浮头式换热器
浅谈浮头式换热器检修方法及应用
![浅谈浮头式换热器检修方法及应用](https://img.taocdn.com/s3/m/e7c7169777a20029bd64783e0912a21614797fda.png)
浅谈浮头式换热器检修方法及应用浮头式换热器是一种常见的换热设备,广泛应用于化工、石油、制药、电力等行业中。
检修浮头式换热器是确保其正常运行和延长使用寿命的关键步骤。
下面将对浮头式换热器的检修方法及应用进行浅谈。
浮头式换热器的检修方法主要包括以下几个方面:首先,要对换热器进行彻底的清洗。
由于浮头式换热器常年运行,表面会积累各种杂质,对正常的传热过程产生不利影响。
因此,在检修前要彻底清洗换热器,除去附着在壳体和管束上的污垢和锈蚀物。
可以通过使用高压水枪或化学清洗剂将其进行清洗。
其次,要对换热器进行检查。
检查更换热器管束、管板密封、浮头密封装置等是否存在损坏或老化现象,如果有需要及时更换。
检查管束的腐蚀、变形情况,根据检查结果决定是否需要对其进行修复或更换。
还有一点就是检查和清理换热器的流体通道。
检查和清理换热器内部的流体通道,包括壳体、管束和管板,确保其通畅无阻。
可以通过清洗装置或酸洗装置对壳体和管束进行清洗,使其恢复到最佳传热状态。
最后,进行密封性检查。
检查浮头式换热器的浮头与管板之间的密封性,确保其正常工作。
可以通过涂抹密封剂或使用扭紧螺栓的方法来进行密封。
浮头式换热器的检修方法应根据具体情况来确定,但以上几个方面是常见的检修步骤。
实际操作中要注意安全,遵循相关安全规定和操作规程。
浮头式换热器的应用主要是将热源和冷却介质进行换热,并将热量传递到所需流体中。
在工业生产过程中,浮头式换热器起到重要的作用。
例如,在石油化工行业中,浮头式换热器被广泛应用于石油蒸馏、石油储运、装置冷却等工艺中,用于提高能源利用率和节约能源。
在制药行业中,浮头式换热器用于提取、浓缩和蒸发等过程中的热源和冷却介质的换热。
在电力行业中,浮头式换热器用于发电过程中的余热回收和热电联供等方面。
总而言之,浮头式换热器的检修方法及应用涉及到清洗、检查、清理和密封等方面。
通过对浮头式换热器的检修,可以确保其正常运行和延长使用寿命,提高能源利用效率,为工业生产提供可靠的换热设备。
浮头式换热器的研究趋势
![浮头式换热器的研究趋势](https://img.taocdn.com/s3/m/da86f9aab9f67c1cfad6195f312b3169a451eae1.png)
浮头式换热器的研究趋势浮头式换热器是一种常用的传热设备,广泛应用于石化、化工、电力、炼油等行业,用于实现不同流体之间的有效传热和能量转移。
随着社会经济的快速发展和技术的不断进步,浮头式换热器的研究也在不断深入。
本文将从浮头式换热器的技术特点、研究方向和应用前景等方面进行论述。
首先,浮头式换热器具有以下几个技术特点。
首先,浮头式换热器具有良好的传热效果。
由于浮头式换热器的管束采用了类似于整流罩的结构,可以减少非理想流体流动对换热效果的影响,提高传热效率。
其次,浮头式换热器具有较强的自适应性能。
由于浮头可以在一定范围内移动,可以根据实际工况自动调整换热表面之间的间隙,实现更为合理的换热效果。
再次,浮头式换热器具有较好的清洗性能。
由于浮头与管束之间的间隙较大,可以通过冲洗装置清洗管束内部,减少了清洗的难度和工作量。
在浮头式换热器的研究方向上,目前主要集中在以下几个方面。
首先,研究者们致力于提高浮头式换热器的传热强化效果。
通过优化流动导向结构和改进传热介质的性质,提高传热强化效果,减小设备占地面积。
其次,研究者们关注浮头式换热器的多尺度特性。
由于浮头式换热器中的流体传热过程涉及到多个尺度,如宏观尺度的流动可视化、微观尺度的传热过程和介质分布等,研究者们致力于构建多尺度的数值模型,实现尺度耦合的模拟和优化。
再次,研究者们关注浮头式换热器的安全性和可靠性。
由于浮头式换热器使用于各种工业领域,研究者们需要考虑设备在高温、高压和腐蚀等多种工况下的安全性和可靠性,提出相应的设计和改进方案。
最后,研究者们也在探索浮头式换热器与其他领域的结合。
例如,浮头式换热器与蒸发器、蓄热器等换热设备的结合,可以实现多种能量转化和高效利用。
浮头式换热器的应用前景广阔。
首先,浮头式换热器可以应用于新能源领域。
随着太阳能、风能等新能源的快速发展,浮头式换热器可以作为太阳能集热器和风能发电装置中的关键传热部件,实现能源的高效转化和利用。
浮头式换热器工作原理
