的处理方案。
3.展示和讨论(10分钟)学生根据自己的分析结果,选择一种故障案例进行讨论和展示,并就其他小组的讨论结果进行点评。
第四课时:1.理论讲解(10分钟)教师讲解电力系统继电保护的发展现状和未来趋势,通过图示和实例说明电力系统继电保护技术的前景和发展方向。
电力系统继电保护原理教学设计
电力系统继电保护原理教学设计1. 前言继电保护是电力系统中重要的保护措施,其在电力系统运行中起着至关重要的作用。
在传统的教学模式中,理论与实践往往是分离的。
然而,在电力系统继电保护原理的教学实践中,实践与理论是相辅相成的。
因此,本文结合实际操作,提出了一种基于模拟演练的教学方法,旨在增强学生的学习效果。
2. 教学目标本教学设计的教学目标主要包括:•理解电力系统继电保护的基本原理和运行过程;•掌握继电保护特性及其应用;•掌握检修电力系统保护装置的方法技巧。
3. 教学内容本教学设计主要包括以下内容:1.电力系统继电保护原理–继电保护的定义–继电保护的分类–继电保护的基本原理–继电保护的运行流程–继电保护的特性及应用2.继电保护装置的检修–保护装置检修前的准备工作–保护装置的检修步骤–保护元件的检测方法–保护元件的更换方法4. 教学方法本教学设计采用基于模拟演练的教学方法。
具体包括以下步骤:1.学生分组,要求每组分配一个继电保护装置;2.给每个分组提供一套电力系统仿真装置,用于模拟实际运行环境;3.请学生按照实际操作流程,检修所分配的继电保护装置;4.每个分组在检修完成后,需在电力系统仿真装置上进行测试;5.将实际操作结果与理论知识进行结合,对学生的实际操作进行指导和评估。
5. 教学评估为了评估学生的学习效果,将采取以下几种评估方式:1.学生评估:对学生的学习态度、学习进度、学习成效等进行评估;2.作业评估:对学生提交的作业进行评估,包括作业任务的完成情况、作业质量等;3.实验评估:针对学生的实验操作进行评估,包括实验步骤的正确性、实验结果的准确性等。
6. 结论本文提出了一种基于模拟演练的教学模式,这种教学模式可以有效地提高学生的学习效果。
通过实际操作和理论知识的结合,可以有效地巩固和加深学生对电力系统继电保护原理的认识。
同时,这种教学模式也可以提高学生的实际操作能力,为今后的实际工作打下坚实的基础。
电力系统继电保护课程设计
电力系统继电保护课程设计电力系统继电保护课程设计是电力系统专业学生的重要基础课程之一,旨在培养学生对电力系统继电保护的理论知识和应用能力。
下面将从课程的目标、内容和参考教材三个方面进行介绍。
一、课程目标1. 理解电力系统继电保护的基本概念、原理和分类;2. 掌握电力系统继电保护的各种保护方式和保护装置的基本原理和运行特点;3. 学会电力系统继电保护的设计方法和计算模型,能够进行常规保护方案的设计;4. 具备电力系统继电保护故障分析和故障处理的能力;5.了解当前电力系统继电保护的发展趋势和新技术。
二、课程内容1. 电力系统继电保护概述a. 继电保护的定义和基本原理b. 继电保护的分类和发展历程2. 电力系统继电保护装置a. 出线保护装置b. 过流保护装置c. 距离保护装置d. 差动保护装置e. 频率保护装置f. 转子开路保护装置g. 母线保护装置3. 电力系统继电保护的设计方法a. 保护原则和设计准则b. 选用保护装置的依据和方法c. 保护的设置和参数的选择4. 继电保护的特殊问题a. 自动重新合闸保护b. 同期重切保护c. 同期选址抗饱和保护d. 光纤继电保护及其应用5. 继电保护设备的试验与调整a. 保护设备的试验方法b. 保护设备的调整和校验6. 电力系统继电保护的实例和案例分析三、参考教材1.《电力系统自动化技术基础》(高等教育出版社):该书包含了电力系统自动化技术的基础知识,包括电力系统继电保护的基本原理和设计方法等内容,适合作为该课程的主要教材。
2.《电力系统继电保护》(中国电力出版社):该书对电力系统继电保护的各种保护方式和保护装置进行了详细介绍,结合实例进行了深入的分析,有助于学生理解和掌握继电保护的设计和应用。
3.《电力系统继电保护》(机械工程出版社):该教材从电力系统继电保护概念到保护装置的详细原理,系统地介绍了继电保护的相关知识,且配有大量的案例分析,适合作为该课程的参考教材。
《电力系统继电保护》课程设计任务书
