SAS-多变量统计分析
SAS统计分析报告教程方法总结材料
SAS统计分析报告教程方法总结材料统计分析是对数据进行理性、全面和深入的分析,以发现其中的规律、趋势和关联性。
SAS(Statistical Analysis System)是一个流行的统计分析软件,广泛应用于数据分析、研究和报告编制领域。
本文将介绍SAS统计分析报告的编制方法,帮助读者了解如何利用SAS软件进行统计分析,并撰写专业的统计分析报告。
一、数据导入与准备在进行统计分析之前,首先需要导入数据并对数据进行清洗和准备。
SAS软件支持多种数据格式的导入,包括CSV、Excel、数据库等。
可以使用PROC IMPORT或DATA STEP语句来将数据导入SAS环境中,并使用DATA STEP或PROC SQL语句对数据进行清洗和准备,包括删除缺失值、解决数据异常值等。
二、描述性统计分析描述性统计分析是对数据集中的变量进行统计概括和描述。
在SAS中,可以使用PROCMEANS、PROCFREQ、PROCUNIVARIATE等过程来计算变量的均值、标准差、中位数、众数、频数分布等描述性统计指标。
通过描述性统计分析可以初步了解数据的分布情况,为后续的统计测试和模型建立奠定基础。
三、统计检验统计检验是用来检验数据之间的关系或差异是否显著的一种方法。
在SAS中,可以使用PROCTTEST、PROCANOVA、PROCCORR等过程进行假设检验,检验两组或多组数据之间的显著性差异或相关性。
在进行统计检验时,需要设置显著性水平和备择假设,以便进行准确的统计分析。
四、图形展示图形展示是将数据通过图表的形式呈现出来,更直观地展示数据的特征和规律。
在SAS中,可以使用PROCGPLOT、PROCSGPLOT、PROCGCHART等过程来绘制各种类型的图表,包括直方图、散点图、折线图、饼图等。
通过图形展示,可以更清晰地了解数据的分布情况和变量之间的关系,为数据分析和报告提供有力支持。
五、报告编制报告编制是统计分析的最后一步,将分析结果整理成报告文档,进行数据解释和结论归纳。
如何使用SAS进行数据分析
如何使用SAS进行数据分析数据分析在现代社会中变得越来越重要。
从业务领域到学术研究,许多领域都需要对大量数据进行分析和解释。
数据分析可以让人们更了解他们的业务、客户和市场,以及发现潜在的趋势和模式。
在这个过程中,数据处理和统计软件起着至关重要的作用。
SAS就是一个被广泛使用的数据处理和统计工具包。
在本文中,我们将深入了解如何使用SAS进行数据分析。
1. 数据准备数据准备是进行数据分析的首要任务。
数据准备包括数据清洗、转换、选取和缺失值处理。
SAS提供了众多命令和函数,可以轻松地进行数据准备工作。
除此之外,SAS还提供了一个方便的用户界面,SAS Enterprise Guide,可以帮助用户快速准确地进行数据处理。
2. 描述性分析描述性分析是对数据进行初步分析的过程。
在这个过程中,对数据的各种属性进行了解和描述,包括数据的集中趋势、分散趋势和分布形状。
SAS提供了多种统计方法和图形工具,可以帮助用户更轻松地进行描述性分析。
例如,PROC UNIVARIATE和PROC MEANS命令可以计算数据的平均值、标准差、最值和百分位数等统计数据,并输出相应的表格和图形。
此外,图形工具包括直方图、箱形图和散点图等,可以帮助用户更形象地理解数据的分布情况。
3. 探索性分析探索性分析是深入了解数据的过程。
在这个过程中,用户将使用多种方法和技术来探索数据之间的关系和可视化。
SAS提供了多种探索性分析工具。
PROC CORR和PROC REG命令可以帮助用户计算两个或多个变量之间的相关系数和回归系数,并绘制相关图形。
PROC FACTOR和PROC PRINCOMP命令可以帮助用户进行因子分析和主成分分析等多变量分析。
此外,SAS还提供了交互式可视化工具,如SAS Visual Analytics和SAS Visual Statistics,可以帮助用户更方便快速地进行探索性分析。
4. 统计建模在对数据进行描述性分析和探索性分析后,用户可以利用统计建模技术进行预测和分类分析。
几种描述性统计分分析的SAS过程
几种描述性统计分分析的SAS过程描述性统计是统计学中的一种方法,用于总结和描述数据集的主要特征。
它有助于了解数据的整体分布、偏差和离散性等。
SAS(统计分析系统)是一种流行的统计软件,具有丰富的分析功能。
以下是几种常用的SAS过程,用于执行描述性统计分析。
1.PROCMEANS:PROCMEANS是一种计算统计指标的SAS过程,包括均值、总和、最小值、最大值、标准差等。
可以使用该过程对数值变量进行描述性统计,并在输出中显示这些统计指标。
可以通过指定多个变量和分组变量来计算针对不同子组的统计指标。
该过程还可以生成频数和百分比。
2.PROCFREQ:PROCFREQ是一种用于计算分类变量频数和百分比的SAS过程。
它可以计算每个类别的频数,并使用该信息生成频数表。
该过程还可以计算两个或更多分类变量之间的交叉频数表,并计算出每个类别的百分比。
3.PROCUNIVARIATE:PROCUNIVARIATE是一种用于执行单变量分析的SAS过程。
它可以计算变量的均值、标准差、峰度、偏度等统计指标。
该过程可以绘制直方图、箱线图、正态检验图和PP图等,以帮助理解数据的分布特征。
还可以执行分位数分析、离散度分析和异常值识别等。
4.PROCCORR:PROCCORR是一种用于计算变量之间相关性的SAS过程。
它可以计算变量间的皮尔逊相关系数,并使用协方差矩阵和相关系数矩阵来描述变量之间的线性关系。
该过程还可以绘制散点图矩阵和相关系数图,以直观地显示变量之间的关系。
5.PROCGLM:PROCGLM是一种用于执行多因素方差分析的SAS过程。
它可以根据自变量的水平和交互作用来分解因变量的方差,并进行显著性检验。
该过程可以计算组间差异的F值和p值,并生成方差分析表。
PROCGLM还支持使用协变量进行调整的方差分析,以控制对方差的影响。
以上是几种常用的SAS过程,用于执行描述性统计分析。
每个过程都有各自的功能和输出,可以根据数据和分析需求选择合适的过程。
SAS软件应用之典型相关分析
SAS软件应用之典型相关分析典型相关分析(Canonical Correlation Analysis,CCA)是一种多变量统计分析方法,用于研究两组变量之间的关系以及它们之间的线性组合。
SAS软件提供了强大的工具和函数来执行典型相关分析,包括PROC CANCORR和CORRCAN。
PROCCANCORR是SAS中执行典型相关分析的主要过程。
它可以分析两组变量之间的关系,并计算它们之间的典型相关系数以及相关变量之间的线性组合得分。
以下是一个使用PROCCANCORR进行典型相关分析的示例代码:```/* 导入数据集data1和data2 */data data1;input var1 var2 var3;datalines;123456789;run;data data2;input var4 var5 var6;datalines;101112131415161718;run;/*运行PROCCANCORR进行典型相关分析*/proc cancorr data=data1 data=data2 out=results;var var1 var2 var3;with var4 var5 var6;run;/*输出典型相关系数和相关变量的得分*/proc print data=results;run;```在上述示例中,我们首先导入两个数据集`data1`和`data2`,其中`data1`包含三个自变量(`var1`,`var2`,`var3`),`data2`包含三个因变量(`var4`,`var5`,`var6`)。
然后,我们使用PROC CANCORR指定自变量和因变量,并将结果保存在名为`results`的输出数据集中。
最后,我们使用PROC PRINT打印结果数据集。
在输出结果中,我们可以查看典型相关系数以及自变量和因变量的得分。
典型相关系数表示两组变量之间的相关程度,取值范围为-1到1、得分表示原始变量的线性组合结果,可以用于分析变量之间的关系。
多变量重复测量方差分析统计报表输出的SAS宏实现
表 1 宏参数名称及注释
宏参数
变 量 名 称
i e’ tl 重复测 量方差 分析 结果 ’ t ;
po oma ; r
“ R U ”=“ 别 ” G O P 组 “ETR C N E ”=“ 中心 ”
Chi e e J u a fHe l t ts c . e O 2. 1 2 No 1 n s o m lo at S a t s F b 2 1 V0 . 9. . h ii
・
13・ 4
在药物试验过程中也经常遇到一些单 中心的临床 试 验 , 时只需 将宏 变 量 “ dlgt 赋值 改 为 “ e 这 mo eih” r %lt
A NOV 中选 出所 需 要 的统 计 量 及 是 否 校 正 过 的 P A 值 … , 对挑 选 后 的结 果 进 行 标 准 格 式 的 编辑 转 换 , 并 进而 得 到输 出统 计报 表所 需 的标准 化 S S数据 库 , A 最 后采 用 O DS技 术 及 R pr过程 步将 最 终 的数 据库 规 eot 范化 地输 出到 Wod文档 中。 r 2S .AS宏 程序 参数设 置及 注释 将统 计分析 的关 键参 数转 化 为 S AS宏 的参 数 , 在 宏 中按 照相应 的规则 进行 S S程 序 的编 写 , 到所 需 A 得 要 的最终 宏 程 序 。相关 宏 参 数 及 其 意 义解 释见 表 1 ,
组 别 中心 ” rn ; ; u
对上述 宏变量 赋值后运行 宏程 序, 即在 路径为
“ \ o u ns n e ig ” C:D c met a dStn s 的文 件夹 下 自动 生 成 n t f 格式 的 R P R E O T文 件 , 计结果 报 表 也被 规 范化 输 出 统
SAS数据分析与统计
一、数据集的建立1.导入Excel数据表的步骤如下:1) 在SAS应用工作空间中,选择菜单“文件”→“导入数据”,打开导入向导“Import Wizard”第一步:选择导入类型(Select importtype)。
2) 在第二步的“Select file”对话框中,单击“Browse”按钮,在“打开”对话框中选择所需要的Excel文件,返回。
然后,单击“Option”按钮,选择所需的工作表。
(注意Excel文件要是2003的!!)3) 在第三步的“Select library and member”对话框中,选择导入数据集所存放的逻辑库以及数据集的名称。
4 ) 在第四步的“Create SAS Statements”对话框中,可以选择将系统生成的程序代码存放的位置,完成导入过程。
2.用INSIGHT创建数据集1)启动SAS INSIGHT模块,在“SAS INSIGHT:Open”对话框的”逻辑库“列表框中,选定库逻辑名2)单击“新建”按钮,在行列交汇处的数据区输入数据值(注意列名型变量和区间型变量,这在后面方差分析相关性分析等都要注意!!)3)数据集的保存:•“文件”→“保存”→“数据”;•选择保存的逻辑库名,并输入数据集名;•单击“确定”按钮。
即可保存新建的数据集。
3.用VIEWTABLE窗口建立数据集1)打开VIEWTABLE窗口2)单击表头顶端单元格,输入变量名3)在变量名下方单元格中输入数据4)变量类型的定义:右击变量名/column attributes…4.用编程方法建立数据集DATA 语句; /*DATA步的开始,给出数据集名*/Input 语句;/*描述输入的数据,给出变量名及数据类型和格式等*/(用于DATA步的其它语句)Cards; /*数据行的开始*/[数据行]; /*数据块的结束*/RUN; /*提交并执行*/例子:data=数据集名字;input name$ phone room height; ($符号代表该列为列名型,就是这一列是文字!!比如名字,性别,科目等等)cards;rebeccah 424 112 (中间是数据集,中间每一行末尾不要加逗号,但是carol 450 112 数据集最后要加一个分号!!)louise 409 110gina 474 110mimi 410 106alice 411 106brenda 414 106brenda 414 105david 438 141betty 464 141holly 466 140;proc print data=; (这一过程步是打印出数据集,可要可不要!)run;*数据集中的框架我会用加粗来显示,大家主要记加粗的,下面的编程部分都是这样!!二、基本统计分析1.用INSIGHT计算统计量1)在INSIGHT中打开数据集在菜单中选择“Solution(解决方案)”→“Analysis(分析)”“Interactive Data Analysis(交互式数据分析)”,打开“SAS/INSIGHT Open”对话框,在对话框中选择数据集,单击“Open(打开)”按钮,即可在INSIGHT中打开数据窗口2)选择菜单“Analyze(分析)”→“Distribution (Y)(分布)”,打开“Distribution (Y)”对话框。