![浮头式换热器工作原理](https://img.taocdn.com/s3/m/63ca16edd4bbfd0a79563c1ec5da50e2524dd16a.png)
浮头式换热器工作原理浮头式换热器是一种高效且广泛应用于各行各业的换热器,其工作原理主要基于对流传热与对流对换传热两种方式,下面将详细介绍其工作原理。
浮头式换热器的基本构造是上下两个胆体,下胆体为周转胆,上胆体为浮动胆,二者之间用密封圈密封连接。
由于上胆体可以任意升降,因此传热面积在传热过程中可以随着介质流量的变化而改变,从而适应不同工况下的换热需求。
浮头式换热器工作时,第一步是将两种介质分别进入到周转胆与浮动胆中,流体分别在两个胆体内部流动。
在传热过程中,流体在胆体内部产生湍流,从而促进换热。
其次,两种介质的传热方式分别为对流传热与对流对换传热,我们先来介绍对流传热。
对流传热是介质流动过程中由于流体温度和速度的不均匀所引起的传热现象。
对流传热的传热系数比传热面在静止状态下要大很多,因此在换热器中利用对流传热进行换热是非常常见的。
另一种介绍的是对流对换传热。
对流对换传热是介质流经换热器时,在流体与传热面之间形成的边界层内,发生的传热现象。
当流体与传热面接触时,由于流体的传热性能通常比传热面差,因此无法完全将热量传递给传热面,在边界层内产生温度梯度形成热阻,同时流体与传热面之间的传热模式由传热过程中的对流传热转变为对流对换传热。
除了以上介绍的换热方式外,浮头式换热器还采用了流动态配技术,即在换热器中控制不同介质的流量使其达到最佳匹配状态,增强传热效果。
因此浮头式换热器具有高效、省能、耐腐蚀、自动调节等优点。
此外还有一点需注意的是,浮头式换热器在使用过程中一定要注意流体的传热性能。
如果传热过程中产生的温度梯度过大,则会造成传热面局部温度过高,热应力过大,从而导致传热面变形甚至失效。
因此,在使用浮头式换热器时一定要进行有效隔热措施,保证其正常工作。
总之,浮头式换热器作为一种高效的换热器设备,在众多行业中应用广泛。
其工作原理基于对流传热和对流对换传热,采用流动态配技术,可以适应不同工况下的换热需求,效率高、节能、耐腐蚀。
浮头式换热器原理
![浮头式换热器原理](https://img.taocdn.com/s3/m/f6ad497c11661ed9ad51f01dc281e53a5802519c.png)
浮头式换热器原理
浮头式换热器是一种常用于工业领域的换热设备,其原理是通过将热介质从一侧传递至另一侧,实现热量的传递和能量的调节。
具体而言,浮头式换热器的工作原理如下:
1. 热介质流入:热介质从一个端口流入设备内部,通常是通过管道或管束的方式进入。
2. 内部传热:热介质在设备内部的传热管或管束中流动,与外部换热介质进行热量交换。
这里的外部换热介质可以是液体、气体或蒸汽等。
3. 浮头设计:浮头式换热器的一个特点是设备内部的浮头设计。
浮头可以根据热量传递情况自由升降,以适应不同的操作条件。
浮头的升降能够减小设备内部结垢和腐蚀的风险,同时也方便设备的维护和清洗。
4. 热介质流出:经过传热过程后,热介质从另一端口流出设备。
热介质的温度通常会发生变化,其中热量的增加或减少取决于与外部换热介质的热量交换情况。
5. 外部换热介质流动:外部换热介质也会通过设备内部的管道或管束流动,与热介质进行热量交换。
换热过程中,外部换热介质通常将热量传递给热介质或从热介质中吸收热量,以实现能量的传递和调节。
通过以上的工作原理,浮头式换热器可以高效地实现热量的传递和能量的调节。
它广泛应用于石油化工、冶金、电力、制药和食品工业等领域,以满足不同工艺过程中的热量需求。
浮头式换热器
![浮头式换热器](https://img.taocdn.com/s3/m/eb324a55a31614791711cc7931b765ce05087a02.png)
浮头式换热器浮头式换热器是一种常见的热交换设备,被广泛应用于化工、石油、电力、制药等工业领域。
它具有结构简单、换热效果好、运行稳定等特点,在工业生产中发挥着重要的作用。
浮头式换热器的设计原理是利用两种不同介质之间的传热,以实现能量的转移。
它由壳体、束管板、浮头和传热管等组成。
其中,壳体是外部的固定壳体,束管板分隔开了两种介质,传热管是主要传热介质,而浮头则可以随着流体的膨胀和收缩而自由移动。
浮头式换热器的工作过程如下:首先,将需要传热的介质注入传热管中,同时通过固定壳体的入口和出口进行连通。
