信息管理与信息系统外文翻译!--ERP外文翻译稿
ERP系统中英文对照外文翻译文献
ERP系统中英文对照外文翻译文献ERP系统中英文对照外文翻译文献(文档含英文原文和中文翻译)ERP系统在财务报告内部控制的作用【摘要】:萨班斯-奥克斯利法案法例中强调,ERP系统的重要作用是运用内部控制反映公司的基本建设,为此ERP系统软件开发供应商也增加了对内部控制的应用。
他们认为,这些内置的控制和其他功能将帮助企业改善其财务报告内部控制就如萨班斯法案要求的那样。
这项研究测试,通过检查萨班斯法案第404条在1994年和2003年之间实施ERP 系统的公司合规内控数据。
其结果表明,应用ERP 的公司相对于未应用ERP的样本公司较少报告内部控制弱点。
它还发现,这种差异存在一般控制和特别控制中。
关键词:企业资源规划;ERP;萨班斯-奥克斯利法案;萨班斯法案第404条;内部控制1简介2002年的萨班斯法案要求企业将其内部控制的有效性的报告与财务报告作为一个整体努力,以减少欺诈和恢复完整的财务报告过程的一部分。
ERP系统软件开发供应商已强调,ERP系统的重要作用是运用“内置”控制反映公司基本建设。
他们在营销理念强调了产品的功能,声称这些系统将帮助企业按萨班斯法案所要求提高内部控制的有效性。
这些供应商的声明激发了关于ERP系统对内部控制的影响一项有趣的实证问题研究。
具体来说,是不是实现ERP系统的企业或多或少可能比未实现ERP系统的公司较少在其年度报告报告内部控制弱点?已经进行过这特定区域研究的经验/档案相对较少的,因为之前萨班斯法案内部控制的数据并没有被公开报道。
这项研究的方法通过在文献资料检查一个已经宣布实施ERP系统和一个还没有类似的公司控制样本公司的抽样调查的内部控制数据来发现差距。
内部控制是在公司使用的以解决代理问题的许多机制之一。
其他的机制还包括财务报告,编制预算,审计委员会和外部审计(Jensen和佩恩2003)。
研究表明,内部控制降低了代理成本(Abdel-khalik 1993;Barefield 等,1993),有些甚至争辩说,即使没有萨班斯法案的要求,企业也有经济诱因报告内部控制(Deumes和Knechel,2008年)。
管理信息系统外文翻译
管理信息系统外文翻译-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII英文文献翻译二〇年月日科技文章摘译Definition of a Management Information System There is no consensus of the definition of the term "management information system". Some writers prefer alternative terminology such as "information processing system", "information and decision system", "organizational information system", or simply "information system" to refer to the computer-based information processing system which supports the operations, management, and decision-making functions of an organization. This text uses “MIS” because it is descriptive and generally understood; it also frequently uses “information system” instead of “MIS” to refer to an organizational information system.A definition of a management information system, as the term is generally understood, is an integrated, user-machine system for providing information to support operations, management, and decision-making functions in an organization. The system utilizes computer hardware and software; manual procedures; models for analysis planning, control and decision making; and a database. The fact that it is an integrated system does not mean that it is a single, monolithic structure; rather, it means that the parts fit into an overall design. The elements of the definition are highlighted below.1 Computer-based user-machine systemConceptually, management information can exist without computer, but it is the power of the computer which makes MIS feasible. The question is not whether computers should be used in management information system, but the extent to which information use should be computerized. The concept of a user-machine system implies that some tasks are best performed by humans, while others are best done by machine. The user of an MIS is any person responsible for entering input data, instructing the system, or utilizing the information output of the system. For many problems, the user and the computer form a combined system with results obtained through a set of interactions between the computer and the user.User-machine interaction is facilitated by operation in which the user’s input-output device (usually a visual display terminal) is connected to the computer. The computer can be a personal computer serving only one user or a large computer thatserves a number of users through terminals connected by communication lines. The user input-output device permits direct input of data and immediate output of results. For instance, a person using the computer interactively in financial planning poses “what if” questions by entering input at the terminal keyboard; the results are displayed on the screen in a few second.The computer-based user-machine characteristics of an MIS affect the knowledge requirements of both sys tem developer and system user. “computer-based” means that the designer of a management information system must have knowledge of computers and of their use in processing. The “user-machine” concept means the system designer should also understand the capabilities of humans as system components (as information processors) and the behavior of humans as users of information.Information system applications should not require users to be computer experts. However, users need to be able to specify their information requirements; some understanding of computers, the nature of information, and its use in various management function aids users in this task.2 Integrated systemManagement information system typically provides the basis for integration of organizational information processing. Individual applications within information systems are developed for and by diverse sets of users. If there are no integrating processes and mechanisms, the individual applications may be inconsistent and incompatible. Data item may be specified differently and may not be compatible across applications that use the same data. There may be redundant development of separate applications when actually a single application could serve more than one need. A user wanting to perform analysis using data from two different applications may find the task very difficult and sometimes impossible.The first step in integration of information system applications is an overall information system plan. Even though application systems are implemented one at a time, their design can be guided by the overall plan, which determines how they fit in with other functions. In essence, the information system is designed as a planed federation of small systems.Information system integration is also achieved through standards, guidelines, and procedures set by the MIS function. The enforcement of such standards and procedures permit diverse applications to share data, meet audit and control requirements, and be shares by multiple users. For instance, an application may bedeveloped to run on a particular small computer. Standards for integration may dictate that the equipment selected be compatible with the centralized database. The trend in information system design is toward separate application processing form the data used to support it. The separate database is the mechanism by which data items are integrated across many applications and made consistently available to a variety of users. The need for a database in MIS is discussed below.3 Need for a databaseThe term “information” and “data” are frequently used interchangeably; however, information is generally defined as data that is meaningful or useful to the recipient. Data items are therefore the raw material for producing information.The underlying concept of a database is that data needs to be managed in order to be available for processing and have appropriate quality. This data management includes both software and organization. The software to create and manage a database is a database management system.When all access to any use of database is controlled through a database management system, all applications utilizing a particular data item access the same data item which is stored in only one place. A single updating of the data item updates it for all uses. Integration through a database management system requires a central authority for the database. The data can be stored in one central computer or dispersed among several computers; the overriding requirement is that there is an organizational function to exercise control.4 Utilization of ModelsIt is usually insufficient for human recipients to receive only raw data or even summarized data. Data usually needs to be processed and presented in such a way that the result is directed toward the decision to be made. To do this, processing of data items is based on a decision model. For example, an investment decision relative to new capital expenditures might be processed in terms of a capital expenditure decision model.Decision models can be used to support different stages in the decision-making process. “Intelligence” models can be used to search for problems and/or opportunities. Models can be used to identify and analyze possible solutions. Choice models such as optimization models maybe used to find the most desirable solution In other words, multiple approaches are needed to meet a variety of decision situations. The following are examples and the type of model that might be included in an MIS to aid in analysis in support of decision-making; in a comprehensiveinformation system, the decision maker has available a set of general models that can be applied to many analysis and decision situations plus a set of very specific models for unique decisions. Similar models are available for planning and control. The set of models is the model base for the MIS.The management information system (MIS) not only supports the underlying bed administrator, moreover may support the intermediate deck personnel's control check, for high level also can provide certain information. The management information system frame by four parts: Information source, information processor, information user and information superintendent. The information source is the information production place; Information processor burden task/role and so on information transmission, processing, save; The information user is the information user, carries on the decision-making using the information; The information superintendent is responsible for the information system the design, the implementation and the safeguarding. The management information system is regarded as generally a pyramid shape the structure, divides into from the lower level handling of traffic to the operating control, the control check, the topmost story strategic planning. The most basic unit greatly processes the numerous and diverse transaction information and the state information framing by the task/role.In a word, the management information system (Management Information System, MIS), is by the artificial leadership, using the computer hardware, the software, the network communicates these devices and other office equipments carries on the information the collection, the transmission, the processing, the storage, the update and the safeguarding by achieved the enterprise strategy competes superior, enhances the benefit and the efficiency target, supports the enterprise the high level decision-making, the intermediate deck check and the basic unit operation integration man-machine system. MIS is the superintendent provides the report, provides the enterprise the recent situation as well as the historic record. This system main localization is aims at in the enterprise, for control function and so on level plan, check and decision-making serves, provides the data generally by the lower level handling of traffic system. MIS will be able the actual enterprise's each kind of run situation, and using the past historical data forecast future, embarks the assistance enterprise from the enterprise overall situation angle to carry on the decision-making, used the message control enterprise the behavior, helped the enterprise to achieve its plan管理信息系统的定义对于“管理信息系统”并没有一致的定义。
信息管理与信息系统论文中英文资料外文翻译文献
信息管理与信息系统论文中英文资料外文翻译文献Construction of Network Management Information System of Agricultural Products Supply Chain Based on 3PLsAbstractThe necessity to construct the network management information system of 3PLs agricultural supply chain is analyzed, showing that 3PLs can improve the overall competitive advantage of agricultural supply chain. 3PLs changes the homogeneity management into specialized management of logistics service and achieves the alliance of the subjects at different nodes of agricultural products supply chain. Network management information system structure of agricultural products supply chain based on 3PLs is constructed, including the four layers (the network communication layer, the hardware and software environment layer, the database layer, and the application layer) and 7 function modules (centralized control,transportation process management, material and vehicle scheduling, customer relationship, storage management, customer inquiry, and financial management).Framework for the network management information system of agricultural products supply chain based on 3PLs is put forward. The management of 3PLs mainly includes purchasing management, supplier relationship management, planning management, customer relationship management, storage management and distribution management. Thus, a management system of internal and external integrated agricultural enterprises is obtained. The network management information system of agricultural products supply chain based on 3PLs has realized the effective sharing of enterprise information of agricultural products supply chain at different nodes, establishing a long-term partnership revolving around the 3PLs core enterprise, as well as a supply chain with stable relationship based on the supply chain network system, so as to improve the circulation efficiency of agricultural products, and to explore the sales market for agricultural products.Key words3PLs (third party logistics),Agricultural products supply chain, Network management information system, China3PLs means that production enterprises entrust the logistics activity to the professional logistics service firms in order to concentrate efforts on core business, to keep close contact with logistics enterprise through information system, and to achieve a logistics operation and management mode with full control in logistics. According to the 3PLs requirements forinformation technology, supply chain management information system based on 3PLs is a supply chain management mode with 3PLs enterprises as the core, using EDI technology, GIS/GPS system, B/S mode and other technologies. Integration, processing and application of 3PLs enterprises in supply chain management information system are fully applied in order to reduce the cost of logistics and to improve the service level of logistics.At present, management information technology in China is just at the initial stage. The existing management information system offers insufficient information for the 3PLs enterprises which are engaged in the circulation of agricultural products.Besides, its construction of logistics data processing system is imperfect, having not realized the truly professional 3PLs enterprises for the circulation of agricultural products with information technology. At the same time, 3PLs enterprise for agricultural products has just started in China. And logistics applied in the agricultural supply chain with 3PLs enterprise as the core is time-consuming, inefficient and low-level, which can hardly meet the needs of the rapid development of rural market and social productive forces. Therefore, it is particularly important and urgent to construct a management information system for agricultural products supply chain under the current Internet environment. Problems in the management of the supply chain of agricultural products are analyzed, and a network management information system of agricultural products supply chain based on 3PLs is constructed in order to offer references for the information management in the supply chain of agricultural products in China.1 Necessity of constructing the network management information system of agricultural products supply chain based on 3PLsAgricultural products are seasonal, perishable and vulnerable. With the improvement of income level,consumers have increasingly high requirements for the diversification, personalization, just-in-time nature, and environment protection of agricultural products, which requires faster, more professional,and better organized logistics. At the same time, supply chain of agricultural products has the characteristics of the special purpose of funds, the uncertainty of market, and the unbalanced development of market. Thus, the support of supply chain management information system is needed during the circulation of agricultural products. Construction of market integration,as well as the integration of production, supply and marketing,urgently needs a new management information system of agricultural products, as well as an accompanying legal support system, in order to reduce the cost and to increase the profit for agricultural enterprises. And the application of 3PLs in the supply chain of agricultural products can solve this problem.Therefore, we should give full play to the central hub function of 3PLs enterprises in agricultural products supply chain, increase the input in the informationization of agricultural products supply chain, and promote the construction of logistics operation system and management information system.1 .1 Improving the overall competitive advantage of agricultural products supply chain by 3PLs3PLs is a new logistics organizational form established by modern information technology, as well as a kind of complementary and win-win strategic alliance by signing contract with the party being served. Taking 3PLs as the professional and core enterprise in the production and circulation of agricultural products can help to realize resource consolidation of the construction and organization of the whole supply chain of agricultural products. The specialization of raw materials and the service for product distribution have greatly improved the logistics efficiency of traditional enterprise. At the same time, construction of the management information system ofagricultural products supply chain based on 3PLs has made up for the shortage of information in agricultural market, has improved the efficiency of the flow of agricultural products, has connected all the links in the supply chain into an organic whole in an reasonable and effective way,and has enhanced the overall competitive advantage and economic benefits. 3PLs platform has greatly brought down the production and circulation processes of traditional agricultural enterprises, and has reduced the costs in raw material procurement and product distribution, so as to better adapt to the changes in market demand, to realize the rational distribution of resources, and to improve the overall competitiveness of the supply chain of agricultural products.1 .2 Changing the homogeneity management to specialized operation of logistics service by 3PLsDue to the characteristics of agricultural products, market requirement for logistics varies widely. Since traditional enterprises try to obtain the competitive advantage, there is fierce market competition in commodity circulation. Therefore, behavior of logistics market shows the characteristics of homogeneity and the profit is getting lower and lower. In order to seize the customer, some enterprises even take a loss. 3PLs enterprises share business risk with partners and carry out operation according to the items number, time and cost of customer by integration and utilization of resources. As a means of the supply chain integration of agricultural products, specialized operation of 3PLs can help the stakeholders of supply chain to obtain more demand information of agricultural products, and can reduce the circulation cost of agricultural products.1 .3 Alliance of the subjects in supply chain nodes of agricultural products by 3PLs3PLs stresses the relationship of “mutual complementarity, benefit sharing, information sharing” among the stakeholders in different nodes of supply chain. Development of the agricultural producer, supplier and retailer is limited if they rely only on their own resources. 3PLs enters into the outside service market, integrates the resources through the way of strategic alliances, ensures that the subject focuses its attention on core business, reduces the cost by scale effect, enhances the anti-risk strength, and helps to achieve quick response to market demand by information sharing.At the same time, contract-0riented 3PLs enterprises unify the interests of all subjects in supply chain of agricultural products, emphasize the strategic partnership of both parties,and alleviate market competition of related industries in agricultural markets. Subjects in both downstream and upstream of the supply chain share information and establish long-term partnership with 3PLs enterprises as the core.2 Construction of the network management information system of agricultural supply chain based on 3PLs2.1 Construction of structural system3PLs platform is used to offer network communications and system services to the subjects in agricultural supply chain. Fig. 1 illustrates the structural system of network management information system of agricultural supply chain based on 3PLs.Fig.1 Structural system of network management information system of agricultural supplychain based on 3PLsFig. 1 illustrates that the basic hardware of the system is combined by the network transmission media and network equipment, that is the network communication layer. Hardware facilities, corresponding system software, operation system and netmanager software together constitute the software and hardware environment layer.This layer provides necessary software and hardware facilities for 3PLs enterprises during the data storage and management of agricultural products. Database layer is responsible for the management of data source in agricultural information resources and network systems, and offers data integration to the application layer. 