人教版数学九上《用列举法求概率》
25.2用列举法求概率(2)-2024-2025九年级数学人教版课件(上)
第一个因素 A
B
第二个因素1 2 3 1 2 3
新课讲解
知识点
例 1 甲口袋中有2个相同的小球,它们分别写有字母A和B;乙口
袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中
装有2个相同的小球,它们分别写有字母H和I.从三个口袋中各随机
取出1个小球.
(1) 取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?
2. 有一箱子装有3张分别标示4、5、6的号码牌,已知小武 以每次取一张且取后不放回的方式,先后取出2张牌, 组成一个二位数,取出第1张牌的号码为十位数,第2张 牌的号码为个位数,若先后取出2张牌组成二位数的每 一种结果发生的机会都相同,则组成的二位数为6的倍 数的概率为( A )
1
1
1
1
A.
B.
C.
A1 B1 A2 B2
拓展与延伸
解:列举出所有结果如下:
记恰好合成一张完整图片为事件A.
P(
A)
4 12
1 3
.
A1 B1 A2 B2
(2) 取出的3个小球上全是辅音字母的概率是多少?
分析:当一次试验是从三个口袋中取球时,列表法就不方便了, 为不重不漏地列出所有可能的结果,通常采用画树状图法.
新课讲解
解:根据题意,可以画出如下的树状图:
由树状图可以看出,所有可能出现的结果共有12种,即ACH, ACI,ADH,ADI,AEH,AEI,BCH,BCI,BDH,BDI, B这E些H,结B果E出I,现的可能性相等.
由树状图得,所有可能出现的结果有18个,它们出现的可
能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是
酸菜包的概率是:
人教版数学九年级上册25.2.1《用列举法求概率》教案
人教版数学九年级上册25.2.1《用列举法求概率》教案一. 教材分析《用列举法求概率》是人教版数学九年级上册第25章第二节的第一课时,本节课主要内容是让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
教材通过引入实际问题,引导学生用列举法列出所有可能的结果,再找出符合条件的结果,从而计算概率。
本节课的内容对于学生来说比较抽象,需要通过大量的练习来理解和掌握。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,如随机事件、必然事件等,并掌握了用树状图法求概率的方法。
但是,由于九年级学生的逻辑思维能力和空间想象能力还在发展阶段,对于用列举法求概率的方法可能会感到困惑。
因此,在教学过程中,教师需要耐心引导,让学生逐步理解和掌握列举法求概率的方法。
三. 教学目标1.知识与技能目标:让学生掌握用列举法求概率的方法,并能够运用列举法解决一些简单的实际问题。
2.过程与方法目标:通过学生自主探究、合作交流,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:用列举法求概率的方法。
2.难点:如何引导学生理解和掌握用列举法求概率的方法,以及如何解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂。
2.互动教学法:通过学生之间的合作交流,培养学生解决问题的能力。
3.引导发现法:教师引导学生发现列举法求概率的步骤和方法,培养学生自主学习的能力。
六. 教学准备1.教学课件:制作课件,展示相关例题和练习题。
2.练习题:准备一些实际问题,让学生课后练习。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如抛硬币、抽奖等,引导学生思考如何求解这些问题。
让学生意识到用列举法求概率的重要性。
2.呈现(10分钟)教师展示一些简单的例题,如抛硬币两次,求正正、正反、反正、反反的概率。
25.2 第1课时 用列举法求概率课件-2024-2025学年人教版数学九年级上册
3.C [解析] 列表如下:
甲盒
和
1
2
3
乙盒
4
5
6
7
5
6
7
8
6
7
8
9
由表可知,共有9种等可能的结果,其中编号之和大于6的结
果有6种,所以P(编号之和大于6)=69 = 23.
谢 谢 观 看!
数学 九年级上册 人教版
第 二
概率初步
十
五
25.2 第1课时 用列举用列举法求概率
探究与应用
课堂小结与检测
探
活动1 能用直接列举法求概率
究 与
例1 (教材典题)同时抛掷两枚质地均匀的硬币,求下列事件
应 的概率:
用
(1)两枚硬币全部正面向上;
解:列举抛掷两枚硬币所能产生的全部结果,它们是:正正,正反,
B.13
C.14
D.15
测
课 3.甲盒中有编号分别为1,2,3的3个完全相同的乒乓球,乙盒
堂
小 中有编号分别为4,5,6的3个完全相同的乒乓球.现分别从每
结
与 个盒子中随机地取出1个乒乓球,则取出的乒乓球的编号之
检 测
和大于6的概率为
(C)
A.49
B.59
C.23
D.79
相关解析
2.C [解析] 从四条线段中任选三条,有4种结果,即(1,3,5), (1,3,7),(1,5,7),(3,5,7),这些结果出现的可能性相等,其中能构 成三角形的结果只有1种,即(3,5,7),所以能构成三角形的概 率P=14.故选C.
