2018年广西各省市中考数学几何压轴题真题汇总

合集下载

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】含解析

2018年广西地区中考数学考题分类汇编【几何综合】一.选择题(共8小题)1.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.2.(2018•桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C.D.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.3.(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.4.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,=x,设S△AEF∵S四边形BCFE=16,∴=,解得:x=2,∴S△ABC=18,故选:B.5.(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:5解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴==.故选:D.6.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2D.4.5解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.7.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.8.(2018•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵sin∠CDB=,BD=5,∴BH=4,∴DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴AH=OA+OH=,故选:B.二.填空题(共9小题)9.(2018•柳州)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为 2 .解:过A作AE⊥CD,交CD的延长线于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE﹣DE=﹣=,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD=,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BC=2,故答案为:2.10.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′M D=50°,则∠BEF的度数为70°.解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.11.(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE ,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴==,==1,∴EH=CF,BP=CF,∴=,∴=,故答案为:.12.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10 cm.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.13.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.14.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8 .解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B ′B=20°,则∠A的度数是65°.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.16.(2018•玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= 12+4.解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,∵S△AFB=S+S+S,∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=3,即O1M=r=3,∴O1O2=2×3+6+4=12+4,故答案为:12+4.17.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为2.解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.三.解答题(共11小题)18.(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.19.(2018•柳州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.20.(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4..(2018•桂林)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C ,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH ∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.22.(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.23.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=24.(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在A O的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=325.(2018•玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=428.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交C E的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.。

广西壮族自治区桂林市中考数学试题2018年全国各地中考数学试题及解析

广西壮族自治区桂林市中考数学试题2018年全国各地中考数学试题及解析

2018年桂林市初中学业水平考试试卷数学一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1. 2018的相反数是()A. 2018B. -2018C.D.【答案】B【试题解析】分析:根据相反数的意义,可得答案.详解:2018的相反数是-2018,故选:B.点睛:本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2. 下列图形是轴对称图形的是()A. B. C. D.【答案】A【试题解析】分析:根据轴对称图形的概念对各选项分析判断即可得解.详解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.3. 如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A. 120°B. 60°C. 45°D. 30°【答案】B【试题解析】分析:根据平行线的性质可得解.详解:∵a//b∴∠1=∠2又∵∠1=60°,∴∠2=60°故选B.点睛:两条平行线被第三条直线所截,同位角相等.4. 如图所示的几何体的主视图是()A. B. C. D.【答案】C【试题解析】分析:根据从前往后看到一个矩形,从而可得解.详解:该几何体为矩形.故选:C.点睛:本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.5. 用代数式表示:a的2倍与3 的和.下列表示正确的是()A. 2a-3B. 2a+3C. 2(a-3)D. 2(a+3)【答案】B【试题解析】分析:a的2倍与3的和也就是用a乘2再加上3,列出代数式即可.详解:“a的2倍与3 的和”是2a+3.故选:B.点睛:此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简6. 2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学计数法表示为()A. 1.281014B. 1.2810-14C. 1281012D. 0.1281011【答案】A【试题解析】分析:由于128 000 000 000 000共有15位数,所以用科学记数法表示时n=15-1=14,再根据科学记数法的定义进行解答即可.详解:∵128 000 000 000 000共有15位数,∴n=15-1=14,∴这个数用科学记数法表示是1.281014.故选:A.点睛:本题考查的是科学记数法的定义,把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.7. 下列计算正确的是( )A. B. C. D.【答案】C【试题解析】分析:根据合并同类项法则;单项式乘以单项式;幂的乘方等计算法则,对各选项分析判断后利用排除法求解.详解:A、应为2x-x=x,故本选项错误;B、应为x(-x)=-x2,故本选项错误;C、,故本选项正确;D、与x不是同类项,故该选项错误.故选:C.点睛:本题考查了合并同类项法则,单项式乘以单项式;幂的乘方等计算法则,熟练掌握运算性质和法则是解题的关键.8. 一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A. 10和7B. 5和7C. 6和7D. 5和6【试题解析】分析:将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.详解:将这组数据按从小到大排列为:5,5,5,6, 7,7,10∵数据5出现3次,次数最多,∴众数为:5;∵第四个数为6,∴中位数为6,故选:D.点睛:本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9. 已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C. 2或3 D. 或【答案】A【试题解析】分析:根据方程有两个相等的实数根结合根的判别式即可得出关于k的一元一次方程,解之即可得出结论.详解:∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选:A.点睛:本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根.”是解题的关键.10. 若,则x,y的值为()A. B. C. D.【答案】D【试题解析】分析:先根据非负数的性质列出关于x、y的二元一次方程组,再利用加减消元法求出x的值,利用代入消元法求出y的值即可.详解:∵,∴将方程组变形为,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为.故选:D.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.11. 如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A. 3B.C.D.【答案】C【试题解析】分析:连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.详解:连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠BAD=∠C=90°,∵ΔAEM与ΔADM关于AM所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE≌△AMB∴FE=BM.在Rt△BCM中,BC=3,CM=CD-DM=3-1=2,∴BM=∴FE=.故选C.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.12. 如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A. B. C. D.【答案】A【试题解析】分析:分别求出当点A与点M、N重合时直线AC的解析式,由AB⊥AC可得直线AB的解析式,从而求出b的值,最终可确定b的取值范围.详解:当点A与点N重合时,MN⊥AB,∴MN是直线AB的一部分,∵N(3,1)∴此时b=1;当点A与点M重合时,设直线AC的解析式为y=k1x+m,由于AC经过点A、C两点,故可得,解得:k1=,设直线AB的解析式为y=k2x+b,∵AB⊥AC,∴,∴k2=故直线AB的解析式为y=x+b,把(,1)代入y=x+b得,b=-.∴b的取值范围是.故选A.点睛:此题考查一次函数基本性质,待定系数求解析式,简单的几何关系.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13. 比较大小:-3__________0.(填“< ”,“=”,“ > ”)【答案】<【试题解析】分析:根据负数都小于0得出即可.详解:-3<0.故答案为:<.点睛:本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,难度不大. 14. 因式分解:x2-4=__________【答案】(x+2)(x-2)【试题解析】分析:运用平方差公式进行因式分解即可.!详解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).点睛:本题考查用公式法分解因式,掌握平方差公式的结构特征是解决本题的关键15. 某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为__________分.【答案】84【试题解析】分析:可直接运用加权平均数的计算方法求平均数.详解:这组数据的平均数=(分).故答案为:84.点睛:正确理解加权平均数的概念是解题的关键.16. 如图,在ΔABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是__________【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键. 17. 如图,矩形OABC的边AB与x轴交于点D,与反比例函数(k>0)在第一象限的图像交于点E,∠AOD =30°,点E的纵坐标为1,ΔODE的面积是,则k的值是________【答案】【试题解析】分析:过E作EF⊥x轴,垂足为F,则EF=1,易求∠DEF=30°,从而DE=,根据ΔODE的面积是求出OD=,从而OF=3,所以k=3.详解:过E作EF⊥x轴,垂足为F,∵点E的纵坐标为1,∴EF=1,∵ΔO DE的面积是∴OD=,∵四边形OABC是矩形,且∠AOD=30°,∴∠DEF=30°,∴DF=∴OF=3,∴k=3.故答案为3.点睛:本题考查了反比例函数解析式的求法,求出点E的坐标是解题关键.18. 将从1开始的连续自然数按右图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【试题解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第505行,第2列,∴自然数2018记为(505,2).故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19. 计算:【答案】1【试题解析】分析:根据算术平方根、零指数幂、负整数指数幂和cos45°=得到原式=,然后进行乘法运算后合并即可.详解:原式=,==1.点睛:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了零指数幂、负整数指数幂以及特殊角的三角函数值.20. 解不等式,并把它的解集在数轴上表示出来.【答案】x<2,图见解析.【试题解析】分析:先去分母,再去括号,移项,合并同类项,把x的系数化为1,并在数轴上表示出来即可. 详解:去分母得,5x-1<3(x+1),去括号得,5x-1<3x+3,移项得,5x-3x<3+1,合并同类项得,2x<4,把x的系数化为1得,x<2.在数轴上表示为:.点睛:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.21. 如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【答案】(1)证明见解析;(2)37°【试题解析】分析:(1)先证明AC=DF,再运用SSS证明△ABC≌△DEF;(2)根据三角形内角和定理可求∠ACB=37°,由(1)知∠F=∠ACB,从而可得结论.(1)∵AC=AD+DC, DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°∴∠F=∠ACB=37°点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL. 注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22. 某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n=;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生. 李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【答案】(1)40名;;;(2)90人;(3).【试题解析】分析:(1)根据第一组的频数和频率求出总人数,再利用第三组的人数求出n的值,第四组的频率求出m的值;(2)先求出样本中生活支出低于350元的学生的比例,再估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)先画树状图得出所有等可能的情况数,找到抽取的两名学生都是女生的情况数,计算概率即可.详解:(1)调查的总人数为4÷10%=40,n=16÷40=0.40,m=40×0.30=12;(2)(人);(3) 画树状图如下:共有6种等可能结果数,其中全为女生的有2种情况,∴恰好抽到A、B两名女生的概率.点睛:本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意古典概型概率公式、列举法的合理运用.23. 如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:,,结果精确到0.1小时)【答案】1.0小时.【试题解析】分析:延长AB交南北轴于点D,则AB⊥CD于点D,通过解直角三角形BDC和ADC,求出BD、CD和AD的长,继而求出AB的长,从而可以解决问题.详解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD-BD∴AB=-=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45-1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时点睛:此题考查了方向角问题.此题难度适中,解题的关键是利用方向角构造直角三角形,然后解直角三角形,注意数形结合思想的应用.24. 某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【答案】(1)60天;(2)24天.【试题解析】分析:(1)设二号施工队单独施工需要x天,根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天,依题可得解得x=60经检验,x=60是原分式方程的解∴由二号施工队单独施工,完成整个工期需要60天(2)由题可得(天)∴若由一、二号施工队同时进场施工,完成整个工程需要24天.点睛:本题考查了列分式方程解应用题,灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.25. 如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.【答案】(1)证明见解析;(2)30°;(3)【试题解析】分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.详解:(1)∵DC平分∠ADB ∴∠ADC=∠BDC ∴AC=BC(2)连接AO并延长交BC于I交⊙O于J∵AH是⊙O的切线且AH∥BC ∴AI⊥BC∴BI=IC∵AC=BC∴IC=AC∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB ∵FC是直径∴∠FAC=90°∴∠ACF=180°-90°-60°=30°(3)过点D作,连接AO由(1)(2)知ABC为等边三角形∵∠ACF=30°∴∴AE=BE∴∴AB=∴在RtΔAEO中,设EO=x,则AO=2x∴∴∴x=6,⊙O的半径为6∴CF=12∵∴DG=2过点D作,连接OD∵,∴CF//DG∴四边形G’DGE为矩形∴在RtΔ中∴∴点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等相关知识.比较复杂,熟记相关概念是解题关键.26. 如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使∠ABE=∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【答案】(1)y=-2x2-4x+6;(2)M(-1,);(3)E1(-2,6),E2(-4,-10) .【试题解析】分析:(1)根据抛物线过A、B两点,待定系数法求解可得;;(2)由(1)知抛物线对称轴为直线x=-1,设H为AC的中点,求出直线AC的垂直平分线的解析式即可得解;(3)①过点A作交y轴于点F,交CB的延长线于点D,证明ΔAOF∽ΔCOA,求得,分别求出直线AF、BC的解析式的交点,求出,根据∠ABE=∠ACB求出∠ABE=2,易求E点坐标.详解:(1)把A(-3,0)、B(1,0)代入y=ax2+bx+6得,,解得∴y=-2x2-4x+6,令x=0,则y=6,∴C(0,6);(2)=-2(x+1)2+8,∴抛物线的对称轴为直线x=-1.设H为线段AC的中点,故H(,3).设直线AC的解析式为:y=kx+m,则有,解得,,∴y=2x+6设过H点与AC垂直的直线解析式为:,∴∴b=∴∴当x=-1时,y=∴M(-1,)(3)①过点A作交y轴于点F,交CB的延长线于点D∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°∴∠DAO=∠ACO∵∠ACO=∠ACO∴ΔAOF∽ΔCOA∴∴∵OA=3,OC=6∴∴直线AF的解析式为:直线BC的解析式为:∴,解得∴∴∴∠ACB=∵∠ABE=∠ACB∴∠ABE=2过点A作轴,连接BM交抛物线于点E∵AB=4,∠ABE=2∴AM=8∴M(-3,8)直线BM的解析式为:∴,解得∴y=6∴E(-2,6)②当点E在x轴下方时,过点E作,连接BE,设点E∴∠ABE= 2∴m=-4或m=1(舍去)可得E(-4,-10)综上所述E1(-2,6),E2(-4,-10)点睛:本题主要考查二次函数与轴对称、相似三角形的性质,根据题意灵活运用所需知识点是解题的关键.。

2018广西省各地中考数学试题汇编

2018广西省各地中考数学试题汇编

3 33 2018年广西各地中考数学试题汇编7、2018年广西北海市中考数学试卷(解析版)(考试时间:120 分钟 满分:120 分)一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中只有一项是符合要求的,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. -3 的倒数是 A. -3B. 3C. -1D. 1【答案】C【考点】倒数定义,有理数乘法的运算律,【解析】根据倒数的定义,如果两个数的乘积等于 1,那么我们就说这两个数互为倒数.除 0 以外的数都存在倒数。

因此-3 的倒数为-1【点评】主要考察倒数的定义2. 下列美丽的壮锦图案是中心对称图形的是【答案】A【考点】中心对称图形【解析】在平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么这个图形就叫做中心对称图形。

【点评】掌握中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.3.2018 年俄罗斯世界杯开幕式于6 月14 日在莫斯科卢日尼基球场举行,该球场可容纳81000 名观众,其中数据81000 用科学计数法表示为()A. 81⨯103B. 8.1⨯104C. 8.1⨯105D. 0.81⨯105【答案】B【考点】科学计数法【解析】81000 = 8.1⨯104,故选B【点评】科学计数法的表示形式为a ⨯10n的形式,其中1 ≤a < 10,n为整数4.某球员参加一场篮球比赛,比赛分4 节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7 分B.8 分C.9 分D.10 分【答案】B【考点】求平均分【解析】12 + 4 +10 + 6 = 84【点评】本题考查用折线图求数据的平均分问题5.下列运算正确的是A. a(a+1)=a2+1B. (a2)3=a5C. 3a2+a=4a3D. a5÷a2=a3【答案】D【考点】整式的乘法;幂的乘方;整式的加法;同底数幂的除法【解析】选项A 错误,直接运用整式的乘法法则,用单项式去乘多项式的每一项,再把结果相加,可得a(a+1)=a2+a;选项B 错误,直接运用幂的乘方法则,底数不变,指数相乘,可得(a2)3=a6;选项C 错误,直接运用整式的加法法则,3a2 和a 不是同类项,不可以合并;选项D 正确,直接运用同底数幂的除法,底数不变,指数相减,可得a5÷a2=a3.【点评】本题考查整式的四则运算,需要记住运算法则及其公式,属于基础题。