SAS统计分析教程方法总结
对定量结果进行差异性分析1.单因素设计一元定量资料差异性分析1.1.单因素设计一元定量资料t检验与符号秩和检验T检验前提条件:定量资料满足独立性和正态分布,若不满足则进行单因素设计一元定量资料符号秩和检验。
1.2.配对设计一元定量资料t检验与符号秩和检验配对设计:整个资料涉及一个试验因素的两个水平,并且在这两个水平作用下获得的相同指标是成对出现的,每一对中的两个数据来自于同一个个体或条件相近的两个个体。
1.3.成组设计一元定量资料t检验成组设计定义:设试验因素A有A1,A2个水平,将全部n(n最好是偶数)个受试对象随机地均分成2组,分别接受A1,A2,2种处理。
再设每种处理下观测的定量指标数为k,当k=1时,属于一元分析的问题;当k≥2时,属于多元分析的问题。
在成组设计中,因2组受试对象之间未按重要的非处理因素进行两两配对,无法消除个体差异对观测结果的影响,因此,其试验效率低于配对设计。
T检验分析前提条件:独立性、正态性和方差齐性。
1.4.成组设计一元定量资料Wilcoxon秩和检验不符合参数检验的前提条件,故选用非参数检验法,即秩和检验。
1.5.单因素k(k>=3)水平设计定量资料一元方差分析方差分析是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。
这里,由于仅研究单个因素对观测变量的影响,因此称为单因素方差分析。
方差分析的假定条件为:(1)各处理条件下的样本是随机的。
(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。
(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。
(4)各处理条件下的样本方差相同,即具有齐效性。
1.6.单因素k(k>=3)水平设计定量资料一元协方差分析协方差分析(Analysis of Covariance)是将回归分析与方差分析结合起来使用的一种分析方法。
在这种分析中,先将定量的影响因素(即难以控制的因素)看作自变量,或称为协变量(Covariate),建立因变量随自变量变化的回归方程,这样就可以利用回归方程把因变量的变化中受不易控制的定量因素的影响扣除掉,从而,能够较合理地比较定性的影响因素处在不同水平下,经过回归分析手段修正以后的因变量的样本均数之间的差别是否有统计学意义,这就是协方差分析解决问题的基本计算原理。
sas当中univariate语句
sas当中univariate语句
在SAS中,UNIVARIATE语句用于计算和显示变量的描述性统计量和分布。
它提供了一种快速且简单的方法来分析单个变量的基本统计信息,如均值、标准差、最小值、最大值、四分位数等。
在UNIVARIATE语句中,可以指定一个或多个变量进行分析,语法如下:
```sas
PROC UNIVARIATE DATA=data;
VAR variable(s);
OPTIONS;
RUN;
```
其中,DATA参数指定要分析的数据集,VAR参数指定要分析的变
量或变量列表。
OPTIONS部分用于指定其他选项,比如要计算的统计量类型、显示分布图形等。
除了上述基本用法外,UNIVARIATE语句还可以用于执行以下任务:
1.对多个变量同时进行分析,可以在VAR语句中列出多个变量。
2.使用BY语句对变量进行分组分析,通过BY语句可以根据一个
或多个变量的值对数据集进行分组,并分别计算每个组的统计量。
3.使用HISTOGRAM选项可以显示变量的直方图,帮助理解变量的
分布情况。
4.使用FIT选项可以拟合不同的分布模型(如正态分布、指数分
布等)到数据,并提供相应的拟合统计量和图形。
5.使用BOXPLOT选项可以生成变量的箱线图,用于检测偏离值和
异常值。
综上所述,UNIVARIATE语句是SAS中用于描述和分析单个变量的
一种功能强大的统计分析工具。
它提供了丰富的选项和图形,可以帮
助用户对数据进行直观的分析和理解。
SAS的基本统计分析
SAS的基本统计分析SAS(统计分析系统)是一种广泛使用的统计分析软件,被广泛应用于数据分析和建模。
它提供了各种强大的统计分析功能,包括描述性统计、推断统计、回归分析、多元分析等。
在本文中,我们将介绍SAS的一些基本统计分析功能。
1.描述性统计分析:描述性统计是对数据集的基本特征进行分析和总结。
SAS提供了各种描述性统计分析功能,包括计算均值、中位数、百分位数、方差、标准差等。
例如,我们可以使用SAS的`MEANS`过程计算数据集中的变量的均值和标准差。
2.推断统计分析:推断统计分析是根据样本数据推断总体的参数估计和假设检验。
SAS提供了一系列的推断统计分析功能,包括参数估计、置信区间估计、假设检验等。
例如,我们可以使用SAS的`TTEST`过程进行两个样本的t检验,或者使用`ANOV`过程进行方差分析。
3.回归分析:回归分析用于研究自变量与因变量之间的关系,并建立预测模型。
在SAS中,我们可以使用`REG`过程进行回归分析。
该过程提供了许多回归模型,如一元线性回归、多元线性回归、逻辑回归等。
我们可以通过回归分析来了解变量之间的关系,发现影响因变量的重要因素,并进行预测。
4.多元分析:多元分析是一种分析多个自变量对因变量的影响的方法。
SAS提供了多种多元分析的方法,如多元方差分析(MANOVA)、主成分分析(PCA)、因子分析等。
我们可以使用SAS的`GLM`过程进行多元方差分析,或者使用`FACTOR`过程进行因子分析。
5.时间序列分析:时间序列分析是一种对时间相关数据进行建模和预测的方法。
SAS提供了一些时间序列分析的功能,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
我们可以使用SAS的`ARIMA`过程进行时间序列分析,拟合ARIMA模型并进行预测。
6.非参数统计分析:非参数统计分析是一种不需要对总体进行任何假设的统计分析方法。
SAS提供了一些非参数统计分析的功能,如Wilcoxon秩和检验、Kruskal-Wallis检验等。
SAS统计分析介绍
proc ttest data=ncd.stat ;
var h; class urd;
urd
N
where gender=1; 1
733
run;
2
840
差 (1-2)
均值 标准差 标准误 最小值 最大值 差
168.4 6.3642 0.2351 148.0 189.0 164.8 7.5661 0.2611 104.0 193.0 3.6064 7.0317 0.3554
例如 : proc print data=score label;
id name; var math english chinese; label name=‘姓名’ math=‘数学’ english=‘英语' chinese=‘语 文’; run;
19
FORMAT语句可以为变量输出规定一个输出格式,比如 proc print data=score; format math 5.1 chinese 5.1; 分析
t检验 方差分析 logistic回归分析 判别分析 聚类分析 方差分析 logistic回归分析 判别分析 聚类分析
分类变量
t检验 方差分析 协方差分析 多因素回归分析
c2检验 logistic回归分析
c2检验 logistic回归分析
生存分析
5
有序变量 相关分析 多因素回归分析
5.304312 标准误差均 值
3645 584713.9 72.40189 0.56804 263832.5
0.140937
99% 95% 90% 75% Q3 50% 中位数
25% Q1
179.5 175 172
166.1 160
SAS-7
返回总目录目 录第33章 SAS 系统内四种多变量分析程序概述 (3)33.1 四种多变量分析的统计程序 (3)33.2 主成份分析和传统式因子分析的比较.......................................................................4第34章 主成份分析统计程序PROC PRINCOMP (5)34.1 PROC PRINCOMP 程序概述 (5)34.2 如何撰写 PROC PRINCOMP 程序 (5)34.3 范 例.......................................................................................................................7第35章 因子分析统计程序PROC FACTOR .. (18)35.1 因子分析法中的因子一词指什么 (18)35.2 共因子分析法的模型 (18)35.3 PROC FACTOR 程序概述 (18)35.4 因子分析法的历史背景 (19)35.5 如何撰写 PROC FACTOR 程序 (19)35.6 五种合乎语法的输入资料文件形式 (27)35.7 范 例.....................................................................................................................28第36章 典型相关分析统计程序 PROC CANCORR (42)36.1 何谓典型相关 (42)36.2 PROC CANCORR 程序概述 (42)36.3 如何撰写 PROC CANCORR 程序 (42)36.4 范 例.....................................................................................................................47第37章多次元尺度法统计程序PROC MDS (53)37.1 PROC MDS 程序概述 (53)37.2 MDS 程序基本功能的示范 (54)37.3 如何撰写PROC MDS 程序 (56)37.4 范 例 (63)37.5 注 意 事 项 (67)第七部分多变量的分析第33章 SAS 系统内四种多变量分析程序概述33.1 四种多变量分析的统计程序本章将简要地介绍四种多变量分析的统计程序即主成份分析(PRINCOMP)传统式因子分析 (FACTOR)典型相关分析 (CANCORR) 和多次元尺度分析 (MDS)这四种统计程序的功能在于找寻多个变量之间的关系或简化数据的复杂性这些变量并不一定得视为自变量或因变量其中主成份分析传统式因子分析以及多次元尺度分析都是对一组变量作分析而典型相关则是对两组变量作分析SAS 还有其它的统计程序可以执行多变量的统计分析如CATMOD变异数分析回归分析集群分析及鉴别分析等若读者熟悉在SAS 旧版的环境下执行这些程序则建议直接参考附录D 有关这些程序增进的简介下面分别介绍这四种程序 PRINCOMP 程序主成份分析对同一组观察体的多个变量执行主成份分析主成份分析的目的是找出一组变量之间互相依赖的程度将这些线性相关以主成份值表示其分析的结果包括未经标准化及标准化后的主成份值这些主成份值可以代替变量的原始数据进行进一步的分析处理如制图执行回归分析或集群分析值得读者注意的是主成份分析 (Principal Component Analysis) 与主轴因子分析 (Principal Axis Common Factor Analysis) 不是同义词 FACTOR 程序 (传统式因子分析)对同一组观察体内的多个变量执行上述的主成份分析及传统式因子分析因子分析法还附带有因子的坐标转换以取得最大的诠释效果其分析结果可以是标准化的主成份值也可以是传统因子分析的值传统式因子分析的目的在寻求一小群隐藏的变量以解释原变量之间的相关和主成份分析不同的是这一小群隐藏的变量不直接由原变量间的线性组合导出一般国内教科书将因子分析翻译成 "因素分析"因此对本书读者而言这两个名词实系同义词 CANCORR 程序 (典型相关分析)对两组变量执行典型相关分析其分析的结果是典型变量值典型相关分析的目的是藉一小群有最高组间相关的组内变量之线性组合 (又称向量) 来解释并概述两组变量之间的关系构成向量的变量多少并没有限制若某个向量中只含一个变量则典型相关的作用与回归分析或皮尔森相关系数类似第七部分 多变量的分析4 MDS 程序 (多次元尺度分析)MDS 是 Multidimensional Scaling 的简称它代表一系列的分析法其目的在于从一组距离矩阵中找出观察体 (或变量或刺激词)的坐标如此读者可藉图形的视觉效果来检视点与点之间的关系以及潜在向度的意义33.2 