堂
小 1.假如每枚鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
结 与
鸟和雌鸟的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一
人教版九年级上册数学《用列举法求概率》概率初步研讨说课教学课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
机摸出 1 个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同
的概率是( D )
A.217
B.13
C.19
D.29
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
10.【陕西中考】现有A、B两个不透明袋子,分别装有3个除颜色外完全相同
数学·九年级(上)·配人教
8.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二 个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出
场顺序,求抽签后每个运动员的出场顺序都发生变化的概率.
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
数学·九年级(上)·配人教
5.【教材 P140 习题 25.2T4 变式】一只昆虫在如图所示的树枝上寻觅食物,假
1
定
课件 课件
课件 课件
昆虫在
每个
岔路口
都会
随机选
择一
条路径
,则
它获取
食物
的概率
是
___3___.
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
数学·九年级(上)·配人教
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
人教版九年级数学上册《用列举法求概率》概率初步PPT精品教学课件
板书设计
把两枚骰子分别记为第1枚和第2枚,这样就可以用下面的方形表格列举出
所有可能出现的结果.
解决问题
两枚骰子分别记为第1枚和第2枚,所有可能的结果列表如下:
(1)满足两枚骰子点数相同(记为事件A)的结果有6个
6
1
(表中斜体加粗部分),所以P(A)= 36 = 6.
(2)满足两枚骰子的和是9(记为事件B)的结果有4个
2.如图所示的扇形图给出的是地球上海洋、陆地的表面积约占地球表面积的
百分比. 若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是
%.
达标检测
1.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为
(
)
1
A.
3
11
B.
36
5
C.
12
1
D.
4
2.不透明的袋子中装有红球1个、绿球1个、白球2个,这些球除颜色外无
出场,由于人为指定出场顺序不合规,要重新抽签确定出场顺序,则抽签后三个
运动员出场顺序都发生变化的概率是
.
达标检测
5.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,
2
3
其中红球1个,若从中随机摸出一个球,这个球是白球的概率为 .
(1)求袋子中白球的个数;
(2)随机摸出一个球后放回并搅匀,再随机摸出一个球,请用画树状图
5
,全是辅音字母的结果有两个,
12
2
1
即BCH,BDH,所以P(三个辅音)= = .
12
6
P(一个元音)=
练习巩固
1.经过某十字路口的汽车,可能直行,也可能左转或右转. 如果这三种可能
25.2+用列举法求概率(一)2024-—2025学年人教版数学九年级上册
第3课时 用列举法求概率(一)(放回型、独立型)
解:画树状图如答图1所示.
返回目录
答图1
由树状图可知,共有16种等可能的结果,其中取出的2张卡片中,
至少有1张卡片的数字为“3”的结果有7种,
∴取出的
2 张卡片中,至少有 1 张卡片的数字为“3”的概率为
7 16
.
返回目录
解:列表如下:
A
A
(A,A)
B
(A,B)
C
(A,C)
B (B,A) (B,B) (B,C)
C (C,A) (C,B) (C,C)
由表可知,共有9种等可能的结果,其中两次抽到的都是合格品的
结果有4种,
∴两次抽到的都是合格品的概率为
4 9
.
第3课时 用列举法求概率(一)(放回型、独立型)
返回目录
图1
第3课时 用列举法求概率(一)(放回型、独立型)
解:画树状图如答图2所示.
返回目录
答图2 由树状图可知,共有9种等可能的结果,其中组成的两位数能被3 整除的结果有3种, ∴P(组成的两位数能被 3 整除)=39=13.
第3课时 用列举法求概率(一)(放回型、独立型)
返回目录
1.(2022济南)某班级计划举办手抄报展览,确定了“5G时代”、
第3课时 用列举法求概率(一)(放回型、独立ห้องสมุดไป่ตู้)
解:画树状图如答图1所示.
返回目录
答图1 由树状图可知,共有9种等可能的结果,其中小欣和小林选择不同
板块课程的结果有6种, ∴小欣和小林选择不同板块课程的概率为 69=23.
