储氢材料概述详解

合集下载

储氢材料课件

储氢材料课件
安全问题
确保储氢材料在使用过程中的安全性,解决潜在 的安全隐患。
05
结论与展望
储氢材料的重要地位与作用
01
能源储存与运输
储氢材料作为高效的能源储存和运输介质,具有高能量密度和易于储
存的优点,为可再生能源的大规模利用提供解决方案。
02
节能减排
储氢材料可以用于制备氢气,替代传统的化石燃料,从而减少环境污
降低成本
通过改进制备工艺、寻找低成本原材料等方法,降低储氢材料的 成本,提高其竞争力。
实现规模化生产
提高储氢材料的生产效率,实现规模化生产,以满足市场需求。
储氢材料的技术突破与挑战
材料稳定性
提高储氢材料的稳定性,以确保其在多次充放电 循环后仍能保持良好的性能。
高效制氢技术
研发高效的制氢技术,以实现储氢材料的快速充 放和高效利用。
用于电动汽车、无人机等移动设备,提供可靠的 能源供应,提高续航能力。
分布式能源系统
利用储氢技术将可再生能源储存,在需要时释放 ,有效解决可再生能源发电的不稳定性问题。
燃料电池领域
质子交换膜燃料电池(PEMFC)
储氢材料作为氢源,为燃料电池提供高纯度氢气,适用于汽车、航空航天等领域 。
固体氧化物燃料电池(SOFC)
重要影响。
常见的储氢材料晶体结构
02
如金属有机框架(MOFs)、配位聚合物(CPs)、共价有机框架
(COFs)等。
晶体结构与孔径和比表面积的关系
03
储氢材料的孔径和比表面积对其储氢性能也有重要影响,这些
性质又与晶体结构密切相关。
储氢材料的物理性能
孔径和比表面积
储氢材料通常具有较大的孔径和比表面积,这样 可以提高其储氢能力。

储氢材料简介精选课件 (一)

储氢材料简介精选课件 (一)

储氢材料简介精选课件 (一)
储氢材料是一种用于储存氢气的材料,是未来氢能源发展的重要组成部分。

因为氢气是一种很容易燃烧的气体,而且能量密度高,因此储氢材料的研发和应用对于氢能源的发展具有重要意义。

本文将为大家介绍一些储氢材料的基本信息和特点。

一、金属储氢材料
金属储氢材料是最早被研究和应用的储氢材料之一。

金属储氢材料的优点是氢气吸附能力强,氢气释放速率高,储氢量大。

但其缺点也是显而易见的,金属储氢材料本身质量较大,不便于携带和使用。

二、碳基储氢材料
碳基储氢材料是一种储氢材料,其基本原理是将氢气吸附在碳材料表面上。

其优点是储氢量大,可重复使用,成本低廉,但其缺点也非常明显,碳基储氢材料的反应速率较低,吸氢量和释氢量不稳定。

三、氮杂环化合物储氢材料
相比于其他储氢材料,氮杂环化合物储氢材料的储氢量更高。

其优点是储氢量大,对氢气的吸附和释放速度快,但其缺点也很明显,需要高温和高压环境才能实现氧化物的还原或者还原氧化物。

四、化学储氢材料
化学储氢材料是利用化学反应将氢气储存在其内部的储氢材料。

其优点是原料易得,储氢周期长,但其缺点也非常明显,从化学反应的角
度来看,储氢和释氢的过程较为复杂,容易发生不可逆反应,因此化学储氢材料在实际应用中存在一定的难度。

总之,储氢材料的研究和应用是未来氢能源发展的重要组成部分。

通过对现有储氢材料的研究和开发,实现氢能源的可持续发展。

储氢材料详细资料大全

储氢材料详细资料大全

储氢材料详细资料大全储氢材料(hydrogen storage material)一类能可逆地吸收和释放氢气的材料。

最早发现的是金属钯,1体积钯能溶解几百体积的氢气,但钯很贵,缺少实用价值。

基本介绍•中文名:储氢材料•外文名:hydrogen storage material•时间:20世纪70年代以后•不同储氢方式:气态、固态、液态•常见材料:合金、有机液体以及纳米储氢材料•要求:安全、成本低、容量大、使用方便储氢材料简介,储氢方式,气态储氢,液态储氢,固态储氢,存在问题,常见储氢材料,储氢材料简介储氢材料(hydrogen storage material)随着工业的发展和人们物质生活水平的提高,能源的需求也与日俱增。