课程设计任务书一、目的任务电力系统继电保护课程设计是一个实践教学环节,也是学生接受专业训练的重要环节,是对学生的知识、能力和素质的一次培养训练和检验。
通过课程设计,使学生进一步巩固所学理论知识,并利用所学知识解决设计中的一些基本问题,培养和提高学生设计、计算,识图、绘图,以及查阅、使用有关技术资料的能力。
本次课程设计主要以中型企业变电所主变压器及相邻线路为对象,主要完成继电保护概述、主变压器及线路继电保护方案确定、短路电流计算、继电保护装置整定计算、绘保护配置图等设计和计算任务。
为以后深入学习相关专业课、进行毕业设计和从事实际工作奠定基础。
二、设计内容1、主要内容(1)熟悉设计任务书,相关设计规程,分析原始资料,借阅参考资料。
(2)继电保护概述,主变压器继电保护方案确定,线路保护方案的确定。
(3)短路电流计算。
(4)继电保护装置整定计算。
(5)各种保护装置的选择。
2、原始数据某变电所电气主接线如图1所示,已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,SFSZ7-31500/110,其参数如下:S N =31.5MVA ;电压为110±8×1.25%/38.5±2×2.5%/11 kV ;接线为Y N /y/d 11(Y 0/y/Δ-12-11);短路电压U HM (%)=10.5,U HL (%)=17,U ML (%)=6.5。
两台变压器同时运行,110kV 侧的中性点只有一台接地,若只有一台运行,则运行变压器中性点必须接地,其余参数如图1。
3、设计任务结合系统主接线图,要考虑L1L2两条110kV 高压线路既可以并联运行也可以单独运行。
针对某一主变压器及相邻线路的继电保护进行设计,变压器的后备保护(定时限过电流电流)作为线路的远后备保护。
已知条件如下:(1) 变压器35kV 母线单电源辐射形线路L5L6的保护方案拟定为三段式电流保护,保护采用两相星形接线,馈出线定时限过流保护最大的时限为2.0s ,线路L5L6的正常最大负荷电流为350A ,(2) 变压器10kV 母线母线单电源辐射形线路L3L4的保护方案拟定为三段式电流保护,保护采用两相星形接线,馈出线定时限过流保护最大的时限为2.2s ,线路L3L4的正常最大负荷电流为400A ,(3) L1L2各线路均装设距离保护,试对其相间短路保护I,II,III 段进行整定计算,即求各段动作阻抗Z OP I ,Z OP II ,Z OP III 和动作时限t 1I 、t 1II 、t 1III ,并校验其灵敏度,线路L1L2的最大负荷电流为变压器额定电流的2倍,功率因数cos ϕ=0.9,各线路每千米阻抗Z1=0.4Ω,阻抗角ϕL=700,电动机自启动系数KSS=1.5,继电器的返回系数Kre=1.2,并设Krel`=0.85, Krel``=0.8, Krel```=1.2,距离III 段采用方向阻抗继电器,(4) 变压器主保护采用能保护整个变压器的无时限纵差保护,变压器的后备保护作为线路的远后备保护。
电力系统继电保护教案
电力系统继电保护教案教案标题:电力系统继电保护教学目标:1. 了解电力系统中继电保护的基本概念和作用;2. 掌握电力系统中继电保护的原理和常用继电保护装置的工作原理;3. 能够分析电力系统故障,并提出相应的继电保护方案;4. 熟悉继电保护在电力系统中的应用和实践。
教学内容与重点:1. 继电保护的基本概念和作用;2. 继电保护装置的分类和工作原理;3. 继电保护配置的原则和方法;4. 继电保护在输电线路、变电站和发电机组中的应用。
教学步骤和方法:1. 复习与导入:通过提问和讨论,复习电力系统的基础知识,引入继电保护的概念和作用;2. 理论讲解:使用PPT或教材,介绍继电保护的基本原理、分类和常用继电保护装置的工作原理;3. 示例分析:引导学生分析电力系统中的常见故障,并提出相应的继电保护方案;4. 小组讨论:组织学生分成小组,讨论继电保护配置的原则和方法,并展示他们的思考成果;5. 实践应用:引导学生参观或了解实际电力系统中继电保护的应用和实践,并通过实例分析、讨论和展示,加深学生对继电保护的理解和认识;6. 总结与评价:总结本节课的重点内容,并提醒学生需要进一步学习和实践的方向。
教学资源和辅助材料:1. 电力系统继电保护教材或课件;2. 继电保护装置实际案例和应用示意图;3. 电力系统故障分析案例和数据。