第3课时 用列举法求概率(一)(放回型、独立型)
返回目录
训练 2.如图1,用三等分的转盘玩游戏,规则为:随机转动转盘 两次,记第一次指针所指的数字为十位数字,记第二次指针所指的数字 为个位数字,两次转动后组成一个两位数(若指针停在等分线上,则重新 转一次).请用画树状图或列表法求组成的两位数能被3整除的概率.
人教版九年级上册25.2用列举法求概率(教案)
4.培养学生的合作交流能力,通过小组讨论、分享解题思路,促进学生之间的互动交流,提升团队协作能力。
三、教学难点与重点
1.教学重点
(1)理解和掌握列举法求解概率问题的步骤和方法。
(2)能够运用列举法解决实际问题,如抛硬币、掷骰子等。
五、教学反思
在今天的课堂中,我引导学生学习了用列举法求概率这一章节。通过教学,我发现有几个地方值得反思和改进。
首先,关于导入新课的部分,我发现用生活中的实例来引导学生思考概率问题很有效,大家的兴趣一下子就被调动起来了。但在今后的教学中,我还可以尝试更多有趣的例子,让同学们能更直观地感受到概率与生活的紧密联系。
(3)在实际问题中区分必然事件、不可能事件和随机事件。例如,从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。难点在于理解这是一个随机事件,而不是必然事件或不可能事件。
在教学过程中,教师需针对这些难点进行详细讲解,并通过具体实例帮助学生理解,确保学生能够透彻掌握核心知识。
四、教学流程
(一)导入新课(用时5分钟)
其次,在新课讲授环节,我发现理论介绍部分,尽管我已经尽量用简练的语言解释概念,但仍有部分同学显得有些迷茫。我考虑在接下来的教学中,可以增加一些互动环节,让学生在讨论和实践中更好地理解概率的概念。
关于案例分析,我觉得选取的例子贴近生活,学生容易理解。但在讲解过程中,我发现有些同学在列举所有可能性时容易遗漏。为了帮助这部分同学,我打算在接下来的课堂中,多设计一些类似的练习,加强他们对列举法的掌握。
1.理论介绍:首先,我们要了解列举法的基本概念。列举法是一种通过罗列出所有可能结果来计算概率的方法。它是解决简单概率问题的重要工具。
人教版九年级数学上册2用列举法求概率课件
).
3.从26个英文字母中任意选一个,是C或D的概率是
.
小结
1. 有一道四选一的单项选择题,某同学用排除法排除了一个概率是( )
A. 二分之一
B.三分之一
C.四分之一
D.3
2. 从一幅充分均匀混合的扑克牌中,随机抽取一张,抽到大王的
概率是(
),抽到牌面数字是6的概率(
),
抽到黑桃的概率是(
25.2 用列举法求概率
古典概型
一次实验具有两个共同的特点:①一次实验中,可能出现的结果有有限个; ②一次实验中,各种结果产生的可能性相等. 具有这些特点的实验称为古典概 型. 古典概型的概率求法: 一般地,如果在一次实验中,有n种可能的结果,并且它们产生的可能性都相 等,事件A包含其中的m种结果,那么事件A产生的概率为P(A)= .
练习
同时掷两个质地均匀的骰子,计算下列事件的概率: 1. 两个骰子的点数相同 2. 两个骰子的点数之和是9 3. 至少有一个骰子的点数为2.
列表法与树状图的区分
对于不放回型的概率求法,要注意排除不存在的情况,防止出现错 误.
例题
在一个盒子中有质地均匀的3个小球,其中两个小球都涂着红色,另一 个小球涂着黑色,则计算以下事件的概率选用哪种方法更方便? 1、从盒子中取出一个小球,小球是红球. 2、从盒子中每次取出一个小球,取出后再放回,取出两球的颜色相同. 3、从盒子中每次取出一个小球,取出后再放回,连取了三次,三个小 球的颜色都相同.
练习
从分别标有1、2、3、4、5号的5根纸签中随机地抽取一根,抽出的 签上的号码有5种可能的结果,即1、2、3、4、5,每一根签抽到的 可能性相等,都是 .
列表法
当一次实验要涉及两个因素并且可能出现的结果数目较多时,为了 不重不漏地列出所有可能的结果,经常采用列表法.