由于近几十年来使用的能源主要来自化石燃料(如煤、石油和天然气等),而其使用不可避免地污染环境,再加上其储量有限,所以寻找可再生的绿色能源迫在眉睫。

氢能作为一种储量丰富、来源广泛、能量密度高的绿色能源及能源载体,正引起人们的广泛关注。

氢能的开发和利用受到美、日、德、中、加等国家的高度重视,以期在21世纪中叶进入“氢能经济(hydrogen economy)”时代。

氢能利用需要解决以下 3 个问题:氢的制取、储运和套用 ,而氢能的储运则是氢能套用的关键。

氢在通常条件下以气态形式存在, 且易燃、易爆、易扩散,使得人们在实际套用中要优先考虑氢储存和运输中的安全、高效和无泄漏损失,这就给储存和运输带来很大的困难。

储氢方式气态储氢气态存储是对氢气加压,减小体积,以气体形式储存于特定容器中,根据压力大小的不同,气态储存又可分为低压储存和高压储存。

氢气可以像天然气一样用低压储存,使用巨大的水密封储槽。

该 ... 适合大规模储存气体时使用。

由于氢的密度太低,套用不多。

气态高压储存是最普通和最直接的储存方式,通过高压阀的调节就可以直接将氢气释放出来。

普通高压气态储氢是一种套用广泛、简便易行的储氢方式 ,而且成本低, 充放气速度快 , 且在常温下就可进行。

储氢材料分类

储氢材料分类

储氢材料分类目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。

下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。

一,合金储氢材料储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。

合金作为储氢材料要满足一定的要求,首先其氢化物的生成热要适当,如果生成热太高,生成的氢化物过于稳定,释放氢时就需要较高的温度.而如果生成热太低,则不易吸收氢。

其次形成氢化物的平衡压要适当,最好在室温附近只有几个大气压,便于吸放氢,而且要吸放速度快,这样才能够满足实际应用的需求。

另外合金及其氢化物对水、氧和二氧化碳等杂质敏感性小,反复吸放氢时,材料性能不至于恶化。

而且,储氢材料的氢化物还要满足在存储与运输过程中性能可靠、安全、无害、化学性质稳定等条件。

现在已研究的并且符合上述要求的有镁系、稀土系、钛系和锆系等。

在上述储氢材料中,镁系储氢合金具有较高的储氢容量,而且吸放氢平台好、资源丰富、价格低廉,应用前景十分诱人。

镁可直接与氢反应,在300—400℃和较高的压力下, 反应生成Mg和H2反应生成MgH2: Mg + H2= MgH2 △H=-74.6kJ/mol。

MgH2理论氢含量可达7.6% , 具有金红石结构, 性能较稳定, 在287 ℃时分解压为101.3kPa。

由于纯镁的吸放氢反应动力学性能差, 吸放氢温度高, 所以纯镁很少被直接用来储存氢气,为此人们又开始研究镁基储氢合金材料。

到目前为止, 人们已对300多种重要的镁基储氢合金材料进行了研究。

二,液态有机物储氢材料有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。

加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。

储氢材料

储氢材料

金表面发生吸附作用,同时其 H—H键解离,变为氢原子;而 后氢原子就与金属反应,生成 金属氢化物MHx,从而达到储 氢的目的。
Hydrogen on 四面体晶格中—H2 Tetrahedral Sites
Hydrogen on 八面体晶格中—H2 Octahedral Sites
吸附——碳纳米管(CNT)
储氢材料
H2的优点:
H2 普遍存在——资源丰富 H2 热值高——能量转化率高 H2 氧化成H2O——环保
应用瓶颈:
安全高效的储氢技术
讲解要点:
储氢材料的定义 储氢材料的分类
储氢材料的应用
储氢材料的定义
H2 H2 H2
吸收
H2 H 2 H2
储氢材料 :(hydrogen storage material)
是能可逆地吸收和释放氢气的材料。
储 氢 材 料 的 分 类
传统 储氢材料
液化罐 高压 罐 储氢金属 有机液体储 氢 储氢配合物 碳纳米管 超级活性碳 微孔聚合物 By Laura
化学储氢材料
吸附储氢材料

传统——液化罐
加 压 液 化
第三级火箭燃料
化学——储氢金属
M + H2
x 2
MHx
其储氢机理为:首先H2在合
在碳纳米管发生物理吸附,氢 以H2的形式存在。根据构成管 壁碳原子的层数不同,碳纳米 管可分为单壁纳米碳管(SWNT) 和多壁纳米碳管(MWNT)。
单壁纳米碳 管TEM照片
多壁纳米碳 管TEM照片
储 氢 材 料 的 应 用
“固态氢”的储存与运输
空调制冷与热泵 热传感器
真空技术 氢化物—镍电池

金属材料之储氢材料

金属材料之储氢材料
02
储氢材料通过物理吸附或化学反 应的方式储存氢气,具有高容量 、高纯度、低成本等优点。
储氢材料的分类
根据储氢原理,储氢材料可分为 物理吸附储氢和化学反应储氢两
类。
物理吸附储氢材料主要利用材料 表面的物理吸附作用储存氢气, 具有较高的储存密度和安全性。
化学反应储氢材料通过化学反应 将氢气储存于材料的化学键中, 具有较高的储存容量和较低的成
02 金属储氢材料的特性
金属储氢原理
金属与氢气发生反应,通过物理吸附或化学键合的方式将氢气储存于金属材料中。
金属储氢过程中,氢气与金属原子之间相互作用,形成稳定的金属氢化物。
金属储氢的原理主要基于金属的化学性质和晶体结构,不同的金属具有不同的储氢 能力和特性。
金属储氢材料的优点
01
02
03
高储氢密度
燃油效率和环保性能。
汽车热能回收
03
金属储氢材料可以吸收和释放大量的热能,可用于汽车热能回
收和利用。
感谢您的观看
THANKS
降低成本和提高安全性
成本
金属储氢材料的成本较高,限制了其 大规模应用。通过降低材料成本、优 化制备工艺和提高回收利用率,可以 降低金属储氢材料的成本。
安全性
金属储氢材料在充放氢过程中存在一 定的安全隐患。因此,提高金属储氢 材料的安全性是当前面临的重要挑战。 通过改进材料结构和控制反应条件, 可以降低安全风险。
材料复合化
金属间化合物
多层复合材料
通过控制金属元素的配比和合成条件, 制备具有优异性能的金属间化合物储 氢材料。
将不同种类的金属储氢材料进行多层 复合,利用各层材料的优点实现优异 的综合性能。
纳米复合材料
将金属储氢材料与纳米尺度的其他材 料(如碳纳米管、陶瓷颗粒等)进行 复合,以提高材料的储氢性能和机械 强度。