评价与改进:1. 在教学过程中,可以适时进行提问和讨论,加深学生对继电保护的理解和思考;2. 鼓励学生实践和应用,可以设计一些练习题或实验,巩固学生的知识和能力;3. 教学结束后,可以进行课堂小结和学生的自评,以便评估教学效果并作出改进。
以上是针对教案的建议和指导,请根据实际教学需求和教育阶段的要求进行适当调整和改进。
电力系统继电保护教案
电力系统继电保护教案一、教学目标1. 了解电力系统继电保护的基本概念、作用和分类。
2. 掌握电力系统继电保护的基本原理、保护装置及保护装置的动作特性。
3. 熟悉电力系统继电保护的设计方法、整定原则和整定计算。
4. 了解电力系统继电保护的运行维护和管理。
二、教学内容1. 电力系统继电保护的基本概念1.1 继电保护的定义1.2 继电保护的作用1.3 继电保护的分类2. 电力系统继电保护的基本原理2.1 电流保护原理2.2 电压保护原理2.3 差动保护原理2.4 距离保护原理3. 保护装置及保护装置的动作特性3.1 保护装置的组成3.2 保护装置的动作特性3.3 保护装置的分类4. 电力系统继电保护的设计方法4.1 设计原则4.2 设计步骤4.3 设计注意事项三、教学重点与难点1. 教学重点:电力系统继电保护的基本概念、作用和分类;电力系统继电保护的基本原理、保护装置及保护装置的动作特性;电力系统继电保护的设计方法、整定原则和整定计算。
2. 教学难点:保护装置的动作特性;电力系统继电保护的设计方法及整定计算。
四、教学方法1. 采用讲授法,讲解电力系统继电保护的基本概念、作用、分类、原理、装置及设计方法。
2. 使用案例分析法,分析实际运行中的继电保护装置及运行维护经验。
3. 利用仿真软件,演示继电保护的动作过程,增强学生对继电保护原理的理解。
五、教学评价1. 课堂讲授过程中,关注学生的听课情况,及时解答学生提出的问题。
2. 课后布置相关作业,检验学生对继电保护知识的掌握程度。
3. 组织课堂讨论,鼓励学生分享自己的理解和经验,提高学生的实际应用能力。
4. 定期进行课程考核,评估学生对电力系统继电保护知识的总体掌握水平。
六、教学准备1. 教材:电力系统继电保护相关教材或参考书。
2. 课件:制作PowerPoint课件,包括文字、图片、动画和视频等。
3. 教学工具:计算机、投影仪、白板、粉笔等。
4. 实践教学:准备相应的继电保护装置或仿真软件,用于实际操作演示。
电力系统继电保护原理及应用教学设计
电力系统继电保护原理及应用教学设计一、引言电力系统继电保护是电力系统中重要的组成部分,它主要起到电气故障保护和电力运行的稳定性控制等方面的作用,是电力系统中必不可少的一部分。
因此,电力系统继电保护的学习和应用在电力工程中具有重要的意义。
本教学设计旨在介绍电力系统继电保护的基本原理和应用,帮助学生深入了解电力系统继电保护的作用,掌握其基本原理和方法,能够在工程实践中合理应用电力系统继电保护技术。
二、教学内容1. 电力系统继电保护基本原理电力系统继电保护的基本原理是基于电压和电流等物理量的测量和比较,通过对电力系统各个设备之间的电量变化进行监测和分析,从而实现对各个设备的保护。
本部分的教学内容包括电力系统继电保护的基本概念、电力系统继电保护的分类及工作原理等方面的内容。
2. 电力系统继电保护主要装置及应用电力系统继电保护主要包括断路器、保护继电器、电流互感器、电压互感器、继电保护装置等部分,本部分的教学内容主要包括各种继电保护设备、继电保护装置的结构和工作原理、应用范围及注意事项等方面。
3. 继电保护在电力工程中的应用电力系统继电保护在电力工程中应用广泛,通过继电保护的应用能够保证电力系统各项设备的安全运行,从而达到电力系统高可靠性的目的。
本部分的教学内容主要包括电力系统中各项设备的继电保护的实际应用案例,以及在电力系统维护工作中常见故障点的分析和解决方法等方面的内容。
三、教学方法1. 讲授教学通过课堂授课的方式,讲授电力系统继电保护的基本原理、主要装置和应用等方面知识。
2. 实验教学通过实际操作和观察,加深学生对电力系统继电保护原理和方法的理解,提高学生继电保护的实际应用能力。
3. 课堂讨论针对特定问题进行课堂讨论,促进学生的思考和交流。
四、教学评估1. 作业评估要求学生对所学内容进行总结并撰写一份学习笔记,督促学生及时复习和消化课堂知识。