2018年广西省中考数学压轴题汇编解析:几何综合

2018年广西省中考数学压轴题汇编解析:几何综合

2018年全国各地中考数学压轴题汇编(广西专版)几何综合参考答案与试题解析一.选择题(共8小题)1.(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.2.(2018•桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C.D.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.3.(2018•广西)如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP 折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.4.(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,=18,∴S△ABC故选:B.5.(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:5解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴==.故选:D.6.(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3C.2D.4.5解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,=AC•BD=AB•E′M得×6×6=3•E′M,由S菱形ABCD解得:E′M=2,即PE+PM的最小值是2,故选:C.7.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.8.(2018•贺州)如图,AB是⊙O的直径,且经过弦CD的中点H,已知sin∠CDB=,BD=5,则AH的长为()A.B.C.D.解:连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵sin∠CDB=,BD=5,∴BH=4,∴DH==4,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴AH=OA+OH=,故选:B.二.填空题(共9小题)9.(2018•柳州)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为2.解:过A作AE⊥CD,交CD的延长线于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE﹣DE=﹣=,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD=,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BC=2,故答案为:2.10.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为70°.解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.11.(2018•梧州)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴==,==1,∴EH=CF,BP=CF,∴=,∴=,故答案为:.12.(2018•玉林)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是10cm.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.13.(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△ABC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.14.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8.解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是65°.解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.16.(2018•玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2=12+4.解:过A作AM⊥BF于M,连接O1F、O1A、O1B,∵六边形ABCDEF是正六边形,∴∠A==120°,AF=AB,∴∠AFB=∠ABF=(180°﹣120°)=30°,∴△AFB边BF上的高AM=AF=(6+4)=3+2,FM=BM=AM=3+6,∴BF=3+6+3+6=12+6,设△AFB的内切圆的半径为r,=S+S+S,∵S△AFB∴×(3+2)×(3+6)=×r+×r+×(12+6)×r,解得:r=3,即O1M=r=3,∴O1O2=2×3+6+4=12+4,故答案为:12+4.17.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为2.解:作QM⊥EF于点M,作PN⊥EF于点N,作QH⊥PN交PN的延长线于点H,如右图所示,∵正方形ABCD的边长为12,BE=8,EF∥BC,点P、Q分别为DG、CE的中点,∴DF=4,CF=8,EF=12,∴MQ=4,PN=2,MF=6,∵QM⊥EF,PN⊥EF,BE=8,DF=4,∴△EGB∽△FGD,∴,即,解得,FG=4,∴FN=2,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ==,故答案为:2.三.解答题(共11小题)18.(2018•广西)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∴BO===4,∴BD=2BO=8,=×AC×BD=24.∴S平行四边形ABCD19.(2018•柳州)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A作⊙O 的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG 的长.解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.20.(2018•广西)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.解:(1)如图,连接OB,则OB=OD,∴∠BDC=∠DBO,∵∠BAC=∠BDC、∠BDC=∠GBC,∴∠GBC=∠BDC,∵CD是⊙O的直径,∴∠DBO+∠OBC=90°,∴∠GBC+∠OBC=90°,∴∠GBO=90°,∴PG与⊙O相切;(2)过点O作OM⊥AC于点M,连接OA,则∠AOM=∠COM=∠AOC,∵=,∴∠ABC=∠AOC,又∵∠EFB=∠OMA=90°,∴△BEF∽△OAM,∴=,∵AM=AC,OA=OC,∴=,又∵=,∴=2×=2×=;(3)∵PD=OD,∠PBO=90°,∴BD=OD=8,在Rt△DBC中,BC==8,又∵OD=OB,∴△DOB是等边三角形,∴∠DOB=60°,∵∠DOB=∠OBC+∠OCB,OB=OC,∴∠OCB=30°,∴=,=,∴可设EF=x,则EC=2x、FC=x,∴BF=8﹣x,在Rt△BEF中,BE2=EF2+BF2,∴100=x2+(8﹣x)2,解得:x=6±,∵6+>8,舍去,∴x=6﹣,∴EC=12﹣2,∴OE=8﹣(12﹣2)=2﹣4..(2018•桂林)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.22.(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.23.(2018•梧州)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=24.(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=325.(2018•玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.26.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=,求BC的长.(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO=∠ECO,在△AOD和△COE中,,∴△AOD≌△COE(ASA),∴AD=CE,∵CE∥AB,∴四边形AECD是平行四边形,又∵CD是Rt△ABC斜边AB上的中线,∴CD=AD,∴四边形AECD是菱形;(2)由(1)知,四边形AECD是菱形,∴AC⊥ED,在Rt△AOD中,tan∠DAO=,设OD=3x,OA=4x,则ED=2OD=6x,AC=2OA=8x,由题意可得:,解得:x=1,∴OD=3,∵O,D分别是AC,AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.27.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.解:(1)证明:过点E、F分别作AD、BC的垂线,垂足分别是G、H.∵∠3=∠4,∠1=∠2,EG⊥AD,EM⊥CD,EM′⊥AB∴EG=ME,EG=EM′∴EG=ME=ME′=MM′同理可证:FH=NF=N′F=NN′∵CD∥AB,MM′⊥CD,NN′⊥CD,∴MM′=NN′∴ME=NF=EG=FH又∵MM′∥NN′,MM′⊥CD∴四边形EFNM是矩形.(2)∵DC∥AB,∴∠CDA+∠DAB=180°,∵,∠2=∠DAB∴∠3+∠2=90°在Rt△DEA,∵AE=4,DE=3,∴AB==5.∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,又∵∠2=∠DAB,∠5=∠DCB,∴∠2=∠5由(1)知GE=NF在Rt△GEA和Rt△CNF中∴△GEA≌△CNF∴AG=CN在Rt△DME和Rt△DGE中∵DE=DE,ME=EG∴△DME≌△DGE∴DG=DM∴DM+CN=DG+AG=AB=5∴MN=CD﹣DM﹣CN=9﹣5=4.∵四边形EFNM是矩形.∴EF=MN=428.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B 作直线BD交CE的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.(1)证明:∵OA=OB,DB=DE,∴∠A=∠OBA,∠DEB=∠DBE,∵EC⊥OA,∠DEB=∠AEC,∴∠A+∠DEB=90°,∴∠OBA+∠DBE=90°,∴∠OBD=90°,∵OB是圆的半径,∴BD是⊙O的切线;(2)过点D作DF⊥AB于点F,连接OE,∵点E是AB的中点,AB=12,∴AE=EB=6,OE⊥AB,又∵DE=DB,DF⊥BE,DB=5,DB=DE,∴EF=BF=3,∴DF==4,∵∠AEC=∠DEF,∴∠A=∠EDF,∵OE⊥AB,DF⊥AB,∴∠AEO=∠DFE=90°,∴△AEO∽△DFE,∴,即,得EO=4.5,∴△AOB的面积是:=27.。

初中中考数学试卷真题及答案(广西六市同考)2018年

初中中考数学试卷真题及答案(广西六市同考)2018年

2018年广西六市同城中考数学试卷一、选择以(本大题其12小题,每小题3分,共36分)1 .飞的倒数是( )•2 .下列美丽的壮锦图案是中心对称图形的是( )8 .从W 、1 , 2这三个数中任取两个不同的数相乘,积为正数的概率是 ( )B. 3C.D.3 . 2018年俄罗斯世界杯开幕式于 6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据 81000用科学计数法表示为(A. 81X103B. 8.1 M04C. 8.1 M05D. 0.81X1054 .某球员参加一场球比赛,比赛分 4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( ) A. 7 分 B. 8 分 C. 9 分 D. 10 分5 .下列运算正确的是(). A. a(a+1)=a 2+1 B. (a 2)3=a 5 C. 3a 2+a=4a 3 D. a5/=a 36 .如图,Z ACD 是 ^ABC 的外角,CE 平分/ACD,若/A=60 ° , B=40 ° ,则ECD 等于()A. 40°B. 45°C. 50°D. 557.若m>n,则下不等式正确的是( ) A . m -2< n -2 B.C. 6m<6 nD. -8m> -8nD10 .如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB = 2,则莱洛三角形的面积(即阴影部分面积)为( ).A . n + V 3B , Tt - J3 C. 2 n -反 D. 2 n -2^311 .某种植基地 2016年产量为80吨,预计2018年疏菜产量达100吨,求疏菜产量的年平均增长率.设疏菜产量的年平均增长率为 x,则可列方程为( )A. 80(1 + x )2=100B. 100(1 i )2=80 _ _ _ 2C. 80(1+2x )=100 D, 80(1+x )=10012 .如图,矩形纸片 ABCD , AB=4 , BC=3 ,点P 在BC 边上.将△ CDP 沿DP 折叠,点 C 落在点E9.将地物线 y= 1x2-6 x+21向左平移2 2个单位后, 得到新抛物线的解析式为 ( ).A. y= 2 (x-8)2+5B . y=万(x Y)2+ 5 C. y= -2(x-8)2+3 D. y=:(xY), 3处. PE 、 DE 分别交AB 于点O 、 F,且 OP = OF,则 cosZADF 的值为( 1113 13 B .一15 C. 15 17 17 D. 一19、填空题(本大共6小题,每小以3分,共18分))13.要使二次根式J x -5在实数范围内有意义,则实数x的取值范围是214.因式分解:2a T2=.15.已知一组数据6, x, 3, 3, 5, 1的众数是3和5,则这组数据的中位数是.16,如图,从甲楼底A处测得乙楼顶部C处的仰角是30。

2018年广西省中考数学压轴题汇编解析:函数与方程(1).docx

2018年广西省中考数学压轴题汇编解析:函数与方程(1).docx

2018 年全国各地中考数学压轴题汇编(广西专版)函数与方程参考答案与试题解析一.选择题(共8 小题)2﹣6x向左平移 2 个单位后,得到新抛物线的解析式为()1.( 2018?广西)将抛物线 y= x+A. y=(x﹣82 5B.y= (x﹣4)2 5) ++.(x﹣8)2+3D.y= (x﹣4)2+3C y=解: y=x2﹣ 6x+=( x2﹣12x)+=[ (x﹣ 6)2﹣36]+=( x﹣6)2+3,故 y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选: D.2.(2018?桂林)已知关于x的一元二次方程2﹣kx+3=0 有两个相等的实根,则 k 的值为()2xA.B.C.2 或 3D.解:∵ a=2, b=﹣k,c=3,∴△ =b2﹣4ac=k2﹣4×2×3=k2﹣ 24,∵方程有两个相等的实数根,∴△ =0,∴k2﹣24=0,解得 k=±2 ,故选: A.3.( 2018?贵港)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为 M,以 AB 为直径作⊙ D.下列结论:①抛物线的对称轴是直线x=3;②⊙ D 的面积为 16π;③抛物线上存在点E,使四边形 ACED为平行四边形;④直线CM 与⊙ D 相切.其中正确结论的个数是()A. 1B.2C. 3D. 4解:∵在 y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点 A(﹣ 2,0)、 B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙ D 的直径为 8﹣(﹣ 2)=10,即半径为 5,∴⊙ D 的面积为 25π,故②错误;在y= ( x+2)( x﹣8)= x2﹣ x﹣4 中,当 x=0 时 y=﹣ 4,∴点 C(0,﹣ 4),当y=﹣ 4 时, x2﹣ x﹣4=﹣4,解得: x1=0、x2=6,所以点 E( 6,﹣ 4),则CE=6,∵AD=3﹣(﹣2)=5,∴ AD≠ CE,∴四边形 ACED不是平行四边形,故③错误;∵y= x2﹣ x﹣4= (x﹣3)2﹣,∴点 M (3,﹣),设直线 CM 解析式为 y=kx+b,将点 C(0,﹣ 4)、 M(3,﹣)代入,得:,解得:,所以直线 CM 解析式为 y=﹣x﹣4;设直线 CD解析式为 y=mx+n,将点 C(0,﹣ 4)、 D(3,0)代入,得:,解得:,所以直线 CD解析式为 y=x﹣ 4,由﹣×=﹣ 1 知 CM⊥CD于点 C,∴直线 CM 与⊙ D 相切,故④正确;故选: B.4.( 2018?玉林)如图,点A, B 在双曲线 y= AC∥y 轴, BC∥x 轴,且 AC=BC,则 AB 等于((x>0)上,点)C 在双曲线y=(x>0)上,若A.B.2C.4D. 3解:点 C 在双曲线 y=上, AC∥y 轴, BC∥x 轴,设C(a,),则 B(3a,), A( a,),∵ AC=BC,∴ ﹣ =3a﹣a,解得 a=1,(负值已舍去)∴C( 1, 1), B(3,1), A(1,3),∴AC=BC=2,∴Rt△ABC中, AB=2 ,故选: B.5.( 2018?桂林)如图,在平面直角坐标系中,M、N、C 三点的坐标分别为(,1),(3,1),( 3, 0),点 A 为线段 MN 上的一个动点,连接AC,过点 A 作 AB⊥ AC 交 y 轴于点 B,当点 A 从M 运动到 N 时,点 B 随之运动.设点 B 的坐标为( 0, b),则 b 的取值范围是()A.B.C.D.解:如图,延长NM 交 y 轴于 P 点,则 MN⊥y 轴.连接 CN.在△ PAB与△ NCA 中,,∴△ PAB∽△ NCA,∴= ,设PA=x,则 NA=PN﹣PA=3﹣x,设 PB=y,∴= ,∴ y=3x﹣ x2=﹣( x﹣)2+ ,∵﹣ 1<0,≤x≤3,∴ x=时,y有最大值,此时b=1﹣=﹣,x=3 时, y 有最小值 0,此时 b=1,∴b 的取值范围是﹣≤b≤1.故选: B.6.( 2018?玉林)如图,一段抛物线 y=﹣x2+4(﹣ 2≤x≤2)为 C1,与 x 轴交于 A0,A1两点,顶点为D1;将 C1绕点 A1旋转 180°得到 C2,顶点为 D2;C1与 C2组成一个新的图象,垂直于 y 轴的直线 l 与新图象交于点 P1( x1,y1), P2(x2,y2),与线段 D1D2交于点 P3( x3,y3),设 x1,x2, x3均为正数,t=x x x ,则 t 的取值范围是()1+ 2+ 3A. 6< t≤8B.6≤t≤ 8C.10<t ≤12D.10≤ t≤12解:翻折后的抛物线的解析式为y=( x﹣ 4)2﹣4=x2﹣8x+12,∵设 x1, x2,x3均为正数,∴点 P1(x1,y1), P2(x2, y2)在第四象限,根据对称性可知: x1+x2=8,∵2< x3≤4,∴10<x1+x2+x3≤12 即 10<t≤ 12,故选: C.7.( 2018?贺州)如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、 b 是常数,且 k≠0)与反比例函数y2= ( c 是常数,且 c≠0)的图象相交于 A(﹣ 3,﹣ 2),B(2,3)两点,则不等式 y1>y2的解集是()A.﹣ 3<x< 2B. x<﹣ 3 或 x>2C.﹣ 3<x<0 或x> 2D.0<x<2解:∵一次函数y1=kx+b( k、b 是常数,且k≠0)与反比例函数y2 =( c 是常数,且c≠0)的图象相交于 A(﹣ 3,﹣ 2), B(2,3)两点,∴不等式 y1>y2的解集是﹣ 3<x<0 或 x> 2.故选: C.2 x﹣2=0的两个实数根,则α β﹣αβ的值是()8.(2018?贵港)已知α,β是一元二次方程 x ++A. 3B.1C.﹣ 1D.﹣ 3α βx2 x﹣2=0的两个实数根,解:∵ ,是方程+∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1+2=1,故选: B.二.填空题(共 6 小题)9.(2018?广西)如图,矩形ABCD的顶点A,B 在x 轴上,且关于y 轴对称,反比例函数y=(x> 0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于9.解:设点 B 的坐标为( a, 0),则 A 点坐标为(﹣ a,0)由图象可知,点 C(a,), E(﹣ a,﹣), D(﹣ a,), F(﹣,)矩形 ABCD面积为: 2a?=2k1∴S△DEF=S△BCF=S△ABE=∵S△BEF=7∴ 2k1+﹣+k1=7①∵k1+3k2=0∴ k2=﹣k1代入①式得解得 k1=9故答案为: 910.(2018?柳州)篮球比赛中,每场比赛都要分出胜负,每队胜一场得 2 分,负一场得 1 分,艾美所在的球队在8 场比赛中得 14 分.若设艾美所在的球队胜x 场,负 y 场,则可列出方程组为.解:设艾美所在的球队胜x 场,负 y 场,∵共踢了 8 场,x y=8;∴ +∵每队胜一场得 2 分,负一场得 1 分.2x y=14,∴ +故列的方程组为,故答案为.11.( 2018?桂林)如图,矩形OABC的边 AB 与 x 轴交于点 D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点 E的纵坐标为 1,△ ODE的面积是,则k 的值是3.解:如图,作EM⊥ x 轴于点 M ,则 EM=1.∵△ ODE的面积是,∴OD?EM=,∴ OD=.在直角△ OAD中,∵∠ A=90°,∠ AOD=30°,∴∠ ADO=60°,∴∠ EDM=∠ ADO=60°.在直角△ EMD 中,∵∠ DME=90°,∠ EDM=60°,∴ DM== =,∴ OM=OD+DM=3,∴ E( 3,1).∵反比例函数y=(k>0)的象点E,∴k=3 × 1=3 .故答案 3 .12.(2018?梧州)已知直 y=ax( a≠ 0)与反比例函数y= (k≠0)的象一个交点坐( 2,4),它另一个交点的坐是(2,4).解:∵反比例函数的象与原点的直的两个交点一定关于原点称,∴另一个交点的坐与点(2,4)关于原点称,∴ 点的坐( 2, 4).故答案:( 2, 4).13.( 2018?港)如,直 l y=1(1,0)作A1 1⊥x,与直l交于点B1,x,点 A B以原点 O 心, OB1半径画弧交 x 于点 A2;再作 A2B2⊥x ,交直 l 于点 B2,以原点 O 心, OB2半径画弧交 x 于点 A3;⋯⋯,按此作法行下去,点 A n的坐( 2n﹣1,0 ).解:∵直l y=x,点A1( 1, 0), A1B1⊥x ,∴当x=1 , y=,即B1( 1,),∴ tan∠A1OB1= ,∴∠ A1OB1=60°,∠ A1B1O=30°,∴OB1=2OA1=2,∵以原点 O 心, OB1半径画弧交x 于点 A2,∴ A2(2,0),同理可得, A3( 4, 0), A4(8,0),⋯,∴点 A n的坐( 2n﹣1,0),故答案: 2n﹣1, 0.14.( 2018?州)某种商品每件价20 元,表明:在某段内若以每件x 元( 20≤x ≤ 30,且 x 整数)出售,可出( 30 x)件,若使利最大,每件商品的售价25元.解:利w 元,w=(x 20)( 30 x)=( x 25)2+25,∵ 20≤x≤30,∴当 x=25 ,二次函数有最大25,故答案是: 25.三.解答(共16 小)15.( 2018?柳州)如,一次函数y=mx+b 的象与反比例函数y=的象交于A( 3, 1), B (,n)两点.(1)求反比例函数的解析式;(2)求 n 的及一次函数的解析式.解:( 1)∵反比例函数y=的象A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;( 2)把 B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得 n=﹣6,∴ B(﹣,﹣ 6),把 A(3,1), B(﹣,﹣ 6)代入一次函数 y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣ 5.16.(2018?桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40 天时间完成整个工程:当一号施工队工作5 天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14 天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?解:( 1)设二号施工队单独施工需要 x 天,根据题意得:+=1,解得: x=60,经检验, x=60 是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60 天.( 2)根据题意得: 1÷(+ )=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24 天.17.(2018?广西)如图,抛物线y=ax2﹣5ax+c 与坐标轴分别交于点A,C,E 三点,其中 A(﹣ 3,0), C( 0, 4),点 B 在 x 轴上, AC=BC,过点 B 作 BD⊥x 轴交抛物线于点D,点 M, N 分别是线段 CO,BC上的动点,且 CM=BN,连接 MN,AM,AN.( 1)求抛物线的解析式及点 D 的坐标;(2)当△ CMN 是直角三角形时,求点 M 的坐标;(3)试求出 AM+AN 的最小值.解:( 1)把 A(﹣ 3,0), C( 0, 4)代入 y=ax2﹣ 5ax+c 得,解得,∴抛物线解析式为y=﹣x2 +x+4;∵AC=BC, CO⊥AB,∴ OB=OA=3,∴ B( 3, 0),∵BD⊥ x 轴交抛物线于点 D,∴ D 点的横坐标为 3,当 x=3 时, y=﹣×9+ × 3+4=5,∴ D 点坐标为( 3,5);设M(0,m),则BN=4﹣m,CN=5﹣(4﹣m)=m+1,∵∠ MCN=∠ OCB,=,解得m=,此时M 点坐∴当 = 时,△ CMN∽△ COB,则∠ CMN=∠COB=90°,即标为( 0,);当=时,△ CMN∽△ CBO,则∠ CNM=∠COB=90°,即=,解得m=,此时M 点坐标为( 0,);综上所述, M 点的坐标为( 0,)或(0,);(3)连接DN,AD,如图,∵ AC=BC, CO⊥AB,∴ OC平分∠ ACB,∴∠ ACO=∠BCO,∵BD∥ OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ ACM≌△ DBN,∴AM=DN,∴AM+AN=DN+AN,而 DN+AN≥AD(当且仅当点A、N、D 共线时取等号),∴DN AN 的最小值 ==,+∴AM AN 的最小值为.+18.(柳州)如图,抛物线2+bx+c 与 x 轴交于 A(,0), B 两点(点 B 在点 A 的左2018?y=ax侧),与 y 轴交于点 C,且 OB=3OA=OC,∠ OAC的平分线 AD 交 y 轴于点 D,过点 A 且垂直于AD 的直线 l 交 y 轴于点 E,点 P 是 x 轴下方抛物线上的一个动点,过点P 作 PF⊥x 轴,垂足为 F,交直线 AD 于点 H.(1)求抛物线的解析式;(2)设点 P 的横坐标为 m,当 FH=HP时,求 m 的值;( 3)当直线 PF为抛物线的对称轴时,以点H 为圆心,HC为半径作⊙ H,点 Q 为⊙ H 上的一个动点,求AQ+EQ的最小值.解:( 1)由题意 A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣ 3)代入得到 a= ,∴抛物线的解析式为 y= x2 +x﹣3.(2)在 Rt△AOC中, tan∠ OAC= = ,∴∠ OAC=60°,∵AD 平分∠ OAC,∴∠ OAD=30°,∴ OD=OA?tan30°=1,∴ D(0,﹣ 1),∴直线 AD 的解析式为 y= x﹣ 1,由题意P( m,m2+m﹣3), H(m,m﹣ 1), F(m,0),∵ FH=PH,∴ 1﹣m=m﹣ 1﹣(m2+m﹣3)解得m=﹣或(舍弃),.∴当FH=HP时, m 的值为﹣( 3)如图,∵PF是对称轴,∴F(﹣,0), H(﹣,﹣ 2),∵AH⊥ AE,∴∠ EAO=60°,∴EO= OA=3,∴E( 0, 3),∵ C( 0,﹣ 3),∴ HC==2, AH=2FH=4,∴QH= CH=1,在 HA 上取一点 K,使得 HK= ,此时 K(﹣,﹣),∵HQ2=1, HK?HA=1,∴HQ2=HK?HA,可得△ QHK∽△ AHQ,∴= = ,∴KQ= AQ,∴AQ+QE=KQ+EQ,∴当 E、Q、 K 共线时,AQ+QE的值最小,最小值 ==.19.(2018?广西)某公司在甲、乙仓库共存放某种原料450 吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的 40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30 吨.( 1)求甲、乙两仓库各存放原料多少吨?( 2)现公司需将300 吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120 元/ 吨和100元 / 吨.经协商,从甲仓库到工厂的运价可优惠 a 元 / 吨( 10≤ a≤30),从乙仓库到工厂的运价不变,设从甲仓库运 m 吨原料到工厂,请求出总运费 W 关于 m 的函数解析式(不要求写出 m 的取值范围);( 3)在( 2)的条件下,请根据函数的性质说明:随着m 的增大, W 的变化情况.解:( 1)设甲仓库存放原料x 吨,乙仓库存放原料y 吨,由题意,得,解得,甲仓库存放原料240 吨,乙仓库存放原料0 吨;(2)由题意,从甲仓库运 m 吨原料到工厂,则从乙仓库云原料( 300﹣ m)吨到工厂,总运费 W=(120﹣a)m+100(300﹣m )=( 20﹣a)m+30000;(3)①当 10≤a<20 时, 20﹣a>0,由一次函数的性质,得 W 随 m 的增大而增大,②当 a=20 是, 20﹣ a=0,W 随 m 的增大没变化;③当 20≤a≤30 时,则 20﹣ a< 0,W 随 m 的增大而减小.202 bx 6(a≠0)与 x 轴交于点 A(﹣ 3,0)和点 B(1,.( 2018?桂林)如图,已知抛物线 y=ax + +0),与 y 轴交于点 C.(1)求抛物线 y 的函数表达式及点 C 的坐标;(2)点 M 为坐标平面内一点,若 MA=MB=MC,求点 M 的坐标;(3)在抛物线上是否存在点 E,使 4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点 E的坐标;若不存在,请说明理由.解:( 1)将 A,B 的坐标代入函数解析式,得,解得,抛物线 y 的函数表达式 y=﹣2x2﹣4x+6,当x=0 时, y=6,即 C(0,6);(2)由 MA=MB=MC,得M 点在 AB 的垂直平分线上, M 在 AC 的垂直平分线上,设 M(﹣ 1,x),MA=MC,得(﹣ 1+2)2+x2=(x﹣6)2+(﹣ 1﹣0)2,解得 x=∴若 MA=MB=MC,点 M 的坐标为(﹣ 1,);(3)①过点 A 作 DA⊥ AC交 y 轴于点 F,交 CB的延长线于点 D,如图 1,∵∠ ACO+∠CAO=90°,∠ DAO+∠CAO=90°,∠ ACO+∠AFO=90°∴∠ DAO=∠ ACO,∠ CAO=AFO ∴△ AOF∽△COA∴=∴ AO2=OC×OF∵ OA=3,OC=6∴ OF= =∴∵ A(﹣ 6,0), F(0,﹣)∴直线 AF的解析式为:,∵ B( 1, 0),( 0,6),∴直线 BC的解析式为: y=﹣6x+6∴,解得∴∴∴tan ∠ACB=∵4tan∠ ABE=11tan∠ ACB∴tan ∠ABE=2过点 A 作 AM⊥x 轴,连接 BM 交抛物线于点 E ∵AB=4,tan∠ABE=2∴AM=8∴M (﹣ 3, 8),∵ B( 1, 0),(﹣ 3, 8)∴直线 BM 的解析式为: y=﹣2x+2,联立 BM 与抛物线,得∴,解得 x=﹣2 或 x=1(舍去)∴y=6∴E(﹣ 2, 6)②当点 E 在 x 轴下方时,如图2,过点 E 作 EG⊥AB,连接 BE,设点 E(m,﹣ 2m2﹣4m+6)∴ tan ∠ABE==2∴m=﹣4 或 m=1(舍去)可得 E(﹣ 4,﹣ 10),综上所述: E 点坐标为(﹣ 2,6),(﹣ 4,﹣ 10)..( 2018?梧州)我市从2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进 A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的B 型电动自行车数量一样.(1)求 A、 B 两种型号电动自行车的进货单价;(2)若 A 型电动自行车每辆售价为 2800 元, B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出 y 与 m 之间的函数关系式;( 3)该商店如何进货才能获得最大利润?此时最大利润是多少元?解:(1)设 A、B 两种型号电动自行车的进货单价分别为x 元( x 500)元.+由题意:=,解得 x=2500,经检验: x=2500 是分式方程的解.答: A、B 两种型号电动自行车的进货单价分别为2500 元 3000 元.(2) y=300m+500(30﹣ m)=﹣200m+15000(20≤m≤30),(3)∵ y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴ m=20 时, y 有最大值,最大值为 11000 元.22.( 2018?贵港)如图,已知反比例函数y= ( x> 0)的图象与一次函数y=﹣x+4 的图象交于A和B(6,n)两点.( 1)求 k 和 n 的值;( 2)若点 C( x, y)也在反比例函数 y= ( x> 0)的图象上,求当 2≤x≤6 时,函数值 y 的取值范围.解:( 1)当 x=6 时, n=﹣×6+4=1,∴点 B 的坐标为( 6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.( 2)∵ k=6>0,∴当 x>0 时, y 随 x 值增大而减小,∴当 2≤x≤6 时, 1≤y≤ 3.23.(2018?梧州)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长 DA 交抛物线于点E.( 1)求此抛物线的解析式;( 2)若 E 点在第一象限,过点E作 EF⊥ x 轴于点 F,△ ADO 与△ AEF的面积比为=,求出点 E 的坐标;(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、N 两点,是否存在点 D,使DA2=DM?DN?若存在,请求出点 D 的坐标;若不存在,请说明理由.解:( 1)将 A(1,0), B( 6,0)代入函数解析式,得,解得,抛物线的解析式为y=﹣x2 + x﹣;(2)∵ EF⊥ x 轴于点 F,∴∠ AFE=90°.∵∠ AOD=∠ AFE=90°,∠OAD=∠FAE,∴△ AOD∽△ AFE.∵= = ,∵AO=1,∴AF=3, OF=3+1=4,当x=4 时, y=﹣×42+ × 4﹣ = ,∴ E 点坐标是( 4,),(3)存在点 D,使 DA2=DM?DN,理由如下:设 D 点坐标为( 0, n),AD2=1+n2,当 y=n 时,﹣x2+ x﹣=n化简,得﹣3x2 +x﹣18﹣ 4n=0,设方程的两根为 x1,x2,x1?x2=DM=x1,DN=x2,DA2=DM?DN,即 1+n2=,化简,得3n2﹣ 4n﹣15=0,解得 n1= , n2=3,∴ D 点坐标为( 0,﹣)或(0,3).24.( 2018?贵港)某中学组织一批学生开展社会实践活动,原计划租用45 座客车若干辆,但有15 人没有座位;若租用同样数量的60 座客车,则多出一辆车,且其余客车恰好坐满.已知45 座客车租金为每辆220 元, 60 座客车租金为每辆300 元.(1)这批学生的人数是多少?原计划租用 45 座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算?解:( 1)设这批学生有 x 人,原计划租用 45 座客车 y 辆,根据题意得:,解得:.答:这批学生有240 人,原计划租用45 座客车 5 辆.( 2)∵要使每位学生都有座位,∴租 45 座客车需要 5+1=6 辆,租 60 座客车需要 5﹣1=4 辆.220× 6=1320(元), 300×4=1200(元),∵1320> 1200,∴若租用同一种客车,租 4 辆 60 座客车划算.25.( 2018?玉林)已知关于x 的一元二次方程: x2﹣2x﹣ k﹣2=0 有两个不相等的实数根.(1)求 k 的取值范围;(2)给 k 取一个负整数值,解这个方程.解:( 1)根据题意得△ =(﹣ 2)2﹣4(﹣ k﹣2)> 0,解得 k>﹣ 3;( 2)取 k=﹣2,则方程变形为x2﹣2x=0,解得 x1=0, x2=2.26.(2018?贵港)如图,已知二次函数y=ax2 +bx+c 的图象与 x 轴相交于 A(﹣ 1,0), B( 3,0)两点,与 y 轴相交于点 C(0,﹣ 3).( 1)求这个二次函数的表达式;( 2)若 P 是第四象限内这个二次函数的图象上任意一点,PH⊥x 轴于点 H,与 BC交于点 M,连接PC.①求线段 PM 的最大值;②当△ PCM 是以 PM 为一腰的等腰三角形时,求点P 的坐标.解:( 1)将 A,B,C 代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设 BC的解析式为 y=kx+b,将 B,C 的坐标代入函数解析式,得,解得,BC的解析式为 y=x﹣3,设 M( n, n﹣3), P(n,n2﹣2n﹣3),PM=(n﹣3)﹣( n2﹣2n﹣3)=﹣n2+3n=﹣( n﹣)2+,当n= 时, PM 最大 = ;②当 PM=PC时,(﹣ n2+3n)2 =n2+(n2﹣2n﹣ 3+3)2,解得 n1=n2=0(不符合题意,舍), n3=2n2﹣2n﹣ 3=﹣3,P(2,﹣ 3).当PM=MC 时,(﹣ n2+3n)2 =n2+( n﹣3+3)2,解得 n1=0(不符合题意,舍), n2=﹣7(不符合题意,舍), n3=2,n2﹣2n﹣ 3=4﹣4﹣3=﹣3,P(2,﹣ 3);综上所述: P(2,﹣ 3).27.(2018?玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000 元,二月份每辆车售价比一月份每辆车售价降价100 元,若销售的数量与上一月销售的数量相同,则销售额是27000 元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了 10%销售,网店仍可获利 35%,求每辆山地自行车的进价是多少元?解:( 1)设二月份每辆车售价为 x 元,则一月份每辆车售价为( x+100)元,根据题意得:=,解得: x=900,经检验, x=900 是原分式方程的解.答:二月份每辆车售价是900 元.(2)设每辆山地自行车的进价为 y 元,根据题意得: 900×( 1﹣10%)﹣ y=35%y,解得: y=600.答:每辆山地自行车的进价是 600 元.28.如图,在平面直角坐标系中,抛物线 y=ax2+bx+c 交 x 轴于 A、B 两点( A 在 B 的左侧),且OA=3, OB=1,与 y 轴交于 C( 0, 3),抛物线的顶点坐标为 D(﹣ 1, 4).(1)求 A、 B 两点的坐标;(2)求抛物线的解析式;(3)过点 D 作直线 DE∥y 轴,交 x 轴于点 E,点 P 是抛物线上 B、 D 两点间的一个动点(点 P 不与B、D 两点重合), PA、PB 与直线 DE 分别交于点 F、 G,当点 P 运动时, EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.解:( 1)由抛物线 y=ax2+bx+c 交 x 轴于 A、B 两点( A 在 B 的左侧),且 OA=3,OB=1,得A点坐标(﹣ 3,0), B 点坐标( 1, 0);(2)设抛物线的解析式为 y=a(x+3)( x﹣1),把 C 点坐标代入函数解析式,得a(0+3)( 0﹣1)=3,解得 a=﹣1,抛物线的解析式为y=﹣( x+3)( x﹣ 1) =﹣x2﹣2x+3;(3) EF+EG=8(或 EF+EG是定值),理由如下:过点 P 作 PQ∥y 轴交 x 轴于 Q,如图.设P(t ,﹣ t 2﹣2t+3),则PQ=﹣ t 2﹣2t+3, AQ=3+t ,QB=1﹣t ,∵ PQ∥ EF,∴△ AEF∽△ AQP,∴ = ,∴ EF===×(﹣ t 2﹣2t+3)=2(1﹣t);又∵ PQ∥EG,∴△ BEG∽△ BQP,∴=,∴ EG===2(t+3),∴EF+EG=2( 1﹣ t) +2(t+3)=8.29.( 2018?贺州)某自行车经销商计划投入7.1 万元购进 100 辆 A 型和 30 辆 B 型自行车,其中B 型车单价是 A 型车单价的 6 倍少 60 元.( 1)求 A、 B 两种型号的自行车单价分别是多少元?( 2)后来由于该经销商资金紧张,投入购车的资金不超过 5.86 万元,但购进这批自行年的总数不变,那么至多能购进 B 型车多少辆?解:( 1)设 A 型自行车的单价为x 元/ 辆, B 型自行车的单价为y 元/ 辆,根据题意得:,解得:.答: A 型自行车的单价为260 元 / 辆, B 型自行车的单价为1500 元/ 辆.(2)设购进 B 型自行车 m 辆,则购进 A 型自行车( 130﹣m)辆,根据题意得: 260( 130﹣m)+1500m≤58600,解得: m≤ 20.答:至多能购进 B 型车 20 辆.30.( 2018?玉林)如图,直线 y=﹣3x+3 与 x 轴、 y 轴分别交于 A, B 两点,抛物线 y=﹣ x2+bx+c 与直线 y=c 分别交 y 轴的正半轴于点 C 和第一象限的点 P,连接 PB,得△ PCB≌△ BOA( O 为坐标原点).若抛物线与 x 轴正半轴交点为点 F,设 M 是点 C,F 间抛物线上的一点(包括端点),其横坐标为 m.(1)直接写出点 P 的坐标和抛物线的解析式;(2)当 m 为何值时,△ MAB 面积 S取得最小值和最大值?请说明理由;(3)求满足∠ MPO=∠ POA的点 M 的坐标.解:( 1)当 y=c 时,有 c=﹣x2+bx+c,解得: x1=0,x2=b,∴点 C 的坐标为( 0,c),点 P 的坐标为( b,c).∵直线 y=﹣3x+3 与 x 轴、 y 轴分别交于 A、B 两点,∴点 A 的坐标为( 1,0),点 B 的坐标为( 0, 3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△ PCB≌△ BOA,∴BC=OA, CP=OB,∴b=3,c=4,∴点 P 的坐标为( 3,4),抛物线的解析式为y=﹣ x2 +3x+4.(2)当 y=0 时,有﹣ x2+3x+4=0,解得: x1=﹣1,x2=4,∴点F 的坐标为( 4,0).过点 M 作 ME∥ y 轴,交直线 AB 于点 E,如图 1 所示.∵点 M 的横坐标为 m(0≤m≤4),∴点 M 的坐标为( m,﹣ m2+3m+4),点 E的坐标为( m,﹣ 3m+3),∴ME=﹣ m2+3m+4﹣(﹣ 3m+3)=﹣m2+6m+1,∴S= OA?ME=﹣ m2+3m+ =﹣(m﹣ 3)2+5.∵﹣<0, 0≤ m≤4,∴当 m=0 时, S 取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点 M 在线段 OP 上方时,∵ CP∥x 轴,∴当点 C、 M 重合时,∠ MPO=∠POA,∴点 M 的坐标为( 0,4);②当点 M 在线段 OP 下方时,在 x 正半轴取点 D,连接 DP,使得 DO=DP,此时∠ DPO=∠POA.设点 D 的坐标为( n,0),则 DO=n,DP=,∴n2=(n﹣3)2+16,解得: n= ,∴点 D 的坐标为(,0).设直线 PD 的解析式为 y=kx+a(k≠0),将P(3,4)、 D(, 0)代入 y=kx+a,,解得:,∴直线 PD 的解析式为 y=﹣x+.联立直线 PD 及抛物线的解析式成方程组,得:,解得:,.∴点 M 的坐标为(,).M 的坐标为(0,4)或(,).综上所述:满足∠ MPO=∠ POA的点。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

2018年广西各市中考数学试题汇编及参考答案(word解析版7份)

2018年广西各市中考数学试题汇编及参考答案(word解析版7份)

2018年广西各市中考数学试题汇编(含参考答案与试题解析)目录1.广西北部湾经济区四市同城(南宁市、北海市、钦州市、防城港市)中考数学试题及参考答案与试题解析 (2)2.广西桂林市中考数学试题及参考答案与试题解析 (21)3.广西玉林市中考数学试题及参考答案与试题解析 (25)4.广西贵港市中考数学试题及参考答案与试题解析 (65)5.广西贺州市中考数学试题及参考答案与试题解析 (87)6.广西柳州市中考数学试题及参考答案与试题解析 (105)7.广西梧州市中考数学试题及参考答案与试题解析 (124)2018年广西北部经济湾区四市同城中考数学试题及参考答案(南宁市、北海市、钦州市、防城港市)一、选择题(本大题共12小题,每小题3分,共36分) 1.﹣3的倒数是( )A .﹣3B .3C .13D .132.下列美丽的壮锦图案是中心对称图形的是( )A .B .C .D .3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为( ) A .81×103B .8.1×104C .8.1×105D .0.81×1054.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为( )A .7分B .8分C .9分D .10分5.下列运算正确的是( ) A .a (a+1)=a 2+1B .(a 2)3=a 5C .3a 2+a=4a 3D .a 5÷a 2=a 36.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°7.若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2 B .44m n> C .6m <6n D .﹣8m >﹣8n 8.从﹣2,﹣1,2这三个数中任取两个不同的数相乘,积为正数的概率是( ) A .23 B .12 C .13D .149.将抛物线216212y x x =-+向左平移2个单位后,得到新抛物线的解析式为( ) A .()21852y x =-+ B .()21452y x =-+ C .()21832y x =-+ D .()21432y x =-+10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .πB .πC .2πD .2π-11.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ) A .80(1+x )2=100B .100(1﹣x )2=80C .80(1+2x )=100D .80(1+x 2)=10012.如图,矩形纸片ABCD ,AB=4,BC=3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP=OF ,则cos ∠ADF 的值为( )A .1113 B .1315 C .1517 D .1719二、填空题(本大题共6小题,每小题3分,共18分)13x 的取值范围是 . 14.因式分解:2a 2﹣2= .15.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是 . 16.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是 m (结果保留根号)17.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 .18.如图,矩形ABCD 的顶点A ,B 在x 轴上,且关于y 轴对称,反比例函数1k y x=(x >0)的图象经过点C ,反比例函数2k y x=(x <0)的图象分别与AD ,CD 交于点E ,F ,若S △BEF =7,k 1+3k 2=0,则k 1等于 .三、解答题(本大题共8小题,共66分)19.(6分)计算:11|4|+3tan602-⎛⎫-︒ ⎪⎝⎭.20.(6分)解分式方程:21133x xx x -=--. 21.(8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (1,1),B (4,1),C (3,3).(1)将△ABC 向下平移5个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)将△ABC 绕原点O 逆时针旋转90°后得到△A 2B 2C 2,请画出△A 2B 2C 2; (3)判断以O ,A 1,B 为顶点的三角形的形状.(无须说明理由)22.(8分)某市将开展以“走进中国数学史”为主题的知识凳赛活动,红树林学校对本校100名参加选拔赛的同学的成绩按A ,B ,C ,D 四个等级进行统计,绘制成如下不完整的统计表和扇形统计图:(1)求m=,n=;(2)在扇形统计图中,求“C等级”所对应心角的度数;(3)成绩等级为A的4名同学中有1名男生和3名女生,现从中随机挑选2名同学代表学校参加全市比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.23.(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.24.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.25.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E 作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若58EFAC,求BEOC的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.26.(10分)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的倒数是()A.﹣3 B.3 C.13-D.13【知识考点】倒数.【思路分析】根据倒数的定义可得﹣3的倒数是13 -.【解答过程】解:﹣3的倒数是13 -.故选:C.【总结归纳】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【解答过程】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.【总结归纳】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.3.2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:81000用科学记数法表示为8.1×104,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分【知识考点】折线统计图;算术平均数.【思路分析】根据平均分的定义即可判断;【解答过程】解:该球员平均每节得分==8,故选:B.【总结归纳】本题考查折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的定义;5.下列运算正确的是()A.a(a+1)=a2+1 B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【知识考点】合并同类项;幂的乘方与积的乘方;同底数幂的除法;单项式乘多项式.【思路分析】根据单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方的运算法则,分别对每一项进行分析即可得出答案.【解答过程】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不能合并,故本选项错误;D、a5÷a2=a3,故本选项正确.故选:D.【总结归纳】此题考查了单项式乘多项式、合并同类项、同底数幂的除法以及幂的乘方,熟练掌握运算法则是解题的关键.6.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()。

【2018年中考数学试题(真题)】广西桂林市试卷及答案解析

【2018年中考数学试题(真题)】广西桂林市试卷及答案解析

【2018年中考数学真题】年中考数学真题】【2018年中考数学真题】年中考数学真题】2018年广西桂林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1. 2018的相反数是( )A.2018 B.﹣2018 C. D.2.下列图形是轴对称图形的是( )A. B. C. D. 3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是( )A.120° B.60° C.45° D.30°4.如图所示的几何体的主视图是( )A. B. C. D. 5.用代数式表示:a的2倍与3的和.下列表示正确的是( ) A.2a﹣3 B.2a+3C.2(a﹣3) D.2(a+3)6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A.1.28×101414 B.1.28×10﹣﹣14 14C.128×101212 D.0.128×1011117.下列计算正确的是( )A.2x﹣x=1 B.x(﹣x)=﹣2xC.(x2)3=x6 D.x2+x=28.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A.10和7 B.5和7 C.6和7 D.5和69.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为( )A.B. C.2或3 D.10.若|3x﹣2y﹣1|+=0,则x,y的值为( )A. B. C. D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为( )A.3 B. C. D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB ⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是( )A. B.C. D.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3 0.(填“<”,“=”,“>”)14.因式分解:x2﹣4= .15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为 分. 16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 .17.如图,矩形OABC的边AB与x轴交于点D ,与反比例函数y=(k >0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE.的面积是,则k的值是18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为第1列 第2列 第3列 第4列 列行第1行 1 2 3 4第2行 8 7 6 5第3行 9 10 11 12第4行 16 15 14 13… … … … …第n行 … … … …三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF. (1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别 月生活支出x(单位:元)频数(人数) 频率第一组 x<300 4 0.10第二组 300≤x<350 2 0.05第三组 350≤x<400 16 n第四组 400≤x<450 m 0.30第五组 450≤x<500 4 0.10第六组 x≥500 2 0.05 请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了 名学生,图表中的m= ,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;学校在本次调现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调(3)现有一些爱心人士有意愿资助该校家庭困难的学生,查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率. 23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?完成整个工程需要多)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多(2)若此项工程一号、二号施工队同时进场施工,少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC 交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.2018年广西桂林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是( ) A .2018 B .﹣2018C .D .【分析】直接利用相反数的定义分析得出答案. 【解答】解:解:20182018的相反数是:﹣的相反数是:﹣201820182018.. 故选:故选:B B .【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形的概念求解即可. 【解答】解:解:A A 、是轴对称图形,本选项正确; B 、不是轴对称图形,本选项错误; C 、不是轴对称图形,本选项错误; D 、不是轴对称图形,本选项错误. 故选:故选:A A .【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠,∠1=601=601=60°° ∴∠∴∠2=2=2=∠∠1=601=60°.°.故选:故选:B B .【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.4.如图所示的几何体的主视图是( )A .B .C .D .【分析】根据主视图是从正面看到的图形,可得答案. 【解答】解:从正面看下面是一个长方形,如图所示:故C 选项符合题意,故选:故选:C C .【点评】本题考查了简单组合体的三视图,从正面看得到的图形画出来就是主视图.5.用代数式表示:a 的2倍与3的和.下列表示正确的是( )A .2a ﹣3B .2a+3C .2(a ﹣3)D .2(a+3)【分析】a 的2倍就是2a 2a,与,与3的和就是2a+32a+3,根据题目中的运算顺序,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:解:a a 的2倍就是:倍就是:2a 2a 2a,,a 的2倍与3的和就是:的和就是:2a 2a 与3的和,可表示为:的和,可表示为:2a+32a+32a+3..故选:故选:B B .【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序会死解答的关键.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为( )A .1.28×1014B .1.28×10﹣14C .128×1012D .0.128×1011【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a||a|<<1010,,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,时,小数点移动了多少位,n n 的绝对值与小数点移动的位数相同.当原数绝对值>绝对值与小数点移动的位数相同.当原数绝对值>11时,时,n n 是正数;当原数的绝对值<的绝对值<11时,时,n n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:用科学记数法表示为:1.281.281.28××1014. 故选:故选:A A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a||a|<<1010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.下列计算正确的是( )A .2x ﹣x=1B .x (﹣x )=﹣2xC .(x 2)3=x 6D .x 2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:解:A A 、2x 2x﹣﹣x=x x=x,错误;,错误;B 、x (﹣(﹣x x )=﹣x 2,错误;C 、(x 2)3=x 6,正确;D 、x 2+x=x 2+x +x,错误;,错误;故选:故选:C C .【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是( )A .10和7B .5和7C .6和7D .5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【解答】解:将这组数据重新排列为5、5、5、6、7、7、1010,,所以这组数据的众数为5、中位数为6,故选:故选:D D .【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.已知关于x 的一元二次方程2x 2﹣kx+3=0有两个相等的实根,则k 的值为( )A .B .C .2或3D .【分析】把a=2a=2,,b=b=﹣﹣k ,c=3代入△代入△=b =b 2﹣4ac 进行计算,然后根据方程有两个相等的实数根,可得△有两个相等的实数根,可得△=0=0=0,再计算出关于,再计算出关于k 的方程即可.【解答】解:∵解:∵a=2a=2a=2,,b=b=﹣﹣k ,c=3c=3,,∴△∴△=b =b 2﹣4ac=k 2﹣4×2×3=k 2﹣2424,,∵方程有两个相等的实数根,∴△∴△=0=0=0,,∴k 2﹣24=024=0,,解得k=k=±±2,故选:故选:A A .【点评】本题考查了一元二次方程ax 2+bx+c=0+bx+c=0((a ≠0,a ,b ,c 为常数)的根的判别式△的根的判别式△=b =b 2﹣4ac 4ac.当△>.当△>.当△>00时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<时,方程有两个相等的实数根;当△<00时,方程没有实数根.10.若|3x ﹣2y ﹣1|+=0,则x ,y 的值为( ) A . B . C . D . 【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得: 故选:故选:D D .【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.11.如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为( )A .3B .C .D .【分析】解法一:连接BM BM..先判定△先判定△FAE FAE FAE≌△≌△≌△MAB MAB (SAS SAS)),即可得到EF=BM EF=BM..再根据BC=CD=AB=3BC=CD=AB=3,,CM=2CM=2,利用勾股定理即可得到,,利用勾股定理即可得到,,利用勾股定理即可得到,Rt Rt Rt△△BCM 中,中,BM=BM=,进而得出EF 的长;解法二:过E 作HG HG∥∥AD AD,交,交AB 于H ,交CD 于G ,作EN EN⊥⊥BC 于N ,判定△AEH AEH∽△∽△∽△EMG EMG EMG,即可得到,即可得到==,设MG=x MG=x,则,则EH=3x EH=3x,,DG=1+x=AH DG=1+x=AH,利用,利用勾股定理可得,勾股定理可得,Rt Rt Rt△△AEH 中,(1+x 1+x))2+(3x 3x))2=32,进而得出EH==BN =BN,,CG=CM﹣MG==EN =EN,,FN=,再根据勾股定理可得,,再根据勾股定理可得,Rt Rt Rt△△AEN 中,中,EF=EF==. 【解答】解:如图,连接BM BM..∵△∵△AEM AEM 与△与△ADM ADM 关于AM 所在的直线对称,∴AE=AD AE=AD,∠,∠,∠MAD=MAD=MAD=∠∠MAE MAE..∵△∵△ADM ADM 按照顺时针方向绕点A 旋转9090°得到△°得到△°得到△ABF ABF ABF,,∴AF=AM AF=AM,∠,∠,∠FAB=FAB=FAB=∠∠MAD MAD..∴∠∴∠FAB=FAB=FAB=∠∠MAE∴∠∴∠FAB+FAB+FAB+∠∠BAE=BAE=∠∠BAE+BAE+∠∠MAE MAE..∴∠∴∠FAE=FAE=FAE=∠∠MAB MAB..∴△∴△FAE FAE FAE≌△≌△≌△MAB MAB MAB((SAS SAS)). ∴EF=BM EF=BM..∵四边形ABCD 是正方形,∴BC=CD=AB=3BC=CD=AB=3..∵DM=1DM=1,,∴CM=2CM=2..∴在Rt Rt△△BCM 中,中,BM=BM==,∴EF=, 故选:故选:C C .解法二:如图,过E 作HG HG∥∥AD AD,交,交AB 于H ,交CD 于G ,作EN EN⊥⊥BC 于N ,则∠则∠AHG=AHG=AHG=∠∠MGE=90MGE=90°,°,由折叠可得,∠由折叠可得,∠AEM=AEM=AEM=∠∠D=90D=90°,°,°,AE=AD=3AE=AD=3AE=AD=3,,DM=EM=1DM=EM=1,,∴∠∴∠AEH+AEH+AEH+∠∠MEG=EMG+MEG=EMG+∠∠MEG=90MEG=90°,°,∴∠∴∠AEH=AEH=AEH=∠∠EMG EMG,,∴△∴△AEH AEH AEH∽△∽△∽△EMG EMG EMG,,∴==,设MG=x MG=x,则,则EH=3x EH=3x,,DG=1+x=AH DG=1+x=AH,,∴Rt Rt△△AEH 中,(1+x 1+x))2+(3x 3x))2=32,解得x 1=,x 2=﹣1(舍去),∴EH==BN =BN,,CG=CM CG=CM﹣﹣MG==EN =EN,,又∵又∵BF=DM=1BF=DM=1BF=DM=1,,∴FN=,∴Rt Rt△△AEN 中,中,EF=EF==, 故选:故选:C C .【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动.设点B 的坐标为(0,b ),则b 的取值范围是( )A .B .C .D .【分析】延长NM 交y 轴于P 点,则MN MN⊥⊥y 轴.连接CN CN.证明△.证明△.证明△PAB PAB PAB∽△∽△NCA NCA,,得出=,设PA=x PA=x,,则NA=PN NA=PN﹣﹣PA=3PA=3﹣﹣x ,设PB=y PB=y,,代入整理得到y=3x ﹣x 2=﹣(﹣(x x ﹣)2+,根据二次函数的性质以及≤x ≤3,求出y 的最大与最小值,进而求出b 的取值范围.【解答】解:如图,延长NM 交y 轴于P 点,则MN MN⊥⊥y 轴.连接CN CN.. 在△在△PAB PAB 与△与△NCA NCA 中,,∴△∴△PAB PAB PAB∽△∽△∽△NCA NCA NCA,,∴=,设PA=x PA=x,则,则NA=PN NA=PN﹣﹣PA=3PA=3﹣﹣x ,设PB=y PB=y,,∴=,∴y=3x y=3x﹣﹣x 2=﹣(﹣(x x ﹣)2+,∵﹣∵﹣11<0,≤x ≤3,∴x=时,时,y y 有最大值,此时b=1b=1﹣﹣=﹣,x=3时,时,y y 有最小值0,此时b=1b=1,,∴b 的取值范围是﹣≤b ≤1.故选:故选:B B .【点评】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3 < 0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【解答】解:﹣解:﹣33<0,故答案为:<.【点评】此题主要考查了有理数的大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.14.因式分解:x 2﹣4= (x+2)(x ﹣2) .【分析】直接利用平方差公式分解因式得出答案.【解答】解:解:x x 2﹣4=4=((x+2x+2))(x ﹣2). 故答案为:(x+2x+2))(x ﹣2). 【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为 84 分.【分析】根据加权平均数的定义列出方程求解即可.【解答】解:(8585××2+902+90××2+702+70)÷()÷()÷(2+2+12+2+12+2+1))=(170+180+70170+180+70)÷)÷)÷5 5=420=420÷÷5=84=84(分)(分). 答:该学习小组的平均分为84分.故答案为:故答案为:848484..【点评】本题考查的是加权平均数的求法.本题易出现的错误是求8585,,9090,,70这三个数的平均数,对平均数的理解不正确.16.如图,在△ABC 中,∠A=36°,AB=AC ,BD 平分∠ABC ,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵解:∵AB=AC AB=AC AB=AC,∠,∠,∠A=36A=36A=36°∴△°∴△°∴△ABC ABC 是等腰三角形,∠ABC=ABC=∠∠ACB==72=72°,°,BD 平分∠平分∠ABC ABC ABC,∴∠,∴∠,∴∠EBD=EBD=EBD=∠∠DBC=36DBC=36°,°,∴在△∴在△ABD ABD 中,∠中,∠A=A=A=∠∠ABD=36ABD=36°,°,°,AD=BD AD=BD AD=BD,△,△,△ABD ABD 是等腰三角形,在△在△ABC ABC 中,∠中,∠C=C=C=∠∠ABC=72ABC=72°,°,°,AB=AC AB=AC AB=AC,△,△,△ABC ABC 是等腰三角形,在△在△BDC BDC 中,∠中,∠C=C=C=∠∠BDC=72BDC=72°,°,°,BD=BC BD=BC BD=BC,△,△,△BDC BDC 是等腰三角形,所以共有3个等腰三角形. 故答案为:故答案为:3 3【点评】本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质;求得各个角的度数是正确解答本题的关键.17.如图,矩形OABC 的边AB 与x 轴交于点D ,与反比例函数y=(k >0)在第一象限的图象交于点E ,∠AOD=30°,点E 的纵坐标为1,△ODE 的面积是,则k 的值是 3.【分析】作EM EM⊥⊥x 轴于点M ,由点E 的纵坐标为1可得EM=1EM=1.根据△.根据△.根据△ODE ODE的面积是,求出OD=.解直角△.解直角△EMD EMD EMD,求出,求出DM==,那么OM=OD+DM=3,E (3,1).再将E 点坐标代入y=,即可求出k 的值.【解答】解:如图,作EM EM⊥⊥x 轴于点M ,则EM=1EM=1..∵△∵△ODE ODE 的面积是,∴OD •EM=, ∴OD=.在直角△在直角△OAD OAD 中,∵∠中,∵∠A=90A=90A=90°,∠°,∠°,∠AOD=30AOD=30AOD=30°,°, ∴∠∴∠ADO=60ADO=60ADO=60°,°, ∴∠∴∠EDM=EDM=EDM=∠∠ADO=60ADO=60°.°.在直角△在直角△EMD EMD 中,∵∠中,∵∠DME=90DME=90DME=90°,∠°,∠°,∠EDM=60EDM=60EDM=60°,°, ∴DM===,∴OM=OD+DM=3,∴E (3,1).∵反比例函数y=(k >0)的图象过点E , ∴k=3×1=3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,解直角三角形,三角形的面积等知识.求出E 点坐标是解题的关键.18.将从1开始的连续自然数按图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为 (505,2)列 行 第1列第2列 第3列 第4列第1行 1 2 3 4 第2行 8 7 6 5 第3行9101112第4行 16 15 14 13 … … … … … 第n 行…………【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵20182018÷÷4=5044=504……2, 504+1=505504+1=505,, ∴2018在第505行,∵奇数行的数字从左往右是由小到大排列, ∴自然数2018记为(记为(505505505,,2). 故答案为(故答案为(505505505,,2). 【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上. 19.(6.00分)计算:+(﹣3)00﹣6cos45°+()﹣﹣11.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式解:原式=3=3+1+1﹣﹣6×+2=3+1+1﹣﹣3+2=3+2=3..【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:解:去分母,得:5x 5x 5x﹣﹣1<3x+33x+3,, 移项,得:移项,得:5x 5x 5x﹣﹣3x 3x<<3+13+1,, 合并同类项,得:合并同类项,得:2x 2x 2x<<4, 系数化为1,得:,得:x x <2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(8.00分)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF .(1)求证:△ABC ≌DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.【分析】(1)求出AC=DF AC=DF,根据,根据SSS 推出△推出△ABC ABC ABC≌△≌△≌△DEF DEF DEF..(2)由(1)中全等三角形的性质得到:∠A=A=∠∠EDF EDF,,进而得出结论即可. 【解答】证明:(1)∵)∵AC=AD+DC AC=AD+DC AC=AD+DC,,DF=DC+CF DF=DC+CF,且,且AD=CF ∴AC=DF在△在△ABC ABC 和△和△DEF DEF 中,∴△∴△ABC ABC ABC≌△≌△≌△DEF DEF DEF((SSS SSS)) (2)由()由(11)可知,∠)可知,∠F=F=F=∠∠ACB ∵∠∵∠A=55A=55A=55°,∠°,∠°,∠B=88B=88B=88°°∴∠∴∠ACB=180ACB=180ACB=180°﹣(∠°﹣(∠°﹣(∠A+A+A+∠∠B )=180=180°﹣(°﹣(°﹣(555555°°+88+88°)°)°)=37=37=37°° ∴∠∴∠F=F=F=∠∠ACB=37ACB=37°°【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.22.(8.00分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:组别 月生活支出x (单位:元)频数(人数) 频率 第一组 x <300 4 0.10 第二组300≤x <35020.05第三组 350≤x <400 16 n 第四组 400≤x <450 m 0.30 第五组 450≤x <500 4 0.10 第六组x ≥50020.05请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了 40 名学生,名学生,图表中的图表中的m= 12 ,n =0.40 ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A ,B ,C 三名学生家庭困难,其中A ,B 为女生,C 为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A ,B ,C 三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A ,B 两名女生的概率.【分析】(1)由第一组的频数及其频率可得总人数,)由第一组的频数及其频率可得总人数,再根据频率再根据频率再根据频率==频数÷总数可得m 、n 的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能解果,然后根据概率公式计算即可得解. 【解答】解:(1)本次调查的学生总人数为4÷0.1=40人,m=40m=40××0.3=120.3=12、、n=16n=16÷÷40=0.4040=0.40,,故答案为:故答案为:404040、、1212、、=0.40=0.40;;(2)600600×(×(×(0.10+0.050.10+0.050.10+0.05))=600=600××0.15=900.15=90(人)(人), 答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为9090;;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A ,B 两名女生的结果数为2,所以恰好抽到A 、B 两名女生的概率;【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.23.(8.00分)如图所示,在某海域,一般指挥船在C 处收到渔船在B 处发出的求救信号,经确定,遇险抛锚的渔船所在的B 处位于C 处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C 处的南偏西60°方向上有一艘海监船A ,恰好位于B 处的正西方向.于是命令海监船A 前往搜救,已知海监船A 的航行速度为30海里/小时,问渔船在B 处需要等待多长时间才能得到海监船A 的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)【分析】延长AB 交南北轴于点D ,则AB AB⊥⊥CD 于点D ,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A 在B 的正西方,延长AB 交南北轴于点D ,则AB AB⊥⊥CD于点D∵∠∵∠BCD=45BCD=45BCD=45°,°,°,BD BD BD⊥⊥CD ∴BD=CD在Rt Rt△△BDC 中,∵中,∵cos cos cos∠∠BCD=,BC=60海里 即cos45cos45°°=,解得CD=海里∴BD=CD=海里在Rt Rt△△ADC 中,∵中,∵tan tan tan∠∠ACD=即 tan60 tan60°°==,解得AD=海里∵AB=AD AB=AD﹣﹣BD ∴AB=﹣=30=30(()海里∵海监船A 的航行速度为30海里海里//小时则渔船在B 处需要等待的时间为 ==≈2.45﹣1.41=1.041.41=1.04≈≈1.0小时∴渔船在B 处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.24.(8.00分)分)某校利用暑假进行田径场的改造维修,项目承包单位派遣某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量工作量++二号施工队完成的工作量二号施工队完成的工作量==总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据工作时间)根据工作时间==工作总量÷工作效率,即可求出结论. 【解答】解:(1)设二号施工队单独施工需要x 天, 根据题意得:+=1=1,,解得:解得:x=60x=60x=60,,经检验,经检验,x=60x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天. (2)根据题意得:)根据题意得:11÷(+)=24=24(天)(天). 答:若由一、二号施工队同时进场施工,完成整个工程需要24天. 【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(10.00分)如图1,已知⊙O 是△ADB 的外接圆,∠ADB 的平分线DC 交AB 于点M ,交⊙O 于点C ,连接AC ,BC .(1)求证:AC=BC ;(2)如图2,在图1的基础上做⊙O 的直径CF 交AB 于点E ,连接AF ,过点A 做⊙O 的切线AH ,若AH ∥BC ,求∠ACF 的度数;(3)在(2)的条件下,若△ABD 的面积为,△ABD 与△ABC 的面积比为2:9,求CD 的长.【分析】(1)先判断出∠)先判断出∠ADC=ADC=ADC=∠∠BDC BDC,再用圆的性质即可得出结论;,再用圆的性质即可得出结论; (2)先判断出AI AI⊥⊥BC BC,进而求出∠,进而求出∠,进而求出∠IAC=30IAC=30IAC=30°,即可得出结论;°,即可得出结论; (3)先判断出△)先判断出△ABC ABC 为等边三角形,进而判断出AB AB⊥⊥CF CF,即:,即:,即:AE=BE AE=BE AE=BE,,利用等边三角形的面积求出AB=,CE=9CE=9,再利用勾股定理求,再利用勾股定理求OE OE,进而得,进而得出OA OA,,利用面积关系求出DG=2DG=2,,再判断出四边形PDGE 为矩形,得出PE=DG=2PE=DG=2,,即:即:CP=11CP=11CP=11,求出,求出DP==,最后用勾股定理即可得出结论.【解答】解:(1)∵)∵DC DC 平分∠平分∠ADB ADB ADB,,∴∠∴∠ADC=ADC=ADC=∠∠BDC BDC,,∴,∴AC=BC(2)连接AO 并延长交BC 于I 交⊙交⊙O O 于J ,∵AH 是⊙是⊙O O 的切线且AH AH∥∥BC BC,,∴AI AI⊥⊥BC BC,,由垂径定理得,由垂径定理得,BI=IC BI=IC BI=IC,,∵AC=BC AC=BC,,∴IC=AC AC,,在Rt Rt△△AIC 中,中,IC=IC=AC AC,,∴∠∴∠IAC=30IAC=30IAC=30°°∴∠∴∠ABC=60ABC=60ABC=60°°=∠F=F=∠∠ACB ACB,,∵FC 是直径,∴∠∴∠FAC=90FAC=90FAC=90°,°,∴∠∴∠ACF=180ACF=180ACF=180°﹣°﹣°﹣909090°﹣°﹣°﹣606060°°=30=30°;°;(3)过点D 作DG DG⊥⊥AB AB,连接,连接AO。

广西桂林市中考数学试卷2018年全国各地中考数学试题及解析

广西桂林市中考数学试卷2018年全国各地中考数学试题及解析

2018年广西桂林市初中学业水平考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1. 2018的相反数是()A.2018B.-2018C.D.2.下列图形是轴对称图形的是()A. B. C. D.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°4.如图所示的几何体的主视图是()A. B.C. D.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a-3B.2a+3C.2(a-3)D.2(a+3)6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10-14C.128×1012D.0.128×10117.下列计算正确的是()A.2x-x=1B.x(-x)=-2xC.(x2)3=x6D.x2+x=28.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和69.已知关于x的一元二次方程2x2-kx+3=0有两个相等的实根,则k的值为()A. B. C.2或3 D.10.若|3x-2y-1|+=0,则x,y的值为()A. B. C. D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:-30.(填“<”,“=”,“>”)14.因式分解:x2-4=.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y =(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE 的面积是,则k的值是.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6分)计算:+(-3)0-6cos45°+()-1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m=,n;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.2018年广西桂林市初中学业水平考试数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是()A.2018B.-2018C.D.【分析】直接利用相反数的定义分析得出答案.【试题解答】解:2018的相反数是:-2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念求解即可.【试题解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°【分析】利用两直线平行,同位角相等就可求出.【试题解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.4.如图所示的几何体的主视图是()A. B.C. D.【分析】根据主视图是从正面看到的图形,可得答案.【试题解答】解:从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形画出来就是主视图.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a-3B.2a+3C.2(a-3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【试题解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序会死解答的关键.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10-14C.128×1012D.0.128×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【试题解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.2x-x=1B.x(-x)=-2xC.(x2)3=x6D.x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【试题解答】解:A、2x-x=x,错误;B、x(-x)=-x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7B.5和7C.6和7D.5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【试题解答】解:将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.已知关于x的一元二次方程2x2-kx+3=0有两个相等的实根,则k的值为()A. B. C.2或3 D.【分析】把a=2,b=-k,c=3代入△=b2-4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【试题解答】解:∵a=2,b=-k,c=3,∴△=b2-4ac=k2-4×2×3=k2-24,∵方程有两个相等的实数根,∴△=0,∴k2-24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.若|3x-2y-1|+=0,则x,y的值为()A. B. C. D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【试题解答】解:由题意可知:解得:故选:D.【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM 关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3B.C.D.【分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC =CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF 的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定理可得,Rt △AEH中,(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM-MG==EN,FN=,再根据勾股定理可得,Rt△AEN中,EF==.【试题解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=-1(舍去),∴EH==BN,CG=CM-MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A. B. C. D.【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出=,设PA=x,则NA=PN-PA=3-x,设PB=y,代入整理得到y=3x-x2=-(x-)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【试题解答】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN-PA=3-x,设PB=y,∴=,∴y=3x-x2=-(x-)2+,∵-1<0,≤x≤3,∴x=时,y有最大值,此时b=1-=-,x=3时,y有最小值0,此时b=1,∴b的取值范围是-≤b≤1.故选:B.【点评】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:-3<0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【试题解答】解:-3<0,故答案为:<.【点评】此题主要考查了有理数的大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.14.因式分解:x2-4=(x+2)(x-2).【分析】直接利用平方差公式分解因式得出答案.【试题解答】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84分.【分析】根据加权平均数的定义列出方程求解即可.【试题解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【试题解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:3【点评】本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质;求得各个角的度数是正确解答本题的关键.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的值是3.【分析】作EM⊥x轴于点M,由点E的纵坐标为1可得EM=1.根据△ODE的面积是,求出OD=.解直角△EMD,求出DM==,那么OM=OD+DM=3,E(3,1).再将E点坐标代入y=,即可求出k的值.【试题解答】解:如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM =,∴OD =.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM ===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y =(k>0)的图象过点E,∴k=3×1=3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,解直角三角形,三角形的面积等知识.求出E点坐标是解题的关键.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【试题解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6.00分)计算:+(-3)0-6cos45°+()-1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【试题解答】解:原式=3+1-6×+2=3+1-3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地初中学业水平考试题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【试题解答】解:去分母,得:5x-1<3x+3,移项,得:5x-3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(8.00分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【试题解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B)=180°-(55°+88°)=37°∴∠F=∠ACB=37°【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.22.(8.00分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了40名学生,图表中的m=12,n=0.40;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能解果,然后根据概率公式计算即可得解.【试题解答】解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n =16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.23.(8.00分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B 处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【试题解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD-BD∴AB=-=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45-1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于初中学业水平考试常考题型.24.(8.00分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【试题解答】解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(10.00分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.【分析】(1)先判断出∠ADC=∠BDC,再用圆的性质即可得出结论;(2)先判断出AI⊥BC,进而求出∠IAC=30°,即可得出结论;(3)先判断出△ABC为等边三角形,进而判断出AB⊥CF,即:AE=BE,利用等边三角形的面积求出AB=,CE=9,再利用勾股定理求OE,进而得出OA,利用面积关系求出DG=2,再判断出四边形PDGE为矩形,得出PE=DG=2,即:CP=11,求出DP==,最后用勾股定理即可得出结论.【试题解答】解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°-90°-60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.【点评】此题是圆的综合题,主要考查了圆的性质,垂径定理,矩形判定和性质,等边三角形的判定和性质,勾股定理,切线的判定和性质,三角形的面积公式,求出∠ACF =30°是解本题的关键.26.(12.00分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据线段垂直平分线的性质,可得M在线段的垂直平分线上,根据勾股定理,可得答案;(3)根据相似三角形的判定与性质,可得F点坐标,根据解方程组,可得D点坐标,根据正切值,可得tan∠ABE=2,①根据待定系数法,可得BM,根据解方程组,可得E点坐标;②根据正切值,可得关于m的方程,根据解方程,可得答案.【试题解答】解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=-2x2-4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(-1,x),MA=MC,得(-1+2)2+x2=(x-6)2+(-1-0)2,解得x=∴若MA=MB=MC,点M的坐标为(-1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(-6,0),F(0,-)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=-6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(-3,8),∵B(1,0),(-3,8)∴直线BM的解析式为:y=-2x+2,联立BM与抛物线,得∴,解得x=-2或x=1(舍去)∴y=6∴E(-2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,-2m2-4m+6)∴tan∠ABE==2∴m=-4或m=1(舍去)可得E(-4,-10),综上所述:E点坐标为(-2,6),(-4,-10).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段垂直平分线的性质得出M在线段的垂直平分线上;解(3)①的关键是利用正切值得出M点的坐标,又利用了解方程组;解②的关键是利用正切值得出关于m的方程.。

2018年广西中考数学压轴题专项练习含答案题库:线段问题(13道)

2018年广西中考数学压轴题专项练习含答案题库:线段问题(13道)
题库:二次函数压轴题 -线段问题
1. 已知二次函数 y=x2-(2k+1)x+k2+ k(k>0). 1
(1)当 k=2时,求二次函数的顶点坐标; (2)求证:关于 x 的一元二次方程 x2-(2k+1)x+k2+k=0(k>0)有两个不相等的实 根; (3)如图,该二次函数图象与 x 轴交于 A、B 两点 (A 点在 B 点的左侧 ),与 y 轴交于 C 点, P 是 y 轴负半轴上一点,且 OP=1,直线 AP 交 BC 于点 Q.
∴m=5,∴ M(4,5). ∵抛物线 y=- x2+4x+5=- (x-2)2+9,
∴顶点坐标为 H(2,9),
如解图 ②,作点 H(2,9)关于 y 轴的对称点 H1,则点 H1 的坐标为 H1(-2,9); 作点 M(4,5)关于 x 轴的对称点 M1,则点 M1 的坐标为 M1(4,-5),连接 H1M1
111 ∴ OA2+AB2=AQ2.
2.如图,直线 y=5x+5 交 x 轴于点 A,交 y 轴于点 C,过 A,C 两点的二次函数 y =ax2+4x+c 的图象交 x 轴于另一点 B.
(1)求二次函数的表达式;
(2)连接 BC,点 N 是线段 BC 上的动点,作 ND⊥x 轴交二次函数的图象于点 D,
则 d=|-n2+4n+5-(-n+5)|,
由题意可知:- n2+4n+5>- n+5,
∴d=- n2+4n+5-(-n+5)=- n2+5n=- (n- 5 )2+ 25 ,
2
4
∴当 n= 5 时,线段 ND 长度的最大值是 25 ;
2
4
(3)∵点 M(4,m)在抛物线 y=- x2+4x+5 上,
∴OA=k,AB=1,设 PA 的解析式为 y1=mx+n,代入 P(0,- 1),A(k,0),

2018年中考数学选择填空压轴题专题3函数的几何综合问题

2018年中考数学选择填空压轴题专题3函数的几何综合问题

专题03函数的几何综合问题例1.如图,在平面直角坐标系中,直线 l : y= W3x — #与x 轴交于点B i ,以OB 为边长作等边三角 形A l OB |,过点A i 作A i B 2平行于x 轴,交直线l 于点B2 ,以A i B 2为边长作等边三角形 A 2A 1B 2,过点A 2 作A 2B 3平行于x 轴,交直线l 于点B 3 ,以A 2B 3为边长作等边三角形 A3A2B3 ,…,则点A 2017的横坐标同类题型1.1如图,直线l : y= x+1交y 轴-于点A i ,在x 轴正方向上取点B i ,使OB = OA ;过点B i 作A 2B i ,x 轴,交l 于点A 2 ,在x 轴正方向上取点B 2 ,使B i B 2=B 1A 2 ;过点 也彳^。

改,x 轴,交l 于点A 3 ,在 x 轴正方向上取点B 3 ,使B 2B3=E 2A 3 ;…记△ 0AB i 面积为S 1, △ B]A 2B 2面积为S 2 ,△ B 2A 3B 3面积为S3 ,…则S 2017等于 ( )同类题型1.2如图,已知直线| : y= W3 x,过点A (0, 1)作y 轴的垂线交直线l 于点B,过点B 作直 3 线l 的垂线交y 轴于点A 1 ;过点A 1作y 轴的垂线交直线l 于点B 1 ,过点B 1作直线l 的垂线交y 轴于点 A2 ;…;按此作法继续下去,则点 A 4的坐标为( )A. (0, 128)B. (0, 256)C. (0, 512)D. (0, 1024)八 c4030 A. 24031B. 2C. 240324033D. 2同类题型1.3如图,在平面直角坐标系中,直线 l : y= g 3 x+1交x 轴于点B,交y 轴于点A,过点A 作AB1 LAB 交x 轴于点M ,过点'彳^B1A 1,x 轴交直线l 于点A 2…依次作下去,则点 牛 的横坐标为例2.高速公路上依次有 3个标志点A 、R C,甲、乙两车分别从 A C 两点同时出发,匀速行驶,甲车从-B-C,乙车从 OB-A,甲、乙两车离 B 的距离y 1、V2 (千米)与行驶时间 x (小时)之间的函数关 系图象如图所示.观察图象,给出下列结论:① A C 之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点 E 的坐标为(7, 180),「其中正确的有 号都填在横线上).2「千羽450同类题型2.1甲、乙两辆汽车沿同一路线从 A 地前往B 地,甲车以a 千米/时的速度匀速行驶,途中出现 故障后停车维修,修好后以 2a 千米/时的速度继续行驶;乙车在甲车出发 2小时后匀速前往 B 地,比甲车 早30分钟到达.到达 B 地后,乙车按原速度返回 A 地,甲车以2a 千米/时的速度返回 A 地.设甲、乙两 车与A 地相距s (千米),甲车离开 A 地的时间为t (小时),s 与t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为 1小时;③两车在途中第二次相遇时 相距40千米,其中不正确的个数为一…一、- 7 . 一、,(1) a=40, n^ 1; (2)乙的速度是 80km/h ; (3)甲比乙迟-h 到达B 地;240t 的值为5.25 ;④当t = 3时,两车 ( ) C. 2个D. 3个甲车比乙车早行驶 2h,并且甲车的函数图象.则下列结论:(把所有正确结论的序并以各自的速度匀速行驶, y (km)与时间x (h)50km.正确的个数是C. 3D. 4同类题型2.3甲、乙两人从科技馆出发, 沿相同的路线分别以不同的速度匀速跑向极地馆, 程后,乙开始出发,当乙超出甲 150米时,乙停在此地等候甲,两人相遇后乙又继续以原来的速度跑向极1例3.如图,已知动点P 在函数y= — (x>0)的图象上运动,PML x 轴于点 MPN! y 轴于点N,线段2xPM PN 分别与直线 AB : y=—x+ 1交于点E, F,则AF. BE 的值为6,,点D 在AB 的右侧,△ OA 丽△BCDTB 是等腰直角三角形,/ OAB= / BCD= 90 ,若函数y= - (x>0)的 x甲先跑一段路 地馆.如图是甲、乙两人在跑步的全过程中经过的路程下列四种说法:①甲的速度为 1.5米/秒;②a=750; 相遇时乙跑了 375米.其中正确的个数是 y (米)与甲出发的时间 x (秒)的函数图象.则 ③乙在途中等候甲 100秒;④乙出发后第一次与甲 疝眯900C.D.「4 个A. 4B. 2C. 1同类题型3.1如图,,一 一 一一 3 ,,一 ,,,, ,」在反比例函数y=法的图象上有一动点A,连接 AO 并延长交图象的另一支于点 B,在第二象限内有一点 C,满足AC= BC 当点A 运动时,点C 始终在函数 k ....... ................... y=x 的图象上运动,若tan/CABC. — 9D. — 12A 在x 轴的正半轴上,点B 在第一象限,点C 在线段AB 上,A. 1个B. 2个150A=2,则k 的值为同类题型3.2如图,在平面直角坐标系中,点一 6图象经过点 D,则^ OABW △ BCD 勺面积之差为( A. 12 B . 6 C. 3 D . 2一 .一 ................. .. ................ ......................... . . 1 一 9同类题型3.3如图,在平面直角坐标系 xOy 中,已知直线y = kx (k>0)分别交反比例函数y= -和丫= - x x在第一象限的图象于点 A, B,过点B 作BDLx 轴于点D,交y=1的图象于点C,连结AC.若△ABB 等x例4.如图,一次函,数y = x+b 的图象与反比例函数y= k 的图象交于点 A (3, 6)与点B,且与 x.... ___ k ............. ................................... ...............................................点C,右点P 是反比例函数y= -图象上的一个动点,作直线 AP 与x 轴、y 轴分别交于点 M N,x2同类题型4.2方程x 2 +3x —1 = 0的根可视为函数y=x+3的图象与函数....... 一 .、一一 2 .......... ............ ........ ....那么用此方法可推断出方程 x 2 +2x- 1=0的实数根x o 所在的范围是( )2 2例5.在平面直角坐标系 xOy 中,抛物线y= —x +2mx- m - 1父y 轴于点为A,顶点为D,对称轴与 x 轴交于点H.当抛物线顶点 D 在第二象限时,如果/ ADH / AHO 则m=.y 轴交于连结BNA. b> 2 2 , 9B. bv 2C. b<3D. 2 V2<b<1 . ................... ...... y=;的图象交点的横坐标,A. - 1<x 0 <0B. 0<xo <1C. 1<xo <2D. 2<xo <3A取值范围为AP1 ,点在函数y= x 的图象下万,同类题型5.1已知抛物线y= 4x 2 +1具有如下性质:该抛物线上任意一点到定点 F (0, 2)的距离与到12x 轴的距离始终相等,如图,点M 的坐标为(木,3), P 是抛物线丫= 4x 2 +1上一个动点,则4 PMF周长的最小值是()A. 3B. 4C. 5D. 6同类题型5.2抛物线y=ax2+bx+3 (aw0)经过点A(—1, 0), B( 2 , 0),且与y 轴相交于点C.设点D 是所求抛物线第一象限上一点,且在对称轴的右侧,点AOCf 似时,求点 D 的坐标.同类题型5.3小明家的洗手盆上装有一种抬启式水龙头(如图 1),完全开启后,水流路线呈抛物线,把手端点A,出水口 B 和落水点C 恰好在同一直线上,点 A 至出水管BD 的距离为12cm,洗手盆及水龙头的相 关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线经过点 D 和杯子上底面中心 E, 则点E 到洗手盆内侧的距离 EH 为 cm.E 在线段 AC 上,且 DEL AG 当△ DCE^A图1图2参考答案例1 .如图,在平面直角坐标系中,直线l :y= W3x—率与x轴交于点B i ,以OB为边长作等边三角形々0耳,过点A1作A1B2平行于x轴,交直线l于点B2 ,以A1B2为边长作等边三角形A2A l B2,过点为作A2B3平行于x轴,交直线l于点B3 ,以A2B3为边长作等边三角形A3A2B3 ,…,则点A2017的横坐标是.Bi ,可得Bi (1, 0), D (0,—・•.OB =1, / OB D= 30 ,1一1如图所不,过A1作A1Al OB于A,则OA= 2。

2018年广西中考数学试题(含答案和解析)

2018年广西中考数学试题(含答案和解析)