3PLs standard system includes the overall standard, network infrastructure standard, application support standard, application standard, information security standard, and management standard. Safety system of 3PLs includes the security management, security infrastructure, and security service.This system is composed of 7 function modules, such as the centralized control module, transportation process management module, material and vehicle scheduling module, customer relationship module, storage management module, customer query module, and financial management module(Fig. 2),the function of which is to ensure the information fluency and system security of 3PLs enterprises during the operation and integration of resources. These modules have improved the service module of different nodes in agricultural supply chain and have reduced the operation risk of system, so that the system becomes more structured, perfect, and rational.2.2 Framework of management systemBased on the existing research result,the business and module of modern logistics management,and the management information systems,Fig.3 reports the management system of internal and external integrated agricultural enterprises according to the circulation of agricultural products from the manufacturer,supplier,and retail terminal to the consumer.Fig.2 Function modules of 3PLs network management information systemFig.3 The management system of internal and external integrated agricultural enterprises Fig.3 shows the framework of network management information system of agricultural supply chain based on 3PLs. The whole system, running under an open 3PLs, is formed by four layers of network communication layer, software and hardware environment layer, database layer and application layer. In the application layer, 3PLs, as the core of management information system of agricultural supply chain, plays the role of information processing center. It mainly manages the plan, inventory, and other subsystems, supervises subsystem through supplier relationship, conducts information interaction with procurement management subsystem and the supplier, and carries out information interaction with the supplier, producer and consumer through customer relationship management subsystem and sales management subsystem. Besides, 3PLs is also responsible for logistics management and control through the distribution management subsystem. Management of 3PLs mainly includes the 7 modules of purchasing management, supplier relationship management, planning management, customer relationship management, sales management, inventory management and distribution management. Through the effectiveintegration and coordination between 3PLs and the business with partner at the downstream and upstream of agricultural supplier chain, management system of internal and external integrated agricultural enterprises is formed using the logistics information system to realize the integration of logistics and information flow.In general,3PLs enterprise is still in the initial stage in China. Management information system of agricultural supply chain is not perfect, which can not meet the current needs of the rapid development and agricultural products circulation in rural China. Thus, there is an urgent need to build a new mode of agricultural logistics, so as to reduce the process of sales turnover, to lower the production cost of 3PLs enterprises, to improve the circulation efficiency of agricultural products, and to expand the sales market of agricultural products.3 ConclusionDeveloping modern 3PLs is an inevitable trend of market development. Design and development of management information system based on 3PLs can bring spillover benefits to the producer, supplier and retailer of agricultural products.Under the current Internet environment, management information system of agricultural supply chain based on 3PLs must be established based on the specific characteristics of operation mode and the actual business situation of 3PLs enterprises, so as to establish a management information system suitable for a given enterprise. From the perspective of overall integration of resources, the network management information system of agricultural supply chain based on 3PLs established has connected the interests of different nodes in agricultural supply chain into an organic whole, has effectively eliminated the barriers to information flow, and has increased the profits of agriculture-related enterprises and farmers. At the same time, according to the characteristics of agricultural enterprises in China, a rational agricultural products logistics mode of internal and external integrated agricultural enterprise is established, which offers a reference for the management of agricultural supply chain in China.基于第三方物流的农产品供应链网络管理信息系统的建设摘要本文对构建网络农业第三方物流供应链管理信息系统的必要性进行了分析,表明第三方物流可以提高农产品供应链的整体竞争优势。
信管外文翻译
建立信息管理系统在行政管理机构信息是个重要资源。
及时有效的重要信息对于高效管理职能的表现是至关重要的,例如准备,组织,领导,控制。
在一个管理机构中,信息系统就像是人体中的神经系统,它把组织的所有元件连接在一起而且还在竞争的环境中提供更好的操作和生存机会。
信息系统经常提及一个以计算机为基础的,被设计成支持组织的操作、经营和决策功能的系统。
在组织中信息系统为决策者提供信息支持。
信息系统包含交易处理系统、管理信息系统、决策支持系统和战略的信息系统。
信息由经过处理的而且是对用户是有用的数据组成。
一个系统是为了达成一个共同的目的共同操作的一组元件。
因此一个管理信息系统收集,传送,处理,储存,而且在组织资源、程序表和成就上储存数据。
系统进入经营信息之内为这些数据做合理的变换为决策者在组织里面的使用。
因此,一个管理信息系统提供支持组织管理职能的信息。
一、基本的概念1、数据和信息的比较数据提供未加工的、不被评估的事实数据、符号、物件、事件等等。
数据可能是一个在于储存事实的集合物件,像一个电话目录或者实施统计调查记录。
信息是那些已经进入一个有意义的,有用的背景而且传达到一个使用它做出决断的接受人的数据。
信息涉及智慧或知识的交流和接受。
它评价而且通知,吃惊而且刺激,减少不确定,现实另外可供选择的方案或者帮助去除无关的或者没用的信息,还影响人们并且鼓励他们做出行动。
数据的元素在一个特殊的背景下可能构成一条信息;例如,当你想联系你的朋友的时候,他或者她的电话号码就是一条信息;除此之外,它在电话号码薄里仅仅是一个数据的元素。
2、信息的特性好信息的特性是中肯的、时间性、准确性、成本效益、可靠性、可用性、无遗漏和凝聚层次。
如果它引导改良的决策,信息是有关的。
如果它重新确定之前的决定它也是有关的。
如果它对你的问题没有任何帮助那它就是无关的。
例如,如果你在一月考虑去巴黎,那有关巴黎一月的天气情况的信息对你来说就是有关的。
否则,这信息就是无关的。
信息管理与信息系统 毕业设计 外文翻译
当我做毕业设计的时候我遇到过这样或那样的问题,苦于手上没有本专业的毕业设计的参考文本。
现在毕业都快一年了,本着推己及人的态度将我的毕业设计所有资料放出,方便后来者翻阅,仅供参考,善哉,善哉……B-to-C电子商务多维信任形成模式:概念框架、学术角度和从业者角度的内容分析1.说明信任在社会关系中是一个很重要的组成,在商务上也是如此。
作为一种人际关系,信任一个人就更容易被那个人伤害。
作为一种在社会上的人与人之间的结构关系,信任是共有体制属性。
信任在商务领域有利于长久的合作。
交易可能存在于个人与个人之间,个人与企业之间,或者企业和企业之间。
信誉已被确认为在市场营销和电子商务论文中的重要组成部分。
信任问题从不同的角度被提出,包括技术,多主体的方法。
巴里认为信任是最强大的营销工具。
根据厄邦的研究,消费者在互联网上以商家信誉为基础做出购买的决定。
毫无疑问,信誉在任何涉及金钱的商业活动中扮演着重要的角色。
电子商务的信任是建立在消费者对该事物的信心。
与此截然不同的是,对实体店的信任是建立在个人与企业之间的关系和消费者与商家的互动,以及个人或公司的水平的基础上的。
皮特在其关于信任在线平台的文章中支持在线商务的成功的关键是建立信任。
所以,在线销售商应该创造一种让潜在消费者感到轻松而且有信心的环境。
为了创造一个能够信任的电子商务环境,了解影响消费者信任形成的因素是极其必要的。
尽管知道信任对于电子商务的重要性,但是相关的研究比较少,尤其是在了解影响消费者的信任形成的因素。
在本文中,我们试图填补这一空白。
首先,我们提出一个全面的、多层面的信任形成的模式,从电子商务交易复杂的现象中捕捉并精简地描绘形成的信任。
其次,根据调查的层面,我们利用内容分析和网上调查比较和对照律师和学者以了解不同的专家的观点。
他们的观点反映了在电子商务领域信誉的概念如何运用,哪些因素需要强调以促进电子交易。
2.面向过程的信任形成的多维模型信任本身很难直接地观察和测量。
信息系统中英文对照外文翻译文献
中英文对照翻译附录1 外文翻译(原文)Systems Analysis and DesignWorking under control of a stored program, a computer processes data into information. Think about that definition for a minute. Any given computer application involves at least three components: hardware, software, and data. Merely writing a program isn't enough; because the program is but one component in a system.A system is a group of components that work together to accomplish an objective. For example, consider a payroll system. Its objective is paying employees. What components are involved? Each day,employees record their hours worked on time cards. At the end of each week, the time cards are collected and delivered to the computer center, where they are read into a payroll program. As it runs, the program accesses data files. Finally, the paychecks are printed and distributed. For the system to work, people, procedures, input and output media, files, hardware, and software must be carefully coordinated. Note that the program is but one component in a system.Computer-based systems are developed because people need information. Those people, called users, generally know what is required, but may lack the expertise to obtain it. Technical professionals, such as programmers, have the expertise, but may lack training in the user's field. To complicate matters, users and programmers often seem to speak different languages, leading to communication problems. A systems analyst is a professional who translates user needs into technical terms, thus serving as a bridge between users and technical professionals.Like an engineer or an architect, a systems analyst solves problems by combining solid technical skills with insight, imagination, and a touch of art. Generally, the analyst follows a well-defined, methodical process that includes at least the following steps;1.Problem definition2.Analysis3.Design4.Implementation5.MaintenanceAt the end of each step, results are documented and shared with both the user and the programmers. The idea is to catch and correct errors and misunderstandings as early as possible. Perhaps the best way to illustrate the process is through example.Picture a small clothing store that purchases merchandise at wholesale, displays this stock, and sells it to customers at retail. On the one hand, too much stock represents an unnecessary expense. On the other hand, a poor selection discourages shoppers. Ideally, a balance can be achieved: enough, but not too much.Complicating matters is the fact that inventory is constantly changing, with customer purchases depleting stock, and returns and reorders adding to it. [1] The owner would like to track inventory levels and reorder and given item just before the store runs out. For a single item, the task is easy-just count the stock-on-hand. Unfortunately, the store has hundreds of different items, and keeping track of each one is impractical. Perhaps a computer might help.2-1 Problem DefinitionThe first step in the systems analysis and design process is problem definition. The analyst's objective is determining what the user (in this case, the store's owner) needs. Note that, as the process begins, the user possesses the critical information, and the analyst must listen and learn. Few users are technical experts. Most see the computer as a "magic box, "and are not concerned with how it works. At this stage, the analyst has no business even thinking about programs, files, and computer hardware, but must communicate with the user on his or her own term.The idea is to ensure that both the user and the analyst are thinking about the same thing-Thus, a clear, written statement expressing the analyst's understanding of the problem is essential. The user should review and correct this written statement. The time to catch misunderstandings and oversights is now, before time, money and effort are wasted.Often, following a preliminary problem definition, the analyst performs a feasibility study. The study a brief capsule version of the entire systems analysis and design process, attempts to answer three questions:1.Can the problem be solved?2.Can it be salved in the user's environment?3.Can it be solved at a reasonable cost?If the answer to any one of these questions is no, the system should not be developed. Given a good problem definition and a positive feasibility study, the analyst can turn to planning and developing a problem solution.2- 2 AnalysisAs analysis begins, the analyst understands the problem. The next step is determining what must be done to solve it. The user knows what must be done 1 during analysis; this knowledge is extracted and formally documented. Most users think in terms of the functions to be performed and the data elements to be manipulated. The objective is to identify and link these key functions and data elements, yielding a logical system design.Start with the system's basic functions. The key is keeping track of the stock-on-hand for each product in inventory. Inventory changes because customers purchase, exchange, and return products, so the system will have to process customer transactions. The store's owner wants to selectively look at the inventory level for any product in short supply and, if appropriate, order replacement stock, so the system must be able to communicate with management. Finally, following management authorization, the system should generate a reorder ready to send to a supplier.Fig 1Given the system's basic functions, the analyst's next task is gaining a sense of their logical relationship. A good way to start is by describing how data flow between the functions. As the name implies, data flow diagrams are particularly useful for graphically describing these data flows. Four symbols are used (Fig. 1). Data sources and destinations are represented by squares; input data enter the system from a source, and output data flow to a destination. Once in the system, the data are manipulated orchange by processes, represented by round-corner rectangles. A process might be a program, a procedure, or anything else that changes or moves data. Data can be held for later processing in data stores, symbolized by open-ended rectangles. A data store might be a disk file, a tape file, a database, written notes, or even a person's memory. Finally, data flow between sources, destinations, processes, end data stores over data flows, which are represented by arrows.Fig 2Figure 2 shows a preliminary data flow diagram for the inventory system. Start with CUSTOMER. Transactions flow from a customer f into the system, where they are handled by Process transaction. A data store, STOCK, holds data on each item in inventory. Process transaction changes the data to reflect the new transaction. Meanwhile, MANAGEMENT accesses the system through Communicate, evaluating the data in STOCK and, if necessary, requesting a reorder. Once, a reorder is authorized. Generate reorder sends necessary data to the SUPPLIER, who ships the items to the store. Note that, because the reorder represents a change in the inventory level of a particular product or products it is handled as a transaction.The data flow diagram describes the logical system. The next step is tracing the data flows. Start with the destination SUPPLIER. Reorders flow to suppliers; for example, the store might want 25 pairs of jeans. To fill the order, the supplier needs the product description and the reorder quantity. Where do these data elements come from? Since they are output by Generate reorder, they must either be Input to or generated by this process. Data flow into Generate reorder for STOCK; thus, product descriptions and reorder quantities must be stored in STOCK.Other data elements, such as the item purchased and the purchase quantity are generated by CUSTOMER. Still others, for example selling price and reorder point, are generated by or needed by MANAGEMENT. The current stock-on-hand for agiven item is an example of a data element generated by an algorithm in one of the procedures. Step by step, methodically, the analyst identifies the data elements to be input to .stored by, manipulated by, generated by, or output by the system.To keep track of the data elements, the analyst might list each one in a data dictionary. A simple data dictionary can be set up on index cards, but computerized data dictionaries have become increasingly popular. The data dictionary, a collection of data describing and defining the data, is useful throughout the systems analysis and design process, and is often used to build a database during the implementation stage.The idea of analysis is to define the system's major functions and data elements methodically. Remember that the objective is translating user needs into technical terms. Since the system starts with the user, the first step is defining the user's needs. Users think in terms of functions and data. They do not visualize programs, or files, or hardware .and during this initial, crucial analysis stage it is essential that the analyst think like a user, not like a programmer.Data flow diagrams and data dictionaries are useful tools. They provide a format for recording key information about the proposed system. Also, they jog the analyst's memory) for example, if the analyst doesn't have sufficient information to complete a data dictionary entry, he or she has probably missed something. Perhaps most importantly, the data flow diagram and the data dictionary document the analyst's understanding of the system requirements. By reviewing these documents, the user can correct misunderstandings or oversights. Finally, they represent an excellent starting point the next step, design.2-3 DesignAs we enter the design stage, we know what the system must do, and thus can begin thinking about how to do it. The objective is to develop a strategy for solving the problem. At this stage, we are not interested in writing code or in defining precise data structures; instead, we want to identify, at a black box level, necessary programs, files, procedures, and other components.The data flow diagram defines the system's necessary functions; how might they be implemented? One possibility is writing one program for each process. Another is combining two or more processes in a single program; there are dozens of alternative solutions. Let's focus on one option and document it.A system flowchart uses symbols to represent programs, procedures, hardware devices, and the other components of a physical system (Fig. 3). Our flowchart (.Fig.4) shows that transaction data enter the system through a terminal, are processed by a data collection program, and then are stored on an inventory file. Eventually, the inventory file is processed by a Report and reorder program. Through it, management manipulates the data and authorizes reorders.Fig. 4 on a system flowchart, symbols represent programs, procedures, hardware devices, and the other components of a physical system.Fig 3Look at the system flowchart. It identifies several hardware components, including a computer, a disk drive, a data entry terminal, a printer, and a display terminal. Two programs are needed; Process transaction and Report and reorder. In add ition to the hardware and the programs, we’ll need data structures for the inventory file and for data flaws between the I/O devices and the software. Note that this system flowchart illustrates one possible solution; a good analyst will develop several feasible alternatives before choosing one.Fig 4The flowchart maps the system, highlighting its major physical components. Since the data link the components, the next task is defining the data structures. Consider, for example, the inventory file. It contains all the data elements from the data store STOCK. The data elements are listed in the data dictionary. Using them, the file's data structure can be planned,How should the file be organized? That depends on how it will be accessed. For example, in some applications, data are processed at regular, predictable intervals. Typically, the data are collected over time and processed together, as a batch. If batch processing is acceptable, a sequential file organization is probably best.It is not always possible to wait until a batch of transactions is collected, however. For example, consider an air defense early warning system. If an unidentified aircraft is spotted it must be identified immediately the idea of waiting until 5 _ 00 p.m. because "that's when the air defense program is run" is absurd. Instead, because of the need for quick response, each transaction must be processed as it occurs. Generally such transaction processing systems call for direct access file.Our inventory system has two programs. One processes transactions. A direct access inventory file seems a reasonable choice. The other allows management to study inventory data occasionally; batch processing would certainly do. Should the inventory file be organized sequentially or directly? Faced with such a choice a good analyst considers both options. One possible system might accept transactions and process them as they occur. As an alternative, sales slips might be collected throughout the day and processed as a batch after the store closes. In the first system, the two programs would deal with direct access files; in the second system, they would be linked to sequential files. A program to process direct access data is different from a program to process sequential data. The data drive the system. The choice of a data structure determines the program’s structure. Note that the program is defined and planned in the context of the system.2- 4 ImplementationOnce the system's major components have been identified .we can begin to develop them. Our system includes two programs, several pieces of equipment, and a number of data structures. During implementation, each program is planned and written using the techniques described in Chapter 7. Files are created, and theircontents checked. New hardware is purchased, installed, and tested. Additionally, operating procedures are written and evaluated. Once all the component parts are ready, the system is tested. Assuming the user is satisfied, the finished system is released.2- 5 MaintenanceMaintenance begins after the system is released. As people use it, they will suggest minor improvements and enhancements. Occasionally, bugs slip through debug and testing, and removing them is another maintenance task. Finally, conditions change, and a program must be updated; for example, if the government passes a low changing the procedure for collecting income taxes, the payroll program must be modified. Maintenance continues for the life of a system, and its cost can easily match or exceed the original development cost. Good planning, solid documentation, and well-structured programs can help to minimize maintenance cost.附录2 外文翻译(译文)系统的分析与设计在存储程序的控制下,计算机把数据处理成信息。
管理信息系统中英文对照外文翻译文献
中英文对照外文翻译(文档含英文原文和中文翻译)原文:Management Information SystemIt is the MIS(Management Information System ) that we constantly say that the management information system , and is living to emphasize the administration , and emphasizes that it changes into more and more significantly and more and more is universalized in the contemporary community of message . MIS is a fresh branch of learning, and it leaped over several territories, and for instance administers scientific knowledge, system science, operational research, statistic along with calculating machine scientific knowledge. Is living on these the branches of learning base, and takes shape that the message is gathered and the process means, thereby take shape the system that the crossbar mingles.1. The Management Information System Summary20 centuries, in the wake of the flourishing development of whole world economy, numerous economists propose the fresh administration theory one by one. Xi Men propose the administration and was dependent on idea to message and decision of strategic importance in the 50’s 20 centuries. The dimension of simultaneous stage is admitted issuing cybernetics, and he thinks that the administration is a control procedure. In 1958, Ger. write the lid: “the administrationshall obtain without delay with the lower cost and exact message, completes the better control “. This particular period, the calculating machine starts being used accountancy work. The data handling term has risen.In 1970, Walter T.Kennevan give administration that has raised the only a short while ago information system term to get off a definition: “ either the cover of the book shape with the discount, is living appropriately time to director, staff member along with the outside world personnel staff supplies the past and now and message that internal forecasting the approaching relevant business reaches such environment, in order to assist they make a strategic decision”. Is living in this definition to emphasize, yet does not emphasize using the pattern, and mention the calculating machine application in the way of the message support decision of strategic importance.In 1985, admonishing information system originator, title Buddhist nun Su Da university administration professor Gordon B.Davis give the management information system relatively integrated definition, in immediate future “ administer the information system is one use calculating machine software and hardware resources along with data bank man - the engine system.It be able to supply message support business either organization operation, administration or the decision making function. Comprehensive directions of this definition management information system target and meritorious service capacity and component, but also make known the management information system to be living the level that attains at that time.1.1The Developing History of MISThe management information system is living the most primarily phase is counting the system, the substance which researched is the regular pattern on face between the incremental data, it what may separate into the data being mutually related and more not being mutually related series, afterwards act as the data conversion to message.The second stage is the data are replaced the system, and it is that the SABRE that the American airline company put up to in the 50’s 20 centuries subscribes to book the bank note system that such type stands for. It possess 1008 bank note booking spots, and may access 600000 traveler keep the minutes and 27000 flight segments record. Its operation is comparatively more complex, and is living whatever one “spot ”wholly to check whether to be the free place up some one flight numbers. Yet through approximately attending school up to say, it is only a data andreplaces the system, for instance it can not let know you with the bank note the selling velocity now when the bank note shall be sell through, thereby takes remedying the step. As a result it also is administer information system rudimentary phase.The third phase is the status reports system, and it may separate into manufacture state speech and service state and make known and research the systems such as status reports and so on. Its type stands for the production control system that is the IBM corporation to the for instance manufacture state speech system. As is known to all, the calculating machine corporation that the IBM corporation is the largest on the world, in 1964 it given birth to middle-sized calculating machine IBM360 and causes the calculating machine level lift a step, yet form that the manufacture administration work. Yet enormously complicatedly dissolve moreover, the calculating machine overtakes 15000 difference components once more, in addition the plant of IBM extends all over the American various places to every one components once more like works an element, and the order of difference possess difference components and the difference element, and have to point out that what element what plant what installation gives birth to, hence not merely giving birth to complexly, fitting, installation and transportation wholly fully complex. Have to there be a manufacture status reports system that takes the calculating machine in order to guarantee being underway successfully of manufacture along with else segment as the base. Hence the same ages IBM establish the systematic AAS of well-developed administration it be able to carry on 450 professional work operations. In 1968, the corporation establishes the communal once more and manufactures informationsystem CMIS and runs and succeeds very much, the past needs 15 weeks work, that system merely may be completed in the way of 3 weeks.It is the data handling system that the status reports system still possess one kind of shape , and that it is used for handles the everyday professional work to make known with manufacture , and stress rests with by the handwork task automation , and lifts the effectiveness with saves the labor power . The data handling system ordinarily can not supply decision of strategic importance message.Last phase is the support systems make a strategic decision, and it is the information system being used for supplementary making a strategic decision. That system may program and the analysis scheme, and goes over key and the error solve a problem. Its proper better person-machine dialogue means, may with notparticularly the personnel staff who have an intimate knowledge of the calculating machine hold conversation. It ordinarily consists of some pattern so as to come into being decision of strategic importance message, yet emphasize comprehensive administration meritorious service capacity.1.2 The Application of Management Information SystemThe management information system is used to the most base work, like dump report form, calculation pay and occurrences in human tubes and so on, and then developing up business financial affairs administrations and inventory control and so on individual event operational control , this pertains to the electron data handling ( EDP Data Processing ) system . When establish the business data bank, thereby possess the calculating machine electric network to attain data sharing queen , the slave system concept is start off , when the implementation the situation as a whole is made program and the design information system ,attained the administration information system phase . In the wake of calculating machine technique progress and the demand adjust the system of people lift further, people emphasize more furthermore administer the information system phase. Progress and people in the wake of the calculating machine technique lift at the demand adjust the system further, people emphasize more furthermore to administer the information system whether back business higher level to lead makes a strategic decision this meritorious service capacity, still more lay special emphasis on the gathering to the external message of business and integrated data storehouse, model library , means storehouse and else artificial intelligence means whether directly to decision of strategic importance person , this is the support system ( DDS ) mission making a strategic decision.There is the part application that few business start MIS inner place the limit of the world at the early days of being living in the 70’s 20 centuries. Up at the moment, MIS is living, and there be the appropriatePopularization rate in every state nation in world, and nearly covered that every profession reaches every department.1.3 The Direction of MIS DevelopmentClose 20 curtains; external grand duke takes charge of having arisen3 kinds of alternations:A. Paying special attention to the administration being emphasized toestablishing MIS’s system, and causing the administration technique headfor the ageing.B. The message is the decision of strategic importance foundation, and MISsupplies the message service in the interest of director at all times.C. Director causes such management program getting in touch with togetherwith the concrete professional work maneuver by means of MIS. notmerely big-and-middle-sized business universally establish MIS somesmall-size business also not exceptions of self, universally establish thecommunal data network, like the electronic mail and electron dataexchange and so on, MIS supplied the well support environment to theapplication of Intranet’s technique to speedily developing of INTERNETespecially in the past few years in the interest of the business.Through international technique development tendency is see, in the 90’s 20 centuries had arisen some kinds of brand-new administration technique.(1)Business Processes Rebuild (BPR)A business should value correctly time and produce quality, manufacturing cost and technical service and so on several section administrations, grip at the moment organization and the process compose once more,andcompletes that meritorious service capacity integrationist, operation processization and organization form fluctuation. Shall act as the service veer of middle layer management personnel staff the decision of strategic importance of the director service?(2)Intelligentization Decision Support System (IDSS)The intelligentization decision of strategic importance support system was sufficiently consider demand and the work distinguishing feature of business higher level personnel staff.(3)Lean Production (LP)Application give birth to on time, comprehensive quality control and parallel project that picked amount is given birth to and so on the technique, the utmost product design cutting down and production cycle, raise produce quality and cuts down the reproduced goods to reserve, and is living in the manufacture promote corps essence, in order to meet the demand that client continuously changes.(4)Agile Manufacture (AM)One kind of business administration pattern that possess the vision, such distinguishing feature is workers and staff members’ quality is high, and the organization simplifies and the multi-purpose group effectiveness GAO message loading is agile and answers client requires swiftly.2. The Effect To The Business Administration of MIS DevelopmentThe effect to the business administration of the management information system development is administered the change to business and business administration of information system development and come into being and is coming into being the far-reaching effect with.Decision of strategic importance, particularly strategic decision-making may be assisted by the administration information system, and its good or bad directly affects living and the development up the business. The MIS is impeding the orientation development that the administration means one another unites through quality and ration. This express to utilize the administration in the calculation with the different mathematical model the problem in the quantitative analysis business. The past administer that the problem is difficult to test, but MIS may unite the administration necessaries, and supply the sufficient data, and simulates to produce the term in the interest of the administration.In the wake of the development of MIS, much business sit up the decentralized message concentration to establish the information system ministry of directly under director, and the chief of information system ministry is ordinarily in the interest of assistant manager’s gr ade. After the authority of business is centralized up high-quality administration personnel staff’s hand, as if causing much sections office work decrease, hence someone prophesy, middle layer management shall vanish. In reality, the reappearance phase employed layer management among the information system queen not merely not to decrease, on the contrary there being the increase a bit.This is for, although the middle layer management personnel staff getting off exonerate out through loaded down with trivial details daily routine, yet needs them to analyses researching work in the way of even more energy, lift further admonishing the decision of strategic importance level. In the wake of the development of MIS, the business continuously adds to the demand of high technique a talented person, but the scarce thing of capability shall be washed out gradually. This compels people by means of study and cultivating, and continuously lifts individual’s quality. InThe wake of the news dispatch and electric network and file transmission system development, business staff member is on duty in many being living incomparably either the home. Having caused that corporation save the expenses enormously, the work efficiency obviously moves upward American Rank Zeros corporation the office system on the net, in the interest of the creativity of raiseoffice personnel staff was produced the advantageous term.At the moment many countries are fermenting one kind of more well-developed manufacturing industry strategy, and become quickly manufacturing the business. It completely on the basis of the user requirement organization design together with manufacture, may carry on the large-scale cooperation in the interest of identical produce by means of the business that the flow was shifted the distinct districts, and by means of the once more programming to the machinery with to the resources and the reorganization of personnel staff , constituted a fresh affrication system, and causes that manufacturing cost together with lot nearly have nothing to do with. Quickly manufacturing the business establishes a whole completely new strategy dependence relation against consumer, and is able to arouse the structure of production once more revolution.The management information system is towards the self-adoption and Self-learning orientation development, the decision procedure of imitation man who is be able to be better. Some entrepreneurs of the west vainly hope that consummate MIS is encircles the magic drug to govern the business all kinds of diseases; Yet also someone says, and what it is too many is dependent on the defeat that MIS be able to cause on the administration. It is adaptable each other to comprehend the effect to the business of MIS, and is favor of us to be living in development and the research work, and causes the business organization and administer the better development against MIS of system and administration means, and establish more valid MIS.译文管理信息系统MIS (Management Information System),它就是我们所说的管理信息系统,它强调在生活上的应用,并且在当今信息社会普及的背景下应用得越来越广泛。
信息系统和数据库开发中英文对照外文翻译文献
中英文对照外文翻译文献(文档含英文原文和中文翻译)Information System Development and DatabaseDevelopmentIn many organizations, database development from the beginning of enterprise data modeling, data modeling enterprises determine the scope of the database and the general content. This step usually occurs in an organization's information system planning process, it aims to help organizations create an overall data description or explanation, and not the design of a specific database. A specific database for one or more information systems provide data and the corporate data model (which may involve a number of databases) described by the organization maintaining the scope of the data. Data modeling in the enterprise, you review of the current system, the need to support analysis of the nature of the business areas, the need for further description of the abstract data, and planning one or more database developmentproject. Figure 1 shows Pine Valley furniture company's enterprise data model of a part.1.1 Information System ArchitectureSenior data model is only general information system architecture (ISA) or a part of an organization's information system blueprint. In the information system planning, you can build an enterprise data model as a whole information system architecture part. According to Zachman (1987), Sowa and Zachman (1992) views of an information system architecture consists of the following six key components:DataManipulation of data processing (of a data flow diagram can be used, with the object model methods, or other symbols that).Networks, which organizations and in organizations with its main transmission of data between business partners (it can connect through the network topology map and to demonstrate).People who deal with the implementation of data and information and is the source and receiver (in the process model for the data shows that the sender and the receiver).Implementation of the events and time points (they can use state transition diagram and other means.)The reasons for the incident and data processing rules (often in the form of text display, but there are also a number of charts for the planning tools such as decision tables).1.2 Information EngineeringInformation systems planners in accordance with the specific information system planning methods developed information system architecture. Information engineering is a popular and formal methods. Information engineering is a data-oriented creation and maintenance of the information system. Information engineering is because the data-oriented, so when you begin to understand how the database is defined by the logo and when information engineering a concise explanation is very helpful. Information Engineering follow top-down planning approach, in which specific information systems from a wide range of informationneeds in the understanding derived from (for example, we need about customers, products, suppliers, sales and processing of the data center), rather than merging many detailed information requested ( orders such as a screen or in accordance with the importation of geographical sales summary report). Top-down planning will enable developers to plan more comprehensive information system, consider system components provide an integrated approach to enhance the information system and the relationship between the business objectives of the understanding, deepen their understanding of information systems throughout the organization in understanding the impact.Information Engineering includes four steps: planning, analysis, design and implementation. The planning stage of project information generated information system architecture, including enterprise data model.1.3 Information System PlanningInformation systems planning objective is to enable IT organizations and the business strategy closely integrated, such integration for the information systems and technology to make the most of the investment interest is very important. As the table as a description, information engineering approach the planning stage include three steps, we in the follow-up of three sections they discussed.1. Critical factors determining the planningPlanning is the key factor that organizational objectives, critical success factors and problem areas. These factors determine the purpose of the establishment of planning and environment planning and information systems linked to strategic business planning. Table 2 shows the Pine Valley furniture company's key planning a number of possible factors, these factors contribute to the information systems manager for the new information systems and databases clubs top priority to deal with the demand. For example, given the imprecise sales forecasts this problem areas, information systems managers in the organization may be stored in the database additional historical sales data, new market research data and new product test data.2. The planning organizations set targetsOrganizations planning targets defined scope of business, and business scope will limit the subsequent analysis and information systems may change places. Five key planning targets as follows:● organizational units in the various sectors.● organizations location of the place of business operations.● functions of the business support organizations handling mission of the relevant group. Unlike business organizations function modules, in fact a function can be assigned to various organizations modules (for example, product development function is the production and sale of the common responsibility of the Ministry).● types of entities managed by the organization on the people, places and things of the major types of data.● Information System data set processing software applications and support procedures.3. To set up a business modelA comprehensive business model including the functions of each enterprise functional decomposition model, the enterprise data model and the various planning matrix. Functional decomposition is the function of the organization for a more detailed decomposition process, the functional decomposition is to simplify the analysis of the issue, distracted and identify components and the use of the classical approach. Pine Valley furniture company in order to function in the functional decomposition example in figure 2 below. In dealing with business functions and support functions of the full set, multiple databases, is essential to a specific database therefore likely only to support functions (as shown in Figure 2) provide a subset of support. In order to reduce data redundancy and to make data more meaningful, has a complete, high-level business view is very helpful.The use of specific enterprise data model to describe the symbol. Apart from the graphical description of this type of entity, a complete enterprise data model should also include a description of each entity type description of business operations and a summary of that business rules. Business rules determine the validity of the data.An enterprise data model includes not only the types of entities, including the link between the data entities, as well as various other objects planning links. Showed that the linkage between planning targets a common form of matrix. Because of planning matrix need not be explicit modeling database can be clearly described business needs, planning matrix is an important function. Regular planning matrix derived from theoperational rules, it will help social development activities that top priority will be sorting and development activities under the top-down view through an enterprise-wide approach for the development of these activities. There are many types of planning matrix is available, their commonalities are:● locations - features show business function in which the implementation of operational locations.● unit - functions which showed that business function or business unit responsible for implementation.● Information System - data entities to explain how each information system interact with each data entity (for example, whether or not each system in each entity have the data to create, retrieve, update and delete).● support functions - data in each functional entities in the data set for the acquisition, use, update and delete.● Information System - target indication for each information system to support business objectives.Data entities matrix. Such a matrix can be used for a variety of purposes, including the following three objectives:1) identify gaps in the data entities to indicate the types of entities not use any function or functions which do not use any entity.2) found that the loss of each functional entities involved in the inspection staff through the matrix to identify any possible loss of the entity.3) The distinction between development activities if the priority to the top of a system development function for a high-priority (probably because it important organizational objectives related), then this area used by entities in the development of the database has a high priority. Hoffer, George and Valacich (2002) are the works of the matrix on how to use the planning and completion of the Information Engineering.The planning system more complete description.2 database development processBased on information engineering information systems planning database is a source of development projects. These new database development projects is usuallyin order to meet the strategic needs of organizations, such as improving customer support, improve product and inventory management, or a more accurate sales forecast. However, many more database development project is the bottom-up approach emerging, such as information system user needs specific information to complete their work, thus beginning a project request, and as other information systems experts found that organizations need to improve data management and begin new projects. Bottom-up even in the circumstances, to set up an enterprise data model is also necessary to understand the existing database can provide the necessary data, otherwise, the new database, data entities and attributes can be added to the current data resources to the organization. Both the strategic needs or operational information needs of each database development projects normally concentrated in a database. Some projects only concentrated in the database definition, design and implementation of a database, as a follow-up to the basis of the development of information systems. However, in most cases, the database and associated information processing function as a complete information systems development project was part of the development.2.1 System Development Life CycleGuide management information system development projects is the traditional process of system development life cycle (SDLC). System development life cycle is an organization of the database designers and programmers information system composed of the Panel of Experts detailed description, development, maintenance and replacement of the entire information system steps. This process is because Waterfall than for every step into the adjacent the next step, that is, the information system is a specification developed by a piece of land, every piece of the output is under an input. However shown in the figure, these steps are not purely linear, each of the steps overlap in time (and thus can manage parallel steps), but when the need to reconsider previous decisions, but also to roll back some steps ahead. (And therefore water can be put back in the waterfall!)Figure 4 on the system development life cycle and the purpose of each stage of the product can be delivered concise notes. The system development life cycle including each stage and database development-related activities, therefore, the question of database management systems throughout the entire development process. In Figure 5 we repeat of the system development life cycle stage of the seven, and outlines thecommon database at each stage of development activities. Please note that the systems development life cycle stages and database development steps一一对应exists between the relationship between the concept of modeling data in both systems development life cycle stages between.Enterprise ModelingDatabase development process from the enterprise modeling (system development life cycle stage of the project feasibility studies, and to choose a part), Organizations set the scope and general database content. Enterprise modeling in information systems planning and other activities, these activities determine which part of information systems need to change and strengthen the entire organization and outlines the scope of data. In this step, check the current database and information systems, development of the project as the main areas of the nature of the business, with a very general description of each term in the development of information systems when needed data. Each item only when it achieved the expected goals of organizations can be when the next step.Conceptual Data ModelingOne has already begun on the Information System project, the concept of data modeling phase of the information systems needs of all the data. It is divided into two stages. First, it began the project in the planning stage and the establishment of a plan similar to Figure 1. At the same time outlining the establishment of other documents to the existing database without considering the circumstances specific development projects in the scope of the required data. This category only includes high-level data (entities), and main contact. Then in the system development life-cycle analysis stage must have a management information system set the entire organization Details of the data model definition of all data attributes, listing all data types that all data inter-entity business linkages, defining description of the full data integrity rules. In the analysis phase, but also the concept of inspection data model (also called the concept behind the model) and the goal of information systems used to explain other aspects of the model of consistency categories, such as processing steps, rules and data processing time of timing. However, even if the concept is such detailed data model is only preliminary, because follow-up information system life cycle activities in the design of services, statements, display and inquiries may find that missing element or mistakes. Therefore, the concept of data often said that modeling is atop-down manner, its areas of operation from the general understanding of the driver, rather than the specific information processing activities by the driver.3. Logical Database DesignLogical database design from two perspectives database development. First, the concept of data model transform into relational database theory based on the criteria that means - between. Then, as the design of information systems, every computer procedures (including procedures for the input and output format), database support services, statements, and inquiries revealed that a detailed examination. In this so-called Bottom-up analysis, accurate verification of the need to maintain the database and the data in each affairs, statements and so on the needs of those in the nature of the data.For each separate statements, services, and so on the analysis must take into account a specific, limited but complete database view. When statements, services, and other analysis might be necessary to change the concept of data model. Especially in large-scale projects, the different analytical systems development staff and the team can work independently in different procedures or in a centralized, the details of their work until all the logic design stage may be displayed. In these circumstances, logic database design stage must be the original concept of data model and user view these independent or merged into a comprehensive design. In logic design information systems also identify additional information processing needs of these new demands at this time must be integrated into the logic of earlier identified in the database design.Logical database design is based on the final step for the formation of good data specifications and determine the rules, the combination, the data after consultation specifications or converted into basic atomic element. Most of today's database, these rules from the relational database theory and the process known as standardization. This step is the result of management of these data have not cited any database management system for a complete description of the database map. Logical database design completed, we began to identify in detail the logic of the computer program and maintenance, the report contents of the database for inquiries.4. Physical database design and definitionPhysical database design and definition phase decisions computer memory (usuallydisk) database in the organization, definition of According to the library management system for physical structure, the procedures outlined processing services, produce the desired management information and decision support statements. The objective of this stage is to design an effective and safe management of all data-processing database, the physical database design to closely integrate the information systems of other physical aspects of the design, including procedures, computer hardware, operating systems and data communications networks.5. Database ImplementationThe database prepared by the realization stage, testing and installation procedures for handling databases. Designers can use the standard programming language (such as COBOL, C or Visual Basic), the dedicated database processing languages (such as SQL), or the process of the non-exclusive language programming in order to produce a statement of the fixed format, the result will be displayed, and may also include charts. In achieving stage, but also the completion of all the database files, training users for information systems (database) user setup program. The final step is to use existing sources of information (documents legacy applications and databases and now needs new data) loading data. Loading data is often the first step in data from existing files and databases to an intermediate format (such as binary or text files) and then to turn intermediate loading data to a new database. Finally, running databases and related applications for the actual user maintenance and retrieval of data. In operation, the regular backup database and the database when damaged or affected resume database.6. Database maintenanceDuring the database in the progressive development of database maintenance. In this step, in order to meet changing business conditions, in order to correct the erroneous database design, database applications or processing speed increase, delete or change the structure of the database. When a procedure or failure of the computer database affect or damage the database may also be reconstruction. This step usually is the longest in the database development process step, as it continued to databases and related applications throughout the life cycle, the development of each database can be seen as a brief database development process and data modeling concepts arise, logical and physical database design and database to achieve dealing with the changes.2.2 Information System developed by other meansSystem Development Life Cycle minor changes in law or its variant of the often used to guide information systems and database development. Information System is a life-cycle methodology, it is highly structured approach, which includes many checks and balances to ensure that every step of produce accurate results, and new or alternative information system and it must communications or data definitions consistent existing system needs consistency. System development life cycle because of the regular need to have a working system for a long time been criticized because only work in the system until the end of the whole process generated. More and more organizations now use rapid application development method, it is a includes analysis, design and implementation of steps to repeat the rapid iterative process until convergence to users the system so far. Rapid Application Development Act required the database has been in existence, and enhance system is mainly to the application of data retrieval application, but not to those who generate and modify database applications.The most widely used method of rapid application development is one of the prototype. The prototype system is a method of iterative development process, analysts and users through close co-operation, continuing to revise the system will eventually convert all the needs of a working system. Figure 6 shows prototype of the process. In this diagram we contains notes, briefly describes each stage of the prototype of the database development activities. Normally, when information systems problems were identified, tried only a rough concept of data modeling. In the development of the initial prototype, the design of the user wants to display and statements, and that any new database needs and define a term prototype database. This is usually a new database, copy the part of the existing system, but might also added some new content. When the need for new content, these elements are usually from external data sources, such as market research data, the general economic indicators or industry standards.When a prototype of a new version to repeat the achievement and maintenance of database activities. Usually only a minimum level of security and integrity control, because at this time the focus is as soon as possible to produce a prototype version can be used. But document management project also deferred to the final, only be used in the delivery of user training. Finally, once constructed an acceptable prototype,developers, and users will be the final decision of whether to prototype delivery and the use of the database. If the system (including database) efficiency is very low, then the system and database will be re-programming and re-organization in order to achieve the desired performance.Along with visual programming tools (such as Visual Basic, Java, Visual C + + and fourth generation language) increasingly popular use of visual programming tools can easily change the user interface with the system, the prototype is becoming the choice of system development methodology. Customers using the prototype method statements and show changes to the content and layout is quite easy. In the process, the new database needs were identified, so it is the development of the use of the existing database should be amended. There is even the possibility of a need for a new database system prototype method, in such circumstances, when the system demand in the iterative process of development in the ever-changing needs access to sample data, the construction or reconstruction of the database prototype.3 database development of the three-tier architecture modelIn this article on the front of the database development process mentioned in the interpretation of a system development project on the establishment of the several different, but related database view or model:● conceptual model (in the analysis stage of the establishment).● external model or user view (in the analysis phase and the establishment of logical design phase).● physical model or internal model (in the physical design phase of the establishment).Figure 7 describes the database view that the relationship between the three, it is important to remember that they are the same organizations database view or model. In other words, each organization has a database of the physical model, a concept model and one or more users view.Therefore, the three-tier architecture model using the same data set observe the different ways definition database.Concept models on the full database structure, has nothing to do with the technical specifications. Conceptual model definition do not involve the entire database datastored in the computer how the secondary memory. Usually, the conceptual model by entities - links (E-R) map or object modeling symbols such a graphical format to describe, we have this type of concept model called the data model. In addition, the conceptual model specification as a metadata stored in the database or data dictionary.Physical models including conceptual model of how data stored in computer memory in the two specifications. Analysts and the database design is as important to the physical database (physical mode) definition, it provides information on the distribution and management of data storage and access of the physical memory space of two full database technology specifications.Database development and database technology database is among the three models divided into basis. Database development projects may have a role to only deal with these three views of a related work. For example, a beginner may be designed for one or more procedures external model, and an experienced developer will design the physical model or conceptual model. Database design issues at different levels are quite different.4 three-tier structure of the database positioning systemObviously, all the good things in the database are, and the "three"!When designing a database, you have to choose where to store data. This option in the physical database design stage. Database is divided into individual databases, the Working Group database, departmental databases, corporate databases and the Internet database. Individuals often by the end-user database design and development of their own, just by database experts to give training and advice to help, it only contains individual end-users interested in the data. Sometimes, personal database from the database or enterprise Working Group extracted from the database, such circumstances database prepared by some experts from the regular routine to create local database. Sector Working Group database and the database is often the end-user, business experts and the central database system experts development. The collaborative work of these officers is necessary because in the design of the database to be shared by a large number of issues weigh: processing speed, ease of use, data definition differences and other similar problems. Due to corporate databases and the Internet database broad impact, large-scale, it is normally concentrated in the database development team has received professional training to develop a database of experts.1. Customers layerA desktop or notebook also known as that layer, which specialized management user interface and system localization data in this layer can be implemented on the Web scripting tasks.2. Server / Web serverHTTP protocol handling, scripting tasks, the implementation of computing and provide data access, the layer known as processing services layer.3. Enterprise Server (Minicomputer or mainframe) layerThe implementation of complex computing and inter-organizational management from multiple data sources of data integration, also known as data services layer.In an organization, hierarchical database and information system architecture for distributed computing and the client / server architecture of the concept of correlation. Client / server architecture based on a LAN environment, including servers (referred to as database server or database engine) database software implementation from the client workstation database orders, each customer applications focus on their user interface functions. In fact, the whole concept of the database (as well as the application of these databases to handle routine) as a distributed database or the separate but related physical database distribution in the local PC workstation, server intermediate (working group or sector) and one center server (departments or enterprises ). Simply said that the use of client / server architecture for:● it can handle multiple processors on the same application at the same time, improve application response time and data processing speed.● It can use each computer platform of the best data processing (such as PC Minicom Advanced user interface with the mainframe and computing speed).● can mix various client technology (Intel or Motorola processor assembly of personal computers, computer networks, information kiosks, etc.) and public data sharing. In addition, you can change the technology at any layer and other layers only a small influence on the system module.● able to handle close to the data source to be addressed to improve response time and reduce network traffic.。
信息管理系统中英文对照外文翻译文献
中英文对照翻译信息管理系统对于“管理信息系统”并没有一致的定义。
一些作者喜欢用其他术语代替,例如:“信息处理系统”“信息与决策系统”“组织信息系统”,或者干脆将“信息系统”用组织内具有支持操作、管理、决策职能的计算机信息处理系统代替。
这篇文章使用“管理信息系统”一词,是因为它是通俗易懂的,当涉及组织信息系统时也常用“信息系统”代替“管理信息系统”。
一个管理信息系统的定义,通常被理解为:一种集成用户机器系统,为组织提供信息支持运作、管理、决策职能。
该信息系统利用计算机硬件和软件;手工处理程序;模拟分析法计划、控制和决策;和数据库。
事实上,它是一个集成系统并不意味着它是单一的,单块集成结构;相反,它意味着零件适合加入整体设计。
内容定义如下:计算机为主的用户机器系统理论上,管理信息系统可以脱离计算机上而存在,但是计算机的存在可以让管理信息系统可行。
问题不是计算机是否被使用在管理信息系统中,而是信息的使用被计算机化的程度。
用户机器系统的概念暗示了, 一些任务最好由人执行, 其他的最好由机器做。
MIS的使用者是那些负责输入输入数据、指示系统或运用系统信息产品的人。
因为许多问题,用户和计算机建立了一个联合系统,其结果通过一套在计算机和用户之间的相互作用得到。
用户机器的相互作用是由用户连接在计算机上的输入-输出设备(通常是一个视觉显示终端)推动的。
计算机可以使一台个人机器服务于一名用户或者一台大规模的机器为一定数量通过终端由通信线路连接的用户服务。
用户输入-输出设备允许直接输入数据和紧接着输出结果。
例如:一个人使用计算机交互的在金融理财上通过在终端键盘输入提交“如果什么,怎么办?”之类的问题,结果几秒钟后便被显示在屏幕上。
MIS的计算机为主的用户机器特征影响系统开发商和系统用户的知识要求。
“计算机为主”意味着管理信息系统的设计者必须拥有计算机和对处理有用的知识。
“用户机器”的概念意味着系统设计者也应该了解人作为系统组成部分(信息处理器)的能力和人作为信息使用者的行为。
信息管理与信息系统专业英语作文
信息管理与信息系统专业英语作文Information Management and Information SystemsInformation Management and Information Systems (IMIS) is a rapidly growing field that focuses on the effective management of information within organizations. With the increasing reliance on technology in today's business world, the demand for professionals with expertise in IMIS is on the rise. This article will explore the key concepts and skills required in the field of IMIS, as well as the career opportunities available to those with a background in this discipline.Key Concepts in Information Management and Information SystemsIMIS encompasses a wide range of topics related to the collection, storage, analysis, and dissemination of information within an organization. Some of the key concepts that are covered in IMIS programs include:- Database Management: Database management systems are essential for storing and organizing large amounts of data. Students in IMIS programs learn how to design, implement, and maintain databases that are efficient and secure.- Data Analytics: Data analytics involves using data to make informed business decisions. IMIS professionals use tools and techniques to analyze data and extract valuable insights that can help organizations improve their operations.- Information Security: Protecting sensitive information from unauthorized access is a critical aspect of IMIS. Students learn about the latest security threats and how to implement measures to safeguard data.- Project Management: IMIS professionals often work on projects to implement new systems or improve existing ones. Project management skills are essential for ensuring that projects are completed on time and within budget.- Business Process Improvement: IMIS professionals help organizations streamline their processes through the use of technology. By automating tasks and eliminating inefficiencies, businesses can improve their overall performance.Career Opportunities in Information Management and Information SystemsIndividuals with a background in IMIS have a wide range of career opportunities available to them. Some common job titles in this field include:- Information Systems Manager: Information systems managers oversee the implementation and maintenance of technology systems within an organization. They ensure that technology aligns with business goals and that systems are secure and efficient.- Data Analyst: Data analysts are responsible for collecting, analyzing, and interpreting data to help organizations make strategic decisions. They use statistical tools and techniques to uncover trends and insights within data sets.- IT Consultant: IT consultants provide advice and guidance to organizations on how to best utilize technology to achieve their goals. They may be involved in system design, implementation, and training.- Database Administrator: Database administrators are responsible for managing and maintaining databases within an organization. They ensure that data is accurate, secure, and easily accessible to users.- Information Security Analyst: Information security analysts are tasked with protecting organizations from cyber threats. They monitor systems for potential breaches, implement security measures, and respond to security incidents.ConclusionInformation Management and Information Systems is a dynamic and rewarding field that offers a variety of career opportunities for individuals with a passion for technology and data. By pursuing a degree in IMIS, students can acquire the skills and knowledge needed to succeed in this rapidly evolving industry. Whether you are interested in database management, data analytics, or information security, there is a role for you in IMIS. So why wait? Start your journey towards a successful career in Information Management and Information Systems today!。
信息管理与信息系统中英文对照外文翻译文献
信息管理与信息系统中英文对照外文翻译文献一、引言在当今数字化和信息化的时代,信息管理与信息系统(Information Management and Information System,简称 IMIS)成为了企业和组织运营中至关重要的组成部分。
有效的信息管理能够帮助企业提高决策效率、优化业务流程、增强竞争力。
而信息系统则为信息的收集、存储、处理和传播提供了技术支持。
为了更深入地了解这一领域,我们对相关的外文文献进行了翻译和研究。
二、信息管理的概念与重要性信息管理是指对信息资源进行规划、组织、领导和控制的过程。
其目的是确保信息的准确性、完整性、及时性和可用性,以满足组织内部不同层次的需求。
在当今竞争激烈的市场环境中,信息已成为一种宝贵的资源,企业能否有效地管理和利用信息,直接关系到其生存和发展。
例如,一家制造企业通过对市场需求信息、生产过程信息和供应链信息的有效管理,可以实现精准的生产计划,降低库存成本,提高客户满意度。
同时,信息管理还能够帮助企业识别潜在的市场机会和风险,为战略决策提供有力支持。
三、信息系统的类型与功能信息系统主要包括事务处理系统(Transaction Processing System,TPS)、管理信息系统(Management Information System,MIS)、决策支持系统(Decision Support System,DSS)和企业资源规划系统(Enterprise Resource Planning,ERP)等。
事务处理系统主要用于处理日常的业务交易,如订单处理、库存管理等。
管理信息系统则提供了综合的信息报告,帮助管理人员进行监督和控制。
决策支持系统通过数据分析和模型构建,为管理层的决策提供支持。
企业资源规划系统则整合了企业的各种资源,实现了业务流程的集成和优化。
以一家跨国零售企业为例,其使用的企业资源规划系统能够实现全球范围内的库存实时监控、采购协同和财务统一管理,大大提高了运营效率和管理水平。
信息系统外文翻译--系统的分析与设计
附录1 外文翻译(原文)Systems Analysis and DesignWorking under control of a stored program, a computer processes data into information. Think about that definition for a minute. Any given computer application involves at least three components: hardware, software, and data. Merely writing a program isn't enough; because the program is but one component in a system.A system is a group of components that work together to accomplish an objective. For example, consider a payroll system. Its objective is paying emp loyees. What components are involved? Each day,employees record their hours worked on time cards. At the end of each week, the time cards are collected and delivered to the computer center, where they are read into a payroll program. As it runs, the progra m accesses data files. Finally, the paychecks are printed and distributed. For the system to work, people, procedures, input and output media, files, hardware, and software must be carefully coordinated. Note that the program is but one component in a system.Computer-based systems are developed because people need information. Those people, called users, generally know what is required, but may lack the expertise to obtain it. Technical professionals, such as programmers, have the expertise, but may lack training in the user's field. To complicate matters, users and programmers often seem to speak different languages, leading to communication problems. A systems analyst is a professional who translates user needs into technical terms, thus serving as a bridge between users and technical professionals.Like an engineer or an architect, a systems analyst solves problems by combining solid technical skills with insight, imagination, and a touch of art. Generally, the analyst follows a well-defined, methodical process that includes at least the following steps;1.Problem definition2.Analysis3.Design4.Implementation5.MaintenanceAt the end of each step, results are documented and shared with both the user and the programmers. The idea is to catch and correct errors and misunderstandings as early as possible. Perhaps the best way to illustrate the process is through example.Picture a small clothing store that purchases merchandise at wholesale, displays this stock, and sells it to customers at retail. On the one hand, too much stock represents an unnecessary expense. On the other hand, a poor selection discourages shoppers. Ideally, a balance can be achieved: enough, but not too much.Complicating matters is the fact that inventory is constantly changing, with customer purchases depleting stock, and returns and reorders adding to it. [1] The owner would like to track inventory levels and reorder and given item just before the store runs out. For a single item, the task is easy-just count the stock-on-hand. Unfortunately, the store has hundreds of different items, and keeping track of each one is impractical. Perhaps a computer might help.2-1 Problem DefinitionThe first step in the systems analysis and design process is problem definition. The analyst's objective is determining what the user (in this case, the store's owner) needs. Note that, as the process begins, the user possesses the critical information, and the analyst must listen and learn. Few users are technical experts. Most see the computer as a "magic box, "and are not concerned with how it works. At this stage, the analyst has no business even thinking about programs, files, and computer hardware, but must communicate with the user on his or her own term.The idea is to ensure that both the user and the analyst are thinking about the same thing-Thus, a clear, written statement expressing the analyst's understanding of the problem is essential. The user should review and correct this written statement. The time to catch misunderstandings and oversights is now, before time, money and effort are wasted.Often, following a preliminary problem definition, the analyst performs a feasibility study. The study a brief capsule version of the entire systems analysis and design process, attempts to answer three questions:1.Can the problem be solved?2.Can it be salved in the user's environment?3.Can it be solved at a reasonable cost?If the answer to any one of these questions is no, the system should not be developed. Given a good problem definition and a positive feasibility study, theanalyst can turn to planning and developing a problem solution.2- 2 AnalysisAs analysis begins, the analyst understands the problem. The next step is determining what must be done to solve it. The user knows what must be done 1 during analysis; this knowledge is extracted and formally documented. Most users think in terms of the functions to be performed and the data elements to be manipulated. The objective is to identify and link these key functions and data elements, yielding a logical system design.Start with the system's basic functions. The key is keeping track of the stock-on-hand for each product in inventory. Inventory changes because customers purchase, exchange, and return products, so the system will have to process customer transactions. The store's owner wants to selectively look at the inventory level for any product in short supply and, if appropriate, order replacement stock, so the system must be able to communicate with management. Finally, following management authorization, the system should generate a reorder ready to send to a supplier.Fig 1Given the system's basic functions, the analyst's next task is gaining a sense of their logical relationship. A good way to start is by describing how data flow between the functions. As the name implies, data flow diagrams are particularly useful for graphically describing these data flows. Four symbols are used (Fig. 1). Data sources and destinations are represented by squares; input data enter the system from a source, and output data flow to a destination. Once in the system, the data are manipulated or change by processes, represented by round-corner rectangles. A process might be a program, a procedure, or anything else that changes or moves data. Data can be held for later processing in data stores, symbolized by open-ended rectangles. A data store might be a disk file, a tape file, a database, written notes, or even a person's memory.Finally, data flow between sources, destinations, processes, end data stores over data flows, which are represented by arrows.Fig 2Figure 2 shows a preliminary data flow diagram for the inventory system. Start with CUSTOMER. Transactions flow from a customer f into the system, where they are handled by Process transaction. A data store, STOCK, holds data on each item in inventory. Process transaction changes the data to reflect the new transaction. Meanwhile, MANAGEMENT accesses the system through Communicate, evaluating the data in STOCK and, if necessary, requesting a reorder. Once, a reorder is authorized. Generate reorder sends necessary data to the SUPPLIER, who ships the items to the store. Note that, because the reorder represents a change in the inventory level of a particular product or products it is handled as a transaction.The data flow diagram describes the logical system. The next step is tracing the data flows. Start with the destination SUPPLIER. Reorders flow to suppliers; for example, the store might want 25 pairs of jeans. To fill the order, the supplier needs the product description and the reorder quantity. Where do these data elements come from? Since they are output by Generate reorder, they must either be Input to or generated by this process. Data flow into Generate reorder for STOCK; thus, product descriptions and reorder quantities must be stored in STOCK.Other data elements, such as the item purchased and the purchase quantity are generated by CUSTOMER. Still others, for example selling price and reorder point, are generated by or needed by MANAGEMENT. The current stock-on-hand for a given item is an example of a data element generated by an algorithm in one of the procedures. Step by step, methodically, the analyst identifies the data elements to be input to .stored by, manipulated by, generated by, or output by the system.To keep track of the data elements, the analyst might list each one in a datadictionary. A simple data dictionary can be set up on index cards, but computerized data dictionaries have become increasingly popular. The data dictionary, a collection of data describing and defining the data, is useful throughout the systems analysis and design process, and is often used to build a database during the implementation stage.The idea of analysis is to define the system's major functions and data elements methodically. Remember that the objective is translating user needs into technical terms. Since the system starts with the user, the first step is defining the user's needs. Users think in terms of functions and data. They do not visualize programs, or files, or hardware .and during this initial, crucial analysis stage it is essential that the analyst think like a user, not like a programmer.Data flow diagrams and data dictionaries are useful tools. They provide a format for recording key information about the proposed system. Also, they jog the analyst's memory) for example, if the analyst doesn't have sufficient information to complete a data dictionary entry, he or she has probably missed something. Perhaps most importantly, the data flow diagram and the data dictionary document the analyst's understanding of the system requirements. By reviewing these documents, the user can correct misunderstandings or oversights. Finally, they represent an excellent starting point the next step, design.2-3 DesignAs we enter the design stage, we know what the system must do, and thus can begin thinking about how to do it. The objective is to develop a strategy for solving the problem. At this stage, we are not interested in writing code or in defining precise data structures; instead, we want to identify, at a black box level, necessary programs, files, procedures, and other components.The data flow diagram defines the system's necessary functions; how might they be implemented? One possibility is writing one program for each process. Another is combining two or more processes in a single program; there are dozens of alternative solutions. Let's focus on one option and document it.A system flowchart uses symbols to represent programs, procedures, hardware devices, and the other components of a physical system (Fig. 3). Our flowchart (.Fig.4) shows that transaction data enter the system through a terminal, are processed by a data collection program, and then are stored on an inventory file. Eventually, the inventory file is processed by a Report and reorder program. Through it, management manipulates the data and authorizes reorders.Fig. 4 on a system flowchart, symbols represent programs, procedures, hardware devices, and the other components of a physical system.Fig 3Look at the system flowchart. It identifies several hardware components, including a computer, a disk drive, a data entry terminal, a printer, and a display terminal. Two programs are needed; Process transaction and Report and reorder. In addition to t he hardware and the programs, we’ll need data structures for the inventory file and for data flaws between the I/O devices and the software. Note that this system flowchart illustrates one possible solution; a good analyst will develop several feasible alternatives before choosing one.Fig 4The flowchart maps the system, highlighting its major physical components. Since the data link the components, the next task is defining the data structures.Consider, for example, the inventory file. It contains all the data elements from the data store STOCK. The data elements are listed in the data dictionary. Using them, the file's data structure can be planned,How should the file be organized? That depends on how it will be accessed. For example, in some applications, data are processed at regular, predictable intervals. Typically, the data are collected over time and processed together, as a batch. If batch processing is acceptable, a sequential file organization is probably best.It is not always possible to wait until a batch of transactions is collected, however. For example, consider an air defense early warning system. If an unidentified aircraft is spotted it must be identified immediately the idea of waiting until 5 _ 00 p.m. because "that's when the air defense program is run" is absurd. Instead, because of the need for quick response, each transaction must be processed as it occurs. Generally such transaction processing systems call for direct access file.Our inventory system has two programs. One processes transactions. A direct access inventory file seems a reasonable choice. The other allows management to study inventory data occasionally; batch processing would certainly do. Should the inventory file be organized sequentially or directly? Faced with such a choice a good analyst considers both options. One possible system might accept transactions and process them as they occur. As an alternative, sales slips might be collected throughout the day and processed as a batch after the store closes. In the first system, the two programs would deal with direct access files; in the second system, they would be linked to sequential files. A program to process direct access data is different from a program to process sequential data. The data drive the system. The choice of a data structure determines the program’s structure. Note that the program is defined and planned in the context of the system.2- 4 ImplementationOnce the system's major components have been identified .we can begin to develop them. Our system includes two programs, several pieces of equipment, and a number of data structures. During implementation, each program is planned and written using the techniques described in Chapter 7. Files are created, and their contents checked. New hardware is purchased, installed, and tested. Additionally, operating procedures are written and evaluated. Once all the component parts are ready, the system is tested. Assuming the user is satisfied, the finished system is released.2- 5 MaintenanceMaintenance begins after the system is released. As people use it, they will suggest minor improvements and enhancements. Occasionally, bugs slip through debug and testing, and removing them is another maintenance task. Finally, conditions change, and a program must be updated; for example, if the government passes a low changing the procedure for collecting income taxes, the payroll program must be modified. Maintenance continues for the life of a system, and its cost can easily match or exceed the original development cost. Good planning, solid documentation, and well-structured programs can help to minimize maintenance cost.附录2 外文翻译(译文)系统的分析与设计在存储程序的控制下,计算机把数据处理成信息。
信息系统信息技术中英文对照外文翻译文献
中英文资料外文翻译文献Information Systems Outsourcing Life Cycle And Risks Analysis 1. IntroductionInformation systems outsourcing has obtained tremendous attentions in the information technology industry.Although there are a number of reasons for companies to pursuing information systems (IS)outsourcing , the most prominent motivation for IS outsourcing that revealed in the literatures was “cost saving”. Costfactor has been a major decision factors for IS outsourcing.Other than cost factor, there are other reasons for outsourcing decision.The Outsourcing Institute surveyed outsourcing end-users from their membership in 1998 and found that top 10 reasons companies outsource were:Reduce and control operating costs,improve company focus,gain access to world-class capabilities,free internal resources for other purposes, resources are not available internally, accelerate reengineering benefits, function difficult to manage/out of control,make capital funds available, share risks, and cash infusion.Within these top ten outsourcing reasons, there are three items that related to financial concerns, they are operating costs, capital funds available, and cash infusion. Since the phenomenon of wage difference exists in the outsourced countries, it is obvious that outsourcing companies would save remarkable amount of labor cost.According to Gartner, Inc.'s report, world business outsourcing services would grow from $110 billion in 2002 to $173 billion in 2007,a proximately 9.5% annual growth rate.In addition to cost saving concern, there are other factors that influence outsourcing decision, including the awareness of success and risk factors, the outsourcing risks identification and management,and the project quality management. Outsourcing activities are substantially complicated and outsourcing project usually carries a huge array of risks. Unmanaged outsourcing risks will increase total project cost, devaluatesoftware quality, delay project completion time, and finally lower the success rate of the outsourcing project.Outsourcing risks have been discovered in areas such as unexpected transition and management costs, switching costs, costly contractual amendments, disputes and litigation, service debasement, cost escalation, loss of organizational competence, hidden service costs,and so on.Most published outsourcing studies focused on organizational and managerial issues. We believe that IS outsourcing projects embrace various risks and uncertainty that may inhibit the chance of outsourcing success. In addition to service and management related risk issues, we feel that technical issues that restrain the degree of outsourcing success may have been overlooked. These technical issues are project management, software quality, and quality assessment methods that can be used to implement IS outsourcing projects.Unmanaged risks generate loss. We intend to identify the technical risks during outsourcing period, so these technical risks can be properly managed and the cost of outsourcing project can be further reduced. The main purpose of this paper is to identify the different phases of IS outsourcing life cycle, and to discuss the implications of success and risk factors, software quality and project management,and their impacts to the success of IT outsourcing.Most outsourcing initiatives involve strategic planning and management participation, therefore, the decision process is obviously broad and lengthy. In order to conduct a comprehensive study onto outsourcing project risk analysis, we propose an IS outsourcing life cycle framework to be served as a yardstick. Each IS outsourcing phase is named and all inherited risks are identified in this life cycle framework.Furthermore,we propose to use software qualitymanagement tools and methods in order to enhance the success rate of IS outsourcing project.ISO 9000 is a series of quality systems standards developed by the International Organization for Standardization (ISO).ISO's quality standards have been adopted by many countries as a major target for quality certification.Other ISO standards such as ISO 9001, ISO 9000-3,ISO 9004-2, and ISO 9004-4 are quality standards that can be applied to the software industry.Currently, ISO is working on ISO 31000, a risk management guidance standard. These ISO quality systems and risk management standards are generic in nature, however, they may not be sufficient for IS outsourcing practice. This paper, therefore,proposes an outsourcing life cycle framework to distinguish related quality and risk management issues during outsourcing practice.The following sections start with needed theoretical foundations to IS outsourcing,including economic theories, outsourcing contracting theories, and risk theories. The IS outsourcing life cycle framework is then introduced.It continues to discuss the risk implications in precontract,contract, and post-contract phases. ISO standards on quality systems and risk management are discussed and compared in the next section. A conclusion and direction for future study are provided in the last section.2. Theoretical foundations2.1. Economic theories related to outsourcingAlthough there are a number of reasons for pursuing IS outsourcing,the cost savingis a main attraction that leads companies to search for outsourcing opportunities. In principle, five outsourcing related economic theories that lay the groundwork of outsourcing practice, theyare:(1)production cost economics,(2)transaction cost theory,(3)resource based theory,(4)competitive advantage, and(5)economies of scale.Production cost economics was proposed by Williamson, who mentioned that “a firm seeks to maximize its profit also subjects to its production function and market opportunities for selling outputs and buying inputs”. It is clear that production cost economics identifies the phenomenon that a firm may pursue the goal of low-cost production process.Transaction cost theory was proposed by Coase. Transaction cost theory implies that in an economy, there are many economic activities occurred outside the price systems. Transaction costs in business activities are the time and expense of negotiation, and writing and enforcing contracts between buyers and suppliers .When transaction cost is low because of lower uncertainty, companies are expected to adopt outsourcing.The focus of resource-based theory is “the heart of the firm centers on deployment and combination of specific inputs rather than on avoidance of opportunities”. Conner suggested that “Firms as seekers of costly-to-copy inputs for production and distribution”.Through resource-based theory, we can infer that “outsourcing decision is to seek external resources or capability for meeting firm's objectives such as cost-saving and capability improving”.Porter, in his competitive forces model, proposed the concept of competitive advantage. Besanko et al.explicated the term of competitive advantage, through economic concept, as “When a firm(or business unit within a multi-business firm) earns a higher rate of economic profit than the average rate of economic profit of other firms competing within the same market, the firm has a competitive advantage.” Outsourcing decision, therefore, is to seek cost saving that meets the goal of competitive advantage within a firm.The economies of scale is a theoretical foundation for creating and sustaining the consulting business. Information systems(IS) and information technology(IT) consulting firms, in essence, bear the advantage of economies of scale since their average costs decrease because they offer a mass amount of specialized IS/IT services in the marketplace.2.2. Economic implication on contractingAn outsourcing contract defines the provision of services and charges that need to be completed in a contracting period between two contracting parties. Since most IS/IT projects are large in scale, a valuable contract should list complete set of tasks and responsibilities that each contracting party needs to perform. The study of contracting becomes essential because a complete contract setting could eliminate possible opportunistic behavior, confusion, and ambiguity between two contracting parties.Although contracting parties intend to reach a complete contract,in real world, most contracts are incomplete. Incomplete contracts cause not only implementing difficultiesbut also resulting in litigation action. Business relationship may easily be ruined by holding incomplete contracts. In order to reach a complete contract, the contracting parties must pay sufficient attention to remove any ambiguity, confusion, and unidentified and immeasurable conditions/ terms from the contract. According to Besanko et al., incomplete contracting stems from the following three factors: bounded rationality, difficulties on specifying or measuring performance, and asymmetric information.Bounded rationality describes human limitation on information processing, complexity handling, and rational decision-making. An incomplete contract stems from unexpected circumstances that may be ignored during contract negotiation. Most contracts consist of complex product requirements and performance measurements. In reality, it is difficult to specify a set of comprehensive metrics for meeting each party's right and responsibility. Therefore, any vague or open-ended statements in contract will definitely result in an incomplete contract. Lastly, it is possible that each party may not have equal access to all contract-relevant information sources. This situation of asymmetric information results in an unfair negotiation,thus it becomes an incomplete contract.2.3. Risk in outsource contractingRisk can be identified as an undesirable event, a probability function,variance of the distribution of outcomes, or expected loss. Risk can be classified into endogenous and exogenous ris ks. Exogenous risks are“risks over which we have no control and which are not affected by our actions.”. For example, natural disasters such as earthquakes and flood are exogenous risks. Endogenous risks are “risks that are dependent on our actions”.We can infer that risks occurring during outsource contracting should belong to such category.Risk (RE) can be calculated through “a function of the probability of a negative outcome and the importance of the loss due to the occurrence of this outcome:RE = ΣiP(UOi)≠L(UOi) (1) where P(UOi) is the probability of an undesirable outcome i, and L(UOi) is the loss due to the undesirable outcome i.”.Software risks can also be analyzed through two characteristics :uncertainty and loss. Pressman suggested that the best way to analyze software risks is to quantify the level of uncertainty and the degree of loss that associated with each kind of risk. His risk content matches to above mentioned Eq.(1).Pressman classified software risks into the following categories: project risks, technical risks, and business risks.Outsourcing risks stem from various sources. Aubert et al. adopted transaction cost theory and agency theory as the foundation for deriving undesirable events and their associated risk factors.Transaction cost theory has been discussed in the Section 2.2. Agency theory focuses on client's problem while choosing an agent(that is, a service provider), and working relationship building and maintenance, under the restriction of information asymmetry.Various risk factors would be produced if such agent–client relationship becomes crumble.It is evident that a complete contract could eliminate the risk that caused by an incomplete contract and/or possible opportunistic behavior prompted by any contracting party. Opportunistic behavior is one of the main sources that cause transactional risk. Opportunistic behavior occurs when a transactional partner observes away of saving cost or removing responsibility during contracting period, this company may take action to pursue such opportunity. This type of opportunistic behavior could be encouraged if such contract was not completely specified at the first place.Outsourcing risks could generate additional unexpected cost to an outsourcing project. In order to conduct a better IS outsourcing project, identifying possible risk factors and implementing matured risk management process could make information systems outsourcing more successful than ever.rmation system outsourcing life cycleThe life cycle concept is originally used to describe a period of one generation of organism in biological system. In essence, the term of life cycle is the description of all activities that a subject is involved in a period from its birth to its end. The life cycle concept has been applied into project management area. A project life cycle, according to Schwalbe, is a collection of project phases such as concept,development, implementation, and close-out. Within the above mentioned four phases, the first two phases center on “planning”activity and the last two phases focus on “delivery the actual work” Of project management.Similarly, the concept of life cycle can be applied into information systems outsourcing analysis. Information systems outsourcing life cycle describes a sequence of activities to be performed during company's IS outsourcing practice. Hirsch heim and Dibbern once described a client-based IS outsourcing life cycle as: “It starts with the IS outsourcing decision, continues with the outsourcing relationship(life of the contract)and ends with the cancellation or end of the relationship, i.e., the end of the contract. The end of the relationship forces a new outsourcing decision.” It is clear that Hirsch heim and Dibbern viewed “outsourcing relationship” as a determinant in IS outsourcing life cycle.IS outsourcing life cycle starts with outsourcing need and then ends with contract completion. This life cycle restarts with the search for a new outsourcing contract if needed. An outsourcing company may be satisfied with the same outsourcing vendor if the transaction costs remain low, then a new cycle goes on. Otherwise, a new search for an outsourcing vendor may be started. One of the main goals for seeking outsourcing contract is cost minimization. Transaction cost theory(discussed in the Section 2.1)indicates that company pursuing contract costs money, thus low transaction cost will be the driver of extending IS outsourcing life cycle.The span of IS outsourcing life cycle embraces a major portion of contracting activities. The whole IS outsourcing life cycle can be divided into three phases(see Fig.1): pre-contract phase, contract phase, and post-contract phase. Pre-contract phase includes activities before a major contract is signed, such as identifying the need for outsourcing, planning and strategic setting, and outsourcing vendor selection. Contract phase startswhile an outsourcing contract is signed and then lasted until the end of contracting period. It includes activities such as contracting process, transitioning process, and outsourcing project execution. Post-contract phase contains those activities to be done after contract expiration, such as outsourcing project assessment, and making decision for the next outsourcing contract.Fig.1. The IS outsourcing life cycleWhen a company intends to outsource its information systems projects to external entities, several activities are involved in information systems outsourcing life cycle. Specifically, they are:1. Identifying the need for outsourcing:A firm may face strict external environment such as stern market competition,competitor's cost saving through outsourcing, or economic downturn that initiates it to consider outsourcing IS projects. In addition to external environment, some internal factors may also lead to outsourcing consideration. These organizational predicaments include the need for technical skills, financial constraint, investors' request, or simply cost saving concern. A firm needs to carefully conduct a study to its internal and external positioning before making an outsourcing decision.2. Planning and strategic setting:If a firm identifies a need for IS outsourcing, it needs to make sure that the decision to outsource should meet with company's strategic plan and objectives. Later, this firm needs to integrate outsourcing plan into corporate strategy. Many tasks need to be fulfilled during planning and strategic setting stages, including determining outsourcing goals, objectives, scope, schedule, cost, business model, and processes. A careful outsourcing planning prepares a firm for pursuing a successful outsourcing project.3. Outsourcing vendor selection:A firm begins the vendor selection process with the creation of request for information (RFI) and request for proposal (RFP) documents. An outsourcing firm should provide sufficient information about the requirements and expectations for an outsourcing project. After receiving those proposals from vendors, this company needs to select a prospective outsourcing vendor, based on the strategic needs and project requirements.4. Contracting process:A contract negotiation process begins after the company selects a probable outsourcing vendor. Contracting process is critical to the success of an outsourcing project since all the aspects of the contract should be specified and covered, including fundamental, managerial, technological, pricing, financial, and legal features. In order to avoid resulting in an incomplete contract, the final contract should be reviewed by two parties' legal consultants.Most importantly, the service level agreements (SLA) must be clearly identified in the contract.5. Transitioning process:Transitioning process starts after a company signed an outsourcing contract with a vendor. Transition management is defined as “the detailed, desk-level knowledge transfer and documentation of all relevant tasks, technologies, workflows, people, and functions”.Transitioni ng process is a complicate phase in IS outsourcing life cycle since it involves many essential workloads before an outsourcing project can be actually implemented. Robinson et al.characterized transition management into the following components:“employee management, communication management, knowledge management, and quality management”. It is apparent that conducting transitioning process needs the capabilities of human resources, communication skill, knowledge transfer, and quality control.6. Outsourcing project execution:After transitioning process, it is time for vendor and client to execute their outsourcing project. There are four components within this“contract governance” stage:project management, relationship management, change management, and risk management. Any items listed in the contract and its service level agreements (SLAs) need to be delivered and implemented as requested. Especially, client and vendor relationships, change requests and records, and risk variables must be carefully managed and administered.7. Outsourcing project assessment:During the end of an outsourcing project period, vendor must deliver its final product/service for client's approval. The outsourcing client must assess the quality of product/service that provided by its client. The outsourcing client must measure his/her satisfaction level to the product/service provided by the client. A satisfied assessment and good relationship will guarantee the continuation of the next outsourcing contract.The results of the previous activity (that is, project assessment) will be the base of determining the next outsourcing contract. A firm evaluates its satisfaction level based on predetermined outsourcing goals and contracting criteria. An outsourcing company also observes outsourcing cost and risks involved in the project. If a firm is satisfied with the current outsourcing vendor, it is likely that a renewable contract could start with the same vendor. Otherwise, a new “precontract phase” would restart to s earch for a new outsourcing vendor.This activity will lead to a new outsourcing life cycle. Fig.1 shows two dotted arrowlines for these two alternatives: the dotted arrow line 3.a.indicates “renewable contract” path and the dotted arrow line 3.b.indicates “a new contract search” path.Each phase in IS outsourcing life cycle is full of needed activities and processes (see Fig.1). In order to clearly examine the dynamics of risks and outsourcing activities, the following sections provide detailed analyses. The pre-contract phase in IS outsourcing life cycle focuses on the awareness of outsourcing success factors and related risk factors. The contract phase in IS outsourcing life cycle centers on the mechanism of project management and risk management. The post-contract phase in IS outsourcing life cycle concentrates on the need of selecting suitable project quality assessment methods.4. Actions in pre-contract phase: awareness of success and risk factorsThe pre-contract period is the first phase in information systems outsourcing life cycle (see Fig.1). While in this phase, an outsourcing firm should first identify its need for IS outsourcing. After determining the need for IS outsourcing, the firm needs to carefully create an outsourcing plan. This firm must align corporate strategy into its outsourcing plan.In order to well prepare for corporate IS outsourcing, a firm must understand current market situation, its competitiveness, and economic environment. The next important task to be done is to identify outsourcing success factors, which can be used to serve as the guidance for strategic outsourcing planning. In addition to know success factors,an outsourcing firm must also recognize possible risks involved in IS outsourcing, thus allows a firm to formulate a better outsourcing strategy.Conclusion and research directionsThis paper presents a three-phased IS outsourcing life cycle and its associated risk factors that affect the success of outsourcing projects.Outsourcing life cycle is complicated and complex in nature. Outsourcing companies usually invest a great effort to select suitable service vendors However,many risks exit in vendor selection process. Although outsourcing costs are the major reason for doing outsourcing, the firms are seeking outsourcing success through quality assurance and risk control. This decision path is understandable since the outcome of project risks represents the amount of additional project cost. Therefore, carefully manage the project and its risk factors would save outsourcing companies a tremendous amount of money.This paper discusses various issues related to outsourcing success, risk factors, quality assessment methods, and project management techniques. The future research may touch alternate risk estimation methodology. For example, risk uncertainty can be used to identify the accuracy of the outsourcing risk estimation. Another possible method to estimate outsourcing risk is through the Total Cost of Ownership(TCO) method. TCO method has been used in IT management for financial portfolio analysis and investment decision making. Since the concept of risk is in essence the cost (of loss) to outsourcing clients, it thus becomes a possible research method to solve outsourcing decision.信息系统的生命周期和风险分析1.绪言信息系统外包在信息技术工业已经获得了巨大的关注。
信息管理外文翻译
Establishing a management information system Information is a critical resource in the operation and management of organizations. Timely availability of relevant information is vital for effective performance of managerial functions such as planning, organizing, leading, and control. An information system in an organization is like the nervous system in the human body: it is the link that connects all the organization's components together and provides for better operation and survival in a competitive environment.The term information system usually a computer-based system, one that is designed to support the operations, management, and decision functions of an organization. Information systems in organizations thus provide information support for decision makers. Information systems encompass transaction processing systems, management information systems, decision support systems, and strategic information systems.Information consists of data that have been processed and are meaningful to a user. A system is a set of components that operate together to achieve a common purpose. Thus a management information system collects, transmits, processes, and stores data on an organization's resources, programmes, and accomplishments. The system makes possible the conversion of these data into management information for use by decision makers within the organization. A management information system, therefore, produces information that supports the management functions of an organization (Davis & Olson, 1985; Lucas, 1990; McLeod, 1995).Basic conceptsData versus InformationData refers to raw, unevaluated facts, figures, symbols, objects, events, etc. Data may be a collection of facts lying in storage, like a telephone directory or census records.Information is data that have been put into a meaningful and useful context and communicated to a recipient who uses it to make decisions. Information involves the communication and reception of intelligence or knowledge. It appraises and notifies, surprises and stimulates, reduces uncertainty, reveals additional alternatives or helps eliminate irrelevant or poor ones, and influences individuals and stimulates them to action. An element of data may constitute information in a specific context; for example, when you want to contact your friend, his or her telephone number is a piece of information; otherwise, it is just one element of data in the telephone directory.Characteristics of InformationThe characteristics of good information are relevance, timeliness, accuracy, cost-effectiveness, reliability, usability, exhaustiveness, and aggregation level. Information is relevant if it leads to improved decision making. It might also be relevant if it reaffirms a previous decision. If it does not have anything to do with your problem, it is irrelevant. For example, information about the weather conditions in Paris in January is relevant if you are considering a visit to Paris in January. Otherwise, the information is not relevant.Timeliness refers to the currency of the information presented to the users. Currency of data or information is the time gap between the occurrence of an event in the field until its presentation to the user (decision maker). When this amount of time is very short, we describe the information system as a real-time system.Accuracy is measured by comparing the data to actual events. The importance of accurate data varies with the type of decisions that need to be made. Payroll information must be exact. Approximations simply will not suffice. However, a general estimate of how much staff time was devoted to a particular activity may be all that is needed.Value of InformationInformation has a great impact on decision making, and hence its value is closely tied to the decisions that result from its use. Information does not have an absolute universal value. Its value is related to those who use it, when it is used, and in what situation it is used. In this sense, information is similar to other commodities. For example, the value of a glass of water is different for someone who has lost his way in Arctic glaciers than it is to a wanderer in the Sahara Desert.Economists distinguish value from cost or price of a commodity incurred to produce or procure the commodity. Obviously, the value of a product must be higher than its cost or price for it to be cost-effective.The concept of normative value of information has been developed by economists and statisticians and is derived from decision theory. The basic premise of the theory is that we always have some preliminary knowledge about the occurrence of events that are relevant to our decisions. Additional information might modify our view of the occurrence probabilities and consequently change our decision and the expected payoff from the decision. The value of additional information is, hence, the difference in expected payoff obtained by reduced uncertainty about the future event.Information supports decisions, decisions trigger actions, and actions affect the achievementsor performance of the organization. If we can measure the differences in performance, we can trace the impact of information, provided that the measurements are carefully performed, the relationships among variables are well defined, and possible effects of irrelevant factors are isolated. The measured difference in performance due to informational factors is called the realistic value or revealed value of information.For most information systems, particularly those supporting middle and top management, the resulting decisions often relate to events that are not strictly defined and involve probabilities that cannot be quantified. The decision-making process often is obscure and the outcomes are scaled by multiple and incomparable dimensions. In such cases, we may either attempt to perform a multiattribute analysis or derive an overall subjective value. The subjective value reflects people's comprehensive impression of information and the amount they are willing to pay for specific information (Ahituv, Neumann, & Riley, 1994).Information as an Aid to Decision MakingSimon (1977) describes the process of decision making as comprising four steps: intelligence, design, choice, and review. The intelligence stage encompasses collection, classification, processing, and presentation of data relating to the organization and its environment. This is necessary to identify situations calling for decision. During the decision stage, the decision maker outlines alternative solutions, each of which involves a set of actions to be taken. The data gathered during the intelligence stage are now used by statistical and other models to forecast possible outcomes for each alternative. Each alternative can also be examined for technological, behavioural, and economic feasibility. In the choice stage, the decision maker must select one of the alternatives that will best contribute to the goals of the organization. Past choices can be subjected to review during implementation and monitoring to enable the manager to learn from mistakes. Information plays an important role in all four stages of the decision process. Classification of Management Information SystemsThere are various types of management information systems. Mason and Swanson (1981) describe four categories of management information systems: (1) databank information system, (2) predictive information system, (3) decision-making information system, and (4) decision-taking information system. The classification is based on the level of support that the information system provides in the process of decision making. Sachdeva (1990) comprehensively presents these four types of systems:Databank Information System.The responsibility of this information system is to observe, classify, and store any item of data which might be potentially useful to the decision maker.Predictive Information System. This system moves beyond pure data collection and the determination of trends over time. Predictive information systems provide for the drawing of inferences and predictions that are relevant to decision making. If data from the above examples were to be used in this way, it is possible to obtain information useful for making predictions or for drawing inferences.Decision-Making Information System. This system goes one step further in the process of decision making and incorporates the value system of the organization or its criteria for choosing among alternatives. An extension organization's values are many and varied. They include concerns for resolving farmer problems, increasing and providing for stability of farmer incomes, and improving the quality of farm life. But they also including and providing for stability of farmer incomes, and improving the quality of farm life. But they also include an intent to provide well for staff members (training, adequate salaries, etc.) and to aid in the process of bringing about rural economic development.Decision-Taking Information System. Examples of decision-taking information systems are not usually found in an extension organization. This is a decisionsystem in which the information system and the decision maker are one and the same. Management is so confident in the assumptions incorporated in the system that it basically relegates its power to initiate action to the system itself. Airplanes carry automatic pilot systems, which are an example of a decision-taking system. Once activated, the system itself keeps the plane on course and at the proper speed and altitude (according to parameters determined by the pilot). Another example of decision-taking information systems is found in modem factory production. In automobile production, continuous inventories of parts are maintained by computer as cars move down an assembly line. Orders are placed automatically by the computer when additional parts are needed. This is done without the intervention of a manager.Role of MIS in the management of agricultural extension programmersNational agricultural extension systems, especially in developing countries, tend to be very large. For example, in India, the national agricultural extension system employs about 125,000 people. Extension managers at various levels need relevant information in order to make effective decisions. In the absence of such information, they act only on the basis of their intuition and pastexperience. Data that have been processed, stored, and presented properly will aid them in analysing situations and to make effective decisions.As suggested above, at every phase of the management process, managers need information in order to make effective decisions. This we call management information. It does not include purely functional information or technical information, such as packages of practices for rice or wheat cultivation. Management information is the information required by managers as they make their decisions, such as the number of extension personnel employed by category, their training requirements, career development plans, job descriptions, budgets, forecasts, benchmark surveys, reports on socioeconomic conditions of people served, and existing facilities (Ramesh Babu & Singh, 1987).Need for automationAn automated MIS system contains data just as a manual system does. It receives input, processes input, and delivers the processed input as output. Some input devices allow direct human-machine communication, while others require data to be recorded on an input medium such as a magnetizable material (specially coated plastic flexible or floppy disks and magnetic tapes). The keyboard of a workstation connected directly to a computer is an example of a direct input device. Use of automation makes it possible to store immense quantities of information, to avoid many of the errors that find their way into manual records, and to make calculations and comparisons that would be practically impossible in a manual system.Organization of a databaseData are usually generated at the field level through transaction-processing systems, but once the data are captured, any echelon along the organizational hierarchy may use them, provided that information requirements have been well defined, appropriate programmers have been implemented, and a means has been arranged for the sharing of the data. This would imply that the same data can be used by different sets of programmers; hence we distinguish between the database (a set of data) and the applications (a set of programmers). In a decision support system (DSS), this set of programmers is the model base (Keen & Morton, 1978).The term database may refer to any collection of data that might serve an organizational unit.A database on a given subject is a collection of data on that subject that observes three criteria: comprehensiveness (completeness), nonredundancy, and appropriate structure. Comprehensiveness means that all the data about the subject are actually present in the database.Nonredundancy means that each individual piece of data exists only once in the database. Appropriate structure means that the data are stored in such a way as to minimize the cost of expected processing and storage (Awad & Gotterer, 1992).The idea of a large corporate database that can be flexibly shared by several applications or model bases has been realized by means of software packages specially devised to perform such tasks. These packages, called database management systems (DBMSs), are available in the market under different trade names such as ORACLE, SYBASE, INGRES, FOXBASE, and dBASE. Illustrative computer-based MISA national agricultural extension system is a nationwide system managed by the national government. In India, agriculture is a state subject under the division of powers between the national and the state levels. Nevertheless, the national government supplements the financial resources of the states and provides coordination at the national level. The state's administrative machinery is divided into districts, districts into subdivisions, subdivisions into blocks. A block is a group of villages and the basic unit for the administration of an agricultural extension programmer. Data collected at the block level need to be integrated at higher administrative levels to provide an integrated view at the district and state levels to support planning, monitoring, and decision making.However, the actual design may vary with the size of the state and other considerations. An integrated database for the entire state may be supported by a mainframe/minicomputer at the state headquarters. Suitable programmes for the analysis of data may be designed to provide an interactive decision support system at the state level. Each district and subdivision may be provided with a mini/micro computer, depending on the volume of data to be handled. The computers in the districts and subdivisions may be networked with the state computer. The local data may be stored and processed in the district/subdivision, and the shared data with appropriate level of aggregation may be transmitted to the state headquarters to update the integrated database. The districts and subdivisions would have direct access to the integrated database with proper authorizations assigned to them through their passwords. The blocks may have only theinput-output terminals connected to the subdivision computer to feed data to the subdivision and make on-line inquiries as and when necessary.。
管理信息系统外文翻译1
英语专业资料Management Information System is that we often say that the MIS (Management Information System), emphasizing the management, stressed that the information in modern society it has become increasingly popular. MIS is a new subject, it across a number of areas, such as scientific management and system science, operations research, statistics and computer science. In these subjects on the basis of formation of information-gathering and processing methods, thereby forming a vertical and horizontal cutting system.Management information system of modern information management is an indispensable part of the work, is to meet modern standards of high-tech information management requirements, to promote scientific management, standardization of the necessary conditions. Only information practices, in order to offer better living environment and convenient living space.Information management is an extremely important resource, management depends on the success or failure of an effective decision-making, and the correct degree of decision-making depends largely on the quality of information.In the 21st century, mankind will enter the knowledge economy era, the era of knowledge economy is the rapid development of technology and knowledge, information was explosive expansion of the times. The threat of the so-called information that this is the human face to deal with the large amount of information it difficult to deal with the state, and cause confusion results.The emergence of a computer to solve this problem, because the computer quickly and accurately as information collection, processing, use,may be provided for.With computer technology, communications technology, network technology as the representative of modern information technology leap in development, human being from the industrial age into the information age, there is growing importance of information resources development and use of "information" has become a country Economic and social development of the key links, the level of information has become the level of a country's level of modernization and an important indicator of overall national strength.Management Information System is a computer and composed, to manage information collection, transmission, processing, preservation, maintenance and use of the system, it measured the national economy and enterprises, to help achieve its planned objectives.The development of computer-aided management has experienced four stages: transaction processing, handling systems to support decision-making, integrated services.In modern society, social trends and the expansion of social demand for our products so that enterprises in production and business activities relating to the expansion of the accumulation of internal and external information, with the rapid progress of science and technology and rapid development of production, so that human knowledge of the accelerating growth rate, the increase in the amount of information , Changes in the external environment becomes faster, artificial have not qualified. How to collect sufficient information resources, strong message and take advantage of the positive and timely development of effective use of information explosion of information resources has become a modern social problems. The emergence of a computer to solve this problem, because the computer quickly and accurately as information collection, processing, use, may be provided for. Computer technology and communications technologies with great modern information technology to promote the development of national information to speed up the process, the international community to build the information highway and an upsurge of Chinese workers, "the" famous works as the representative of national projects undertaken, so that China's Enterprise Information facing the new situation.Electronic computers adapt to modern society rapidly growing amount of information management, information life short, require timely conversion problem. Information systems from electronic data processing, information reporting system, decision support system to the further development of expert systems and support the leadership of the implementation of the decision-making process information in support of strategic decision-making competition in the strategic information systems. Today's society of modern information technology extensively to the rapid penetration of social life in various fields but in the management information system applications are still very imperfect, is the initial stage. Computer support for the work of the management, not only data processing, but also to support decision-making tools, from the mass of information collection, collation, analysis provided to managers, policy-related information, relevantpolicy analysis, and even managers Interactive dialogue to generate decision-making. At present the various sectors of the computer processing of information management, in large part are still individual business rationale, in the electronic data-processing stage, and units from transaction processing system to support system to deal with the real has also established a predictive control and support functions of management decision-making Information systems. Although the information system has a certain development, business process automation control office has made great progress, but far from perfect. Should make full use of the computer processing of information, we must start from the current situation, look to the future, the development of suitable units, a small industry management system, or even one-step, such as salary management system, and then gradually improve, and constantly expanded. Management Information System is one of the characteristics of centralized data, using the database. Use database technology to address data sharing issues. Database with a certain data model organization of data, data-oriented systems, procedures independent of the data, and data independence, to reduce data redundancy and inconsistency, and easy programming, expansion, removal. In particular, the 20th century the late 1970s distributed, in the face of object database, so that data and data from the operation as an object database management system to better use and reduce the possibility of problems. Attribute their inheritance in object share data And operation of great convenience to the users. All in all management information system is set scientific。