2. 课堂提问定期进行课堂提问,检查学生对所学知识的理解程度。
电力系统继电保护原理教案
电力系统继电保护原理教案章节一:继电保护概述1.1 教学目标让学生了解继电保护的基本概念、作用和分类。
使学生掌握继电保护的基本原理及其在电力系统中的应用。
1.2 教学内容继电保护的定义和作用继电保护的分类继电保护的基本原理继电保护在电力系统中的应用1.3 教学方法采用讲解、案例分析相结合的方式进行教学。
1.4 教学准备教案、PPT、相关案例资料。
章节二:电流互感器和电压互感器2.1 教学目标让学生了解电流互感器和电压互感器的基本概念、结构和工作原理。
使学生掌握电流互感器和电压互感器在继电保护中的应用。
2.2 教学内容电流互感器和电压互感器的基本概念电流互感器和电压互感器的结构和工作原理电流互感器和电压互感器在继电保护中的应用2.3 教学方法采用讲解、实验演示相结合的方式进行教学。
2.4 教学准备教案、PPT、实验设备。
章节三:距离保护3.1 教学目标让学生了解距离保护的基本概念、原理和特点。
使学生掌握距离保护在继电保护中的应用。
3.2 教学内容距离保护的基本概念距离保护的原理距离保护的特点距离保护在继电保护中的应用3.3 教学方法采用讲解、案例分析相结合的方式进行教学。
3.4 教学准备教案、PPT、相关案例资料。
章节四:差动保护4.1 教学目标让学生了解差动保护的基本概念、原理和特点。
使学生掌握差动保护在继电保护中的应用。
4.2 教学内容差动保护的基本概念差动保护的原理差动保护的特点差动保护在继电保护中的应用4.3 教学方法采用讲解、案例分析相结合的方式进行教学。
4.4 教学准备教案、PPT、相关案例资料。
章节五:继电保护装置的设计与调试5.1 教学目标让学生了解继电保护装置的设计原则和方法。
使学生掌握继电保护装置的调试方法。
5.2 教学内容继电保护装置的设计原则和方法继电保护装置的调试方法5.3 教学方法采用讲解、实验演示相结合的方式进行教学。
5.4 教学准备教案、PPT、实验设备。
章节六:继电保护设备及应用6.1 教学目标让学生了解常见的继电保护设备及其功能。
华北电力大学国家级精品课《电力系统继电保护
由于要求切除故障的速度要很快,只能通过自动的继电保护 装置来完成。
3. 继电保护装置的基本任务 (1) 自动、迅速、有选择性地将故障元件从电力系统中 切除,使故障元件免于继续遭到损坏,保证其它无故障 部分迅速恢复正常运行。 即内部故障时发出跳闸命令。 (2) 反应电气元件的不正常运行状态,根据运行维护的 具体条件(例如有无经常值班人员)和设备的承受能力, 发出警报信号、减负荷或延时跳闸。 即不正常工作时发出告警信号。
反应数值上升的保护: 反应数值下降的保护:
4、可靠性
定义:当保护范围内部故障时必须动作(不拒动), 当外部故障时不动作(不误动)。 包括两个方面: (1)不拒动,即可信赖性
(2)不误动,即安全性
影响可靠性的因素: 内在:装置本身的质量,包括元件好坏、结构设计
的合理性、制造工艺水平、内外接线简明, 触点多少等;
正常运行: 电流:为负荷电流,两侧电流大小相等,方向相反(即相位相差 180)。 内部d1短路: 电流:线路BC两侧电流大小一般不等,方向相同(即相位相同); 差动保护原理
基本原理的总结
电流 I : 故障时增大 - 过电流保护 正常状态时 两侧电流相位相同 内部故障时 两侧电流相位相反 电压U :故障时降低 -低电压保护 阻抗Z :Z模值减小 -阻抗(距离)保护 -差动保护
远后备保护:位于其它变电站、发电厂中的后备保护; 近后备保护:位于本变电站、发电厂中的的后备保护;
2、速动性(迅速性)
定义:继电保护装置要以尽可能短的时间将故障从电网中切除。 优点: (1)提高电网的稳定性; (2)加快非故障部分的恢复供电; (3)减轻故障设备的损坏程度。 故障切除时间=保护装置动作时间+断路器动作时间 保护装置的动作时间为: 微机保护最快:0.01~0.04秒,即0.5~2个周期就动作;
电力系统继电保护教案