人教版九年级上册2.用列举法求概率(公开课)课件
解:设有A1,A2,B1, B2四把钥匙,其中钥匙A1,A2可以
打开锁甲,B1, B2可以打开锁乙.列出所有可能的结
果如下:
钥匙1 A1
A2
B1
B2
钥匙2 A2 B1B2A1 B1 B2 A1 A2 B2 A1 A2 B1
82
P(能打开甲、乙两锁)= 12 = 3
4、在盒子中有三张卡片,随机抽取两张,可能 拼出菱形(两张三角形)也可能拼出房子(一张三 角形和一张正方形)。游戏规则是: 若拼成菱形,甲胜;若拼成房子,乙胜。 你认为这个游戏公平吗?
2
1×2=2 2×2=4 3×2=6 4×2=8 5×2=10 6×2=12
3
1×3=3 2×3=6 3×3=9 4×3=12 5×3=15 6×3=18
4
1×4=4 2×4=8 3×4=12 4×4=16 5×4=20 6×4=24
5
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 6×5=30
解:一 二 1
2
3
4
5
6
此 题
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
用 列
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 树
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
图 的
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 方
解:
甲
12 3
乙4 7
乙 甲
4
5
6
7
1 (1,4) (1,5) (1,6) (1,7)
2 (2,4) (2,5) (2,6) (2,7)
人教版九年级数学 25.2 用列举法求概率(学习、上课课件)
班级恰好都抽到种花的概率是( D )
A.13
B.23
C.16
D.19
感悟新知
知2-练
2-2.[中考·衢州] 飞往成都每天有2趟航班.小赵和小黄同一 天从衢州飞往成都,如果他们可以选择其中任一航班, 1 则他们选择同一航班的概率等于___2___ .
感悟新知
知2-练
例3 [中考·吉林] 2023 年6 月4 日,神舟十五号载人飞船返 回舱成功着陆,某校为弘扬爱国主义精神,举办以航 天员事迹为主题的演讲比赛,主题人物由抽卡片决定, 现有三张不透明的卡片,卡片正面分别写着费俊龙、 邓清明、张陆三位航天员的姓名,依次记作A,B,C, 卡片除正面姓名不同外,其余均相同.
感悟新知
知2-练
三张卡片正面向下洗匀后,甲选手从中随机抽取一 张卡片,记录航天员姓名后正面向下放回,洗匀后 乙选手再从中随机抽取一张卡片,请用画树状图或 列表的方法,求甲、乙两位选手演讲的主题人物是 同一位航天员的概率.
感悟新知
知2-练
解题秘方:紧扣放回两次操作相同,不放回两次操 作不相同,反映在表格中的实质就是舍不舍去表格 中一条对角线上的所有结果来求概率.
第二十五章 概率初步
25.2 用列举法求概率
学习目标
1 课时讲解 2 课时流程
枚举法(直接列举法) 列表法 画树状图法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 枚举法(直接列举法)
知1-讲
1.定义 在一次试验中,如果可能出现的结果只有有限个, 且各种结果出现的可能性大小相等,那么我们可以通过
感悟新知
知2-讲
特别提醒 1.列表法适用于求两步试验的概率,利用表格的行和列,
人教版数学九年级上册25.2用列举法求概率用树状图求概率教案
一、教学内容
人教版数学九年级上册25.2用列举法求概率用树状图求概率教案:
1.理解概率的定义,掌握用列举法求简单事件发生的概率。
2.学习使用树状图表示事件发生的所有可能结果,并用树状图求概率。
3.解决实际问题,培养运用概率知识分析问题的能力。
另一个让我感到遗憾的是,课堂时间有限,未能让更多学生展示他们的讨论成果。为了提高课堂效率,我决定在接下来的课程中,尽量精简讲解内容,为学生的展示和互动环节留出更多时间。
在教学方法上,我也在思考如何更好地结合现代教育技术,例如使用多媒体课件和实物演示,来提高学生对概率知识的理解和记忆。同时,我还想尝试引入一些有趣的概率游戏,让学生在轻松愉快的氛围中学习,提高他们的学习兴趣。
然而,我也注意到在讲解列举法和树状图的过程中,部分学生对于如何避免遗漏和重复的结果存在一定的困难。在今后的教学中,我需要更加关注这一点,可以通过设计更多具有针对性的练习题,帮助学生巩固这方面的技能。
此外,学生在小组讨论环节表现出了很高的热情,他们能够将所学的概率知识应用到解决实际问题中。但在讨论过程中,我也发现了部分学生对于如何运用列举法和树状图求解概率仍然存在疑惑。为此,我计划在下一节课中增加一些互动环节,让学生在课堂上就能及时提问,并及时解答他们的疑惑。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何利用列举法和树状图求解概率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
举例:掷两个骰子,求两个骰子的点数和为7的概率。
人教版九年级上册数学精品教学课件 第二十五章 概率初步 用列举法求概率 第1课时 用列表法求概率
1 A.12 C.16
B.110 D.25
课堂小结
硬币的 正反面
直接 列举法
掷骰子 的点数
在运用列表法求概率时,应注意各种结果出现的可能性 相等,要注意列表时事件(或数据)的顺序不能随意混淆.