主成份分析和传统式因子分析的比较如上所述FACTOR 程序除了涵盖 PRINCOMP 程序并且包括了另外几种常用的因子分析法当读者使用 FACTOR 程序时若不指明用那一种分析法则主成份分析便是 FACTOR 程序的内设值FACTOR 程序产生的主成份值是经过标准化的然而PRINCOMP 程序所产生的主成份值是未经标准化的不过读者也可额外地要求PRINCOMP 算出标准化的主成份值与 FACTOR 程序相比PRINCOMP 程序的优点如下(1) 最适用于变量多但主成份少的大型资料文件可节省电脑处理时间(2) 易于使用(3) 输入资料文件可以是一个净相关系数矩阵或一个净共变异数矩阵与 PRINCOMP 程序相比FACTOR 程序的优点如下(1) 产生的分析结果较 PRINCOMP 程序广泛包括误差值的检定因子坐标转换的角度及特性根由大到小的排列等(2) 包含好几种坐标转换的理论(3) 其输出矩阵较易了解(4) 所涵盖的因子分析法较完全PRINCOMP 程序只有一种分析法即主成份分析法然而 FACTOR 程序内有九种分析法供你选择第34章 主成份分析统计程序PROC PRINCOMP 34.1 PROC PRINCOMP 程序概述读者可用 PRINCOMP 程序对输入资料文件执行主成份分析其输入资料文件可以是原始数据也可以是一个相关系数矩阵或是一个变异数共变异数矩阵输出资料则包括特性根特性向量及(未经) 标准化的主成份值主成份分析是一个多变量的统计程序可用来检定多个数值变量之间的关系主成份分析除了用来概述变量间的关系外还可用来削减回归或集群分析中变量的数目它的主要目的是求出一组变量的线性组合 (即主成份)这些线性组合就是原变量矩阵的特性向量每一个向量的内乘积就是该向量对原变量群能解释的变异数百分比这些特性向量之间应该是彼此线性独立的主成份分析首由皮尔森氏 (Pearson) 于 1901 年提出其后经过赫德林氏 (Hotelling1933) 的发扬有关其应用可见罗氏 (Rao 1964)古氏及隆斯氏 (Cooleyand Lohnes 1971)和干那氏 (Gnanadesikan 1977) 的着作34.2 如何撰写 PROC PRINCOMP 程序PROC PRINCOMP 含六道指令它们的格式如下PROC PRINCOMP选项串V AR变量名称串PARTIAL变量名称串FREQ变量名称WEIGHT变量名称BY 变量名称串一般而言只须用到前两个指令亦即 PROC PRINCOMP 以及 V AR指令 #1 PROC PRINCOMP 选项串有下列十个选项可供选择(1) DATA=输入资料文件名称指明到底对那一个 SAS 资料文件执行 PROC PRINCOMP 的分析这个输入资料文件可以是原始数据也可以是一个相关系数矩阵 (TYPE=CORR 或UCORR)或是一个变异数共变异数矩阵 (TYPE=COV 或 UCOV)或TYPE=FACTOR SSCP ESP 等不同形式的资料文件若省略此选项则 SAS 会自动找出在此程序之前最后形成的资料文件对它执行主成份分析第七部分 多变量的分析6(2) OUT=输出资料文件名称这一个输出资料文件包括输入资料文件的数据以及主成份值(3) OUTSTAT=输出资料文件名称这一个输出资料文件包含下列的统计值算术平均数标准差观察体的总数相关系数 (或变异数共变异数)特性根和特性向量它们的代号与定义如下代号 (_TYPE_)定 义MEAN 每一变量的平均数STD 每一变量的标准差N 观察体的总个数CORR 每一变量与自己或其它的变量之间的相关系数COV 每一变量与自己或其它的变量之间的共变异数EIGENVAL特性根当选项 N= 界定成份个数少于实际导出的个数则以N=界定的个数为准其余的主成份以遗漏值 (.)表示SCORE 特性向量 (这些向量值一般是用来计算主成份值或被输送到FACTOR 程序作因子坐标的转换)SUMWGT 加权值的总和若读者在程序中包括了 PARTIAL 指令而且定V ARDEF=WDF则 SUMWGT 的值是加权值的总和减去PARTIAL 变量串的自由度当 SUMWGT 与 N 值相同时SUMWGT 的变量不会被纳入 OUTSTAT=输出资料文件内(4) NOINT要求相关矩阵或变异数共变异数矩阵不针对平均数作校正也就是说主成份分析不包括截距(5) COV ARIANCE (或 COV)要求以变异数共变异数矩阵为分析的数据若省略此选项则此统计分析将以相关系数矩阵为依据(6) N=正整数界定主成份的总数(7) STANDARD(或 STD)要求 OUT=输出资料文件中含标准化的主成份值若省略此选项则输出资料文件中将含未经标准化的主成份值 (这些值的变异数等于特性根的值)(8) PREFIX=主成份的名字为主成份命名内设值是PRIN1PRIN2... PRINn n 为正整数主成份的名字 (包括字母及数字) 不得超过八个字母或数字(9) NOPRINT不印出分析的结果(10) V ARDEF=DF (或 N 或 WGT 或 WDF)界定计算变异数与共变异数时所用的分母DF 代表自由度是此选项的内设值N 是样本总数WGT 是加权后的样本总数WDF 则是 (WGT-1)第34章 主成份分析统计程序PROC PRINCOMP 7指令 #2 VAR变量名称串指明对那些数值变量作主成份分析若省略此指令则本程序内其它指令里未曾提到的所有数值变量均将被纳入分析指令 #3 PARTIAL变量名称串此指令指明一组变量它们的值将会从其它的变量中净化出来净化后的变量值所形成的矩阵是净相关系数矩阵而非相关系数矩阵若读者在程序中同时界定 OUT= 或OUTSTAT=输出资料文件名则此输出资料文件也会含净化后的残差变量 (Residual Variable)这些残差变量的命名原则是 R_ 加上 V AR 指令所界定之变量名称的前六个字母所以如果 V AR 指令含X Y Z 三个变量则其所对应的残差变量就是R_X R_Y R_Z 了指令 #4 FREQ 变量名称此变量的值代表资料文件内各观察体重复出现的次数所以计算自由度时将以这个变量的总值为依据指令 #5 WEIGHT 变量名称当输入资料文件内各观察体的变异数不等时读者常须依这些不等变异数的倒数指派不同的加权值以区分各观察体的重要性这些加权值可被存入一个 WEIGHT 变量内以代表各观察体的加权值指令 #6 BY变量名称串此指令指示 SAS 将输入资料文件分成几个小的资料文件然后对每一个小的资料文件进行主成份分析当读者选用此指令时输入资料文件内的数据必须先依 BY 指令里所列举的变量值作从小到大的排列这个步骤可藉 PROC SORT 达成34.3 范 例例一一月和七月的气温分析本例的输入资料文件 (TEMPERAT) 是美国六十四个城市一月与七月的平均日温分析过程首先用 PROC PLOT 画出原始数据的分配图然后用 PRINCOMP 程序执行主成份分析求出两个主轴(PRIN1PRIN2)由于一月的温差较大而且选用 COV 选项使得一月在第一主成份上的负荷量较重最后用 PROC PLOT 画出两个主成份上各城市的负荷量读者可同时参阅第一次与第二次PLOT 程序所求得的两个图表来归纳出第一与第二主成份是原坐标轴旋转 30度的结果第七部分 多变量的分析8程 序DATA TEMPERAT;LENGTH CITY $ 16;TITLE 'Mean Temperature in January and July for Selected Cities';INPUT CITY $ :16. JANUARY :4.1 JULY :5.1 @@;CARDS;Mobile 51.2 81.6 Concord20.6 69.7Phoenix51.2 91.2 Atlantic_City 32.7 75.1Little_Rock 39.5 81.4 Albuquerque 35.2 78.7Sacramento 45.1 75.2 Albany 21.5 72.0Denver 29.9 73.0 Buffalo 23.7 70.1Hartford 24.8 72.7 New_York 32.2 76.6Wilmington 32.0 75.8 Charlotte 42.1 78.5Washington_DC 35.6 78.7 Raleigh 40.5 77.5Jacksonville 54.6 81.0 Bismarck 8.2 70.8Miami67.2 82.3 Cincinnati 31.1 75.6Atlanta42.4 78.0 Cleveland 26.9 71.4Boise29.0 74.5 Columbus 28.4 73.6Chicago22.9 71.9 Oklahoma_City 36.8 81.5Peoria23.8 75.1 Portland_OR 38.1 67.1Indianapolis27.9 75.0 Philadelphia 32.3 76.8Des_Moines19.4 75.1 Pittsburgh 28.1 71.9Wichita31.3 80.7 Providence 28.4 72.1Louisville33.3 76.9 Columbia 45.4 81.2New_Orleans52.9 81.9 Sioux_Falls 14.2 73.3Porland_ME21.5 68.0 Memphis 40.5 79.6Baltimore33.4 76.6 Nashville 38.3 79.6Boston29.2 73.3 Dallas 44.8 84.8Detroit25.5 73.3 El_Paso 43.6 82.3Sault_Ste_Marie 14.2 63.8 Houston 52.1 83.3Duluth 8.5 65.6 Salt_Lake_City 28.0 76.7Minneapolis 12.2 71.9 Burlington 16.8 69.8Jackson 47.1 81.7 Norfolk 40.5 78.3Kansas_City 27.8 78.8 Richmond 37.5 77.9St_Louis 31.3 78.6 Spokane 25.4 69.7Great_Falls 20.5 69.3 Charleston_WV 34.5 75.0Omaha 22.6 77.2 Milwaukee 19.4 69.9Reno 31.9 69.3 Cheyenne 26.6 69.1第34章 主成份分析统计程序PROC PRINCOMP 9;PROC PLOT; PLOT JULY*JANUARY=CITY / VPOS=31; RUN;PROC PRINCOMP COV OUT=PRIN;VAR JULY JANUARY; RUN;PROC PLOT;PLOT PRIN2*PRIN1=CITY / VPOS=19;TITLE2 'Plot of Principal Components'; RUN;结 果报表34.1 一月和七月的气温分析 Mean Temperature in January and July for Seleted CitiesPlot of JULY*JANUARY . Symbol is value of CITY .JULY|95 +||| P90 +|||85 + D| H| E N M| W O L C J M J80 + N M| K S AW NC| O L R RA| S WB75 + D P IB C A C S| S D CB| M AC H P D| B C70 + B M C BS| G C R| P P|65 + D| S||60 +| -+---------+---------+---------+---------+---------+---------+---------+-0 10 20 30 40 50 60 70JANUARYNOTE: 3 obs hidden.Principal Component Analysis64 Observations2 Variables Covariance MatrixSimple StatisticsJULY JANUARY JULY JANUARYJULY 26.292477746.8282912Mean 75.6078125032.09531250JANUARY 46.8282912137.1810888Std 5.1276191011.71243309Total Variance = 163.47356647第七部分 多变量的分析10 Eigenvalues of the Covariance Matrix EigenvectorsEigenvalueDifference Proportion Cumulative PRIN1PRIN2PRIN1154.311145.1480.9439480.94395JULY 0.3435320.939141PRIN29.163.0.056052 1.00000JANUARY 0.939141-.343532 Plot of Principal ComponentsPlot of PRIN2*PRIN1. Symbol is value of CITY .10 +|| P|PRIN2 | W| S O K O D| B M D S L| r S W r| I NPL N M C J0 + B AC HD B CW B R N H| D MC B A C RA M N| G B CP D J| P S| S C S| R M|||-10 + P -+---------+---------+---------+---------+---------+---------+---------+-30 -20 -10 0 10 20 30 40PRIN1NOTE: 4 obs hidden.