电力系统继电保护教案一、教学目标1. 理解电力系统继电保护的基本概念和作用2. 掌握电力系统继电保护的基本原理和保护装置的构成3. 熟悉电力系统继电保护的分类和特点4. 学会分析电力系统故障和选择合适的保护方案5. 能够设计和应用电力系统继电保护装置二、教学内容1. 电力系统继电保护的基本概念和作用继电保护的定义继电保护在电力系统中的重要性2. 电力系统继电保护的基本原理和保护装置的构成电流保护原理电压保护原理差动保护原理保护装置的构成和功能3. 电力系统继电保护的分类和特点按保护对象分类按保护原理分类按动作方式分类各种保护的特点和应用范围4. 电力系统故障分析单相接地故障两相短路故障三相短路故障过电压故障5. 电力系统继电保护方案的选择和设计保护方案的确定保护装置参数的计算保护装置的接线和调试三、教学方法1. 讲授法:讲解电力系统继电保护的基本概念、原理和分类,分析故障案例,介绍保护方案的选择和设计方法。
2. 案例分析法:分析实际电力系统继电保护案例,让学生了解保护装置的应用和效果。
3. 实验法:组织学生进行电力系统继电保护实验,让学生亲自操作和观察保护装置的工作原理和效果。
四、教学资源1. 教材:电力系统继电保护教材或相关参考书籍2. 课件:制作PowerPoint课件,图文并茂地展示教学内容3. 实验设备:继电保护装置实验仪,故障模拟装置五、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的学习兴趣和积极性。
2. 作业完成情况:评估学生完成作业的数量和质量,了解学生的掌握程度。
3. 实验报告:评估学生实验报告的完整性、准确性和创新性,检验学生的实验操作和分析能力。
4. 期末考试:设置相关试题,评估学生对电力系统继电保护知识的掌握程度和应用能力。
六、教学安排1. 课时:本课程共计32课时,包括16次课,每次课2小时。
2. 教学进度安排:第1-4次课:电力系统继电保护的基本概念、原理和分类(一)第5-8次课:电力系统继电保护的基本原理和保护装置的构成(二)第9-12次课:电力系统继电保护的分类和特点、故障分析(三)第13-16次课:保护方案的选择和设计、教学实验(四)七、教学活动1. 课堂讲授:教师讲解电力系统继电保护的基本概念、原理和分类,分析故障案例,介绍保护方案的选择和设计方法。
华北电力大学电力系统继电保护课程教案1
电力系统继电保护原理课程教案目录第一章绪论第二章电网的电流保护和方向性电流保护第三章电网的距离保护第四章输电线纵联保护第五章自动重合闸第六章电力变压器的继电保护第七章发电机的继电保护第八章母线的继电保护第一章绪论一、电力系统继电保护的作用1. 继电保护包括继电保护技术和继电保护装置。
﹡继电保护技术是一个完整的体系,它主要包括电力系统故障分析、各种继电保护原理及实现方法、继电保护的设计、继电保护运行及维护等技术。
﹡继电保护装置是完成继电保护功能的核心。
P1继电保护装置就是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
2. 电力系统的故障和不正常运行状态:(三相交流系统)* 故障:各种短路(d(3)、d(2)、d(1)、d(1-1)))和断线(单相、两相),其中最常见且最危险的是各种类型的短路。
其后果:1.电流I增加危害故障设备和非故障设备;2.电压U降低或增加影响用户的正常工作;3.破坏系统稳定性,使事故进一步扩大(系统振荡,电压崩溃)4.发生不对称故障时,出现I2,使旋转电机产生附加发热;发生接地故障时出现I0,—对相邻通讯系统造成干扰* 不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。
如:过负荷、过电压、频率降低、系统振荡等。
3.继电保护的作用:(1)当电力系统发生故障时,自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障设备迅速恢复正常运行;(2)反映电气元件的不正常运行状态,并根据运行维护的条件(例如有无经常值班人员)而动作于发出信号、减负荷或跳闸。
二、继电保护的基本原理、构成与分类:1. 基本原理:为区分系统正常运行状态与故障或不正常运行状态——必须找出两种情况下的区别。
① I 增加 故障点与电源间 —>过电流保护 ② U 降低 母线电压 —>低电压保护③ 相位变化,φφIU arg变化; 正常:为负荷的功率因数角一般为0-30°左右短路:为输电线路的阻抗角一般为60°~85°—>方向保护.④ 测量阻抗降低,Z=I U 模值减少 增加ψ —>阻抗保护⑤ 双侧电源线路外部故障:出入I I = 内部故障:出入I I ≠ ——电流差动保护。