储氢材料

储氢材料
人们研究了苯在Pt 电极上的ECH反应
2.2.1 碳纳米管储氢材料简介
碳纳米管(CNTs,Carbon Nanotubes )是一种主要由碳
六边形弯曲处为碳五边形和碳七边形组成的单层或多层纳米
管状材料。
1991年日本NEC公司的Iijima教授最先发现了碳纳米管。
碳纳米管分为单壁碳纳米管(SWNT)和多壁碳纳米管
(MWNT)。
b.熔体冷却条件
冷却类型:正常冷却(NC)
快速冷却(FC) 迅速淬冷(RQ) 部分RQ合金在950°C下退火12h(RQ/HT)
高 倍 率 放 电 效 率 70
68
67 64
( 5c\0.2c
60 RQ/HT
冷却速度对电极的高倍率放电效率(HRDE)的影响
2.2 碳纳米管材料
氢化物
吸氢量/%(质量)
AB5
LaNi5 MmNi5 CaNi5 Ti1.2Mn1.8 TiCr1.8 ZrMn2 ZrV2 TiFe Mg2Ni
AB2
AB A2B
2.1.2 金属储氢材料的制备及研究方法
制备方法
传统熔炼法
氢化燃烧合成法 (HCS法)
还原扩散法
传统熔炼法
原材料 表面清理 感应熔炼
MOF-5的吸附等温线78K
MOF-5的吸附等温线298K
温度、压力对其储氢性能的影响
2.4 有机液体储氢
2.4.1 有机液体储氢材料简介
有机液体氢化物储氢是借助不饱和液体有机物与氢的一
对可逆反应,即加氢反应和脱氢反应实现的。加氢反应实现 氢的储存(化学键合),脱氢反应实现氢的释放。不饱和有机 液体化合物做储氢剂,可循环使用。
性能检测 注:虚线框为不一定处理工序

储氢材料课件

储氢材料课件

速吸放氢速率和良好平衡的储氢材料能够提高设备的充放氢效率。
储氢材料的性能评估
评估指标
评估储氢材料的性能主要依据其储氢能力、吸放氢速率 、可逆性、稳定性等指标。这些指标可以通过实验测试 获得。
材料筛选
根据实际应用需求,通过对比不同储氢材料的性能指标 ,可以筛选出适合特定应用的储氢材料。
材料改性
为了进一步提高储氢材料的性能,可以通过改性手段对 其进行处理,如表面改性、掺杂改性等,以改善其物理 化学性质。
储氢材料课件
xx年xx月xx日
目 录
• 储氢材料概述 • 储氢材料的性质与性能 • 储氢材料的制备方法 • 储氢材料的研究进展 • 储氢材料的未来发展趋势与挑战 • 结论与展望
01
储氢材料概述
储氢材料的定义
储氢材料是一种能够可逆地吸收和释放氢气的材料。 储氢材料通常具有较高的比表面积、良好的化学稳定性和较低的成本。
提高储氢材料的储氢性能
发展新型高性能储氢材料
研究新型高性能储氢材料的结构和性能,提高储氢材料的储氢 容量和储氢效率。
优化储氢材料的吸放氢性能
通过优化储氢材料的吸放氢性能,实现快速、可逆的吸放氢反应 ,提高储氢材料的实用性和安全性。
研究多尺度储氢材料
从纳米到宏观尺度,研究不同尺度储氢材料的性能和优化方法, 实现多尺度协同优化。
优化储氢材料的合成方法
改进和优化储氢材料的合成方法,实现低成本、大规模、可持续的制备和应用。
解决储氢材料的安全性和环境影响问题
1 2
提高储氢材料的安全性
研究储氢材料的热稳定性、化学稳定性、抗毒 性等安全性能,提高其使用安全性和可靠性。
降低储氢材料的环境影响
研究储氢材料的生命周期评估和环境影响,降 低其对环境的影响,实现可持续发展。

储氢材料介绍

储氢材料介绍

3
在以氢作为能源媒体的氢能体系中,
氢的贮存与运输是实际应用中的关键。
贮氢材料就是作为氢的贮存与运输媒 体而成为当前材料研究的一个热点项目。
4
贮氢材料(Hydrogen storage materials)是在通常条件下能可逆地大量
吸收和放出氢气的特种金属材料。
5
贮氢材料的作用相当于贮氢容器。
贮氢材料在室温和常压条件下能迅速
23
氢在各种金属中的溶解热H(kcal/mol)
24
可见IA-IVA族金属的氢的溶解热是负
(放热)的很大的值,称为吸收氢的元素;
VIA--VIII族金属显示出正(吸热)的值 或很小的负值,称为非吸收氢的元素; VA族金属刚好显示出两者中间的数值。
25
2、金属氢化物的能量贮存、转换
金属氢化物可以作为能量贮存、转换
的斜率可求
出 H,由直
平 衡 氢 压 /
线在lnp轴上
的截距可求
Mpa
出 S。
各种贮氢合金的平衡氢压与温度的关系 (Mm为混合稀土合金) 52
300K时,氢气的熵值为31cal/K.mol.H2,
与之相比,金属氢化物中氢的熵值较小,即
式:
mn MH n ( ) H 2 MH m 2
p3 p2
p1
C p1 B n2 n1 A 对应一个M原子的氢原子数/n
2 M (固) H 2 (气, p ) n
在下面的反应:
吸氢,放热
放氢,吸热
2 MH n (固) H n
完成之前,压力为一定值。
47
若相成分为n, 相成分为m,则在温
度T1时等压区域里的反应为:
mn MH n ( ) H 2 MH m 2

储氢材料

储氢材料

储氢材料的应用
一、载热系统 二、载电系统 三、设计制造成“氢库”储存氢 * 代替汽车、火车、飞机的油箱做动力源 *作为“油库”,随时供氢。 四、分离净化氢 *通过反复的吸、放氢可以得到高纯氢 五、氢化反应的催化剂、去除水中溶氧、制造氢 能电池
储氢材料的前景
最近美国特拉华大学的科学家制备了一种新的储氢材 料——碳化鸡毛纤维,该材料直径为6mm,比表面积可 达到100-450m2/g,孔体积为0.06-0.2cm3/g,孔径小于 1nm,成本是目前所有储氢材料中最廉价的,可接近能 源部的氢气系统成本标准。 相信在不久的将来储氢材料在汽车领域将走向实际应 用,并掀起一场全世界的环保革命。
金属有机骨架化合物
在不同的MOF化合物中,无机的金属基团一般都是四面体,不同的只是连接各四 面体的多元有机酸分子。用直线结构的二元酸(如对苯二甲酸)连接,可以得到 立方体形状的空穴;如果用平面三角结构的三元羧酸,就可以得到八面形状的空 穴(如图9)。不同连接体造成空穴的直径也不等。在较大的空穴中加入金属原子 或C60等物质填充(如图10),可以引入不同的作用力,这对于储氢可能会有帮助。 MOF之间的结构差异基本上由连接体决定,于是人们只通过替换有机酸分子就可 以随心所欲地生产出各种孔径的微孔材料,这对于优化微孔材料的储氢性能是一 个莫大的便利。
物理吸附材料
纳米碳材料 沸石 金属有机骨架化合物等。
储氢材料储氢原理
现以LaNi5(化学吸附材料)和金属有机骨架化合物 (物理吸附材料)为例。 许多金属及合金都有可逆吸收打量氢气的能力。氢气 与金属或合金反应形成氢化物的热力学可以用压力组成等温线来描述(LaNi5的数据)主体金属先以固 溶体形式溶解一些( α 相 )。当压力及金属中原子 氢的浓度增大时,局部氢原子相互作用变得显著,此 时就能观察到氢化物( β 相 )的成核与生长。两相 共存时,等温线出现一段平台期,其长度决定了在较 小压力变化下有多少H2能够被可逆地储存。在纯 β 相中,随浓度增加,H2的压力陡然上升。在更高的 H2压力下,会有另外的平台期和氢化物相形成。两 相共存区域终止于临界温度(TC),在此温度之上 相变没有平台期。

储氢材料

储氢材料

二、储氢合金
储氢合金在一定温度和压力下, 能可逆地吸收、 储存和释放H2。由于其储氢量大、污染少、制备 工艺相对成熟, 所以得到了广泛的应用。 储氢合金研究比较深入的主要有五种: 1)镁系 2)稀土系 3)钛系 4)锆系 5)V基固溶体储氢合金
1)镁系
镁基储氢材料以Mg2Ni 为代表。 镁合金密度小、储氢量大, 理论储氢质量分数达 71.6%, 是目前储氢材料研究的主要热点之一。 但其动力学性能以及在碱液中的循环寿命差, 因此 需要在动力学性能和循环寿命方面进行改善。近 年来, 主要对镁基合金化学组成的优化、合金的组 织结构及合金的表面改性等方面进行了相关的研 究,取得了一定进展。
2)稀土系
典型的稀土储氢合金La2Ni5 该合金具有吸氢快、易活化、平衡压力适中、易 调节、电催化活性好、高倍率放电性能好、对环 境污染小和循环寿命长等优点。 通过元素合金化、化学处理、非化学计量比、不 同的制备及热处理工艺等方法,La2Ni5型稀土储 氢合金作为商用电池的负极材料,目前该系列储 氢合金正向大容量、高寿命、耐低温、大电流等 方向发展。
五、有机液体氢化物储氢
有机液体氢化物储氢技术是借助不饱和液体有机 物与氢的一对可逆反应,即加氢反应和脱氢反应实 现的加氢反应实现氢的储存(化学键合),脱氢反应 实现氢的释放, 不饱和有机液体化合物做氢载体, 可循环使用。 有机液体氢化物储氢具有储氢量大、能量密度高、 储运安全方便等优点,因此被认为是未来储运氢能 的有效方法之一。
三、配位氢化物储氢
配位氢化物储氢材料是现有储氢材料中体积和质量 储氢密度最高的储氢材料,其主要代表是硼氢化钠。 硼氢化钠是强还原剂,在催化剂存在下,通过加水 分解反应可产生比其自身含氢量多的H2,供给燃料电 池, 同时副产物偏硼酸钠可通过电解、球磨等方法 生成硼氢化钠,实现物质和能量循环。 硼氢化钠水解制氢技术安全、方便,是目前一种比 较热门的制氢技术。具有以下优点:不燃烧,在碱 性溶液中能稳定存在;产生H2的速度容易控制;副 产物能被循环利用;H2纯度高, 储存效率高。

储氢材料概述范文

储氢材料概述范文

储氢材料概述范文储氢材料是指能够储存和释放氢气的物质。

随着氢能源的广泛应用,储氢材料的研究和开发已经成为一个热门领域。

本文将对目前常见的几种储氢材料进行概述,并探讨其优缺点及应用前景。

1.吸附储氢材料:吸附储氢材料是将氢气吸附在其表面上的材料。

常见的吸附储氢材料包括活性炭、金属有机框架(MOF)和多孔有机聚合物(POPs)。

吸附储氢材料的优点是具有较高的氢气储存密度和良好的可逆性,但其缺点是在吸附和释放过程中需要较高的温度和压力。

2.吸氢合金材料:吸氢合金材料是由金属和氢气形成化合物所构成的材料。

吸氢合金材料具有很高的氢气质量分数,能够在相对较低的温度和压力下吸附和释放氢气。

其中,铁、镁和钛等金属是常用的吸氢合金材料。

然而,吸氢合金材料的缺点是储氢量较低,且氢气的吸附和释放速度较慢。

3.化学储氢材料:化学储氢材料是通过在材料中形成化学键来储存氢气的。

常见的化学储氢材料包括金属氢化物、氮化物和储氢合金。

这些材料具有较高的储氢密度,但释放氢气时需要较高的温度和压力。

此外,化学储氢材料在储氢和释放过程中会有副产物生成的问题,需要进一步处理。

4.硼类材料:硼类材料包括硼氢化物和硼氮化物等。

这些材料具有很高的储氢密度,可以在相对较低的温度和压力下吸附和释放氢气。

硼类材料作为一种储氢材料具有潜在的应用前景,但其储氢和释放速率以及可逆性仍然需要进一步改进。

总结来说,吸附储氢材料、吸氢合金材料、化学储氢材料和硼类材料是目前常见的储氢材料。

各种储氢材料具有不同的特点和应用场景,在氢能源的开发和应用中有着重要的地位。

未来的研究还需要进一步提高储氢密度、降低储氢和释放的温度/压力要求,并解决副产物生成等问题,以实现储氢材料的可持续发展。

储氢材料简介范文

储氢材料简介范文

储氢材料简介范文引言:随着能源消耗的不断增加和环境污染的加剧,寻找一种高效、环保的能源储存技术变得越来越重要。

氢能作为一种清洁、可再生的能源,正在受到广泛的关注。

然而,氢气的储存一直是一个技术难题。

寻找一种合适的储氢材料是实现氢能利用的关键之一、本文将介绍几种常见的储氢材料,并对其特点和应用进行分析。

一、金属储氢材料金属储氢材料是最传统的一种储氢材料。

常见的金属储氢材料包括钛合金、镁合金、锆合金等。

这些材料具有储氢容量高、反应速率快等特点。

但是,金属储氢材料存在工艺复杂、储氢温度较高等问题,限制了其在实际应用中的推广。

二、吸附材料吸附材料是一种将氢气物理吸附在材料表面的方法。

常见的吸附材料包括活性炭、金属有机骨架、多孔有机聚合物等。

这些材料具有表面积大、容易制备等特点,但是吸附材料的储氢容量和吸附/释放速率较低,对性能的要求较高。

三、化学储氢材料化学储氢材料是将氢气以化学形式储存在材料中,并通过化学反应进行储氢和释放氢的过程。

常见的化学储氢材料包括氢化物、金属氢化物、有机液体等。

这些材料具有储氢容量高、储氢密度大等优点,但是存在反应速率慢、反应温度高等问题,对材料的选择和设计提出了挑战。

四、固态氢储存体系固态氢储存体系是一种结合了吸附和化学储氢方法的新型储氢技术。

其基本原理是将金属氢化物储氢剂与载体进行结合,通过吸附和化学反应双重方式来储存和释放氢气。

常见的固态氢储存体系包括氢化物储氢剂/多孔材料、氢化物储氢剂/焊接材料等。

这些储氢体系克服了传统储氢材料的缺点,具有储氢性能稳定、循环寿命长等优点。

结尾:综上所述,储氢材料是实现氢能利用的关键之一、金属储氢材料、吸附材料、化学储氢材料和固态氢储存体系都是常见的储氢材料。

每种材料都有其独特的优点和局限性。

未来的研究应该注重提高储氢容量、改善储氢速率、降低储氢温度等方面的性能。

随着技术的不断发展,相信储氢材料的性能将得到显著的改善,为氢能的广泛应用提供更加可靠的支持。

储氢材料综述ppt课件

储氢材料综述ppt课件
储氢材料研究概况
1
目录
储氢材料的要求 储氢材料的分类 小结
2
储氢材料的要求
单位质量、单位体积吸氢量高 不易于空气中的气体反应 用于储氢时生成热小 反复吸放氢时粉化倾向小 成本低
3
储氢材料分类
物理方式储氢 化学方式储氢
4
物理方式储氢
活性炭、碳纳米材料等利用物理吸附储氢。 活性炭
AH2+B↔ABx+xB 反应焓较小,从而降低了 氢化物的分解温度,且易 于可逆加氢反应的进行
不同脱氢反应路径焓变示意图[3]
22
小结
I. 金属(合金)储氢存在着储氢量低等问题,常用改变 元素化学计量比、元素替代等方法改善其性能。
II. 络合氢化物储氢量高,但是放氢困难,常用掺杂等方 法改善其性能。
24
谢谢观看
25
23
参考文献
[1]胡子龙. 贮氢材料[M]. 北京:化学工业出版社, 2002. [2]Liu Y,Chu L,Zhou H,Gao M,Wang Q.A novel catalyst precursor K2YiF6 with remarkable synergetic effects of K,Ti and F together on reversible hydrogen storage of NaAlH4[J]mun,2011,47:1740-1742. [3]Vajo J J,Olson G L.Hydrogen storage in destabilized chemical systems[J].Scripta Mater,2007,56:829-834. [4]李永涛.配位氢化物的储氢特性研究[D].复旦大学,2011.

储氢合金材料简介

储氢合金材料简介

储氢合金材料简介氢是一种高效能且对自然环境无污染的燃料,1千克氢燃烧时可放出14万焦耳的热量,是同样重量汽油发热量的3倍。

氢气可以通过电解水的方法产生,同时它燃烧后又生成水,因此氢气是不污染环境、取之不尽、用之不竭的新型能源。

氢在常温下是气体,脾气很暴躁,当与空气混合浓度达到4~97% 范围时就会与明火燃烧爆炸,这就给使用、运输和储存带来了困难。

因此,若没有一种方便的储存氢气的办法,氢就不可能作为普通的常规能源得到广泛应用。

常规储氢办法包括高压钢瓶装压缩气态氢和一种特制瓶装液态氢两种。

利用高压钢瓶(氢气瓶)来储存氢气,瓶内最高可加压到几百个大气压,但即使这样,由于钢瓶储存氢气的容积小,存储量有限,因此所装氢气的质量不到氢气瓶质量的1%,而且既笨重,又有爆炸的危险。

采用液态氢储存方式,就是先将气态氢降温到-253℃变为液体后保存在一个特殊结构的液体氢储存箱,然而由于液体储存箱非常庞大,而且需要极好的绝热装置来隔热,才能防止液态氢不会沸腾汽化以至流失。

目前,液氢主要用作火箭和航天飞机等特殊领域的液体燃料,它与液氧燃烧放出巨大的能量来推动火箭和航天飞机飞行。

总的来说,高压储氢和液态储氢两种存储氢方式,都需要消耗大量的机械能来压缩氢气或液化氢气,因此能耗非常高,且存在存储容器笨重不便、不安全等缺点,因而其应用受到限制。

图 1 储氢钢瓶图 2 以液氢为燃料的火箭20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal ),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。

而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。

储氢材料调研报告

储氢材料调研报告

储氢材料调研报告
《储氢材料调研报告》
一、引言
随着全球资源问题日益凸显,氢能作为清洁能源备受瞩目。

储氢技术是氢能利用的重要环节,而储氢材料的发展则成为研究的热点。

本报告旨在对当前储氢材料的研究现状进行调研,为相关领域的科研人员和企业提供参考。

二、储氢材料概述
储氢材料是指能够吸附、吸收或储存氢气的材料。

它们可以通过物理吸附、化学吸附或固体溶解等方式储存氢气,并在需要时释放出来。

常见的储氢材料包括金属氢化物、碳纳米结构、金属有机框架、氢化物等。

三、储氢材料的研究现状
1. 金属氢化物
金属氢化物是最常见的储氢材料之一,可以通过调控合金组成和微观结构来提高其储氢性能。

目前,氧化镁基金属氢化物和LaNi5等金属氢化物的研究取得了一定的进展。

2. 碳纳米结构
碳纳米结构具有较大的比表面积和丰富的活性位点,是理想的储氢材料。

石墨烯、碳纳米管及其衍生物在储氢领域也受到了广泛关注。

3. 金属有机框架
金属有机框架是一类新型多孔材料,由金属离子和有机连接体组成,具有调控孔隙结构、化学稳定性和多种储氢机制的潜力。

四、展望与挑战
储氢材料的研究仍面临着诸多挑战,如储氢量、吸附/解吸温度、循环稳定性等问题亟待解决。

未来,通过材料设计、合成技术和储氢系统的完善,储氢材料有望取得更大的突破。

综上所述,储氢材料是实现氢能利用的关键环节,其研究现状及发展趋势将对氢能产业的发展产生深远影响。

我们期待通过这份调研报告,为相关领域的科研人员和企业提供有益参考,推动储氢材料的创新与应用。

储氢材料的储氢原理及应用

储氢材料的储氢原理及应用

储氢材料的储氢原理及应用储氢材料是指能够吸附、储存和释放氢气的材料。

储氢技术是目前广泛研究和探索的关键能源领域之一,因为氢气是一种高能量和清洁的能源来源。

以下是关于储氢材料的储氢原理及其应用的详细介绍。

一、储氢原理储氢材料的储氢原理主要包括吸附、化学反应和物理吸附等。

1. 吸附储氢吸附储氢是利用储氢材料的孔隙结构和表面积来吸附氢气分子。

常见的吸附储氢材料有活性炭、金属有机骨架材料(MOFs)和碳纳米管等。

这些材料具有高比表面积,能够吸附大量氢气分子。

在一定的压力和温度条件下,储氢材料可以吸附氢气并保持稳定,当需要释放氢气时,也可以通过调整压力和温度来释放。

2. 化学反应储氢化学反应储氢是指将氢气与储氢材料之间进行化学反应,从而形成氢化物。

在适当的条件下,氢气可以与某些金属或合金产生化学反应,形成金属氢化物。

常见的化学反应储氢材料有镁、锂等金属和它们的合金。

这些金属或合金在吸收氢气时会形成相对稳定的金属氢化物,当需要释放氢气时可通过升高温度、减小压力或添加催化剂等方式实现。

3. 物理吸附储氢物理吸附储氢是指利用储氢材料和氢气之间的范德华力来吸附氢气。

常见的物理吸附材料有多孔材料和各种纳米材料。

物理吸附储氢具有高氢负荷能力,吸附和释放速度较快,但在低温下储氢效果较差。

二、储氢材料的应用储氢材料的应用可以分为储能、氢气燃料和移动能源等方面。

1. 储能应用储能是储氢材料的主要应用之一。

通过将电能或其他能量形式转化成氢气的形式进行储存,在需要时释放氢气来产生电能,从而实现能量的存储和利用。

储氢材料在储能领域的应用可以提高能源储存效率,弥补电能储存的不足,并能够用于平稳供电和峰值需求。

2. 氢气燃料应用利用储氢材料储存的氢气作为燃料是储氢技术的另一个重要应用。

储氢材料可以储存大量的氢气,为氢燃料电池等设备提供持续稳定的氢气供应。

氢气燃料具有高燃烧效率和零排放的特点,被广泛应用于汽车、工业生产和发电等领域。

3. 移动能源应用储氢材料在移动能源领域的应用主要是为了解决电动汽车等电存储设备能量密度较低的问题。

储氢材料

储氢材料
储氢材料


一、能源现状 二、储氢材料 三、储氢材料应用
四、储氢材料未来发展趋势
能源现状
能源现状
传统能源
化石燃料:煤、石油、天然气等。 优点:浓缩能源; 易储存; 易运输。
缺点:不可再生资源;
无法满足消耗增长率; 破坏环境; 军事冲突。
能源现状
新能源
新能源:太阳能、风能、核能、地热能、海洋能、生物能、
储氢材料
储氢合金应具备的条件
①高的储氢容量。 ②氢化物的生成热适当。
③平衡氢压适中。
④吸、放氢速度快。
⑤容易活化。
⑥良好的抗气体杂质中独特性。 ⑦长期循环稳定性。 ⑧原材料资源丰富,价格便宜。
储氢材料
储氢材料
2.液态有机物储氢材料
有机液体氢化物储氢是借助不饱和液体有机物与氢的一 对可逆反应,即加氢和脱氢反应来实现的。
平衡压差驱动氢气流动,使两种氢化物分别处于吸氢(放热) 和放氢(吸热)状态,从而达到增热或制冷的目的。 优点:①可利用废热、太阳能等低品位的热源驱动热泵工作。 ②系统通过气固相作用,无磨损、无噪声。 ③系统工作范围大,温度可调。 ④可达到夏季制冷、冬季供暖的双效目的。
储氢材料的应用
金属氢化物氢压缩机
缺点:氢流量受合金吸收、释放氢的循环速度限制。
储氢材料的应用
制取高纯度氢气
基本原理:含有杂质的氢气与储氢合金接触,氢气被 吸收,而杂质则被吸附于合金表面,除去杂质后,再
使氢化物放氢,则可得到高纯度的氢气,其纯度可高
达99.9999%。
TiMn1.5和稀土系储氢合金是应用效果较为理想的。
储氢材料的应用
究, 各种纳米管材料、金属有机物多孔材料等都具有非常
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.20TiFeH1.04 + H2 → 2.20TiFeH1.95 ( phase )
15
Seminar I
Fuel Cell R&D Center
PCT curves of TiFe alloy
TiFe(40 ℃)
16
Seminar I
Fuel Cell R&D Center
镁系
典型代表:Mg2Ni,美Brookhaven国家实验 室首先报道
18
Seminar I
Fuel Cell R&D Center
19
Seminar I
Fuel Cell R&D Center
接上图
20
Seminar I
Fuel Cell R&D Center
3.2配位氢化物储氢
碱金属(Li、Na、K)或碱土金属(Mg、 Ca)与第三主族元素(B、Al)形成 储氢容量高 再氢化难(LiAlH4在TiCl3、 TiCl4等催化下180℃ ,
2.1 体积比较
4
Seminar I
Fuel Cell R&amrage capacity (wt%)
0 1 2 3 4 5
LaNi5H6
1.4wt%
per weight
TiFeH1.9
1.8wt%
Mg2NiH4
3.6wt%
Carbon nanotube (RT,10MPa 氢压)
8MPa氢压下获得5%的可逆储放氢容量)
21
金属配位氢化物的的主要性能

22
Seminar I
Fuel Cell R&D Center
四 储氢材料的应用
氢的贮存与运输 燃氢汽车 金属氢化物热泵 热- 机械能转换 氢的分离、回收与净化 用作催化剂 MH 作为催化剂主要用于合成氨、有机化合物 的加氢、脱氢等反应中。
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
8
Seminar I
Fuel Cell R&D Center
储氢合金材料特性
储氢量大,能量密度高(组分-压力曲线 宽而平坦,且滞后小) 吸氢和放氢速度快 反应热小,温度适宜、离解压适中 容易活化(储氢合金第一次与氢反应) 化学稳定性好,不易中毒
9
Seminar I
Fuel Cell R&D Center
四 储氢材料技术现状
4.1 金属氢化物 4.2 配位氢化物
10
Seminar I
Fuel Cell R&D Center
4.1 金属氢化物储氢
目前研制成功的: 稀土镧镍系 钛铁系 镁系 钛/锆系
11
Seminar I
0 1 2 3 4
4.2wt%
5
Hydrogen storage capacity (wt%)
5
Seminar I
Fuel Cell R&D Center
三 金属氢化物储氢原理
反应可逆 M + x/2H2 Abs. MHx - Q 氢与碱金属、碱土金属反应,形成离子型氢化 物,白色晶体,氢表现为H-,生成热大,反应 不可逆,不适宜于氢的储存 过渡金属与氢反应,形成金属氢化物,反应可 逆,氢表现为H-与H+之间的中间特性,具有储 氢功能 合金氢化物具有更高的储氢功能
12
Seminar I
Fuel Cell R&D Center
PCT curves of LaNi5 alloy
13
Seminar I
Fuel Cell R&D Center
钛铁系
典型代表:TiFe,美Brookhaven国家实验 室首先发明
价格低 室温下可逆储放氢
易被氧化
活化困难 抗杂质气体中毒能力差
1
二、不同储氢方式的比较
气态储氢:
1) 2)
能量密度低 不太安全 能耗高 对储罐绝热性能要求高
液态储氢:
1) 2)
2
二、不同储氢方式的比较
固态储氢的优势:
1) 2) 3) 4)
体积储氢容量高 无需高压及隔热容器 安全性好,无爆炸危险 可得到高纯氢,提高氢的附加值
3
Seminar I
Fuel Cell R&D Center
Fuel Cell R&D Center
稀土镧镍系储氢合金

典型代表:LaNi5 ,荷兰Philips实验室首先研制 特点:
活化容易 平衡压力适中且平坦,吸放氢平衡压差小 抗杂质气体中毒性能好 适合室温操作
经元素部分取代后的
MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成 分La、Ce、Pr、Nd)广泛用于镍/氢电池
Seminar I
Fuel Cell R&D Center
一 氢能储存方法
氢气储存有物理方法和化学方法


物理法:液氢储存、高压氢气储存、玻璃微球储存、 地下岩洞储存、活性炭吸附储存、碳纳米管储存 化学法:金属氢化物储存,有机液态氢化物储存 (用萘-萘烷或者苯-环己烷作为储存运输氢气的载体: 在100-150℃,0.1-0.3MPa和镍催化,萘、苯转化为 萘烷、环己烷。在使用场合萘烷、环己烷在250370℃,0.1MPa和铂催化下,转化为萘、苯,同时释 放出氢气)、无机物储存、氢化铁吸附储存



储氢容量高 资源丰富 价格低廉 放氢温度高(250-300℃ ) 放氢动力学性能较差
改进方法:机械合金化-加TiFe和CaCu5球磨,或复合
17
Seminar I
Fuel Cell R&D Center
钛/锆系
具有Laves相结构的金属间化合物 原子间隙由四面体构成,间隙多,有利于氢原 子的吸附 TiMn1.5H2.5 日本松下(1.8%) Ti0.90Zr0.1Mn1.4V0.2Cr0.4 活性好 应用:氢汽车储氢、电池负极
实际使用时需对合金进行表面改性 处理
14
Seminar I
Fuel Cell R&D Center
TiFe alloy
Characteristics:
two hydride phases;
phase (TiFeH1.04) & phase (TiFeH1.95 ) 2.13TiFeH0.20 + H2 → 2.13TiFeH1.04 ( phase )
23
6
Des.
Seminar I
Fuel Cell R&D Center
金属—氢体系相平衡等温相图
α相:氢原子进入金属晶
格空隙,形成共溶体
β相:储氢合金中氢浓度
显著增加,而氢压几乎不变, 生成金属氢化物

γ相
7
Seminar I
Fuel Cell R&D Center
Position for H occupied at HSM
相关文档
最新文档