用列表法求概率适用于事件中涉及两个因素, 并且可能出现的结果数目较多的概率问题.
列表法
Thank you!
知识点2 用列表法求概率
例2 同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9; (3)至少有一枚骰子的点数为2.
怎么列出所有可 能出现的结果?
解: 两枚骰子分别记为第1枚和第2枚,可以用表列举出所 有可能出现的结果.
第1枚 第2枚
1
2
3
4
5
6
1
(2)列表如下:
第一次 123
第二次
1
1,1 2,1 3,1
2
1,2 2,2 3,2
3
1,3 2,3 3,3
由表可知,共有 9 种等可能的结果,其中这两个数 字之和是 3 的倍数的有 3 种,所以这两个数字之和 是 3 的倍数的概率为 P=3 =1
93
4.如图,小颖在围棋盘上两个格子的格点上任意摆放 黑、白两个棋子,且两个棋子不在同一条网格线上, 其中,恰好摆放成如图所示位置的概率是( A )
在一次试验中,如果可能出现的结果只有有限个,且各 种结果出现的可能性大小相等,那么我们可以通过列举 试验结果的方法,求出随机事件发生的概率.
知识点1 用直接列举法求概率
例1 同时抛掷两枚质地均匀的硬币,求下列事件的概率: (1)两枚硬币全部正面向上; (2)两枚硬币全部反面向上; (3)一枚硬币正面向上、一枚硬币反面向上.
人教版九年级上册数学精品教学课件 第25章 概率初步 用列举法求概率
不同的概率为( C )
A. 1
1
1
B.
C.
D. 3
4
3
2
4
2. a、b、c、d 四本不同的书放入一个书包,至少放
一本,最多放两本,共有 10 种不同的放法.
3. 在一个不透明的袋子里,装有三个分别写有数字 6, -2,7 的小球,它们的形状、大小、质地等完全相同. 先从袋子里随机取出一个小球,记下数字后放回袋子 里,摇匀后再随机取出一个小球,记下数字. 请你用 列表或画树状图的方法求下列事件的概率. (1)两次取出的小球上的数字相同; (2)两次取出的小球上的数字之和大于 10.
AB
E DC
HI
甲
乙
丙
(1) 取出的 3 个小球中恰好有 1 个,2 个,3 个写有元音
字母的概率各是多少?
解:由树状图知所有 甲
A
B
可能出现的结果有 12
个,它们出现的可能 乙 C D E C D E
性相等.
满足只有一个元音字
母的结果有 5 个,则 P (一个元音) = 5 .
12
丙 H IH IH I H IH IH I A AA AA A B B B B B B C CD DE E C C D D E E H IH IH I H I H IH I
例3 甲、乙、丙三人做传球的游戏,开始时,球在甲 手中,每次传球,持球的人将球任意传给其余两人中 的一人,如此传球三次. (1) 写出三次传球的所有可能结果 (即传球的方式); (2) 指定事件A:“传球三次后,球又 回到甲的手中”,写出 A 发生的所有 可能结果; (3) 求P(A).
解:(1) 第一次 第二次 第三次 结果
问题引入 现有 A、B、C 三盘包子,已知 A 盘中有 两个酸菜包和一个糖包,B 盘中有一个酸菜包和一个 糖包和一个韭菜包,C 盘中有一个酸菜包和一个糖包 以及一个馒头. 老师就爱吃酸菜包,如果老师从每个 盘中各选一个包子 (馒头除外),请你帮老师算算选的 包子全部是酸菜包的概率是多少.
人教版九年级上册25.2用列举法求概率(第1课时)教学设计
3.教师引导:根据学生的回答,引导学生认识到解决此类问题需要用到概率知识,进而引出本节课的主题——用列举法求概率。
(二)讲授新知
1.列举法概念:介绍列举法的定义,即通过列出所有可能的结果,计算每种结果出现的概率。
2.步骤与方法:讲解列举法求解概率问题的步骤:
2.培养勇于探索、积极思考的学习态度,提高解决问题的自信心;
3.学会与他人合作,尊重他人意见,培养良好的团队协作精神;
4.感受概率知识在实际生活中的应用,增强将所学知识应用于实际问题的意识。
本节课的教学设计以列举法求解概率问题为主线,结合生活实例,让学生在探索中学习,在学习中应用。通过小组合作、问题解决等教学活动,培养学生的数学素养、合作意识和解决问题的能力。同时,注重情感态度与价值观的培养,使学生在学习过程中感受到数学的魅力和价值。
(3)在一个装有10个白球、5个黑球的袋子中,先后两次随机抽取一个球,求第二次抽到黑球的概率。
3.拓展题:
(1)小华有3件上衣、2条裤子,他随机选择一件上衣和一条裤子穿上,求他穿上的衣服颜色搭配是“红配蓝”的概率;
(2)一个密码锁由4位数字组成,每位数字可以是0到9中的任意一个,求设置的密码是“回文数”(即1234、4321这类数字)的概率;
1.重点:掌握列举法求解概率问题的步骤和方法,并能应用于实际问题。
2.难点:
(1)理解并运用列举法求解复杂概率问题,如组合问题、排列问题等;
(2)将实际问题转化为数学模型,运用列举法求解;
(3)在合作学习中,提高沟通协作能力,充分发挥团队作用。
(二)教学设想
1.教学方法:
(1)采用情境导入法,以生活实例引入本节课的内容,激发学生兴趣;
人教版数学九年级上册25.2用列举法求概率(共48张PPT)
在一次试验中,如果可能出现的结果只有有限个, 且各种结果出现的可能性大小相等,那么我们可以通过 列举试验结果的方法,求出随机事件发生的概率,这种 求概率的方法叫列举法.
1 、创设情景,发现新知
每次选择2名同学分别拨动A、B两个转盘上的 指针,使之产生旋转,指针停止后所指数字较 大的一方为获胜者,(若箭头恰好停留在分界 线上,则重转一次)。 作为游戏者,你会选择哪个装置呢?
5
6
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
解:由表中可以看出,在两堆牌中分别取一张,它可 能出现的结果有36个,它们出现的可能性相等 但满足两张牌的数字之积为奇数(记为事件,1)(5,3)(5,5) 这9种情况,所以
学习重难点
1、一般地,如果在一次试验中,有几种可能的 结果,并且它们发生的可能性都 相等,事件A包含其中的。种结果,那么事件A发 生的概率为P(A)= ,以及运用它 解决实际间题. 2、通过实验理解P(A)= 并应用它解决一些具体题 目
回答下列问题,并说明理由. (1)掷一枚硬币,正面向上的概率是_______; (2)袋子中装有 5 个红球,3 个绿球,这些球除了 颜色外都相同,从袋子中随机摸出一个球,它是红色的 概率为________; (3)掷一个骰子,观察向上一面的点数,点数大 于 4 的概率为______.
你能求出小亮得分的概率吗?
用表格表示
红桃 黑桃
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
3 4
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
人教版数学九年级上册25.2《列举法求概率》教案
人教版数学九年级上册25.2《列举法求概率》教案一. 教材分析《列举法求概率》是人教版数学九年级上册第25.2节的内容,主要介绍了利用列举法求概率的方法。
本节内容是在学生掌握了概率的基本概念和等可能事件的概率求法的基础上进行的,是进一步培养学生解决实际问题的能力。
通过本节内容的学习,学生能够掌握列举法求概率的步骤和方法,并能运用到实际问题中。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,对于概率的基本概念和等可能事件的概率求法已经有了一定的了解。
但是,学生在运用列举法求概率时,可能会出现列举不完整、分类不清晰等问题。
因此,在教学过程中,需要引导学生正确地进行列举和分类,培养学生解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握列举法求概率的方法,能够运用列举法解决实际问题。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:列举法求概率的方法。
2.难点:如何引导学生正确地进行列举和分类,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例的引入,激发学生的学习兴趣,引导学生运用列举法解决实际问题。
2.合作学习法:学生进行小组讨论和合作交流,培养学生解决问题的能力和团队合作意识。
3.引导发现法:教师引导学生进行自主探究,发现列举法求概率的方法,培养学生的独立思考能力。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生更好地理解和掌握列举法求概率的方法。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例引入本节课的内容,例如抛硬币、抽奖等,引导学生思考如何求解这些事件的概率。
2.呈现(10分钟)通过课件展示列举法求概率的步骤和方法,引导学生理解并掌握列举法的基本原理。
3.操练(10分钟)让学生进行小组讨论,共同解决一些实际问题,例如抛硬币三次,求正面向上的概率等。
人教版数学九年级上册用列举法求概率课件
甲
(乙,丙,甲)
丙
乙
(乙,丙,乙)
甲
乙
(丙,甲,乙)
丙
(丙,甲,丙)
乙
甲
(丙,乙,甲)
丙
(丙,乙,丙)
由树状图可得,可能出现的结果一共有8种,每种
结果出现的可能性相等
传球三次后,球又回到甲手中(记为事件A)有2 种结果,即(乙,丙,甲)(丙,乙,甲)
人教版数学九年级上册 25.2用列举法求概率课件
∴
人教版数学九年级上册 25.2用列举法求概率课件
(2)对所有可能出 现的情况进行列表
1 第一个
第二个
1
234
(2,1) (3,1) (4,1)
2 (1,2)
(3,2) (4,2)
3 (1,3) (2,3)
(4,3)
4 (1,4) (2,4) (3,4)
由表可得,两次抽取乒乓球后,可能出现的结果 一共有12个,它们出现的可能性相等
③
①③ ②③
n 二、弄清“放回”与“不放回”的区别
人教版数学九年级上册 25.2用列举法求概率课件
人教版数学九年级上册 25.2用列举法求概率课件
分层练习
在一个不透明的盒子里,装有三个写有数字6, -2,7的小球,它们的形状、大小、质地等完全相 同.
(1)先从盒子里随机取出一个小球,记下数字后放
回盒子里,摇匀后再随机取出一个小球,记下数字.
在一个盒子中有质地均匀的3个小球,其中两个小 球都涂着红色,另一个小球涂着黑色,则计算以下事 件的概率选用哪种方法更方便?
1.从盒子中取出一个小球,小球是红球 直接列举
2.从盒子中每次取出一个小球,取出后再放回,取出两
球的颜色相同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图是“扫雷”游戏。 在 9×9 个正方形雷区中, 随机埋藏着10颗地雷, 每个方格最多只能藏一颗地雷。
A区域
3
B区域
小佳在游戏开始时,踩中后出现如图所示的情况。 我们把与标号3的方格相临的方格记为A区域(画线部分), A区域外的部分记为B区域。 数字3表示A区域有3颗地雷, 那么第二步应踩在A区域还是B区域?
解:
甲
12 3
乙4 7
乙 甲
4
5
6
7
1 (1,4) (1,5) (1,6) (1,7)
2 (2,4) (2,5) (2,6) (2,7)
3 (3,4) (3,5) (3,6) (3,7)
5
6
共有12种不同结果,每 种结果出现的可能性相 同,其中数字和为偶数 的有 6 种
∴P(数字和为偶数)
=
6 12
1 2
归纳 “列表法”的意义:
当试验涉及两个因素(例如两个转盘) 并且可能出现的结果数目较多时, 为不重不漏地列出所有的结果, 通常采用“列表法”。
上题可以用画“树形图”的方法 列举所有可能的结果么?
探究
甲12 3
45 乙76
甲转盘指针所指的数字可能是 1、2、3,
乙转盘指针所指的数字可能是 4、5、6、7。
甲转盘
1
2
3
乙转盘 4 5 6 7 4 5 6 7 4 5 6 7
√ √√ √
共 12 种可能的结果
√√
与求“指列针表所”指法数对字比之,结和果为怎偶么数样的?概率。
例2、同时掷两个质地相同的骰子,计算下列事件的概率:
(1)两个骰子的点数相同;(2)两个骰子的点数和是9;
(3)至少有个骰子的点数是2。
解:设三个黑球分别为:黑1、黑2、黑3,则:
第一个球: 白
黑1
黑2
黑3
第二个球:黑1 黑2黑3 白黑2 黑3 白 黑1黑3 白 黑1黑2
P(摸出两个黑球)= 6 1 12 2
4、在盒子中有三张卡片,随机抽取两张,可能 拼出菱形(两张三角形)也可能拼出房子(一张三 角形和一张正方形)。游戏规则是: 若拼成菱形,甲胜;若拼成房子,乙胜。 你认为这个游戏公平吗?