然后,热能从传热管中传到固定壳体中的冷介质上,由冷介质通过出口流出,实现了热量的传递。
在整个过程中,浮头会根据传热管内外温度的差异而产生膨胀和收缩,以保持壳体内部的良好密封性能。
浮头式换热器的设计和选型,需要考虑多个因素。
首先是流体的性质和流量。
不同的流体有不同的传热特性,所以在选择传热器时需要考虑流体的温度、压力、粘度等参数。
其次是传热器的传热效率。
传热效率是评价换热器性能的重要指标,因此在设计过程中需要合理选择传热面积、传热管的材质和数量等。
最后是换热器的安装和维护。
浮头式换热器通常较大,所以在安装时需要考虑到空间和结构的限制。
而维护方面,需要定期检查传热管内壁的结垢情况,及时清洗和维修。
浮头式换热器在工业生产中具有广泛的应用。
它能够实现不同介质之间的热量传递,有效利用能源,提高生产效率。
同时,由于浮头的作用,它还能够适应介质的膨胀和收缩,减少了由于温度变化引起的应力和振动,保证了设备的安全稳定运行。
总的来说,浮头式换热器是一种重要的热交换设备,在工业生产中起着关键的作用。
它采用简单的结构设计,具有良好的传热效果和稳定的运行性能,能够满足不同介质之间的热量传递需求。
随着工业技术的发展,浮头式换热器的设计和制造技术也在不断改进和创新,为工业生产提供更加可靠和高效的换热解决方案。
浮头式换热器原理和发展趋势
![浮头式换热器原理和发展趋势](https://img.taocdn.com/s3/m/5086c983c67da26925c52cc58bd63186bceb922f.png)
第一段:浮头式换热器的基本原理和工作流程浮头式换热器是一种常见的传热传质设备,广泛应用于化工、石油、制药等领域中。
它具有结构简单、传热效率高、维修方便等优点,因此被广泛使用。
图1:浮头式换热器的基本结构基本原理:浮头式换热器是通过壳体和管束之间的流体进行传热传质的。
在换热过程中,一种流体流过管束内部,在管束内与另一种流体发生传热传质作用,并将热量或物质传递到另一种流体中。
传热传质的效率取决于流体之间的温度差、密度差、热传导系数等。
工作流程:浮头式换热器的工作流程如下:1流体进入换热器壳体:流体通过进口法兰进入浮头式换热器壳体,经过流道板的导向,进入管束。
2.流体在管束内传热传质:热量或物质通过管束内的壁面传递给另一种流体。
在这个过程中,流体之间的温度差、密度差、热传导系数等都会影响传热传质的效率。
3.流体从管束内出口流出:经过管束内部的传热传质作用,流体从管束出口流出,进入壳体的另一端,再通过出口法兰流出浮头式换热器。
4.浮头自由膨胀收缩:在换热过程中,壳体和管束之间的热胀冷缩会引起一定的变形,而浮头则可以自由膨胀和收缩,适应不同的热膨胀系数,避免因温度变化而引起机械应力。
5.浮头式换热器工作完成:流体在壳体和管束内部完成了传热传质的作用,达到了预期的效果。
需要注意的是,在实际应用中,还需要对浮头式换热器进行定期检查、维修保养,以确保其正常运行。
同时,在使用过程中还需要根据实际情况进行调整和优化,以提高传热传质效率,降低能耗成本。
第二段:浮头式换热器的历史沿革和发展趋势浮头式换热器最初是由法国石油公司She11Oi1Company在20世纪50年代研制成功的,目的是为了提高炼油厂的生产效率。
此后,浮头式换热器在各种化工、冶金、电力和制药等领域广泛应用,被认为是换热器的一种重要类型之一。
近年来,随着工艺技术和制造工艺的不断发展,浮头式换热器的设计和制造技术也取得了长足的进步。
在使用中,浮头式换热器已经成为化工、制药、电子、石油和天然气等行业中最常用的换热器之一。
《浮头式换热器》课件
![《浮头式换热器》课件](https://img.taocdn.com/s3/m/ce62d9806037ee06eff9aef8941ea76e58fa4ae2.png)
智能化控制技术
利用物联网、大数据和人工智能 等技术手段,实现换热器的智能 化控制和远程监控,提高设备的 运行效率和安全性。
环保节能技术
推广和应用环保节能技术,降低 换热器的能耗和排放,满足日益 严格的环保要求。
市场前景
市场需求
随着工业生产和能源利用的不断发展,对高 效、环保、节能的换热设备需求不断增加, 浮头式换热器作为常用的换热设备之一,具 有广泛的市场需求。
市场前景
随着技术的不断进步和应用领域的拓展,浮 头式换热器市场将保持稳定增长,未来市场 前景广阔。同时,市场竞争也将日益激烈, 企业需要加强技术创新和品质管理,提高产 品竞争力。
THANKS.
浮头式换热器的设
03
计与选型
设计要点
结构稳定性
浮头式换热器应具备足够的结构稳定性,能 够承受内部压力和外部载荷。
高效传热
设计时应考虑采用高效的传热元件和结构, 以提高换热效率。
流体动力学性能
应优化流道设计,减少流体阻力,提高流体 的流动性。
材料选择
根据使用条件选择合适的材料,确保设备的 耐腐蚀、耐高温和长期稳定性。
工作原理
总结词
浮头式换热器的工作原理及传热过程
详细描述
浮头式换热器通过加热或冷却管束内的流体,使管束内的流体与外部的流体进行热量交换。热量通过管壁传递给 外部的流体,从而实现热量的传递。浮头式换热器的设计使得其能够适应不同的操作条件和流体特性,具有较高 的传热效率和较小的体积。
结构组成
总结词
浮头式换热器的结构组成及各部分的作用
《浮头式换热器》PPT 课件
contents
浮头式换热器工作原理
![浮头式换热器工作原理](https://img.taocdn.com/s3/m/c3431960842458fb770bf78a6529647d27283497.png)
浮头式换热器工作原理换热器是一种常见的热交换设备,广泛应用于化工、电力、制药、石油等行业。
换热器的工作原理是利用热量的传导和对流,将热量从一种介质传递到另一种介质,以达到加热、冷却和恒温控制的目的。
浮头式换热器是一种常见的换热器类型,本文将介绍浮头式换热器的工作原理及其应用。
一、浮头式换热器的结构浮头式换热器是一种管壳式换热器,由壳体、管束、浮头、管板、支撑件等组成。
其中,壳体是一个封闭的容器,通常由碳钢、不锈钢等材料制成。
管束由一组平行排列的管子组成,通常为无缝钢管、铜管或不锈钢管。
浮头是一种浮动结构,可以上下移动,以适应管束的热胀冷缩和管道的变形。
管板是用来固定管束和浮头的组件,支撑件则用来支撑管束和浮头。
浮头式换热器的结构如图1所示。
二、浮头式换热器的工作原理浮头式换热器的工作原理是利用热量的传导和对流,将热量从一种介质传递到另一种介质。
其中,一种介质通过管子流动,另一种介质则在壳体中流动。
通过管子和壳体之间的热交换,两种介质的温度发生变化,从而达到加热、冷却和恒温控制的目的。
在浮头式换热器中,热量的传导主要是通过管子和壳体之间的热传导完成的。
管子和壳体之间的热传导取决于管子和壳体之间的热传导系数、管子和壳体的材料和厚度等因素。
为了提高热传导效率,通常在管子和壳体之间填充一种导热性能良好的填料,如金属丝网、金在热传导的过程中,热量还可以通过对流的方式传递。
在壳体中流动的介质可以通过流动方式(如直流、交流、混流等)和流速来影响对流传热。
流速越快,对流传热越强。
同时,流动方式也会对对流传热产生影响。
例如,直流方式可以使介质在管子中形成较长的热传递路径,从而提高传热效率。
浮头式换热器的浮头结构可以适应管束的热胀冷缩和管道的变形。
当管子受热膨胀时,浮头可以向上移动,从而保持管子的垂直度和稳定性。
当管子冷缩时,浮头可以向下移动,从而保持管子的紧密性和稳定性。
三、浮头式换热器的应用浮头式换热器具有结构简单、换热效率高、维护方便等优点,因此广泛应用于化工、电力、制药、石油等行业。
浮头式换热器(过程设备设计课程设计说明书)
![浮头式换热器(过程设备设计课程设计说明书)](https://img.taocdn.com/s3/m/21089e91dd88d0d233d46aec.png)
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
浮头式换热器解读
![浮头式换热器解读](https://img.taocdn.com/s3/m/56b717165727a5e9846a6121.png)
浮头式冷却器E-1401设计摘要该毕业设计题目为浮头式冷却器(即浮头式换热器)E-1401设计,源于工程实际。
浮头式换热器是管壳式换热器中的一类,其管板一端固定在壳体与前端管箱之间,另一端(即浮头)可以在壳体中自由移动。
由于管束的热膨胀不受壳体的约束,因此浮头式换热器不会产生较大的温差热应力,这样便避免了对换热器结构的损害。
此外,浮头式换热器还便于拆卸、易于清洗,适用于壳体和管束温差较大或壳程介质易结垢的场合。
因此在石油化工以及其他相关行业中得到了广泛的应用。
该设计主要进行了换热器结构的研究和各处强度的校核。
根据所提供的设计条件,以及GB150-2011《压力容器》、GB151-1999《管壳式换热器》、《固定式压力容器安全技术监察规程》等标准确定出换热器各个零部件(管箱、封头、法兰、开孔接管、折流板、钩圈等)的具体方案,包括各处材料的选择,各零部件的基本结构,壁厚计算及强度校核,开孔补强计算,管板、法兰以及浮头钩圈的强度计算等。
本设计历时3个月,共完成说明书一份,A1图纸5张,外文翻译一份。