《电力系统继电保护》课程教学大纲
电力系统继电保护课程教学大纲Re1ayProtectionofPowerSystem总学时数:32学分数:2适用专业:电气工程与自动化一,课程的性质.目的和任务《电力系统继电保护》是电气工程与自动化专业的专业课,是选修课。
通过本课程学习,应使学生深刻地认识到,电力系统继电保护在保证电力系统的安全稳定运行中所起的重要作用;使学生掌握电力系统继电保护的基本原理、基本概念、基本实验技能,毕业后为从事本专业范围内的实际工作奠定基础。
二.课程教学的基本要求本课程的教学环节包括:课堂讲授、课外作业、实验和考试。
通过各个教学环节重点培养学生分析和解决问题的能力和自学能力。
三.课程的教学内容,重点和难点第一章绪论(2学时)基本内容:继电保护的基本原理及保护装置的组成,继电保护的任务,对电力系统继电保护的基本要求,继电保护工作的特点。
基本要求:了解继电保护的原理、组成、继电保护技术的发展。
重点:继电保护的基本原理,对电力系统继电保护的基本要求。
难点:对电力系统继电保护的基本要求。
第二章电网的电流电压保护和方向性电流保护(6学时)基本内容:(1)相间短路的电流保护:电流速断保护,限时电流速断保护,定时限过电流保护,电流保护的接线方式,阶段式电流保护的应用及接线举例,电流电压连锁保护。
(2)相间短路的方向性电流保护、方向性电流保护的工作原理,功率方向继电器的工作原理及接线方式,双侧电源的网络中电流保护整定的特点。
(3)中性点直接接地电网中接地短路的三段式零序电流保护,方向性零序电流保护。
(4)中性点非直接地电网接地故隙的零序电流电压和方向保护。
基本要求:了解电流、电压继电器的构造与原理;掌握三段式电流保护的作用、原理、整定计算原则、保护的接线图;理解电流保护的接线方式及特点;通过三段电流保护的实验,加深了解继电器的基本结构和理解三段保护的基本原理。
掌握装设方向元件的必要性;了解功率方向继电器的工作原理;理解大电流接地系统单相接地短路时零序分量的特点,了解三段式零序电流保护中作用、工作原理和接线图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统继电保护原理课程教案目录第一章绪论第二章电网的电流保护和方向性电流保护第三章电网的距离保护第四章输电线纵联保护第五章自动重合闸第六章电力变压器的继电保护第七章发电机的继电保护第八章母线的继电保护第一章绪论一、电力系统继电保护的作用1. 继电保护包括继电保护技术和继电保护装置。
﹡继电保护技术是一个完整的体系,它主要包括电力系统故障分析、各种继电保护原理及实现方法、继电保护的设计、继电保护运行及维护等技术。
﹡继电保护装置是完成继电保护功能的核心。
P1继电保护装置就是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
2. 电力系统的故障和不正常运行状态:(三相交流系统)* 故障:各种短路(d(3)、d(2)、d(1)、d(1-1)))和断线(单相、两相),其中最常见且最危险的是各种类型的短路。
其后果:1.电流I增加危害故障设备和非故障设备;2.电压U降低或增加影响用户的正常工作;3.破坏系统稳定性,使事故进一步扩大(系统振荡,电压崩溃)4.发生不对称故障时,出现I2,使旋转电机产生附加发热;发生接地故障时出现I0,—对相邻通讯系统造成干扰* 不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。
如:过负荷、过电压、频率降低、系统振荡等。
3.继电保护的作用:(1)当电力系统发生故障时,自动、迅速、有选择性的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障设备迅速恢复正常运行;(2)反映电气元件的不正常运行状态,并根据运行维护的条件(例如有无经常值班人员)而动作于发出信号、减负荷或跳闸。
二、继电保护的基本原理、构成与分类:1. 基本原理:为区分系统正常运行状态与故障或不正常运行状态——必须找出两种情况下的区别。
① I 增加 故障点与电源间 —>过电流保护 ② U 降低 母线电压 —>低电压保护③ 相位变化,φφIU arg变化; 正常:为负荷的功率因数角一般为0-30°左右短路:为输电线路的阻抗角一般为60°~85°—>方向保护.④ 测量阻抗降低,Z=I U 模值减少 增加ψ —>阻抗保护⑤ 双侧电源线路外部故障:出入I I = 内部故障:出入I I ≠ ——电流差动保护。
⑥ 反映I 2 ,0 的 序分量保护等。
非电气量:瓦斯保护,过热保护原则上说:只要找出正常运行与故障时系统中电气量或非电气量的变化特征(差别),即可找出一种原理,且差别越明显,保护性能越好。
2. 构成以过电流保护为例:正常运行:LH fh n I I /= LJ 不动故障时:dzj LH d I n I I >=/ LJ 动—>SJ 动(延时)—>XJ 动—>信号 TQ 动—> 跳闸 (常用继电器及触点的表示方法参考 附录1 P230)保护装置由测量元件、逻辑元件和执行元件三部分组成。
(1)测量元件作用:测量从被保护对象输入的有关物理量(如电流、电压、阻抗、功率方向等),并与已给定的整定值进行比较,根据比较结果给出“是”、“非”、“大于”、“不大于”等具有“0”或“1”性质的一组逻辑信号,从而判断保护是否应该启动。
(2)逻辑元件作用:根据测量部分输出量的大小、性质、输出的逻辑状态、出现的顺序或它们的组合,使保护装置按一定的布尔逻辑及时序逻辑工作,最后确定是否应跳闸或发信号,并将有关命令传给执行元件。
逻辑回路有:或、与、非、延时启动、延时返回、记忆等。
(3)执行元件:作用;根据逻辑元件传送的信号,最后完成保护装置所担负的任务。
如:故障时→跳闸;不正常运行时→发信号;正常运行时→不动作。
3.分类:几种方法如下:(1)按被保护的对象分类:输电线路保护、发电机保护、变压器保护、电动机保护、母线保护等;(2)按保护原理分类:电流保护、电压保护、距离保护、差动保护、方向保护、零序保护等;(3)按保护所反应故障类型分类:相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等;(4)按构成继电保护装置的继电器原理分类:机电型保护(如电磁型保护和感应型保护)、整流型保护、晶体管型保护、集成电路型保护及微机型保护等;(5)按保护所起的作用分类:主保护、后备保护、辅助保护等;主保护满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备和线路故障的保护。
后备保护主保护或断路器拒动时用来切除故障的保护。
又分为远后备保护和近后备保护两种。
①远后备保护:当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护。
②近后备保护:当主保护拒动时,由本设备或线路的另一套保护来实现后备的保护;当断路器拒动时,由断路器失灵保护来实现近后备保护。
辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护。
三、对电力系统继电保护的基本要求:对动作于跳闸的继电保护,在技术上一般应满足四个基本要求:选择性、速动性、灵敏性、可靠性。
即保护的四性。
(一)选择性:P4选择性是指电力系统发生故障时,保护装置仅将故障元件从系统中切除,而使非故障元件仍能正常运行,以尽量缩小停电范围。
例:当d1点短路时,保护1、2动→跳1DL 、2DL ,有选择性 当d2点短路时,保护5、6动→跳5DL 、6DL ,有选择性 当d3点短路时,保护7、8动→跳7DL 、8DL ,有选择性当d3点短路时,若保护7拒动或7DL 拒动,保护5动→跳5DL (有选择性)若保护7和7DL 正确动作于跳闸,保护5动→跳5DL ,则保护5为误动,或称保护 5越级跳闸(保护5失去选择性)小结:选择性就是故障点在区内就动作,在区外不动作。
当主保护未动作时,由近后备或远后备切除故障,使停电面积最小。
因远后备保护比较完善(对保护装置拒动、DL 拒动、二次回路和直流电源等故障所引起的拒绝动作均起后备作用)且实现简单、经济,应优先采用。
但远后备保护切除故障的时间较长。
在高压电网中,应加强主保护。
(二) 速动性:保护的动作速度应尽可能快速。
快速切除故障的好处: ○1提高系统稳定性;○2减少用户在低电压下的动作时间;○3减少故障元件的损坏程度 ,避免故障进一步扩大。