2018年广西中考数学试题(含答案和解析)一、选择题(本大题共12小题,每小题3分,计36分.在每小题给出的四个选项中只有一个选项是符合要求的.)1.(3分)(2014年广西北海)计算(﹣2)+(﹣3)的结果是()A.﹣5 B.﹣1 C.1 D. 5【分析】原式利用同号两数相加的法则计算即可得到结果.【解答】解:原式=﹣(2+3)=﹣5.故选A【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.(3分)(2014年广西北海)从上面看如图所示的几何体,得到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面一层有1个正方形,下面一层有3个正方形.故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(3分)(2014年广西北海)甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:甲乙丙丁方差0.293 0.375 0.362 0.398由上可知射击成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵0.293<0.362<0.375<0.398.∴甲的射击成绩最稳定.故选:A.【点评】此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.(3分)(2014年广西北海)若两圆的半径分别是1cm和4cm,圆心距为5cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离【考点】圆与圆的位置关系.【分析】设两圆的半径分别为R和r,且R≥r,圆心距为P:外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R ﹣r.【解答】解:∵⊙O1与⊙O2的圆心距是5cm,它们的半径分别为1cm和4cm. 1+4=5.∴两圆外切.故选C.【点评】本题利用了两圆外切时,圆心距等于两圆半径之和的性质求解.5.(3分)(2014年广西北海)在平面直角坐标系中,点M(﹣2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:点M(﹣2,1)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)(2014年广西北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D. 11【考点】三角形中位线定理.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE.【解答】解:∵D、E分别是边AB、AC的中点.∴DE是△ABC的中位线.∴BC=2DE=2×5=10.故选C.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.7.(3分)(2014年广西北海)下面几何图形中,一定是轴对称图形的有()A.1个B.2个C.3个D. 4个【考点】轴对称图形.【分析】利用关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:圆弧、角、等腰梯形都是轴对称图形.故选;C.【点评】此题主要考查了轴对称图形的定义,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.(3分)(2014年广西北海)下列命题中,不正确的是()A. n边形的内角和等于(n﹣2)•180°B.两组对边分别相等的四边形是矩形C.垂直于弦的直径平分弦所对的两条弧D.直角三角形斜边上的中线等于斜边的一半【考点】命题与定理.【分析】利用多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质逐一判断后即可确定正确的选项.【解答】解:A、n边形的内角和等于(n﹣2)•180°,正确;B、两组对边分别相等的四边形是平行四边形,故错误;C、垂直于弦的直径平分弦所对的两条弧,正确;D、直角三角形斜边上的中线等于斜边的一半,正确.故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和定理、矩形的判定、垂径定理及直角三角形的性质,难度不大.9.(3分)(2014年广西北海)已知一个扇形的半径为12,圆心角为150°,则此扇形的弧长是()A.5πB.6πC.8πD. 10π【考点】弧长的计算.【分析】直接利用弧长公式l=求出即可.【解答】解:此扇形的弧长是:=10π.故选:D.【点评】此题主要考查了弧长计算,正确记忆弧长公式是解题关键.10.(3分)(2014年广西北海)北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A.+1.8=B.﹣1.8=C.+1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x.由题意得,﹣1.5=.故选D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.11.(3分)(2014年广西北海)如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D. 60°【考点】旋转的性质.【专题】计算题.【分析】先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.【解答】解:∵DC∥AB.∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置.∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA=65°.∴∠CAD=180°﹣∠ADC﹣∠DCA=50°.∴∠BAE=50°.故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.12.(3分)(2014年广西北海)函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】分a>0和a<0两种情况讨论二次函数和反比例函数图象所在的象限,然后选择答案即可.【解答】解:a>0时,y=ax2+1开口向上,顶点坐标为(0,1).y=位于第一、三象限,没有选项图象符合.a<0时,y=ax2+1开口向下,顶点坐标为(0,1).y=位于第二、四象限,B选项图象符合.故选B.【点评】本题考查了二次函数图象与反比例函数图象,熟练掌握系数与函数图象的关系是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年广西北海)已知∠A=43°,则∠A的补角等于137度.【考点】余角和补角.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=43°.∴它的补角=180°﹣4°=137°.故答案为:137.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.14.(3分)(2014年广西北海)因式分解:x2y﹣2xy2=xy(x﹣2y).【考点】因式分解-提公因式法.【分析】直接提取公因式xy,进而得出答案.【解答】解:x2y﹣2xy2=xy(x﹣2y).故答案为:xy(x﹣2y).【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.(3分)(2014年广西北海)若一元二次方程x2﹣6x+m=0有两个相等的实数根,则m的值为9.【考点】根的判别式.【分析】满足△=b2﹣4ac=0,得到有关m的方程即可求出m的值.【解答】9解:∵关于x的一元二次方程x2﹣6x+m=0有两个相等的实数根.∴△=b2﹣4ac=36﹣4m=0.解得:m=9.故答案为:9.【点评】此题主要考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(3分)(2014年广西北海)某校男子足球队的年龄分布如图的条形统计图,则这些足球队的年龄的中位数是15岁.【考点】中位数;条形统计图.【分析】根据年龄分布图和中位数的概念求解.【解答】解:根据图示可得,共有:8+10+4+2=24(人).则第12名和第13名的平均年龄即为年龄的中位数.即中位数为15.故答案为:15.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.(3分)(2014年广西北海)下列式子按一定规律排列:,,,,…,则第2014个式子是.【考点】单项式.【专题】规律型.【分析】根据已知式子得出各项变化规律,进而得出第n个式子是:,求出即可.【解答】解:∵,,,,….∴第n个式子是:.∴第2014个式子是:.故答案为:.【点评】此题主要考查了数字变化规律,得出分子与分母的变化规律是解题关键.18.(3分)(2014年广西北海)如图,反比例函数y=(x>0)的图象交Rt△OAB 的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为20.【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义以及相似三角形的性质得出S△ODE=S△OBC=k,S△AOB=k+5,=,进而求出即可.【解答】解:过D点作x轴的垂线交x轴于E点.∵△ODE的面积和△OBC的面积相等=.∵△OAC的面积为5.∴△OBA的面积=5+.∵AD:OD=1:2.∴OD:OA=2:3.∵DE∥AB.∴△ODE∽△OAB.∴=()2.即=.解得:k=20.【点评】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.三、解答题(本大题共8小题,满分66分,解答应写出必要的文字说明、演算步骤或推理过程)19.(6分)(2014年广西北海)计算:()﹣1﹣|﹣2|+﹣(+1)0.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=3﹣4+2﹣1=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2014年广西北海)解方程组.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:.①+②得:7x=14.解得:x=2.把x=2代入①得6+y=3.解得:y=﹣3.则原方程组的解是.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)(2014年广西北海)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.(1)请用“树形图”或“列表法”列举出这两辆汽车行驶方向所有可能的结果;(2)求这两辆汽车都向左转的概率.【考点】列表法与树状图法.【分析】(1)利用树形图”或“列表法”即可求出两辆汽车行驶方向所有可能的结果;(2)根据(1)中的列表情况即可求出这两辆汽车都向左转的概率.【解答】解:(1)两辆汽车所有9种可能的行驶方向如下:甲汽车乙汽车左转右转直行左转(左转,左转)(右转,左转)(直行,左转)右转(左转,右转)(右转,右转)(直行,右转)直行(左转,直行)(右转,直行)(直行,直行)(2)由上表知:两辆汽车都向左转的概率是:.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.(8分)(2014年广西北海)已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.【考点】作图—复杂作图;切线的判定.【分析】(1)作出线段AC的垂直平分线进而得出AC垂直平分线与线段AB的交点O,进而以AO为半径做圆即可;(2)连接CO,再利用已知得出∠OCB=90°,进而求出即可.【解答】解:(1)作图如图1:(2)证明:如图2.连接OC,∵OA=OC,∠A=25°∴∠AOC=50°.又∵∠C=40.∴∠AOC+∠C=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线.【点评】此题主要考查了复杂作图以及切线的判定利用线段垂直平分线的性质得出圆心位置是解题关键.23.(8分)(2014年广西北海)如图是某超市地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果保留小数点后两位;参考数据:sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)【考点】解直角三角形的应用.【分析】通过解直角△BAE求得BD=AB•tan∠BAE,通过解直角△CED求得CE=CD•cos∠BAE.然后把相关角度所对应的函数值和相关的线段长度代入进行求值即可.【解答】解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°.∴∠DCE=22°.又∵tan∠BAE=.∴BD=AB•tan∠BAE.又∵cos∠BAE=.∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m).【点评】本题考查了三角函数在直角三角形中的运用,本题中正确计算BD的值是解题的关键.24.(8分)(2014年广西北海)某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于 1.26万元,该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?【考点】一次函数的应用.【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元.得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y与x的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【解答】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x)=140x+6000,[700x+100(100﹣x)≤40000,x≤50];(2)令y≥12600.则140x+6000≥12600.∴x≥47.1.又∵x≤50∴经销商有以下三种进货方案:方案A品牌(块)B品牌(块)①48 52②49 51③50 50(3)∵140>0.∴y随x的增大而增大.∴x=50时y取得最大值.又∵140×50+6000=13000.∴选择方案③进货时,经销商可获利最大,最大利润是13000元.【点评】本题主要考查了一次函数和一元一次不等式组的实际应用,难度适中,得出商场获得的利润y与购进空调x的函数关系式是解题的关键.在解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.25.(10分)(2014年广西北海)如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.【考点】四边形综合题.【专题】综合题.【分析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等,利用全等三角形的对应边相等即可得证;(2)由(1)得到BC=AB=EG,利用等式的性质得到BE=CG,根据FG=BE,等量代价得到FG=CG,即三角形FCG为等腰直角三角形,得到∠FCG=45°,即可得证;(3)如图,作CH⊥EF于H,则△EHC∽△EGF,利用相似得比例,根据BE 与BC的比值,设出BE,EC,以及EG,FG,利用勾股定理表示出EF,CF,进而表示出HC,在直角三角形HC中,利用锐角三角函数定义即可求出sin∠CFE 的值.【解答】(1)证明:∵EP⊥AE.∴∠AEB+∠GEF=90°.又∵∠AEB+∠BAE=90°.∴∠GEF=∠BAE.又∵FG⊥BC.∴∠ABE=∠EGF=90°.在△ABE与△EGF中..∴△ABE≌△EGF(AAS).∴FG=BE;(2)证明:由(1)知:BC=AB=EG.∴BC﹣EC=EG﹣EC.∴BE=CG.又∵FG=BE.∴FG=CG.又∵∠CGF=90°.∴∠FCG=45°=∠DCG.∴CF平分∠DCG;(3)解:如图,作CH⊥EF于H.∵∠HEC=∠GEF,∠CHE=∠FGE=90°.∴△EHC∽△EGF.∴=.根据=,设BE=3a,则EC=3a,EG=4a,FG=CG=3a.∴EF=5a,CF=3 a.∴=,HC=a.∴sin∠CFE==.【点评】此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,以及锐角三角函数定义,熟练掌握判定与性质是解本题的关键.26.(12分)(2014年广西北海)如图(1),抛物线y=﹣x2+x+c与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D是第一象限内抛物线上的一个动点,过点D作DE⊥x轴于E,连接CD,以OE为直径作⊙M,如图(2),试求当CD与⊙M相切时D点的坐标;②点F是x轴上的动点,在抛物线上是否存在一点G,使A、C、G、F四点为顶点的四边形是平行四边形?若存在,求出点G的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把A的坐标代入抛物线的解析式,即可得到关于c的方程,求的c 的值,则抛物线的解析式即可求解;(2)①连接MC、MD,证明△COM∽△MED,根据相似三角形的对应边的比相等即可求解;②分四边形是▱ACGF和四边形是▱ACFG两种情况进行讨论,根据平行四边形的性质即可求解.【解答】解:(1)由已知有:﹣(﹣2)2+(﹣2)+c=0.∴c=3,抛物线的解析式是:y=﹣x2+x+3.(2)①令D(x,y),(x>0,y>0).则E(x,0),M(,0),由(1)知C(0,3).连接MC、MD.∵DE、CD与⊙O相切.∴∠CMD=90°.∴△COM∽△MED.∴=.∴=.又∵y=﹣x2+x+3.∴x=(1±).又∵x>0.∴x=(1+).∴y=(3+),则D点的坐标是:((1+,(3+)).②假设存在满足条件的点G(a,b).若构成的四边形是▱ACGF,(下图1)则G与C关于直线x=2对称.∴G点的坐标是:(4,3);若构成的四边形是▱ACFG,(下图2)则由平行四边形的性质有b=﹣3.又∵﹣a2+a+3=﹣3.∴a=2±2.此时G点的坐标是:(2±2,﹣3)【点评】本题考查了待定系数法求二次函数的解析式以及相似三角形的判定与性质,平行四边形的性质,正确求得当CD与⊙M相切时D点的坐标是关键.。

2018年广西桂林市中考数学试卷含参考解析

2018年广西桂林市中考数学试卷含参考解析

2018年广西桂林市中考数学试卷2018年广西桂林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是()A.2018 B.﹣2018 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.4.如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图是从正面看到的图形,可得答案.【解答】解:从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形画出来就是主视图.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序会死解答的关键.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012D.0.128×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、2x﹣x=x,错误;B、x(﹣x)=﹣x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【解答】解:将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得:故选:D.【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A.3 B.C. D.【分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH ∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM﹣MG==EN,理可得,Rt△AEH中,FN=,再根据勾股定理可得,Rt△AEN中,EF==.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b 的取值范围是()A.B.C.D.【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【解答】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点评】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3<0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【解答】解:﹣3<0,故答案为:<.【点评】此题主要考查了有理数的大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.14.因式分解:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84分.【分析】根据加权平均数的定义列出方程求解即可.【解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:3【点评】本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质;求得各个角的度数是正确解答本题的关键.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的值是3.【分析】作EM⊥x轴于点M,由点E的纵坐标为1可得EM=1.根据△ODE的面积是,求出OD=.解直角△EMD,求出DM==,那么OM=OD+DM=3,E(3,1).再将E点坐标代入y=,即可求出k的值.【解答】解:如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,解直角三角形,三角形的面积等知识.求出E点坐标是解题的关键.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6.00分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(8.00分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.22.(8.00分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了40名学生,图表中的m=12,n =0.40;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能解果,然后根据概率公式计算即可得解.【解答】解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.23.(8.00分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即tan60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.24.(8.00分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【解答】解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(10.00分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB 于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A 做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长.【分析】(1)先判断出∠ADC=∠BDC,再用圆的性质即可得出结论;(2)先判断出AI⊥BC,进而求出∠IAC=30°,即可得出结论;(3)先判断出△ABC为等边三角形,进而判断出AB⊥CF,即:AE=BE,利用等边三角形的面积求出AB=,CE=9,再利用勾股定理求OE,进而得出OA,利用面积关系求出DG=2,再判断出四边形PDGE为矩形,得出PE=DG=2,即:CP=11,求出DP==,最后用勾股定理即可得出结论.【解答】解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.【点评】此题是圆的综合题,主要考查了圆的性质,垂径定理,矩形判定和性质,等边三角形的判定和性质,勾股定理,切线的判定和性质,三角形的面积公式,求出∠ACF=30°是解本题的关键.26.(12.00分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据线段垂直平分线的性质,可得M在线段的垂直平分线上,根据勾股定理,可得答案;(3)根据相似三角形的判定与性质,可得F点坐标,根据解方程组,可得D点坐标,根据正切值,可得tan∠ABE=2,①根据待定系数法,可得BM,根据解方程组,可得E点坐标;②根据正切值,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段垂直平分线的性质得出M在线段的垂直平分线上;解(3)①的关键是利用正切值得出M点的坐标,又利用了解方程组;解②的关键是利用正切值得出关于m的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海壁:几何压轴题
【2018贵港】已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=
(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长
【2018桂林】如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.
(1)求证:AC=BC
(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数
(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD的长
【2018贺州】如图,AB 是⊙O 的弦,过AB 的中点E 作EC ⊥OA ,垂足为C ,过点B 作直线BD 交CE 的延长线于点D ,使得DB=DE .
(1)求证:BD 是⊙O 的切线
(2)若AB=12,DB=5,求△AOB 的面积
【2018南宁】如图,△ABC 内接于⊙O ,∠CBG =∠A ,CD 为直径,OC 与AB 相交于点E ,过点E 作EF ⊥BC ,垂足为F ,延长CD 交GB 的延长线于点P ,连接BD
(1)求证:PG 与⊙O 相切
(2)若85=AC EF ,求OC
BE 的值 (3)在(2)的条件下,若⊙O 的半径为8,PD= OD ,求OE 的长
【2018玉林】在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.
(1)求证:四边形EFNM是矩形
(2)已知:AE=4,DE=3,DC=9,求EF的长
【2018梧州】如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是B C 上
(除B点外)的任意一点,连接C M 交⊙M 于点G,过点C作D C⊥BC 交B G 的延长线于点D,连接A G 并延长交B C 于点E.
(1)求证:△ABE∽△BCD
(2)若M B=BE=1,求C D 的长度。

相关文档
最新文档