关键词:换热器浮头设计Floating cooler E-1401 designSummaryThe graduation project titled Floating cooler ( ie, floating head heat exchanger ) E-1401 design , from engineering practice . Floating head heat exchanger shell and tube heat exchanger is in a class of its tube plate fixed at one end between the housing and the front tube box , the other end ( ie, floating head ) can move freely in the housing. Due to thermal expansion of the bundle is not bound by the housing , the floating head heat exchanger and therefore no large temperature difference between the thermal stress , thus avoiding damage to the structure of the heat exchanger . In addition, floating head heat exchanger is also easy to disassemble , easy to clean , suitable for large temperature difference between the shell and tube bundle or medium shell easy to scale the occasion. So it has been widely used in the petrochemical and other related industries.The design is mainly studied the intensity of the heat exchanger and around the structure checked. Determine the various components of the heat exchanger according to the design conditions provided and GB150-2011 " pressure vessel ", GB151-1999 " shell and tube heat exchangers ", " Safety Technology Supervision Stationary Pressure Vessels " and other standards ( tube box , head, flange , opening over, baffles, circle hooks , etc. ) of the specific program , including the selection of materials throughout , the basic structure of the various parts , wall thickness calculation and strength check , opening reinforcement calculations, tube sheets , flanges and strength calculation Floating circle hook .Keywords : Heat exchanger floating head design1.前言随着时代的发展、科技的进步,石油化工及相关产业在人类的生活中扮演的角色越来越不可替代。
浮头式换热器课件
![浮头式换热器课件](https://img.taocdn.com/s3/m/91d6ed975122aaea998fcc22bcd126fff7055de0.png)
环保和可持续发展
注重环保和可持续发展 ,开发高效、环保、可 回收的换热器,减少对 环境的负面影响。
多功能化和集成化
将多种功能集成于一个 换热器中,实现多功能 化和集成化,满足复杂 工况的需求。
THANKS
谢谢
密封材料
选用耐磨、耐高温的密封 材料,确保密封性能可靠 。
结构设计
壳体设计
采用合理的壳体结构,确保设备强度 和稳定性。
管束设计
采用紧凑、合理的管束排列方式,提 高换热效率。
进出口设计
合理设计进出口流道,降低流体阻力 ,提高换热效率。
支撑结构
设计可靠的支撑结构,确保设备稳定 运行。
03
CHAPTER
常见故障与排除
泄漏
如果发现泄漏,应立即停止使用并进行修复。常见的泄漏原因包括 螺栓松动、垫片老化或损坏、管子破裂等。
效率降低
如果发现换热器的效率降低,可能是由于沉积物、污垢或堵塞造成 的。需要进行清洁或疏通。
振动和噪音
如果换热器出现振动或噪音,可能是由于部件松动、不平衡或流体动 力学问题。需要检查并加固部件或优化流体流动。
类型与结构
类型
浮头式换热器有多种类型,如固定管板式、浮头式、U型管式等。根据不同的工艺要求和流体特性,可以选择适 合的换热器类型。
结构
浮头式换热器的结构主要包括壳体、管束、浮头、密封元件等部分。其中,壳体用于容纳传热管束和流体;管束 由许多传热管组成,用于传递热量;浮头则可以自由伸缩,以适应温度变化引起的热胀冷缩;密封元件用于保证 流体的密封性。
特点
浮头式换热器具有结构紧凑、传 热效率高、适应性强、操作灵活 等优点,能够在高温、高压、腐 蚀等恶劣环境下稳定运行。
列管式换热器的设计---浮头式换热器
![列管式换热器的设计---浮头式换热器](https://img.taocdn.com/s3/m/def4cce729ea81c758f5f61fb7360b4c2e3f2af3.png)
列管式换热器的设计---浮头式换热器浮头式换热器是一种常见的列管式换热器,它由壳体、管束、浮头、支撑件、密封件、进出口管道等组成。
浮头式换热器的特点是浮头可以随着管束的膨胀和收缩自由移动,从而保证管束间的间隙与浮头间隙都处于有效状态,不仅可以避免管束的卡塞和挤压,同时也可以保证了热交换效果。