用列举法求概率(1)
复习回顾: 一般地,如果在一次试验中,
有n种可能的结果,并且它们发生的可能性都相等,
事件A包含在其中的m种结果,
那么事件A发生的概率为:P( A)
m
n
求概率的步骤:
(1)列举出一次试验中的所有结果(n个);
(2)找出其中事件A发生的结果(m个);
(3)运用公式求事件A的概率:P( A) m n
解:一 二 1
2
3
4
5
6
此 题
1
(1,1) (2,1) (3,1) (4,1) (5,1) (6,1)
用 列
2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 树
3
(1,3) (2,3) (3,3) (4,3) (5,3) (6,3)
图 的
4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 方
1×1=1 2×1=2 3×1=3 4×1=4 5×1=5 6×1=6
2
1×2=2 2×2=4 3×2=6 4×2=8 5×2=10 6×2=12
法
5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 好
6
(1,6) (2,6) (3,6) (4,6) (5,5) (6,6)
吗 ?
P(点数相同)= 6 1
36 6
11
P(点数和是9)=
4 1 36 9
P(至少有个骰子的点数是2 )= 36
思考
“同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗?
甲 20红,8黑
乙袋 20红,15黑,10白
袋
球除了颜色以外没有任何区别。两袋中的球都搅匀。
蒙上眼睛从口袋中取一只球,如果你想取出1只黑
球,你选哪个口袋成功的机会大呢?
解:在甲袋中,P(取出黑球)=
8
2
=
28 7
在乙袋中,P(取出黑球)= 15 = 1
1> 2
37
45 3
所以,选乙袋成功的机会大。
蓝黄
蓝 绿黄
5、一个袋子中装有2个红球和2个绿球,任意摸出一个 球,记录颜色后放回,再任意摸出一个球,请你计算两 次都摸到红球的概率。
若第一次摸出一球后,不放回,结果又会怎样?
“放回”与“不放回”的区别: (1)“放回”可以看作两次相同的试验;
(2)“不放回”则看作两次不同的试验。
4.一个口袋内装有大小相等的1个白球和已编有不同 号码的3个黑球,从中摸出2个球.摸出两个黑球的 概率是多少?
食物
蚂蚁
2、用如图所示的两个转盘进行“配紫色”(红与蓝) 游戏。请你采用“树形图”法计算配得紫色的概率。
白红 蓝 甲
黄绿 蓝红
乙
3、每个转盘分成相等的两个扇形。甲、乙两人 利用它们做游戏:同时转动两个转盘, 如果两个指针所停区域的颜色相同则甲获胜; 如果两个指针所停区域的颜色不同则乙获胜。 你认为这个游戏公平吗?
7、甲、乙两人各掷一枚质量分布均匀的正方体骰子,如果点数 之积为奇数,那么甲得1分;如果点数之积为偶数,那么乙得1分。 连续投10次,谁得分高,谁就获胜。 (1)请你想一想,谁获胜的机会大?并说明理由; (2)你认为游戏公平吗?如果不公平,请你设计一个公平的游戏。
列出所有可能的结果:
1
2
3
4
5
6
1
“同时掷两个质地相同的骰子” 两个骰子各出现的点数为1~6点
“把一个骰子掷两次” 两次骰子各出现的点数仍为1~6点
归纳
随机事件“同时”与“先后”的关系:
“两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的。
练习
1、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁 在每个岔口都会随机地选择一条路径,它获得食物的 概率是多少?
引例:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上;
“掷两枚硬币”共有几种结果?
正正
正反 反正 反反
为了不重不漏地列出所有这些结果, 你有什么好办法么?
掷两枚硬币,不妨设其中一枚为A,另一枚为B, 用列表法列举所有可能出现的结果:
B
A
正
反
正 正正 正反
反 反正 反反
还能用其它方法列举 所有结果吗?
第一枚
正
反
第二枚 正
反
正
反
共4种可能的结果 此图类似于树的形状,所以称为 “树形图”。
例1:如图,甲转盘的三个等分区域分别写有数字1、2、 3,乙转盘的四个等分区域分别写有数字4、5、6、7。 现分别转动两个转盘,求指针所指数字之和为偶数的 概率。