DL bh t t t +=;t -故障总切除时间;t bh -保护动作时间; t DL -断路器动作时间;一般的快速保护动作时间为0.06~0.12s ,最快的可达0.01~0.04s 。
一般的断路器的动作时间为0.06~0.15s ,最快的可达0.02~0.06s 。
所以,切除故障的最快时间为:0 。
03—0。
1s 。
(三) 灵敏性:P5指在最不利的条件下,保护装置对故障的反应能力。
满足灵敏性要求的保护装置应在发生区内故障时,不论运行方式大小、短路点的位置与短路的类型如何,都能灵敏地反应。
通常,灵敏性用灵敏系数来衡量,并表示为K lm 。
对反应于数值上升而动作的过量保护(如电流保护)dzd lm I I K min=保护的动作参数算值路时故障参数的最小计保护范围末端金属性短=对反应于数值下降而动作的欠量保护(如低电压保护)max.d dz lm U U K =算值路时故障参数的最大计保护范围末端金属性短保护的动作参数=其中故障参数的最小、最大计算值是根据实际可能的最不利运行方式、故障类型和短路点位置来计算的。
在《继电保护和安全自动装置技术规程(DL400-91)》中,对各类保护的灵敏系数K lm 的要求都作了具体规定(参见附录2,P231)。
(四) 可靠性:P5指发生了属于某保护装置动作的故障,它应能可靠动作,即不发生拒绝动作(拒动);而在发生不属于本保护动作的故障时,保护应可靠不动,即不发生错误动作(误动)。
影响可靠性有内在的和外在的因素:内在的:装置本身的质量,包括元件好坏、结构设计的合理性、制造工艺水平、内外接线简明,触点多少等;外在的:运行维护水平、安装调试是否正确。
上述四个基本要求是设计、分析研究继电保护的基础,也是贯穿全课程的一个基本线索。
在它们之间既有矛盾的一面,又有在一定条件下统一的一面。
四、发展:原理:随电力系统的发展和科学技术的进步而发展从保护原理看:过电流保护(最早熔断器)电流差动保护方向性电流保护(1901年)(1908年)(1910年)距离保护高频保护微波保护行波保护、光纤保护(1920年)(1927年)(50年代)(70年代诞生、50年代有设想)从构成保护装置的元件看:机电型电子型微机型(我校80年代)(电磁型、感应型、电动型) 晶体管集成电路20世纪50年代60年代末提出70年代后半期出样机继电保护的基本知识一.互感器:(1)电流互感器:1作用:(一次)大电流变换为(二次)小电流(额定值为5A或1A);隔离作用。
2工作特点和要求:1)一次绕组与高压回路串联,I1只取决于所在高压回路电流,而与二次负荷大小无关。
2)二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3)CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4)变换的准确性。
3极性:“减极性”原则:当同时从一、二次绕组的同极性端子通入相同方向电流时,它们在铁芯中产生磁通的方向相同。
当从一次绕组“*”标端通入交流电时,则在二次侧感应电流从“*”标端流出。
从两侧同极性端观察时,1I ,2I 反方向,称为减极性标记。
此时铁芯中的合成磁势为02211=-I N I N ,则'==11212I I N N I 。
这表明1I ,2I 同相位。
4 误差:表现在两方面:幅值误差和相位误差。
Z L 很小,Z `u 大。
%10%100*121≤'-'=∆I I I I 。
7≤δ (2) 电压互感器:1 作用:一次高电压变换为二次低电压(额定线电压100V ;相电压为57。
7V )2 工作特点和要求:1) 一次绕组与高压电路并联。
2) 二次绕组不允许短路(短路电流会烧毁PT ),装有熔断器。
3) 二次绕组有一点直接接地。
且只能有一点接地。
4) 变换的准确性。
3 电磁式电压互感器其工作原理与变压器相同。
Z L >>Z 1` ,Z 2 , Z u `大。
幅值误差ΔU,角度误差δ。
二. 各种小型变换器(1) 电压变换器 U U YB(2) 电流变换器 I I LB 通常在二次接有电阻,将二次电流变为电压信号。
(3) 电抗变压器 I U DKB 铁芯带气隙。
因带气隙,Z u `很小,Z L >>Z u `, Z Ⅱ近似零。
112I K I Z E I M ==,Z M 模拟阻抗,阻抗角为ФK I 阻抗量纲变换系数,又称转移阻抗。