浮头式换热器的设计,需要考虑以下几个因素:1. 热力计算换热器的热力计算是设计的首要考虑因素,它主要是通过计算换热器的传热面积、传热系数、温度差、流量等参数,来确定热量传递的效率,并选定合适的管径和间距。
在浮头式换热器设计中,还需要考虑管束结构的变化和浮头活动范围,以满足热传递的要求。
2. 浮头设计浮头是浮头式换热器的核心,它需要具备一定的自由度,以应对管束的变化和热胀冷缩所带来的影响。
在浮头设计时,需要考虑到流体的入口角度、出口角度、流速、压降等因素,同时尽量减小反向流的影响,确保热传递效率。
3. 管束结构设计管束是浮头式换热器中的传热元件,它的结构设计直接影响到换热器的传热效率。
在设计时需要考虑管径、材料、管道密度、孔网大小等因素,同时还需要考虑管束的抗震性和伸缩性,以保证安全稳定运行。
4. 流体动力学设计流体动力学设计主要关注流体的流动形态、速度分布、压力分布等参数,这些参数在浮头式换热器设计中十分重要。
通过计算流体的速度、方向和压降,可以选择合适的管径和间距,以提高热传递效率。
同时还需要考虑到流体的物理特性,如密度、黏度、比热等。
浮头式换热器的设计需要考虑多方面的因素,如热力计算、浮头设计、管束结构设计和流体动力学设计等,而且还需要充分考虑到安全稳定运行的要求。
当然,具体的设计方案还要根据具体的使用情况和客户需求,进行个性化设计和调整。
浮头式列管换热器讲解
![浮头式列管换热器讲解](https://img.taocdn.com/s3/m/458b48a8f111f18583d05ad4.png)
目录一、设计方案简介 (3)1.1换热器的概述 (3)1.1.1换热器的分类 (3)1.2列管式换热器的概述 (3)1.2.1列管式换热器的分类 (3)1.2.1.1固定管板式换热器 (3)1.2.1.2浮头式换热器 (4)1.2.1.3填料函式换热器 (5)1.2.1.4 U型管式换热器 (5)1.3换热器类型的选择 (5)1.3.1流径的选择 (5)1.3.2流速的选择 (6) (7)材质的选择1.3.3 1.3.4管程结构……………………………………………………………7二、工艺流程简图 (7)三、工艺计算及主体设备设计 (8)3.1试算并初选换热器规格 (8)3.1.1确定流体通入空间 (8)3.1.2确定流体的定性温度、物性数据,并选择列管换热器的形式 (8)3.1.3计算热负荷Q (9)3.1.4计算平均温差,并确定壳程数 (9)3.1.5初选换热器规格 (9)3.2核算总传热系数K............................................................ 10 0 3.2.1计算管程对流换热系数 (10)3.2.2计算壳程对流换热系数 (11)3.2.3确定污垢热阻 (11)3.2.4总传热系数 (12)3.3 计算压强降 (12)13.3.1 计算管程压强降 (12)3.3.2 计算壳程压强降 (13)3.4校核壁温 (14)四、换热器主要结构尺寸和计算结果 (14)五、设计感悟 (15)六、参考文献 (16)七、符号说明 (16)附图:工艺流程图以及设备主体图2设计方案简介1.换热器的概述1.1,是将热流体的部分热量传递给冷流)换热器(英语翻译:heat exchanger体的设备,又称热交换器。
换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
1.1.1换热器的分类按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。
换热器-浮头换热器
![换热器-浮头换热器](https://img.taocdn.com/s3/m/7c977606227916888486d768.png)
浮头式换热器一、浮头式换热器的概述浮头式换热器的一端管板是固定的。
与壳体刚性连接,另一端管板是活动的,与壳体之间并不相连。
活动管板一侧总称为浮头,浮头式换热器的管束可从壳体中抽出,故管外壁清洗方便,管束可在壳体中自由伸缩,所以无温差应力;但结构复杂、造价高,且浮头处若密封不严会造成两种流体混合。
浮头式换热器适用于冷热流体温差较大(一般冷流进口与热流进口温差可达110℃),介质易结垢需要清洗的场合。
二、浮头式换热器的总体结构三、浮头式换热器的特点1、浮头式换热器的优点(1)管束可以抽出,以方便清洗管、壳程。
(2)介质间温差不受限制。
(3)可在高温、高压下工作,一般温度小于等于450°,压力小于等于6.4Mpa。
(4)可用于结垢比较严重的场合。
(5)可用于管程易腐蚀场合。
2、浮头式换热器的缺点(1)小浮头易发生内漏。
(2)金属材料耗量大,成本高20%。
(3)结构复杂。
三、浮头式换热器的应用浮头式换热器适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
四、浮头式换热器的导流结构为使壳程进口段管束充分传热,浮头式换热器可采用内导流或外导流结构。
1、内导流浮头式换热器内导流筒换热器是在换热器的壳程筒体内设置了内导流筒使换热器的前或后端未加导流筒前难以利用换热的换热管得以充分利用,从而增大换热器的有效换热面积。
2、外导流浮头式换热器外导流式换热器是在原换热器的壳程筒体上增加一个放大筒节用以扩散壳程流体,并使流体从换热器壳程的两端进入壳程,从而避免了在换热器布管时考虑布管弓形的高,而使增加了同规格上换热器的布管数目并有效利用了换热器前后端的换热管从而增大了有效换热面积。