例二犯罪率的分析本例的输入资料文件 (CRIME) 是一个五十个观察体乘以七个变量的原始数据矩阵它包含了美国五十个州在七种犯罪项目上的发生频率这七种罪名分别是谋杀(MURDER)强暴 (RAPE)抢劫 (ROBBERY)骚扰 (ASSAULT)夜间偷窃(BURGLARY)窃盗 (LARCENY) 及偷车 (AUTO)这样一个大型的资料文件可以用主成份分析法简化到只用两个或三个特性向量就可以圆满地表示程 序DATA CRIME;TITLE 'Crime Rates per 100,000 Population by State'; INPUT STATE $ 1-14 MURDER 18-21 RAPE 23-26 ROBBERY 28-32 ASSAULT 34-38BURGLARY 40-45 LARCENY 47-52 AUTO 53-59; CARDS;Alabama 14.2 25.2 96.8 278.3 1135.5 1881.9 280.7Alaska 10.8 51.6 96.8 284.0 1331.7 3369.8 753.3Arizona 9.5 34.2 138.2 312.3 2346.1 4467.4 439.5Arkansas 8.8 27.6 83.2 203.4 972.6 1862.1 183.4California 11.5 49.4 287.0 358.0 2139.4 3499.8 663.5Colorado 6.3 42.0 170.7 292.9 1935.2 3903.2 477.1第34章 主成份分析统计程序PROC PRINCOMP 11Connecticut 4.2 16.8 129.5 131.8 1346.0 2620.7 593.2Delaware 6.0 24.9 157.0 194.2 1682.6 3678.4 467.0Florida 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4Georgia 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9Hawaii 7.2 25.5 128.0 64.1 1911.5 3920.4 489.4Idaho 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6Illinois 9.9 21.8 211.3 209.0 1085.0 2828.5 528.6Indiana 7.4 26.5 123.2 153.5 1086.2 2498.7 377.4Iowa 2.3 10.6 41.2 89.8 812.5 2685.1 219.9Kansas 6.6 22.0 100.7 180.5 1270.4 2739.3 244.3Kentucky 10.1 19.1 81.1 123.3 872.2 1662.1 245.4Louisiana 15.5 30.9 142.9 335.5 1165.5 2469.9 337.7Maine 2.4 13.5 38.7 170.0 1253.1 2350.7 246.9Maryland 8.0 34.8 292.1 358.9 1400.0 3177.7 428.5Masssachusetts 3.1 20.8 169.1 231.6 1532.2 2311.3 1140.1Michigen 9.3 38.9 261.9 274.6 1522.7 3159.0 545.5Minnesota 2.7 19.5 85.9 85.8 1134.7 2559.3 343.1Mississippi 14.3 19.6 65.7 189.1 915.6 1239.9 144.4Missouri 9.6 28.3 189.0 233.5 1318.3 2424.2 378.4Montana 5.4 16.7 39.2 156.8 804.9 2773.2 309.2Nebraska 3.9 18.1 64.7 112.7 760.0 2316.1 249.1Nevada 15.8 49.1 323.1 355.0 2453.1 4212.6 559.2New Hampshire 3.2 10.7 23.2 76.0 1041.7 2343.9 293.4New Jersey 5.6 21.0 180.4 185.1 1435.8 2774.5 511.5New Mexico 8.8 39.1 109.6 343.4 1418.7 3008.6 259.5New York 10.7 29.4 472.6 319.1 1728.0 2782.0 745.8North Carolina 10.6 17.0 61.3 318.3 1154.1 2037.8 192.1North Dakota 0.9 9.0 13.3 43.8 446.1 1843.0 144.7Ohio 7.8 27.3 190.5 181.1 1216.0 2696.8 400.4Oklahoma 8.6 29.2 73.8 205.0 1288.2 2228.1 326.8Oregon 4.9 39.9 124.1 286.9 1636.4 3506.1 388.9Pennsylvania 5.6 19.0 130.3 128.0 877.5 1624.1 333.2Rhode Island 3.6 10.5 86.5 201.0 1489.5 2844.1 791.4South Carolina 11.9 33.0 105.9 485.3 1613.6 2342.4 245.1South Dakota 2.0 13.5 17.9 155.7 570.5 1704.4 147.5Tennessee 10.1 29.7 145.8 203.9 1259.7 1776.5 314.0Texas 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6Utah 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5第七部分 多变量的分析12Vermont1.4 15.9 30.8 101.2 1348.2 2201.0 265.2Virginia 9.0 23.3 92.1 165.7 986.2 2521.2 226.7Washington 4.3 39.6106.2 224.8 1605.6 3386.9 360.3West Virginia 6.0 13.2 42.2 90.9 597.41341.7 163.3Wisconsin 2.8 12.9 52.2 63.7 846.9 2614.2 220.7Wyoming 5.4 21.9 39.7 173.9 811.6 2772.2 282.0;PROC PRINCOMP OUT=CRIMCOMP;RUN;PROC SORT; BY PRIN1;PROC PRINT; ID STATE;VAR PRIN1 PRIN2 MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENY AUTO;TITLE2 'States Listed in Order of Overall Crime Rate'; TITLE3 'As Determined by the First Principal Component';PROCSORT; BY PRIN2;PROC PRINT; ID STATE;VAR PRIN1 PRIN2 MURDER RAPE ROBBERY ASSAULT BURGLARY LARCENYAUTO ;TITLE2 'States Listed in Order of Property Vs. Violent Crime'; TITLE3 'As Determined by the Second Principal Component';RUN;PROC PLOT; PLOT PRIN2*PRIN1=STATE /VPOS=31; TITLE2 'Plot of the First Two Principal Components';PROC PLOT; PLOT PRIN3*PRIN1=STATE / VPOS=26; TITLE2 'Plot of the First and Third Principal Components';RUN;结 果由初步的分析结果看来前两个主成份加起来便可以解释 76% 的变异数若再加上第三个主轴则百分比升到 87%但第四个及以后的主成份便没有这么显著的影响 (见报表 34.2a)第一个主成份代表一般犯罪率的高低它的特性向量在这七个变量上差不多第二个主成份似乎在犯罪类型中分出财物偷窃和暴力犯罪的不同第三主成份的解释则不甚清楚为了诠释这些主成份的意义可将原始数据依各主成份的值重新排列然后印出整理过后的数据 (见报表 34.2b)另一种有效的方法是将各州主成份的值以坐标图表示然后试着去了解各区 (如中西部东南部) 在坐标图上的分布 (见报表 34.2c)现举一例说明如何在坐标图上识别各州如第一图上有四个 "A" 开头的州名即Alabama Arkansas Alaska 和 Arizona 在这四州中Alabama 的位置最靠近横轴其坐标值是 (-.0499-2.0961)请读者同时参第34章 主成份分析统计程序PROC PRINCOMP 13阅坐标值与图形以便识别各州在犯罪率上的分析报表34.2a 犯罪率的分析 ━ 初步结果Crime Rates per 100,000 Population by StatePrincipal Component Analysis50 Observations 7 VariablesSimple StatisticsMURDERRAPE ROBBERY ASSAULT BURGLARY LARCENY AUTOMean 7.44400000025.73400000124.0920000211.30000001291.9040002671.288000377.5260000Std3.86676894110.7596299588.3485672100.2530492432.455711725.908707193.3944175Correlation MatrixMURDERRAPEROBBERY ASSAULT BURGLARY LARCENY AUTO MURDER 1.00000.60120.48370.64860.38580.10190.0688RAPE 0.6012 1.00000.59190.74030.71210.61400.3489ROBBERY 0.48370.5919 1.00000.55710.63720.44670.5907ASSAULT 0.64860.74030.5571 1.00000.62290.40440.2758BURGLARY 0.38580.71210.63720.6229 1.00000.79210.5580LARCENY 0.10190.61400.44670.40440.7921 1.00000.4442AUTO0.06880.34890.59070.27580.55800.44421.0000Eigenvalues of the Correlation MatrixEigenvalueDifferenceProportion CumulativePRIN1 4.11496 2.876240.5878510.58785PRIN2 1.238720.512910.1769600.76481PRIN30.725820.409380.1036880.86850PRIN40.316430.058460.0452050.91370PRIN50.257970.035930.0368530.95056PRIN60.222040.097980.0317200.98228PRIN70.124060.0177221.00000EigenvectorsPRIN1PRIN2PRIN3PRIN4PRIN5PRIN6PRIN7MURDER 