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Discussing about the successful factors of ERP projectsimplementation and the risk management.The primary functions of Enterprise Resource Planning (ERP) are to integrate the inter-departmental operation procedures and Management Information System (MIS) modules, and to reallocate the resources of a company. How to successfully implement an ERP system in an organization is always a hot research topic for researchers as well as a pending problem for an organization that wants to implement it. A case study on the selection of system suppliers and contract negotiation during the ERP implementation of a local construction company in Taiwan, after reviewing the common key success factors discussed in the literature, discussed seven issues: coding system, working process reengineering, priority of ERP functionality implementation, customization, participant roles, consultant role and performance level of subcontractor, which also affected the implementation.Lessons learned from the case study in discussed seven issues are valuable for a construction company in deciding to implement an ERP system. This study suggests that additional case studies are necessary for the successful application of ERP systems in the construction industry. ERP implementation is a 'Triple Play' that combines people, technology, and processes. It embodies a complex implementation process, especially in developing countries like China, often taking several years, huge amount of fund and involving a major business process reengineering exercise. An attempt has been made to identify some Chinese-specific difficulties in the implementation process and provide solutions to implement ERP system successfully through questionnaire survey, interviews, and secondary data. On the basis of analysis of questionnaire results, some common difficulties have been explored by authors, such as support of top management, costly and time-consuming, cultural differences, technical complexity, lack of professional personnel, and inner resistance. The difficulties are largely due to the nature of enterprise's ownership and size. Suggested solutions to overcome these difficulties: ERP software packages selection, ERP implementation team, BPR, Training, and Outsourcing-Application Service Provider. These solutions can effectively solve ERP difficulties.Actually, ERP is widely used in many fields, from public sectors to individual business. Recently, service organizations have invested considerable resources in the implementation of Enterprise Resource Planning (ERP) systems, even using solutions initially targeted for manufacturing companies. To get an insight into how servicesapproach help ERP implementation, a review of ERP projects, especially in services, completed by six case studies has been undertaken. We identify and discuss some characteristics of services, which are discriminatory regarding manufacturing. Main characteristics identified deal with complete or partial integration, product or customer orientation, importance of labor, human factor. In conclusion, trends to standardization and integration seen in the industrial sector are also growing in services, but in different ways.Refers to the overseas some literature material, a successful ERP project, often needs to spend several year times, number thousands of US dollars can complete. Again turns head looks at the home, along with ERP skepticisms gaining ground, price war starting, ERP took one kind of software supplier's product, has actually goes down the god world tendency. ERP leader SAP also promoted Business the One product, the price has been lower than 100,000.Even if the ERP software can achieve free, or like the IBM esteem according to the boundary which must collect fees, implements the angle from the entire enterprise, considers the personnel, training, the maintenance, the service reorganization, the re-development, three, n development, its expense should also in several 1,000,000 and even surely the scale. This speaking of the domestic enterprise, already was not the small number.But, some many enterprises harbor the beautiful dream, steps the ERP implementation the difficult travel. In which also has many projects to be defeated comes to an end. But regarding these final survivors, whether can the halberd be also put in storage, drinks wine to sing loudly? In fact, the enterprise implements the ERP project after the success will face implements a bigger risk. In future five to ten years in, some solid ERP risk management mechanism had decided whether the enterprise can obtain benefits truly in the initial ERP investment.The project is "for completes the disposable endeavor which some unique product or the service station do", the project "the distinctive quality" had decided the project not impossible was by with the before identical way, simultaneously, the project which completed by and the before identical person must create the product or the service, as well as the project possibly involved the scope, the time and the cost all not impossible started when the project completely to determine, therefore, carried on in the process in the project also corresponding to be able to appear the massive uncertainty, namely project risk. Below this article mentioned "the risk" is refers to the project "disadvantageously" the element of certainty. Exists to the projectdisadvantageous risk in any project, often and can give the project the advancement and the project success brings the negative influence. Once the risk occurs, its influence is various, like causes the project product/service the function to be unable to satisfy the customer the need, the project expense surpasses the budget, the project plan dragging or is compelled to cancel and so on, it finally manifests for customer degree of satisfaction depression. Therefore, the recognition risk, the appraisal risk and take the measure to be supposed to be the risk management have the extremely vital significance to the risk to the project management.Ⅰ Risk management concrete contentThe project risk management mainly divides into following several steps: The risk recognition, the qualitative/quota risk analysis, the risk should to plan the establishment and the risk monitoring.1. risk recognitionsThe risk recognition, is refers distinguishes and records possibly has the adverse effect to the project the factor. Because the project is in develops in unceasingly the change process, therefore the risk recognition also passes through in the entire project implementation entire process, but is not merely the project initial stage. The risk recognition is not the disposable work, but need more systems, crosswise thought. Possesses nearly about the project plan and the information all possibly takes the risk recognition the basis, like project progress and cost plan, work decomposition structure, project organizational structure, project scope, similar project historical information and so on. Needs to pay attention, all risks all may carry on the management by no means through the risk recognition. The risk recognition only can discover the known risk (for example: In the known project organization some member ability cannot satisfy the request completely) or the known unknown risk (known-unknown, namely "event name known", like "customer side personnel participates in dynamics being insufficient"); Before but certain risks, as a result of the project distinctive quality, not impossible to occur in it know in advance (unknown-unknown, namely unknown-unknown risk).2. qualitative/quota risk analysisThe latent risk quantity distinguishes which through the risk recognition process are very many, but these latent risks to the project the influence are various. "The risk analysis" namely through the analysis, the comparison, the appraisal and so on each way, to determined various risks the importance, sorts to the risk and appraises it tothe project possible consequence, thus causes the project to implement the personnel to be possible to concentrate the main energy in the few in number main risk, thus enable the project the overall risk to be under the effective control.The risk analysis mainly may use the method includes: Riskprobability/influence appraisal matrix, sensitive analysis, simulation and so on. When carries on the above analysis, mainly pays attention to following several risk factor: Risk probability: Namely the risk event occurs possible percentage expression. This numeral is, like the expert who obtains through the subjective judgment appraises, the interview or the basis before similar project historical information.Risk influence: Namely the risk has possibly the influence size which creates to the project. This kind of influence is possibly in the time, possibly is in the cost, also is possibly other various aspects.Risk value (required value EMV): The risk value = risk probability * risk influence, is to the risk the influence most direct appraisal which creates to the project, its overall evaluation probability with has affected two aspects the factors.3. risks should plan the establishmentThe risk should lie in to the plan goal through the formulation corresponding measure, comes to be supposed to the risk the threat which possibly creates to the project.Most often uses should to threat several measures be: The circumvention, reduces, the shift, accepts.The circumvention, namely eliminates this risk through the elimination risk origin;Reduces, namely through takes the measure to reduce "the risk probability" or "the risk influence", thus achieved reduces the risk value the result;The shift, soon the risk shifts to another side, like purchase insurance, sub package and so on;Accepts, namely does not take the measure to this risk, accepts result which it creates, or occurs after this risk uses the contingency plan to carry on processing again. Selects what method to come specifically to be supposed to some risk, is decided in this risk value (EMV), plans to adopt should to the measure possible cost, the project management personnel treat the risk the manner (utility function) the type and so on various aspects, cannot be generally spoken.The risk should be aims at the risk to the plan which distinguishes to carry on; Regarding the unknown risk, not impossible to choose in advance the formulationcorresponding to be supposed to plan or the contingency plan, therefore, may stockpile using the management should be right.Ⅱ ERP project implementation risk managementThe different type project has the different type risk. The ERP project implementation risk has its particularity similarly. The following gives a briefing to in the ERP project implementation process risk management measure, the single opinion, only supplies the reference.ERP project implementation main risk and should to the measure:As mentioned above, "possesses nearly about the project plan and the information all possibly takes the risk recognition the basis, like project progress and cost plan, work decomposition structure, project organizational structure, project scope, similar project historical information and so on." In the ERP project risk recognition process, may take the project plan as the clue, the recognition project in various aspects risk. In the implementation process, should pay attention to following several aspects specially the risk:1) project scope riskThe project purchase management usually has three contract ways, namely: The solid fixed price or the total price contract, the cost reimburse (add reward) the contract, the unit price contract. The usual uncertainty is bigger, a risk bigger project, more tends to in using depends on after the contract way. This also is overseas and the domestic part ERP supplier uses in the implementation service according to the human day provides serves and charges the fee the reason. But selects this method, the buyer (i.e. customer) has the big risk, therefore, the domestic very many customers favor in work out the implementation contract of service by the fixed price. But this contract way, then (i.e. consultant side) has the big risk regarding the seller. Under this premise, if the project scope definition is not clear, possibly causes the round turns to have the difference to the project scope cognition: The seller hoped reduces the implementation scope as far as possible, by smallest cost closing performance; But the buyer hoped ERP system all function many implementations, obtains as far as possible by the fixed price the greatest income. If the bilateral difference is big, cannot achieve consistently, then can create the efficiency inevitably to be low, wrangles mutually.Therefore, in the ERP project contract, should make as far as possible the clear limits to the project implementation scope, cuts cannot pause in "the implementationfinance module" perhaps "the implementation receivable, the manipulation, the general ledger management" and so on in stratification plane.Rather multi-flowered some time before in project implementation scope limits work, also do not have in the project implementation process, facing ERP many functions, the implementation side and the user side is unyielding, or the forced concessions, invests a bigger energy in the project, but causes the project not to be able to complete on time.2) project progress riskAbout the ERP project implementation cycle, at present has emphasizes "fast" the tendency in the propaganda. But ERP project progress control certainly not easy matter, not only is decided by consultant firm's ability, simultaneously also to a great extent receives the customer side to the ERP expected value whether reasonable, to the scope controls whether effective, to project investment (including personnel time investment and fund and so on investment) whether enough and so on aspect influences.Provides elder brother Shan Shitong by the divine land numerical code who the ERP system and is responsible to implement the metal, in a short time makes something a matter of political line successfully, one of reasons is easy to fly the ERP implementation group integrity mature to induct the mechanism and consultant personnel's remarkable quality, smoothly has assisted the world effectively with the metal political line work. Starts from the political line then to have special consultant to be responsible to induct the implementation entire the plan, the long-term accumulation profession knowledge and the managerial experience have also promoted the entire ERP operation level, has properly dealt with in the political line work issue. The user has the intense approval to the project minute stage implementation, only emphasizes in the first stage to the basic function realization, but the massive work will remain after the political line or improve in continually the process.But in the actual operation, by no means all users all have this kind of understanding and the approval to the ERP implementation, therefore, in project progress plan time, constantly when project progress plan strives for quickly, even is pursues some to have the special significance date sedulously to take the project milestone, will create the very tremendous pressure to the project progress control.In fact, the very many project defeat, is precisely is attributed to the project progress to appear the dragging, but causes the project team despondency, the efficiency to be low. Therefore, the ERP project implementation time management, needs to consider each kind of latency fully, suitable conservative; The duty decomposes the detailed degree of fineness to be moderate, is advantageous for the inspection; In the implementation, should emphasize the project according to the progress execution importance, in considered when any question, all must take the maintenance progress the precondition; At the same time, reasonably and follows up fast using rushing a job and so on the methods, uses the resources fully.3) project human resources riskThe human resources are in the ERP project implementation process the most essential resources. Guaranteed the appropriate person, participates in the project by the enough energy, is the project success implementation basic guarantee.In the ERP project implementation has each kind of role, should have the quality to each kind of role, we no longer give unnecessary detail in this. Must reduce the project the human resources risk, must guarantee enters and undertakes role each kind of project to the project in to do is the human satisfies the project request. Therefore, implements both sides to be supposed to participate in the personnel carrying on the earnest appraisal, this kind of appraisal should be the bilateral surface, not only is the user to consults consultant's appraisal, also should include the consultant firm to the user side member who participates in the project (in under the domestic present environment, mainly is refers to essential user) the appraisal. At the same time, should guarantee the project personnel to the project investment degree. Should participation the ERP project personnel's achievement to appraise and the ERP project implementation condition is connected, is clear about the ERP project is in this stage project correlation personnel most important labor of duty; Formulates the suitable rewards and punishment measure; Establishes "the member project" in the enterprise the thought, layer upon layer "the member", namely all levels of people in charge downward exercises in view of the ERP implementation plenary powers, shoulders the entire responsibility to on, extends the member from the individual concept to the organic synthesis community concept.4) The risk that people don't understand ERP correctlySome enterprises regard as ERP the business management the panacea, thought since ERP "the function is formidable", so long as on ERP, enterprise's all questionshave then been easily solved, or thought enterprise's all flows all may integrate to ERP in; Also some people simple regard as ERP the current service flow the computerization.浅谈ERP项目实施成功因素和风险管理ERP —Enterprise Resource Planning 企业资源计划系统,是指建立在信息技术基础上,以系统化的管理思想,为企业决策层及员工提供决策运行手段的管理平台。