浮头式换热器
![浮头式换热器](https://img.taocdn.com/s3/m/04960416e3bd960590c69ec3d5bbfd0a7956d5e4.png)
浮头式换热器浮头式换热器简介浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。
管子受热时,管束连同浮头可以沿轴向自由伸缩,除去了温差应力。
浮头式换热器结构浮头式换热器结构在凹型和梯型凹槽之间钻孔并套丝或焊设多个螺杆均布,设浮头法兰为凸型和梯型凸台双密封,分程隔板与梯型凸台相通并位于同一端面的宽面法兰,且凸型和梯型凸台及分程隔板分别与浮头管板凹型和梯型凹槽及分程凹槽相对应匹配,该浮头法兰与无折边球面封头组配焊接为浮头盖,其法兰螺孔与浮头管板的丝孔或螺杆相组配,用螺栓或螺帽紧固压紧浮头管板凹型和梯型凹槽及分程凹槽及其垫片,该结构必须时可适当加大浮头管板的厚度和直径及圆筒的内径,同时相应更改加大相关零部件的尺寸;另配置一无外力辅佑襄助钢圈,其圈体内径大于浮头管板外径,钢圈一端设法兰与外头盖侧法兰内侧面凹型或梯型密封面连接并密封,另一端设法兰或其他结构与浮头管板原凹型槽及其垫片或外圆密封。
浮头式换热器设计要求浮头式换热器随着经济的进展,各种不同型式和种类的换热器进展很快,新结构、新料子的换热器不绝涌现。
为了适应进展的需要,中国对某些种类的换热器已经建立了标准,形成了系列。
完善的换热器在设计或选型时应充足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全牢靠;(3)便于制造、安装、操作和维护和修理;(4)经济上合理。
浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两种介质的温差较大时,管束和壳体之间不产生温差应力。
浮头端设计成可拆结构,使管束能简单的插入或抽出壳体。
(也可设计成不可拆的)。
这样为检修、清洗供给了便利。
但该换热器结构较多而杂,而且浮动端小盖在操作时无法知道泄露情况。
因此在安装时要特别注意其密封。
浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的便利。
换热器-浮头换热器
![换热器-浮头换热器](https://img.taocdn.com/s3/m/ab194d9ed0f34693daef5ef7ba0d4a7303766c7d.png)
换热器-浮头换热器第一篇:换热器-浮头换热器浮头式换热器一、浮头式换热器的概述浮头式换热器的一端管板是固定的。
与壳体刚性连接,另一端管板是活动的,与壳体之间并不相连。
活动管板一侧总称为浮头,浮头式换热器的管束可从壳体中抽出,故管外壁清洗方便,管束可在壳体中自由伸缩,所以无温差应力;但结构复杂、造价高,且浮头处若密封不严会造成两种流体混合。
浮头式换热器适用于冷热流体温差较大(一般冷流进口与热流进口温差可达110℃),介质易结垢需要清洗的场合。
二、浮头式换热器的总体结构三、浮头式换热器的特点1、浮头式换热器的优点(1)管束可以抽出,以方便清洗管、壳程。
(2)介质间温差不受限制。
(3)可在高温、高压下工作,一般温度小于等于450°,压力小于等于6.4Mpa。
(4)可用于结垢比较严重的场合。
(5)可用于管程易腐蚀场合。
2、浮头式换热器的缺点(1)小浮头易发生内漏。
(2)金属材料耗量大,成本高20%。
(3)结构复杂。
三、浮头式换热器的应用浮头式换热器适用于壳体和管束之间壁温差较大或壳程介质易结垢的场合。
四、浮头式换热器的导流结构为使壳程进口段管束充分传热,浮头式换热器可采用内导流或外导流结构。
1、内导流浮头式换热器内导流筒换热器是在换热器的壳程筒体内设置了内导流筒使换热器的前或后端未加导流筒前难以利用换热的换热管得以充分利用,从而增大换热器的有效换热面积。
2、外导流浮头式换热器外导流式换热器是在原换热器的壳程筒体上增加一个放大筒节用以扩散壳程流体,并使流体从换热器壳程的两端进入壳程,从而避免了在换热器布管时考虑布管弓形的高,而使增加了同规格上换热器的布管数目并有效利用了换热器前后端的换热管从而增大了有效换热面积。
第二篇:浮头式换热器项目可行性研究报告北京智博睿信息咨询有限公司 浮头式换热器项目可行性研究报告本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、上马、融资提供全程指引服务。
浮头式换热器
![浮头式换热器](https://img.taocdn.com/s3/m/1e347e106137ee06eef91814.png)
• 金属覆盖层的方法:电镀、化学镀、喷镀、渗镀、 浸镀、包覆。
• 非金属覆盖层的方法:刷漆、防腐涂料等。 • 化学或电化学覆盖层的方法:发黑发蓝处理、阳
极氧化、金属磷化。 • 暂时性覆盖层的方法:油封、石蜡封。2021Fra bibliotek3/115
防冲板、导流筒的作用
• 防冲板:防止壳程入口流体直接冲刷管束, 避免冲蚀管束和造成震动。
• 导流筒:避免流体的流动死角,提高传热 效率。
• 流动死角:流体不能流动的空间。
2021/3/11
6
换热器两种流体的换热方式
• 逆流:两流体以相反的方向流动 • 顺流:两流体以相同的方向流动 • 错流:两流体互相垂直交叉流动 • 折流:一流体沿一方向流动,而另一流体反复来回流动。 • 复杂折流:两流体均作折流,或既有折流,又有错流。 • 采用逆流操作,可以节省传热面积,还可以节省加热介质
管壳式换热器