0.300279-.6291740.178245-.2321140.5381230.2591170.267593RAPE 0.431759-.169435-.2441980.0622160.188471-.773271-.296485ROBBERY 0.3968750.0422470.495861-.557989-.519977-.114385-.003903ASSAULT 0.396652-.343528-.0695100.629804-.5066510.1723630.191745BURGLARY 0.4401570.203341-.209895-.0575550.1010330.535987-.648117LARCENY 0.3573600.402319-.539231-.2348900.0300990.0394060.601690AUTO0.2951770.5024210.5683840.4192380.369753-.0572980.147046第七部分 多变量的分析14报表34.2b 犯罪率的分析━第一与第二主成份值的排列Crime Rates per 100,000 Population by State States Listed in Order of Overall Crime Rate As Determined by the First Principal ComponentB R A U L M O S R A S P P U B S G R T R R R R B A LC A A I ID AE U A E U T N N E P R L R N T E12R E Y T Y Y O NorthDakota -3.964080.387670.99.013.343.8446.11843.0144.7SouthDakota -3.17203-0.25446 2.013.517.9155.7570.51704.4147.5WestVirginia -3.14772-0.81425 6.013.242.290.9597.41341.7163.3Iowa-2.581560.82475 2.310.641.289.8812.52685.1219.9Wisconsin -2.502960.78083 2.812.952.263.7846.92614.2220.7NewHampshire -2.465620.82503 3.210.723.276.01041.72343.9293.4Nebraska -2.150710.22574 3.918.164.7112.7760.02316.1249.1Vermont -2.064330.94497 1.415.930.8101.21348.22201.0265.2Maine -1.826310.57878 2.413.538.7170.01253.12350.7246.9Kentucky -1.72691-1.1466310.119.181.1123.3872.21662.1245.4Pennsylvania -1.72007-0.19590 5.619.0130.3128.0877.51624.1333.2Montana -1.668010.27099 5.416.739.2156.8804.92773.2309.2Minnesota -1.55434 1.05644 2.719.585.985.81134.72559.3343.1Mississippi -1.50736-2.5467114.319.665.7189.1915.61239.9144.4Idaho-1.43245-0.00801 5.519.439.6172.51050.82599.6237.6Wyoming -1.424630.06268 5.421.939.7173.9811.62772.2282.0Arkansas -1.05441-1.345448.827.683.2203.4972.61862.1183.4Utah-1.049960.93656 3.520.368.8147.31171.63004.6334.5Virginia-0.91621-0.692659.023.392.1165.7986.22521.2226.7NorthCarolina -0.69925-1.6702710.617.061.3318.31154.12037.8192.1Kansas-0.63407-0.02804 6.622.0100.7180.51270.42739.3244.3Connecticut -0.54133 1.50123 4.216.8129.5131.81346.02620.7593.2Indiana -0.499900.000037.426.5123.2153.51086.22498.7377.4Oklahoma -0.32136-0.624298.629.273.8205.01288.22228.1326.8RhodeIsland -0.20156 2.14658 3.610.586.5201.01489.52844.1791.4Tennessee -0.13660-1.1349810.129.7145.8203.91259.71776.5314.0Alabama -0.04988-2.0961014.225.296.8278.31135.51881.9280.7NewJersey 0.217870.96421 5.621.0180.4185.11435.82774.5511.5Ohio 0.239530.090537.827.3190.5181.11216.02696.8400.4Georgia 0.49041-1.3807911.731.1140.5256.51351.12170.2297.9Illinois 0.512900.094239.921.8211.3209.01085.02828.5528.6Missouri 0.55637-0.558519.628.3189.0233.51318.32424.2378.4Hawaii0.82313 1.823927.225.5128.064.11911.53920.4489.4Washington 0.930580.73776 4.339.6106.2224.81605.63386.9360.3Delaware 0.96458 1.29674 6.024.9157.0194.21682.63678.4467.0Masssachusetts 0.97844 2.63105 3.120.8169.1231.61532.22311.31140.1Louisiana 1.12020-2.0832715.530.9142.9335.51165.52469.9337.7NewMexico 1.21417-0.950768.839.1109.6343.41418.73008.6259.5Texas 1.39696-0.6813113.333.8152.4208.21603.12988.7397.6Oregon1.449000.586034.939.9124.1286.91636.43506.1388.9第34章 主成份分析统计程序PROC PRINCOMP15SouthCarolina 1.60336-2.1621111.933.0105.9485.31613.62342.4245.1Maryland 2.18280-0.194748.034.8292.1358.91400.03177.7428.5Michigen 2.273330.154879.338.9261.9274.61522.73159.0545.5Alaska 2.421510.1665210.851.696.8284.01331.73369.8753.3Colorado 2.509290.91660 6.342.0170.7292.91935.23903.2477.1Arizona 3.014140.844959.534.2138.2312.32346.14467.4439.5Florida 3.11175-0.6039210.239.6187.9449.11859.93840.5351.4NewYork 3.452480.4328910.729.4472.6319.11728.02782.0745.8California 4.283800.1431911.549.4287.0358.02139.43499.8663.5Nevada5.26699-0.2526215.849.1323.1355.02453.14212.6559.2Crime Rates per 100,000 Population by StateStates Listedin Orderof Property Vs. Violent Crime As Determined by the Second Principal ComponentB R A U L M O S R A S P P U B S G R T R R R R B A LC A A I ID AE U A E U T N N E P R L R N T E12RE Y T Y Y O Mississippi -1.50736-2.5467114.319.665.7189.1915.61239.9144.4SouthCarolina 1.60336-2.1621111.933.0105.9485.31613.62342.4245.1Alabama -0.04988-2.0961014.225.296.8278.31135.51881.9280.7Louisiana1.12020-2.0832715.530.9142.9335.51165.52469.9337.7NorthCarolina -0.69925-1.6702710.617.061.3318.31154.12037.8192.1Georgia 0.49041-1.3807911.731.1140.5256.51351.12170.2297.9Arkansas -1.05441-1.345448.827.683.2203.4972.61862.1183.4Kentucky -1.72691-1.1466310.119.181.1123.3872.21662.1245.4Tennessee -0.13660-1.1349810.129.7145.8203.91259.71776.5314.0NewMexico 1.21417-0.950768.839.1109.6343.41418.73008.6259.5WestVirginia -3.14772-0.81425 6.013.242.290.9597.41341.7163.3Virginia -0.91621-0.692659.023.392.1165.7986.22521.2226.7Texas 1.39696-0.6813113.333.8152.4208.21603.12988.7397.6Oklahoma -0.32136-0.624298.629.273.8205.01288.22228.1326.8Florida 3.11175-0.6039210.239.6187.9449.11859.93840.5351.4Missouri 0.55637-0.558519.628.3189.0233.51318.32424.2378.4SouthDakota -3.17203-0.25446 2.013.517.9155.7570.51704.4147.5Nevada5.26699-0.2526215.849.1323.1355.02453.14212.6559.2Pennsylvania -1.72007-0.19590 5.619.0130.3128.0877.51624.1333.2Maryland 2.18280-0.194748.034.8292.1358.91400.03177.7428.5Kansas -0.63407-0.028046.622.0100.7180.51270.42739.3244.3Idaho -1.43245-0.00801 5.519.439.6172.51050.82599.6237.6Indiana -0.499900.000037.426.5123.2153.51086.22498.7377.4Wyoming -1.424630.06268 5.421.939.7173.9811.62772.2282.0Ohio 0.239530.090537.827.3190.5181.11216.02696.8400.4Illinois 0.512900.094239.921.8211.3209.01085.02828.5528.6California 4.283800.1431911.549.4287.0358.02139.43499.8663.5Michigen 2.273330.154879.338.9261.9274.61522.73159.0545.5Alaska 2.421510.1665210.851.696.8284.01331.73369.8753.3Nebraska -2.150710.22574 3.918.164.7112.7760.02316.1249.1Montana-1.668010.27099 5.416.739.2156.8804.92773.2309.2NorthDakota -3.964080.387670.99.013.343.8446.11843.0144.7NewYork3.452480.4328910.729.4472.6319.11728.02782.0745.8第七部分 多变量的分析16Maine -1.826310.57878 2.413.538.7170.01253.12350.7246.9Oregon 1.449000.58603 4.939.9124.1286.91636.43506.1388.9Washington 0.930580.73776 4.339.6106.2224.81605.63386.9360.3Wisconsin -2.502960.78083 2.812.952.263.7846.92614.2220.7Iowa-2.581560.82475 2.310.641.289.8812.52685.1219.9NewHampshire -2.465620.82503 3.210.723.276.01041.72343.9293.4Arizona3.014140.844959.534.2138.2312.32346.14467.4439.5Colorado 2.509290.91660 6.342.0170.7292.91935.23903.2477.1Utah -1.049960.93656 3.520.368.8147.31171.63004.6334.5Vermont -2.064330.94497 1.415.930.8101.21348.22201.0265.2NewJersey 0.217870.96421 5.621.0180.4185.11435.82774.5511.5Minnesota-1.554341.056442.719.585.985.81134.72559.3343.1Delaware 0.96458 1.29674 6.024.9157.0194.21682.63678.4467.0Connecticut -0.54133 1.50123 4.216.8129.5131.81346.02620.7593.2Hawaii 0.82313 1.823927.225.5128.064.11911.53920.4489.4RhodeIsland -0.20156 2.14658 3.610.586.5201.01489.52844.1791.4Masssachusetts 0.978442.631053.120.8169.1231.61532.22311.31140.1报表34.2c 犯罪率的分析 ━ 第一与第二主成份第一与第三主成份的坐标图Crime Rates per 100,000 Population by State Plot of the First Two Principal Components Plot of PRIN2*PRIN1. Symbol is value of STATE. 3 + || M || R 2 +| H | C || D1 + V M U N C | WN W A PRIN2 | M O|N N| N M MA C 0 + I KI O I| S P M N || V O M T F | W-1 + N | K T| A G | N |-2 + A L | S || M | -3 +-+--------------------+-------------------+-------------------+-------------------+--------------------+ -4 -2 0 2 4 6PRIN1 NOTE: 2 obs hidden.第34章 主成份分析统计程序PROC PRINCOMP 17Crime Rates per 100,000 Population by State Plot of the First and Third Principal Components Plot of PRIN3*PRIN1. Symbol is value of STAT E.3 +| N | M | | 2 + | PRIN3 | || I 1 + P R | M C| W K TA N M M | O L M| I G C 0 +N A N T A | S N N M V O| W M K N | I VM I U D S | H -1 + N| O C F | W || A -2 +-+---------- ----------+---------------------+---------------------+-------------------+-------------------+ -4 -2 0 2 4 6PRIN1 NOTE: 1 obs hidden.第35章因子分析统计程序PROC FACTOR35.1 因子分析法中的因子一词指什么许多人对因子分析法中所指的因子 一词不甚了解本节特就此说明之因子分析法中提到两种因子共同因子 (又称共因子) 和独特因子 这两种因子都是指一个(或一组) 假设的抽象的变量所谓共同因子指一个假设的抽象的变量它可用来解释两个或两个以上的原始变量然而独特因子则指一个假设的抽象的变量它只能用来解释一个原始的变量与其它变量完全无关如上所述因子指假设的抽象的变量它的功能在于诠释原始变量之间的关系或结构然而主成份是指原始变量间的线性组合它的功能在于简化原有的变量群35.2 共因子分析法的模型共因子分析法的模型允许每一变量有一独特因子所以Y ij = X i1b 1j + X i2b 2j +...+ X iq b qj + E ij其中Y ij = 第 i 个观察体在第 j 个变量上的值X ik = 第 i 个观察体在第 k 个共因子上的值b kj = 被第 k 个共因子用来预测第 j 个变量的回归系数又称因子负荷量(FactorLoading)Ei j = 第 i 个观察体在第 j 个独特因子上的值q = 共同因子的总数这个模型的两项假设如下独特因子之间是互相独立的共因子与独特因子之间是互相独立的35.3 PROC FACTOR程序概述因子分析及坐标的转换PROC FACTOR 可以对输入资料文件执行许多种不同的共因子分析及主成份分析也可将分析的结果经过坐标的转换以利于诠释第35章 因子分析统计程序PROC FACTOR 19输入资料文件PROC FACTOR 的输入资料文件可以是多变量数据一个相关系数矩阵一个变异数共变异数矩阵因子型态 (Factor Pattern)或是一个因子分数系数 (Factor Score Coefficient) 的矩阵FACTOR 程序也接受其它程序的输出资料文件所以输入资料文件变化很多详情见本章的第 35.6 节 因子提炼的方法FACTOR 程序提供九种因子提炼的方法供读者选用这九种方法将在介绍选项METHOD= 中详加解释另外FACTOR 程序也提供了六种方法来预估变量间的共通性见选项 PRIORS= 的说明 因子坐标的转换一般而言因子坐标的转换可分正交及斜交两大类FACTOR 程序提供了八种坐标转换的方法供读者选择见选项 ROTATE= 的说明 输出资料文件FACTOR 程序所产生的输出资料文件不止一个它们分别在选项 OUTSTAT= 中逐一说明35.4 因子分析法的历史背景共因子分析由史氏 (Spearman) 于 1904 年首创 读者可参阅古德氏 (Gould 1981)及金氏与穆勒氏 (Kim and Mueller 1978) 的书籍以便对分析法的目的及模型有初步的认识较深入的讨论可参看慕雷克 (Mulaik 1972) 与哈门 (Harman 1976) 的着作35.5 如何撰写 PROC FACTOR 程序PROC FACTOR 含七道指令它们的格式如下PROC FACTOR选项串PRIORS 变量共通性的预估值V AR 变量名称串PARTIAL 变量名称串FREQ 变量名称WEIGHT 变量名称BY变量名称串通常读者只须用到 PROC FACTOR 及 V AR 两道指令第七部分多变量的分析20指令 #1PROC FACTOR 选项串PROC FACTOR 的选项可分下列五大类讨论第一类选项与资料文件的界定有关第二类与因子提炼有关第三类与因子坐标的转换有关第四类选项控制报表的印出第五类含其它选项第一类选项 下列四选项与资料文件的界定有关(1) DATA=输入资料文件名称为输入资料文件命名若省略此选项则 SAS 会自动找出在此程序之前最后形成的 SAS 资料文件对它执行因子分析(2) TARGET=资料文件名称这一个资料文件内含有 Procrustes 坐标转换后理想的值必须与 ROTATE=PROCRUSTES 选项并用(3) OUT=输出资料文件名称这一个输出资料文件包括原输入资料文件的观察值以及因子分数 (Factor Score)这些值以 FACTOR1FACTOR2 等表示读者必须同时用 NFACTOR=选项界定因子个数上限(4) OUTSTAT=第二个输出资料文件名称这一个输出资料文件较上述 OUT=输出资料文件详尽下页的表是 OUTSTAT 文件所含因子分析的各项统计值之代号及它们的定义有些概念会在后面的章节中进一步解释代号 (_TYPE_=) 定 义MEAN 变量的平均数STD 变量的标准差N 观察体的总数CORR 相关系数矩阵矩阵内各横列的变量名字以 _NAME_ 表示IMAGE 映象系数矩阵 (Image Coefficient Matrix)矩阵内各横列的变量名字以 _NAME_ 表示IMAGECOV 映象的共变异数矩阵 (Image Covariance Matrix)矩阵内各横列的变量名字以 _NAME_ 表示COMMUNAL 各变量共通性的最终估计值PRIORS 各变量共通性的预估值WEIGHT 变量的加权值EIGENVAL 特性根UNROTATE 未经坐标转换的因子系数型态RESIDUAL 独特因子的相关系数矩阵TRANSFOR 坐标转换矩阵FCORR 共因子间的相关系数矩阵PA TTERN 因子系数的型态RCORR坐标轴间的相关系数矩阵REFERENC 参考结构矩阵 (Reference Structure Matrix)STRUCTUR 因子结构矩阵 (Factor Structure Matrix)SCORE 共因子分数的系数 (可输入 SCORE 程序以便产生共因子分数见第 12 章的例一)USCORE未经平均数矫正过的共因子分数的系数第二类选项下列十一个选项与因子提炼有关(1) METHOD=因子提炼的方法 (简写为 M=)一般而言此选项的内设值是 MEHTOD=PRINCIPAL 但当输入资料文件是TYPE=FACTOR 的情况下内设值是 METHOD=PATTERN 下列九种因子提炼的方法可供读者选用M=PRINCIPAL此选项的因子提炼方法视选项 PRIORS= 而定当此选(或 PRIN 或 P)项不与PRIORS= 并用或与 PRIORS=ONE 并用时它的因子提炼方法是主成份分析法否则它的因子提炼法是主轴因子分析法 (Principal Axis Common Factor Analysis)M=PRINIT界定循环式主轴因子分析 (Iterative Principal Axis Method)M=ULS (或 U)界定未加权的最小误差平方之因子分析 (Unweighted Least Squares Method)M=ALPHA (或 A)界定阿尔法因子分析(Alpha Factor Analysis)M=ML (或 M)界定最大可能率因子分析此法要求一个满秩的相关系数矩阵M=HARRIS (或 H)界定哈里斯氏 (Harris) 于 1962 年提出的 S -1RS -1 主轴分析此处S是变量的变异数共变异数矩阵R 是变量间的相关系数矩阵此法要求一个满秩的相关系数矩阵M=IMAGE (或 I)针对映象共变异数矩阵作主成份分析 (Principal Component Analysis of Image Covariance Matrix)此法要求一个满秩的相关系数矩阵请读者注意比法与凯斯(Kaiser 196319701974) 所提的映象分析 (Image Analysis) 无关M=PATTERN从输入资料文件 (其 TYPE=FACTOR CORR 或 COV)内取得因子负荷量矩阵若因子之间有线性相关则其间的相关系数也必须同时输入 (TYPE='FCORR' 的数据)M=SCORE从输入资料文件 (其 TYPE=FACTOR CORR 或 COV)内取得因子分数的系数这个输入资料文件必须同时包括变量间的相关系数或其变异数共变异数矩阵(2) PRIORS=变量共通性的预估值PRIORS=ONE (或 O)设定所有共通性的预估值为1PRIORS=MAX (或 M)取每一变量与其它变量的最大相关系数绝对值为该变量共通性的预估值PRIORS=SMC (或 S)取每一变量与其它变量的复相关平方值为该变量共通性的预估值PRIORS=ASMC(或 A)将上述的复相关 (SMC) 调整使其总和等于最大相关系数绝对值的总和而共通性预估值将与此值成正比 (Cureton 1968)PRIORS=INPUT(或I)如果输入资料文件的TYPE=FACTOR 则读者可选用此选项SAS 会进入资料文件内寻找 _TYPE_='PRIORS' 或_TYPE_='COMMUNAL'的变量此变量的第一个观察值就成为共通性的预估值PRIORS=RANDOM(或 R)随机取 0 与 1 之间的任何值为共通性的预估值下表列出因子提炼方法与共通性预估值的内设值之配对因子提炼的方法 共通性预测值的内设值 METHOD= PRIORS= PRINCIPAL ONEPRINITONE ALPHA SMC ULS SMC ML SMC HARRIS (不适用) IMAGE (不适用) PA TTERN(不适用)SCORE (不适用)(3) RANDOM=正整数起始随机随机数表的起始值与选项 (2) PRIORS=RANDOM 联用(4) MAXITER=正整数界定METHOD=PRINITULS ALPHA 或 ML 等因子分析法中循环分析的次数内设值是30(5) CONVERGE (或 CONV)= 正实数界定METHOD=PRINITULS ALPHA 或 ML 等因子分析法中循环分析的收敛值它的定义是两次循环所求得变量之共通性的差距当这个差距小于此选项所定的值时循环分析停止内设值是.001(6) COV ARIANCE (或 COV)要求 FACTOR程序对变异数共变异数矩阵 (而非相关系数矩阵) 执行因子分析此选项必须与 METHOD=PRINCIPAL PRINIT ULS 或 IMAGE适用(7) WEIGHT要求 FACTOR 程序对一个经过加权调整的相关系数矩阵或变异数共变异数矩阵执行因子分析选用此项时必须同时满足下列的条件METHOD=PRINCIPALPRINIT ULS 或IMAGE输入资料文件的TYPE=CORR COV UCORR UCOV 或FACTOR 各变量的加权值由 _TYPE_='WEIGHT'提供下面三个选项都可用来决定因子的总数如果读者在下面三选项中同时选用两个或三个选项则 SAS 会自动挑选最小的值(8) NFACTORS (或 NFACT 或 N)=正整数界定因子个数的上限内设值是所有被分析变量的总个数(9) PROPORTION (或 PERCENT 或 P)=百分比(正实数不带 % 符号)界定一个共因子至少要能解释的变量之变异数百分比内设值是 1 (即百分之百)此选项不可与 METHOD=PATTERN 或 SCORE 合用(10) MINEIGEN (或 MIN)=最小特性根的值要求 SAS 保留特性根大于此选项所设定的那些因子此选项不可与METHOD=PATTERN 或SCORE 合用一般而言其内设值是0若读者对未加权过的相关系数矩阵进行因子分析则其内设值等于1但如果读者同时省略NFACTORS=PROPORTION= 及 MINEIGEN= 三选项时SAS 会依下面的原则自行设定 MINEIGEN 的值当 METHOD= 则 MINEIGEN 的值为 ALPHA 或 HARRIS 1 IMAGE 映象的总变异数 (Total Image Variance)变量的总个数其它 的方法而且经过加权调整的总变异数PRIORS=1 变量的总个数一般而言当共通性的预估值超过 1 时 METHOD=PRINIT ULS ALPHA 和ML 立刻停止分析的过程并设因子的总个数为0下列两个选项可以让分析过程恢复(11) HEYWOOD (或 HEY)将大于 1 的变量共通性重新调整为 1如此分析可以继续进行(12) ULTRAHEYWOOD (或 ULTRA)改变规定允许变量的共通性大于 1此选项极可能导致不合理的分析结果因此应慎重使用之第三类选项 下列六个选项与坐标转换有关(1) ROTATE (或 R)=坐标转换法有八种方法可供选择R=V ARIMAX (或 V)界定最大变异数转换法R=QUARTIMAX (或 Q)界定四次方最大值转换法R=EQUAMAX (或 E)界定平衡最大值坐标转换法。
SAS统计分析(第八讲)
6
(1)似然比检验
G 2(ln Lk 1 ln LK )
k=0,1,┄,m。m为自变量的个数 。G近似服从自由度
为ν(ν=m-k)的χ2分布,当
变量对回归有统计学意义。 (2). Wald检验
2 2 时,表示新加入的 k个自 ,
Wald检验时将回归方程中各参数的估计值βj与0的比较, 统计量为
1
2
2016/8/27
1
0
71
538
17
Model Fit Statistics 模型拟合统计
Intercept Only 仅有截距 440.558 444.970 438.558 Intercept and Covariates 所有变量 428.427 指标越小表示 437.251 模型拟合的越 424.427 好
/*选项为对模型进行拟合优度检验*/ Output out=b1 p=pr; /*在数据集b1中含有每个个体的预测概率值*/
proc print data=b1; run;
2016/8/27 23
The LOGISTIC Procedure
0001oddsratioestimatespoint95waldeffectestimateconfidencelimits28621688485220183620associationpredictedprobabilitiesobservedresponses预测概率与观察反应变量间的关联度percentconcordant313somers02044个指标的和谐百分比绝对值越percentdiscordant109gamma0482大表示预不和谐百分比测概率与反percenttied577taua0042应变量的关结点百分比联度越高pairs381980602对子数等于反应变量为0的例数乘以反应变量为1的例数20183621obslevelpr00903520183622与冠心病d发病的关系分别随访儿茶酚胺水平高和低两组人群7年期间冠心病发病数见表93
如何用SAS进行统计分析
如何用SAS进行统计分析SAS(统计分析系统)是一种用于数据分析和统计建模的软件工具。
它提供了一系列功能和程序,用于数据处理、统计分析、预测建模、图形展示和报告生成等。
本文将介绍如何使用SAS进行统计分析,涵盖数据导入、数据清洗、描述性统计分析、假设检验、回归分析和聚类分析等内容。
1. 数据导入和数据清洗在使用SAS进行统计分析之前,你需要将待分析的数据导入到SAS软件中。
SAS支持多种数据格式,包括CSV、Excel、Access等。
你可以使用SAS提供的PROC IMPORT过程将数据导入到SAS的数据集中。
导入数据后,你需要对数据进行清洗。
数据清洗的目的是去除数据中的错误、缺失或异常值,以确保数据的质量。
你可以使用SAS的数据步骤(DATA STEP)来处理数据,例如删除缺失值、填补缺失值、去除异常值等。
2. 描述性统计分析描述性统计分析是对数据进行总结和描述的过程。
它包括计算数据的中心趋势(均值、中位数、众数)、数据的离散程度(标准差、方差、极差)、数据的分布形态(偏度、峰度)等。
在SAS中,你可以使用PROC MEANS过程进行描述性统计分析。
该过程可以计算多个变量的均值、标准差、最小值、最大值、中位数等统计指标。
此外,你还可以使用PROC UNIVARIATE过程计算数据的偏度、峰度等统计值,并绘制直方图和箱线图来展示数据的分布情况。
3. 假设检验假设检验是对样本数据进行推断性统计分析的一种方法。
它用于判断观察到的样本差异是否显著,从而对总体参数进行推断。
在SAS中,你可以使用PROC TTEST过程进行双样本t检验、单样本t检验和相关样本t检验等。
此外,PROC ANOVA过程可以用于方差分析,PROC FREQ过程可以用于卡方检验。
4. 回归分析回归分析是研究因变量与自变量之间关系的一种统计分析方法。
它用于预测和解释因变量的变化,并评估自变量对因变量的影响程度。
在SAS中,你可以使用PROC REG过程进行简单线性回归分析和多元线性回归分析。
快速上手使用SAS进行统计分析和建模
快速上手使用SAS进行统计分析和建模第一章:引言SAS(Statistical Analysis System)是一种功能强大的统计分析和建模工具,广泛应用于各个领域的数据分析。
本文将介绍如何快速上手使用SAS进行统计分析和建模。
我们将按照不同的步骤和技巧,逐步介绍如何运用SAS进行数据处理、描述统计、假设检验、回归分析以及模型建立与评估等。
第二章:数据处理在使用SAS进行统计分析之前,我们首先需要对数据进行处理。
这包括数据清洗、格式转换、合并和抽样等操作。
通过使用SAS的数据步骤(Data Step)和数据流程(Data Flow)技术,我们可以对数据集中的缺失值、异常值等进行处理,保证数据的准确性和完整性。
第三章:描述统计分析描述统计分析是数据分析的基础,通过对数据的基本特征进行分析,我们可以获得关于数据集的详细信息。
SAS提供了丰富的描述统计分析方法,包括均值、方差、相关系数、频率分布等。
我们可以使用PROC MEANS、PROC UNIVARIATE、PROC FREQ等过程来进行描述统计分析,并得到直观的统计图表。
第四章:假设检验假设检验是统计分析中常用的方法,用于验证研究假设的合理性。
SAS提供了多种假设检验方法,包括t检验、方差分析、卡方检验等。
我们可以使用PROC TTEST、PROC ANOVA、PROC CORR等过程来进行假设检验,并得出显著性结论,进一步推断总体参数。
第五章:回归分析回归分析是用于研究变量之间关系的重要方法,旨在构建预测模型和解释变量之间的关系。
SAS提供了强大的回归分析工具,包括线性回归、逻辑回归、多元回归等。
我们可以使用PROC REG、PROC LOGISTIC、PROC GLM等过程来进行回归分析,并获取模型的系数、拟合优度等统计结果。
第六章:模型建立与评估模型建立与评估是统计建模的关键环节,通过选择合适的变量和建立合理的模型,我们可以对数据进行预测和推断。
多分类因变量-sas实现
有序多分类——偏比例优势模型
比例优势模型(proportional odds model)是处理有 反应资料的常用方法,目前在国内医学领域已有较多应 用 。但该法必须满足比例优势假定条件,即自变量的回 归系数应与分割点k无关。尽管以往有研究认为,比例 优势模型对这一条件并不敏感 ,但实际情况可能并非如 此。
方法1:proc genmod; model outcome= sex treat/dist= multinomial link= clogit lrci type3;
/*dist=multinomial和link=clogit拟合有序多分类 logistic回归模型(累积logistic模型)*/
freq x;run; 方法2:proc logistic;freq x;model outcome=sex treat;run
如果不满足比例优比的假设条件,可以拟合无序多分类logistic回归, 或拟合偏比例优比模型(partial proportional odds model),或者当 应变量的某一个水平的样本含量小时,拟合模型时去掉这些水平。
run如果不满足比例优比的假设条件可以拟合无序多分类logistic回归或拟合偏比例优比模型partialproportionaloddsmodel或者当应变量的某一个水平的样本含量小时拟合模型时去掉这些水有序多分类偏比例优势模型比例优势模型proportionaloddsmodel是处理有反应资料的常用方法目前在国内医学领域已有较多应用
实用统计分析 logistic回归分析 —— 多分类
线性回归模型和广义线性回归模型要求因变量是连续的正
态分布变量,且自变量和因变量呈线性关系。 当因变量是分类型变量时,且自变量与因变量没有线性关 系时,线性回归模型的假设条件遭到破坏。这时,最好的回 归模型是Logistic回归模型,它对因变量的分布没有要求。 从数学角度看,Logistic回归模型非常巧妙地避开了分类型 变量的分布问题,补充完善了线性回归模型和广义线性回归
使用SAS进行统计分析和数据建模的方法
使用SAS进行统计分析和数据建模的方法1. 引言介绍SAS(统计分析系统), 这是一个广泛使用的统计软件,它提供了丰富的统计分析和数据建模功能。
2. 数据准备描述如何准备数据,包括数据清洗、数据预处理和数据转换等步骤。
3. 描述性统计分析使用SAS进行描述性统计分析,包括计算数据的均值、中位数、方差、标准差等基本统计指标,以及绘制频率分布图、直方图等。