• 是化工生产中最常见、大量应用的换热器 • 特点:传热面积大,传热效率好,结构简
单,清洗方便,操作弹性大,适用性强, 尤其在高温、高压和大型装置上多采用。 • 分类:固定管板式、U形管式、浮头式。
2021/3/11
1
浮头式换热器的各部名称
• 管箱、壳体(筒体)、管束、浮头、浮头 勾圈、头盖
2021/3/11
11
浮头式换热器的泄漏形式
换热器的泄漏危害很大,甚至着火。 • 外漏:管箱法兰垫片、管板与壳体法兰垫
片、头盖垫片 • 内漏:换热管穿孔、管头焊缝裂纹、浮头
垫片 • 外漏的判断:从外观观察 • 内漏的判断:油品变质、采样化验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。
该换热器的管束可以从壳体中抽出,便于清洗管间和管内,管束可以在壳体内自由伸缩,不会产生热应力。
浮头式换热器适用于较高的压力下工作,适用于壳体壁温于管壁温差较大或壳程流体易结垢的场合。
本设计的管程壁温和壳程壁温温差较大,工作压力属于中上,且管程内物料为重油,壳程内为轻汽油。
故本设计选择浮头式换热器。
一、换热器的分类及其特点换热器是一种实现物料之间热量传递的节能设备,是各种工业部门最常见的通用热工设备,广泛应用于化工、能源、机械、交通、制冷、空调及航空航天等各个领域。
换热器不仅是保证某些工艺流程和条件而广泛使用的设备,也是开发利用工业二次能源,实现余热回收和节能的主要设备。
工业生产中使用的换热器型式很多,而且仍在不断发展。
按使用目的不同,换热器可分为加热器、冷凝器、蒸发器和再沸器等。
由于使用的条件和工作的环境不同,换热器又有各种各样的型式和结构。
按传热原理和实现热交换的方法,换热器可分为间壁式、混合式和蓄热式3类,其中以间壁式换热器应用最为普遍。
间壁式换热器种类很多,如夹套式换热器、套管式换热器、蛇管式换热器、板式换热器、板翅式换热器和列管式换热器,列管式换热器又叫做管壳式换热器,是目前应用最广泛的一种换热器。
管壳式换热器的应用已有十分悠久的历史。
管壳式换热器是一种传统的标准换热设备,广泛应用于化工、石油、制冷、核能和动力等工业。
由于世界性的能源危机,工业生产中对换热器的需求量越来越多,对换热器的质量要求也越来越高。
在近代的许多化工过程中,如裂解、合成和聚合等,大都要求在高温高压下进行,有的压力高达250 MPa,温度则高达750℃,又腐蚀的情况下,实现换热更困难。
而管壳式结构具有选材范围广、换热表面清洗方便、适应性强、处理能力大、能承受高温和高压等特点。
一方面,伴随着现代化工厂生产规模的日益增大,换热设备也相应地向大型化方向发展,以降低动力消耗和余属消耗;另一方面,随着精细化工的迅速崛起,换热设备也有向小而精方向发展的趋势。
管壳式结构的换热器能满足这样的要求。
近几十年来,随着紧凑式换热器(板式、板翅式等)、热管式换热器和直接接触式换热器等的发展,管壳式换热器面临着挑战,在某些场合,管壳式换热器已被一些新型换热器所取代,但由于管壳式换热器具有高度的可靠性和广泛的适应性,它的产量至今仍占统治地位。
目前工业装置中管壳式换热器的用量占全部用量的70%。
管壳式换热器结构也有较大的改进和发展,从原来传统的弓形隔板加光滑管的结构,发展为其它类型的管间支撑物加强化管的结构,由于这些结构上的改进,使得管壳式换热器的传热与流体阻力性能有了明显的改善,加上本身固有的优点,如耐高温、耐高压、结构简单和清洗方便等,使得管壳式换热器在激烈的换热器竞争中得以生存和发展。
管壳式换热器主要包括固定管板式、浮头式、U形管式、填料函式等结构。
根据介质的种类、压力、温度、污垢,以及管板与壳体的连接方式、换热管的形式与传热条件、造价和维修检查情况等,结合各种结构形式的特点选择、设计和制造各种管壳式换热器。
图固定管板式换热器的典型结构(1) 固定管板式换热器固定管板式换热器两端管板,采用焊接方式与壳体连接固定。
固定管板式换热器由管箱、壳体、管板和管子等零部件组成,如图所示。
其结构简单紧凑,排管比较多,在相同换热器公称直径的情况下面积比较大,制造简单,但在最后一道壳体与管板的焊缝无法进行无损检测。
其优点是:①相同公称直径下,传热面积比浮头式换热器大20%~30%;②旁路泄露比较小;③锻件使用比较少;④没有内部泄露的存在。
缺点是:①壳体和管子壁温差一般小于等于50℃,大于50℃时应在壳体上设置膨胀节;②管板与管头之间容易产生温差应力而损坏;③壳程无法进行机械清洗;④管子腐蚀后造成连同壳体也报废,壳体部件寿命取决于管子寿命,因此设备寿命相对比较低;⑤不适用于壳程容易结垢的场合。
(2) 浮头式换热器浮头式换热器的一端管板与壳体固定,一端的管板可在壳体内自由浮动,壳体和管板对热膨胀是自由的,因此当两种介质温差较大时,管束与壳体之间不产生温差应力。
浮头端设计成可拆结构,使管束能容易地插入或抽出壳体,这样方便清洗和检修。
由于该换热器结构复杂,而且浮动端小盖在操作时无法得知其泄露情况,所以在安装时应特别注意其密封,如图所示。
图浮头式换热器(3) U 形管式换热器该换热管两端是固定在同一块管板上的,结构简单,造价低。
管束可抽出,外壁便于清洗,但换热管清洗困难,所以介质必须是清洁且不结污垢的物料。
由于结构不紧凑的原因,影响传热效率,换热也不均匀。
一般用于高温高压的场合,壳程内一般按工艺要求设置折流板和纵向隔板,如图所示。
图 U 形管式换热器的典型结构(4) 填料函式换热器填料函式换热器适用于壳程压力不高、较严重腐蚀的介质、温差较大且经常要更换管束的冷却器。
它具有浮头换热器的优点,又克服了固定管板式换热器的缺点,结构简单,制造方便,易清洗检修。