4. 假设检验介绍如何使用SAS进行假设检验,包括t检验、方差分析、卡方检验等常用的统计检验方法。
讲解如何设置假设并根据样本数据判断是否拒绝假设。
5. 回归分析详细说明如何进行回归分析,包括简单线性回归和多元线性回归,介绍如何选择适当的回归模型,并解释模型的结果。
6. 非参数统计介绍如何使用非参数统计方法对数据进行分析,例如Wilcoxon秩和检验、Mann–Whitney U检验和Kruskal-Wallis单因素方差分析等。
7. 因子分析详细讲解如何使用SAS进行因子分析,包括主成分分析和因子旋转等步骤,解释如何提取因子并解释因子的含义。
8. 聚类分析介绍如何使用SAS进行聚类分析,包括层次聚类和K均值聚类方法,讲解如何选择合适的聚类数目并解释聚类结果。
9. 时间序列分析详细描述如何使用SAS进行时间序列分析,包括平稳性检验、ARIMA模型拟合、预测和模型诊断等。
10. 数据挖掘与机器学习介绍如何使用数据挖掘和机器学习方法进行预测和分类,包括决策树、随机森林、逻辑回归和支持向量机等。
11. 模型评估和验证讲解如何评估和验证统计模型的性能,包括拟合优度检验、交叉验证和ROC曲线等。
12. 结论总结使用SAS进行统计分析和数据建模的主要方法和步骤,并强调使用合适的方法来解决实际问题的重要性。
以上是使用SAS进行统计分析和数据建模的一些方法和步骤,虽然每个章节只是简要介绍了相关内容,但在实际应用中,每个章节都有更加详细和深入的讨论和分析。
了解并掌握这些方法和步骤,可以使我们更好地利用SAS进行统计分析和数据建模,为决策提供有力的支持。
SAS统计分析及应用
SAS统计分析及应用SAS(Statistical Analysis System)是一个集成的软件系统,用于统计分析和数据管理。
它提供了广泛的统计分析功能,以及强大的数据处理和管理功能。
SAS被广泛应用于各个领域的研究和应用中。
本文将从SAS的基本功能、统计分析和数据管理方面,介绍SAS的应用和优势。
首先,SAS的基本功能包括数据检索和管理、数据清洗和转换、统计分析和数据可视化等。
通过SAS可以轻松地导入和导出各种类型的数据文件,包括Excel、CSV、数据库等。
对于大型数据集,SAS提供了高效的数据检索和管理工具,可以快速找到所需的数据,并进行操作和处理。
此外,SAS还具有强大的数据清洗和转换功能,可以对数据进行格式化、合并、计算等操作,使数据变得更加准确和易于分析。
同时,SAS提供了丰富的统计方法和算法,可以进行多变量分析、回归分析、时间序列分析等,满足不同领域和问题的需求。
最后,SAS通过图形和报表等方式,提供了直观和易于理解的数据可视化工具,帮助用户更好地理解和解释数据。
在统计分析方面,SAS具有多种强大的统计方法和算法。
例如,SAS可以进行描述统计分析,计算数据的均值、标准差、百分位数等。
此外,SAS还提供了多种变量分析方法,包括方差分析、卡方检验、t检验等,可以用于比较不同组别或处理之间的差异。
对于多变量分析,SAS提供了主成分分析、聚类分析和判别分析等方法,可以从多个变量中挖掘出主要特征和模式。
此外,SAS还提供了回归分析、时间序列分析等高级方法,用于建模和预测。
SAS在数据管理方面也有很大的优势。
首先,SAS提供了丰富的数据处理和管理功能,可以对大规模数据进行操作和处理。
SAS的语言和语法简单易学,可以轻松进行数据清洗、转换和计算等操作。
此外,SAS还具有高效的数据存储和检索机制,可以处理大规模数据集,保证数据的安全和完整性。
同时,SAS提供了多种数据处理和处理方式,包括数据集、数据步和PROCSQL等,满足不同数据处理需求。
SAS统计分析概述
SAS统计分析概述SAS(Statistical Analysis System)是一种统计分析软件系统,由美国SAS公司开发。
SAS系统具有广泛的数据分析功能,包括数据管理、数据挖掘、统计分析、操作研究、质量改进、商业智能等。
SAS软件的应用领域非常广泛,涵盖金融、医疗健康、市场研究、教育、政府等各个行业。
本文将对SAS统计分析的概述进行详细介绍。
1.数据可视化:SAS统计分析提供了丰富的数据可视化方法,可以通过绘制图表、图形等形式将数据直观地呈现出来。
这有助于用户更好地理解数据的模式和规律,找出其中的关联性和趋势。
2.数据预处理:在进行统计分析之前,通常需要对原始数据进行预处理,包括数据清洗、数据转换、缺失值处理等。
SAS统计分析提供了强大的数据管理功能,可以对数据进行清洗和转换,提高数据的质量和可用性。
3.统计模型:SAS统计分析提供了多种统计模型和方法,如线性回归、逻辑回归、ANOVA、时间序列分析等。
用户可以根据具体需求选择合适的模型进行分析,得到相关的统计结果和推断。
4.高级统计方法:除了传统的统计模型和方法外,SAS统计分析还支持一些高级的统计方法,如非参数统计方法、贝叶斯统计方法、因子分析等。
这些方法可以更准确地处理复杂的数据和问题,提高统计分析的精度和效果。
5.数据挖掘:SAS统计分析还支持数据挖掘和机器学习技术,如聚类分析、分类和预测分析、关联规则挖掘等。
这些方法可以从大规模数据中发现隐藏的模式和规律,为用户提供更多的洞察力和决策支持。
1.经济和金融领域:SAS统计分析可以用于金融市场的预测和分析、风险管理、投资组合优化等。
通过对历史数据的回归分析和时间序列分析,可以预测股票、汇率、利率等的走势,帮助投资者做出明智的决策。
2.医疗健康领域:SAS统计分析可以用于医疗数据的分析和挖掘,如临床试验数据分析、疾病模式预测、医疗资源优化等。
通过分析大量的临床数据,可以发现不同因素对疾病发生和治疗效果的影响,为医疗决策提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§8.1.1一般线性回归分析过程REG 过程格式 PROC REG [选择项]; model 依变量表=自变量表/选择项; by 变量表; var 变量表; Output out=输出数据集 关键字=新变量表; PROC REG [选择项]说明: Data=数据集 Outsscp=数据集 储存变量的平方和与叉积矩阵 指定输出的统计信息: Simple 输出每个变量的基本统计量 Corr 输出model语句或var语句中所列变量的相关矩阵 Usscp 输出过程所用变量的平方和与叉积矩阵 All 输出所有可能的统计信息。
除非自变量全部取值为0,或者截距项的估计值 与0相差很小(在一元回归中反映为拟合直线可 能通过原点),在线性回归分析中我们不用考虑 对截距项(常数项)的显著性检验是否能通过。
例题:某生态系统的生产力大小受到光照时数、平均年温度、 降雨量和降雨时数的影响,根据多年的观测的结果,试拟合预 测模型。
多重共线性
对于模型 Yi=0+1X1i+2X2i++kXki+i i=1,2,…,n (2.8.1) 其基本假设之一是解释变量X1,X2 , …, Xk是互相独立 的。 如果某两个或多个解释变量之间出现了相关性,则 称为多重共线性。
back
完全共线性下参数估计量不存在
多元线性模型
Y X
共线性是指某一指标量值可以表示成其它几个指标量值的线性组合. 评估指标间存在共线性的影响是导致评估结果推断上的不稳定的 ….. 原因并造成较大的推断误差 .
回归方程达到极显著水平
R2 1 ni (1 R 2 ) n p
其中i当有截距项时为1,否则为0; n是用于拟合模型的观测个数;p是 模型中参数的个数。
Adjrsq:决定系数准则。 Cp准则:从预测观点出发,基 于残差平方和的一个准则。 按Cp准则应选择除全模型外 ,Cp值与P(P个自变量) 最接近的模型。 VIF:方差膨胀因子。如果 VIF>10多重共线性就会严 重影响参数估计值。VIF=1 ,表示自变量xi与其他变量 间不存在线性相关。 AIC信息量准则:应选择使 AIC最小的模型。 AIC=nln(SSEp/n)+2p
例题:测定某生态系统土壤含氮量(x1,%)、含磷 量(x2,%)和其生产力的关系(y,g/m2),得结 果如下,试做二元回归方程。
土壤含氮、磷量与生产力
X1 26.7 31.3 30.4 33.9 34.6 33.8 30.4 27.0 33.3 30.4 31.5 33.1 34.0 X2 73.4 59.0 65.9 58.2 64.6 64.6 62.1 71.4 64.5 64.1 61.1 56.0 59.8 Y 1008 959 1051 1022 1097 1103 992 945 1074 1029 1004 995 1045
生态学统计分析方法与实践
郝彦宾
中国科学院研究生院
第八章 多变量统计分析
多变量统计分析 (multivariate statistical analysis) 统计资料中有多个变量(或称因素、指标)同时存在时 的统计分析,是统计学的重要分支,是单变量统计的发 展。 -多元回归分析 逐步回归、岭回归、多项式回归和分类数据 -主成分分析 -因子分析 -典型相关分析 -聚类分析 -判别分析
oxygen
44.609 45.313 54.297 59.571 49.874 44.811 45.681 49.091 39.442 60.055 50.541 37.388 44.754 47.273 51.855 49.156 40.836 46.672 46.774 50.388 39.407 46.080 45.441 54.625 45.118 39.203 45.790 50.545 48.673 47.920 47.467
Model语句:
Noint 指定拟合回归模型中不包括截距项(常数) Stb 输出标准偏回归系数 Collin 进行自变量之间的共线性分析 Predicted 或P 输出实际观察值、预测值及其残差等 Residual 或R 进行残差分析 DW 检验回归方程中是否存在自相关 CLM 输出依变量平均数的95%的臵信区间上下限 CLI 输出依变量预测值95%臵信区间上下限 OUTPUT语句 P、R、U95、L95、student (学生氏残差)
该回归模型的正规方程为 ˆ X Y ( X X) B 或
2 ˆ ˆ x 1 1i 2 x1i x 2 i x1i y i
2 ˆ ˆ x x x 1 2 i 1i 2 2i x 2i y i
解该线性方程组得:
ˆ 1
x y x x x y x x x x x x x
测试数据
age
44 40 44 42 38 47 40 43 44 38 44 45 45 47 54 49 51 51 48 49 57 54 52 50 51 54 51 57 49 48 52
weight
89.47 75.07 85.84 68.15 89.02 77.45 75.98 81.19 81.42 81.87 73.03 87.66 66.45 79.15 83.12 81.42 69.63 77.91 91.63 73.37 73.37 79.38 76.32 70.87 67.25 91.63 73.71 59.08 76.32 61.24 82.78
suntime和pday的偏回归系数 可能出现共线性的情况: 不显著,可从方程中剔除 1.偏回归系数的大小和方向明显与常识不同 2.从专业角度看对应变量有影响的因素,却不能入选 3.去掉一两个变量,方程的回归系数值发生剧烈的变化 4.整个Model的检验有统计学意义,而model包含的所有自变量均无统计学意义
§8.1多元回归分析
多元回归分析(Multiple Regression Analysis) 研究一个依变量对两个或多个自变量(且自变量 均为一次项)依存关系的统计分析方法。 解决的问题: ①确定各个自变量对于某一依变量的综合效应 ②在大量自变量中,选择仅对依变量有显著效应 的自变量,建立最优的多元回归方程 ③评定各个自变量对于依变量的相对重要性 ④确定各个自变量对某一依变量的各自效应(偏 回归系数)
标准偏回归系数: bi ' bi
x y
2 2
i
结
果
回归方程的显著水平达到了0.0001,说明各个自变量 的综合对依变量y有真实的回归关系,且自变量x1和 x2对依变量y的偏回归显著水平分别达到0.0001和 0.0003,说明x1和x2对依变量y有真实的回归关系。 回归方程:y=-351.74+24.80x1+9.36x2 由标准偏回归系数的分析结果表明,土壤含N量每增加 一个标准差单位,生产力平均增加1.3166个标准差 单位;土壤含P每增加一个标准差单位,生产力平均 增加0.9580个标准差单位。所以,N的增加比P的 ) 1 X Y
(2.6.4)
-1不存在,无法
如果存在完全共线性,则(X’X) 得到参数的估计量。
例如:对一个离差形式的二元回归模型
y 1 x1 2 x 2
如果两个解释变量完全相关,如x 2 x1 ,则有
x12i X X x x 2 i 1i
事实上,当 x2 x1 时,原二元回归模型退 化为一元回归模型:
y ( 1 2 ) x1
只能确定综合参数1 2 的估计值: