表面等离激元

合集下载

光学中的表面等离激元方程

光学中的表面等离激元方程

光学中的表面等离激元方程在物理学中,表面等离激元(surface plasmon)是指金属表面上被激发出来的电磁波,它们与电子和光子之间的相互作用导致了一系列神奇的物理现象,如透射光谱、增强荧光、表面增强拉曼散射(SERS)等等。

这些现象在科学研究和实际应用中具有重要的意义,因此表面等离激元的研究成为了热点领域之一。

在光学中,表面等离激元可以通过麦克斯韦方程组的求解得到,其中最基本的方程即是麦克斯韦方程的波动方程(wave equation)。

这个方程描述了电磁波的传播过程,并且可以用来计算表面等离激元的频率和波矢。

然而,在金属表面的情况下,电磁波的传播行为并不像在空气或真空中那样简单。

这是因为金属表面存在自由电子,它们可以吸收入射光子的能量并发生共振激发,从而形成表面等离激元。

这种自由电子的行为需要用到泊松方程(poisson equation)和电流连续性方程(current continuity equation)来描述。

泊松方程描述了金属内部的电势分布,其形式为:∇²Φ = -ρ/ε其中,Φ表示电势,ε表示介电常数,ρ表示电荷密度。

这个方程描述了自由电子的电荷分布对金属内部电势的影响。

电流连续性方程描述了自由电子的运动行为,其形式为:∇·J + ∂ρ/∂t=0其中,J表示电流密度。

这个方程描述了自由电子在金属内部的流动行为,以及它们的电荷密度随时间的变化。

利用波动方程、泊松方程和电流连续性方程,可以得到关于表面等离激元频率(ω)和波矢(k)的方程,称为等离子体色散方程(plasma dispersion equation):ω² = ωp² + c²k²/ε(m)其中,ωp表示等离子体频率,它与自由电子的振荡频率有关,c表示光在介质中的传播速度,ε(m)表示介质的相对介电常数。

这个方程描述了表面等离激元的频率与波矢之间的关系。

当光传播到金属表面时,如果满足这个方程的条件,就可以激发出表面等离激元。

表面等离激元技术的研究及其应用

表面等离激元技术的研究及其应用

表面等离激元技术的研究及其应用表面等离激元(Surface plasmon)是一种在金属表面上发生的电磁波传播形式。

它是由金属中的自由电子通过共振相互作用而引起的。

在表面等离激元现象中,电磁波通过金属表面上的自由电子运动来传播,形成一种局域电磁波场。

近年来,表面等离激元技术被广泛应用于生物化学、物理学、光电学等领域中,发展迅速。

本篇文章将探讨表面等离激元技术的研究及其应用。

一、表面等离激元的研究表面等离激元的研究起源于19世纪末,当时研究人员注意到金属颗粒表面上的电场强度比体内电场强度大得多。

20世纪初,通过对金属的光电子研究,研究人员发现表面等离激元相当于金属表面上的局域振荡,这种振荡引发了电磁波的共振。

随着科学技术的发展,表面等离激元的研究也得到了进一步的深入。

20世纪中叶,科学家们开始在新材料、新技术、新装置等方面进行实验研究,以提高表面等离激元的性能和应用。

二、表面等离激元技术在生物化学中的应用1.表面等离激元技术在蛋白质分析中的应用表面等离激元技术可用于生物大分子的检测和分析。

例如在蛋白质研究中,可以将蛋白质样品吸附在金属表面上,然后通过表面等离激元的共振效应来测量蛋白质的折射率和吸收性。

2.表面等离激元技术在细胞成像中的应用通过表面等离激元技术,可以直接观察和检测生物细胞内的化学成分。

利用表面等离激元的高分辨率,可以对微生物和癌细胞的细胞膜进行成像,检测其组成和生理功能。

三、表面等离激元技术在物理学中的应用1.表面等离激元技术在太阳能电池中的应用太阳能电池的最大问题是其转换效率限制。

利用表面等离激元技术,可以设计出具有更高转换效率的太阳能电池。

在新型太阳能电池的研究中,利用表面等离激元的特性来提高太阳能电池的光吸收效率,从而提高电能产生能力。

2.表面等离激元技术在传感器中的应用表面等离激元技术在传感器中被广泛应用。

传感器通常用于溶解性分析、光谱学分析、气体检测、生物标记物检测和环保监测等,表面等离激元技术能够提供高分辨率和灵敏度,从而提高传感器的性能。

表面等离激元

表面等离激元

“表面等离激元”是一种光学现象,它发生在反射界面上,表明光线可以在反射界面上维持相对平衡的态势。

表面等离激元这一物理现象是由法国物理学家埃里克·斯托克尔于1817年发现的。

他在研究光线在反射界面上的行为时发现,光线在反射界面上可以形成一个等离激元,即反射界面上的一个小小区域,其中光线不会穿过反射界面,而是在反射界面上穿行,使得光线在反射界面上维持相对平衡的态势。

此外,表面等离激元还可以用于诊断表面的状态。

它可以用来检测表面的摩擦系数、弹性系数以及表面的疏水性。

它还可以在几种材料之间的界面上进行检测,以确定这些界面的性质。

另外,表面等离激元也可以用于建设光学滤波器,例如分离颜色光谱的滤波器,以及用于分离多种类型的光谱。

表面等离激元也可以用于生物和化学分析,以及分离光纤中的信号。

总之,表面等离激元是一种重要的物理现象,可以用于诊断表面状态、构建光学滤波器和用于生物和化学分析等多种用途。

表面等离激元共振

表面等离激元共振

表面等离激元共振
表面等离激元是物理学中的一种重要的现象。

它涉及到可见光、微波和亚电子能量谱等多
种物理过程,是多个科学学科的基础。

其原理是当外界空间电场强度为E时,固体解决空
间电场中分布式电荷,并创造出两个来自表面的浮动力。

因此,表面等离激元发出的能量,强度可以超过来自表面的电荷力的能量,从而形成表面等离激元共振。

表面等离激元是一种物理共振,其特点是使金属表面的电子能量能空间的电荷分布的变化,从而产生一种强大的可见光和微波作用,具有强大的光学性质,并可能使表面产生特殊的
力学性质。

它是金属表面反射、吸收特定光谱上的电磁波及半导体表面吸收特定光谱该过
程的基础。

表面等离激元非常之小,半径仅为0.1到0.4nm,它不仅小而且具有高自身稳
定能,能够在空间和表面电场发生强烈变化时维持其强度和稳定。

表面等离激元的最重要的应用之一是用作微纳加工装备的光源。

此外,在纳米技术的发展中,表面等离激元的应用也可更加深入。

例如,可以用它来制造可控的光子结构,这将有
助于研究光子的传输,并为设计高效的光子晶体和超细光纤提供基础。

此外,表面等离激元还可以应用于生物学、化学和药物学等领域。

首先,可以利用表面等
离激元“指纹”形成光学显微镜,可以精确观察微观尺度的生物学反应。

同时,由于表面
等离激元可以充当光子的靶位,所以它可以被用来研究光激发的化学反应和可靠的疗法,
从而更好地控制材料的表面性质,以此来改善医疗设备上的生物毒性。

总之,表面等离激元是一种重要的现象,可以深入到多个科学领域,为各种物理现象提供
基础,并形成重要的应用。

(完整word版)表面等离激元

(完整word版)表面等离激元

(完整word版)表⾯等离激元表⾯等离⼦体共振波长1.共振波长的基本求解思路表⾯等离激元(SP)是指在⾦属和电介质界⾯处电磁波与⾦属中的⾃由电⼦藕合产⽣的振动效应。

它以振动电磁波的形式沿⾦属和电介质的界⾯传播,并且在垂直离开界⾯的⽅向,其振幅呈现指数衰减。

表⾯等离激元的频率与波⽮可以通过⾊散关系联系起来。

其垂⾄于⾦属和电解介质界⾯⽅向电磁场可表达为:式中表⽰离开界⾯的垂直距离,当时取+,时取⼀。

式中为虚数,引起电场的指数衰减。

波⽮平⾏于⽅向,,其中为表⾯等离⼦体的共振波长。

由表达式可见,当时,电磁场完全消失,并在时为最⼤值。

函数,以及电介质的介电常数来求解表⾯等离激元的的⾊散关系,由公式: ,可得到等离激元⾊散关系式为: ,如果假设和都为实数,且,则可获得⼀个较为复杂的⾊散关系式其中, (从实部可以计算SPPs 的波长'2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=2. ⾦属表⾯等离体⼦频率的求解当波⽮较⼤或者时,的值趋向于21P SP ωωε=+ 对于⾃由电⼦⽓,,是⾦属体电⼦密度,是电⼦有效质量,是电⼦电荷。

因此,随增⼤⽽减⼩。

(1)具有理想平⾯的半⽆限⾦属全空间内电势分布满⾜拉普拉斯⽅程:由于在⽅向上介质和⾦属都是均匀的,所以可令解的形式为得拉普拉斯⽅程的解由以及边界条件:可以得到介质与⾦属相对电容率之间的关系:,假设介质的相对电容率为与频率⽆关的常数,由⾦属相对电容率的表⽰式可知因此⾦属表⾯等离体⼦频率为当介质为真空时,得到⾦属表⾯等离体⼦频率为(2)⾦属中存在着⼤量的价电⼦,它们可以在⾦属中⾃由地运动.由于价电⼦的⾃由移动性及电⼦间存在着库仑相互作⽤,所以在⾦属内部微观尺度上必然存在着电⼦密度的起伏.由于库仑作⽤的长程性,导致电⼦系统既存在集体激发(即等离体⼦振荡),也存在个别激发(即准电⼦).⽽在⼩波⽮近似下只存在集体激发,故可以将电⼦密度的傅⾥叶分量作为集体坐标来描述这种关联,在k ⼀0的极限下,有式中为单位体积内的电⼦数.由此⽅程可以得到⾦属内等离体⼦振荡频率从以上讨论及推导可以看出,⾦属等离体⼦振荡实际上是在库仑作⽤参与下的⾼粒⼦数密度系统中电⼦的集体运动,等离体⼦就是电⼦集体振荡的能量量⼦.由于库仑势场是纵场,因此等离体⼦是纵振动的量⼦.以上所讨论的情况没有考虑到⾦属边界的影响,即认为⾦属是⽆限⼤的,计算得到的频率为块状⾦属中的体相等离体⼦频率.3.⾦属介电常数的求解(1)另外,根据Drude ⾃由电⼦⽓模型,理想⾦属的介电⽅程可写为: 22()1p i ωεωωτω=-- ,p ω是等离⼦体振荡频率,,τ是散射速率描述电⼦运动遭遇散射⽽引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。

第五课:表面等离激元

第五课:表面等离激元

Hiy
将上两式代入麦克斯韦方程,可得:
其中:
(qi为x方向的波矢)
由边界条件: H1y H2y E1x E2x
上述方程组有解的条件为: 由束缚解的条件可得: i 0 由表面处的连续性条件可得:
12 0
要求:1 2
表面等离激元存在的条件(色散关系)
For q, ωis given by the solution of 1 2 0
Surface Plasmon的微观理论描述
n+
n0
ε (ω )
d//
ε (ω )=1
z
B
0
d⊥ V
(V z B)
Di
(z,ຫໍສະໝຸດ q,)


()Ei (z, q,), Ei (z, q,),(z
(z B), V ).
对任意z:
方法:将 z=B 代入以上两式,得到表面两边的连接方程,再联立求解。 困难: 两个未知积分的存在! 出路: 近似求解(Q<<1),在所有关于Q的表达式中精确到Q的一次项。 关键: Dx 和 Ez (仅仅需要其在Q=0 的情况下的表达式)。
表面等离激元的微观描述 表面等离激元的杂化理论 表面等离激元的激发和探测
电子激发 光子激发
等离激元:起源于电子间的长程库伦相互作用
ee- -
ee--
微观尺度上电子密度的起伏:电子气体相对于正离子背景的集体振荡 !
纳米颗粒中的电子气的集体振荡
类比例子:容器中水波的振荡
等离激元的经典描述

n (E2 E1) 0
z≠0
代入
z=0
0,(z 0) (z) 1,(z 0)

表面等离激元

表面等离激元

表面等离激元介绍定义及原理:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。

性质:表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs 。

在平坦的金属/介质界面,SPPs 沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。

只有当结构尺寸可以与SPPs 传播距离相比拟时,SPPs 特性和效应才会显露出来。

随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。

表面等离激元主要具有如下的的基本性质:1. 在垂直于界面的方向场强呈指数衰减;2. 能够突破衍射极限;3. 具有很强的局域场增强效应;4. 只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。

表面等离激元的激发:由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。

此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。

相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:2/121210)(εεεε+=k k spp ,其中spp k 是表面等离激元波矢,0k 是光波波矢。

一般来说,对于介质01>ε;而对于金属,212;0εεε<<且。

相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。

要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。

表面等离激元共振原理

表面等离激元共振原理

表面等离激元共振原理
表面等离激元共振是一种在表面等离激元中发生共振现象的物理现象。

表面等离激元是一种在金属和介质界面上产生的电磁波模式,它是金属中的自由电子与光子之间的耦合模式。

表面等离激元共振原理可以通过以下步骤进行解释:
1. 当电磁波入射到金属-介质界面时,部分能量会被金属吸收,而另一部分能量会被反射。

2. 当入射角度和波长满足一定的条件时,进入金属表面的光子能够与自由电子耦合形成表面等离激元。

这些电子和光子之间的耦合形成了新的电磁波模式,即表面等离激元。

3. 表面等离激元的形成导致了共振现象,即当入射角度和波长符合表面等离激元的共振条件时,能量将得到最大的能量传递。

4. 共振产生的电磁波能够在金属表面上传播,形成波浪或驻波模式,具有较高的局部电场强度。

表面等离激元共振具有很多重要的应用,包括传感器、光学器件、太阳能电池等领域。

通过调控和利用表面等离激元共振现象,可以实现更高效的能量传输、灵敏的传感器探测以及更高分辨率的成像等。

表面等离激元共振

表面等离激元共振
表面等离激元共振在生物医学领域中 可用于实现高分辨率、高灵敏度的成 像与诊断,有助于疾病的早期发现和 治疗。
表面等离激元共振在太阳能电池等领 域中,可以提高光电转换效率,促进 可再生能源技术的发展。
表面等离激元共振的历史与发展
早期研究
表面等离激元共振的研究始于20世纪初,但直到近年来随 着纳米技术的快速发展,才得到了广泛关注和应用。
受介质影响
当表面等离激元遇到不同介质时 ,会发生反射、折射或耦合等现 象。
表面等离激元的共振条件
波矢匹配
当入射光波的波矢与表面等离激元的波矢相匹 配时,会发生共振增强效应。
能量守恒
入射光能量与表面等离激元的能量必须相匹配, 才能实现共振。
动量守恒
入射光与表面等离激元必须满足动量守恒定律。
03
表面等离激元共振的应用
光电探测器
用于检测共振产生的光信号,如光电流或光 电压。
激光器
提供共振所需的光源,通常选用可见光波段 的激光。
金属纳米结构
制备具有特定形貌和尺寸的金属纳米结构, 如纳米颗粒、纳米棒、纳米片等。
实验步骤与操作
样品制备
在玻璃基底上制备金属纳米结 构样品,可以采用物理气相沉
积、化学合成等方法。
光学显微镜观察
THANK YOU
实验验证难度
表面等离激元共振的实验验证是另一个技术挑战。由于表面等离激元共振的特性,实验验证需要高精度的测量设备和 复杂的实验条件,这增加了实验验证的难度。
理论模型的不完善
目前对表面等离激元共振的理论模型仍不完善,这限制了对表面等离激元共振的深入理解和应用。需要 进一步发展理论模型,提高理论预测的准确性和可靠性。
调控光电流
通过表面等离激元共振,可以调控太阳能电池中的光电流方向和大 小,优化能源利用效率。

表面等离激元的激发及探测

表面等离激元的激发及探测

表面等离激元的激发及探测表面等离激元是一种位于金属表面的电磁波,可以激发金属表面的电子形成共振,产生强烈的电磁场,具有极高的局域化和增强性质。

在生物分子、化学分析、光学传感等领域中,表面等离激元技术得到了广泛的应用。

本文将介绍表面等离激元的激发及探测方法,并讨论该技术在化学和生物研究中的应用。

一、表面等离激元的激发方法表面等离激元的激发方法主要有三种:光学激发、电学激发和粒子束激发。

其中,光学激发是最为常见的激发方式,它通过在金属表面正入射激光束来产生表面等离激元。

当入射激光与金属表面的电子相互作用时,电子自由波和表面等离激元耦合,从而形成表面等离激元波。

二、表面等离激元的探测方法表面等离激元的探测方法主要有两种:光学探测和电学探测。

其中,光学探测是最为常用的探测方式。

在光学探测方法中,激发表面等离激元的激光通过光学系统导入与表面等离激元耦合的探测光纤或另一探测器上,以测量表面等离激元的共振谱。

在电学探测中,可以通过测量表面等离激元场的局部电流或电势,来间接测量表面等离激元的特性。

三、表面等离激元在化学研究中的应用表面等离激元在化学分析领域中有着广泛的应用。

例如,在表面等离激元拉曼光谱(SERS)中,表面等离激元与修饰金属表面上的分子共振,从而增强了分子的拉曼散射信号,可以对弱信号化合物进行高灵敏度和高选择性的检测。

此外,表面等离激元还可以通过测量表面等离激元感应荧光(SEF)来实现生物分子的检测。

利用表面等离激元产生的强烈电磁场,可以将荧光分子的荧光增强数千倍以上,从而实现对极低浓度的生物分子的检测。

四、表面等离激元在生物研究中的应用表面等离激元技术在生物学研究中也有广泛的应用。

例如,在蛋白质结构研究中,表面等离激元可以用来研究蛋白质的自组装过程以及蛋白质分子之间的相互作用;在单分子检测中,表面等离激元可以将单个分子的激发局限在一特定区域内,从而实现对单个分子的定位和监测,为分析和理解生物分子的自组装、相互作用和反应提供了新的手段;同时表面等离激元还可用于测量细胞膜的介电常数,从而实现对细胞膜性质的非侵入式测量。

表面等离激元

表面等离激元

表面等离激元介绍定义及原理:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。

性质:表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs。

在平坦的金属/介质界面,SPPs沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。

只有当结构尺寸可以与SPPs传播距离相比拟时,SPPs特性和效应才会显露出来。

随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。

表面等离激元主要具有如下的的基本性质:在垂直于界面的方向场强呈指数衰减;能够突破衍射极限;具有很强的局域场增强效应;只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。

表面等离激元的激发:由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。

此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。

相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:,其中是表面等离激元波矢,是光波波矢。

一般来说,对于介质;而对于金属,。

相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。

要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。

目前主要通过全反射和散射波矢补偿两种方法。

应用:随着表面等离激元理论研究的深入以及各种结构的器件的成功制作,其在光学各领域应用具有巨大的潜力,尤其在解决了一些以往光学长期不能解决的问题,其中包括金属亚波长结构的增透效应在超分辨率纳米光刻、高密度数据存储、近场光学等领域的应用。

表面等离激元光谱增强

表面等离激元光谱增强

表面等离激元光谱增强表面等离激元(Surface Plasmon Resonance,SPR)光谱增强是一种在表面等离激元共振技术基础上进一步提高灵敏度和检测性能的方法。

表面等离激元是一种在金属表面上产生的电磁波,与介质中的光波耦合,形成共振现象。

这一现象在传感、生物医学和化学分析等领域得到了广泛的应用。

以下是关于表面等离激元光谱增强的一些主要内容:1. 表面等离激元原理表面等离激元是一种发生在金属表面上的电磁波,其产生的机制涉及到金属电子和电磁波之间的耦合。

当金属表面上存在电子的集体振荡时,这些电子将与入射的光波发生耦合,形成表面等离激元。

SPR的共振条件取决于金属、介质和入射光的性质,因此可以通过调整这些条件来实现对SPR的控制。

2. 表面等离激元光谱SPR技术通过监测光在金属表面上的反射来获取信息。

在共振条件下,入射光的反射将发生突变,这种变化与与金属表面相互作用的生物分子或化学物质的特性有关。

因此,通过检测SPR光谱的变化,可以实现对生物分子的检测和分析。

3. 光谱增强技术为了提高SPR技术的灵敏度和检测性能,研究人员开发了一系列光谱增强技术。

其中的一些关键方法包括:纳米结构设计:通过在金属表面引入纳米结构,如纳米颗粒或纳米孔洞,可以增加SPR效应,提高检测灵敏度。

纳米颗粒增强:利用金属纳米颗粒的局域电磁场增强效应,可以在SPR信号中引入显著的增强。

表面增强拉曼散射(SERS):结合SPR和SERS,可以实现对表面吸附物质的高灵敏检测,特别是对于小分子的检测。

二维材料:使用二维材料,如石墨烯,作为表面支持材料,可以在SPR效应中引入新的调控机制,提高灵敏度。

4. 应用领域表面等离激元光谱增强技术在生物医学、化学分析和环境监测等领域有广泛的应用。

例如,在生物传感器中,通过将生物分子固定在SPR传感器表面,可以实现对生物分子的高灵敏检测,包括蛋白质、DNA和细胞等。

5. 挑战和前景尽管表面等离激元光谱增强技术在许多方面取得了显著进展,但仍然存在一些挑战,如实验复杂性、制备成本和稳定性等。

表面等离激元

表面等离激元

表面等离激元
表面等离激元是一种物质表面上生成的量子现象,它是由电子或
其它粒子的表面辐射而产生的。

表面等离激元也被称为薛定谔光子,又或通常称为表面等离激元散射或表面等离激元发射,它是
当电子和其它粒子受到较高能量条件的冲击,高能粒子释放出的
物质表面上的微小散射现象。

表面等离激元的发现可追溯到二十世纪的晚期,当时物理学家薛
定谔假设了一种解释辐射的力学模型,可用来解释电子在物质表
面受到辐射时、所产生的等离激元现象。

这样,当具有足够高能
量的电子或其它高能粒子(比如X射线等)击中某种物质表面时,将会产生表面等离激元现象,从而激发电子并使其跃迁到更高的
能量状态,从而排放出光子。

表面等离激元散射现象是这种现象
的特征表现。

表面等离激元的研究为物理和材料科学提供了丰富的研究方向。

它可以被运用于物质表面外延生长中的自体表面活化,以及电子学、材料学和光电子学等领域。

在生物学领域,表面等离激元还可用来研究细胞膜外层结构的形成和固态变化等。

此外,该现象还在应用物理、工程、医疗等领域不断拓展其研究面,也正在被用于先进的材料设计和表面增强等技术。

因此,表面等离激元是一种由物质表面受到高能量冲击而发出的量子现象,它具有广泛的应用前景
可用于物理、工程、生物学及其它领域等。

它不仅使科学家们获得更大的自由度去探索表面辐射现象,而且希望能为更多领域的研究带来重要信息,并有助于人们了解空间的辐射现象。

表面等离激元和超构表面

表面等离激元和超构表面

表面等离激元和超构表面表面等离激元和超构表面是当今材料科学领域的热门研究方向。

表面等离激元是指在金属表面上,电子和光子之间的相互作用,这种相互作用可以引起表面等离激元的产生。

而超构表面则是指通过设计和制造具有特定结构的表面,来实现对光的控制和调制。

本文将从表面等离激元和超构表面两个方面进行阐述。

表面等离激元表面等离激元是一种表面电磁波,它是由金属表面的自由电子和光子之间的相互作用所产生的。

表面等离激元具有很多独特的性质,如强烈的局域化、高灵敏度、高增强因子等。

这些性质使得表面等离激元在传感、光学成像、光催化等领域有着广泛的应用。

表面等离激元的产生需要满足一定的条件,如金属表面的电子密度、光的波长和入射角度等。

通过调节这些条件,可以实现对表面等离激元的控制和调制。

例如,可以通过改变金属表面的形貌、厚度和材料等来调节表面等离激元的频率和强度。

超构表面超构表面是指通过设计和制造具有特定结构的表面,来实现对光的控制和调制。

超构表面的结构可以是周期性的、随机的或者是混合的。

这些结构可以实现对光的反射、透射、散射等过程的控制,从而实现对光的调制。

超构表面的制备方法有很多种,如光刻、电子束曝光、激光刻蚀等。

这些方法可以实现对超构表面的结构和形貌的精确控制。

通过调节超构表面的结构和形貌,可以实现对光的波长、偏振、入射角度等参数的控制和调制。

表面等离激元和超构表面的结合表面等离激元和超构表面的结合可以实现对光的高度控制和调制。

例如,可以通过在超构表面上引入金属纳米颗粒,来实现对表面等离激元的激发和调制。

这种结合可以实现对光的频率、强度、偏振等参数的高度控制和调制,从而实现对光的高效利用。

总结表面等离激元和超构表面是当今材料科学领域的热门研究方向。

表面等离激元具有很多独特的性质,可以实现对光的高度控制和调制。

超构表面可以通过设计和制造具有特定结构的表面,来实现对光的控制和调制。

表面等离激元和超构表面的结合可以实现对光的高度控制和调制,从而实现对光的高效利用。

化学物理学中的新研究——表面等离激元

化学物理学中的新研究——表面等离激元

化学物理学中的新研究——表面等离激元随着科学技术的不断进步,各种新的研究领域也不断涌现。

在化学物理学中,表面等离激元就是一项新兴的研究领域。

它在实际应用中具有广泛的应用场景和重要的作用。

一、表面等离激元的概念表面等离激元是一种集体的、准粒子型的激发态,可以在介质表面上引起电磁波局部增强。

表面等离激元可以与外部电磁波相互作用,形成表面等离子共振,使电磁波在界面上产生强烈的局部场。

因此,表面等离激元通常被视为一种局部电场和静电场,同时也可以被看作是一种电磁波的束缚态。

表面等离激元在化学物理学中有许多重要的应用,比如可以用来增强荧光信号、增强光催化活性、提高表面增强拉曼散射等。

因此,表面等离激元在化学物理学中具有广泛的应用前景和深远的意义。

二、表面等离激元的产生机制表面等离激元的产生机制十分复杂,目前还没有一个完全统一的理论来解释它。

但是可以根据材料的性质和外部电磁场的特点来大致分为两类:金属基底和介电体基底。

对于金属基底,表面等离激元的形成主要是由于金属电子和外部电磁场之间的相互作用导致的。

金属表面的自由电子与光线中的电场发生相互作用,从而形成电荷排列模式,进而形成表面等离激元。

此时,表面等离激元的频率和强度主要由金属表面的形貌、金属的电子密度和光场的波长和偏振等因素所决定。

而对于非金属介电体基底,则表面等离激元的产生主要是由于表面极性分子和外部电磁场之间的相互作用导致的。

介电体表面上的分子团簇与光线中的电场发生相互作用,最终形成表面等离激元。

此时,激元的频率和强度主要由介电体的折射率、分子极性和分子间距以及辐射场的波长和偏振等因素所决定。

三、表面等离激元的应用表面等离激元在化学物理学中有着广泛的应用领域。

下面列举几个重要的应用案例。

1. 表面等离激元增强荧光信号利用表面等离激元可以增强荧光信号的强度和稳定性。

当一种荧光分子与一个金纳米颗粒结合时,表面等离激元会在纳米颗粒表面上产生强烈的电场,使荧光分子发生强烈的局部场增强效应,从而显著增强荧光信号的强度和稳定性。

表面等离激元

表面等离激元

1.表面等离激元(SPP)的定义、性质及激发方式。

表面等离激元(SPPs)定义为自由电子与电磁场相互作用产生的沿金属表面传播的电子疏密波。

性质1. 在垂直于界面的方向场强呈指数衰减2.能够突破衍射极限;3.具有很强的局域场增强效应;4.只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。

激发方式:1.棱镜耦合Kretschamann与Otto结构2.光栅(金属表面缺陷)耦合k//=k0sinq±Nkg= kspp 3.波导模耦合4.强聚焦光束(SNOM)2.理解并掌握金属电介质SPP色散关系的物理意义。

3.选择一种SPP的应用简述原理。

4.光子晶体的基本概念、定义、特性、带隙成因及其与电子材料的区别。

光子晶体是指具有光子带隙(PhotonicBand-Gap,简称为PBG)特性的人造周期性电介质结构。

由于介电常数存在空间上的周期性,进而引起空间折射率的周期变化。

当介电系数的变化足够大且变化周期与光波长相当时,光波的色散关系会出现带状结构,介电常数周期性排列的方向并不等同于带隙出现的方向,在一维光子晶体和二维光子晶体中,也有可能出现全方位的三维带隙结构。

特性:1.抑制自发辐射,带隙中态密度为零,自发辐射几率也就为零,这也就抑制了自发辐射。

2.光子局域化,当光子晶体原有的对称性遭到破坏时,即有了缺陷,在光子晶体中禁带中就可能出现频宽极窄的缺陷态或局域态,与缺陷态频率符合的光子会被局限在缺陷位置,而不能向空间传播。

带隙成因:电磁波在周期性电介质材料中传播时,由于受到调制而形成光子能带结构,频率落在带隙内的电磁波不能通过介质而被全部反射,即形成光子带隙。

电子材料:电子在周期场中传播时,由于会受到周期势场的布拉格散射,会形成能带结构,带与带之间可能存在带隙。

电子波的能量如果落在带隙中,传播是禁止的。

电子材料是通过周期性的晶体结构从而产生周期性势垒,按照薛定谔方程形成带隙。

电磁波是通过周期性的介电常数,按照麦克斯韦方程形成光子带隙。

表面等离激元在纳米器件中的应用

表面等离激元在纳米器件中的应用

表面等离激元在纳米器件中的应用表面等离激元是一种新兴的物理现象,它在纳米器件中的应用正变得越来越广泛。

表面等离激元是指光与金属或半导体表面上的电子气相互作用,形成一种新的激发态。

通过控制表面等离激元的特性,可以实现纳米器件的光学、电学和热学性能的调控,为纳米科学和纳米技术的发展提供了新的思路和方法。

一方面,表面等离激元在纳米器件中的应用可以突破光学的折射极限,实现高分辨率的光学成像。

传统的光学成像技术受到光的波长的限制,无法对纳米尺度的物体进行直接观测。

而表面等离激元的产生使得可以将纳米尺度的物体与光耦合起来,使其发出等离激元波。

通过控制这些等离激元波的传播,可以实现对纳米尺度物体的成像。

这种技术在纳米生物传感、纳米荧光成像等领域具有广阔的应用前景。

另一方面,表面等离激元在纳米器件中的应用还可以改善光学器件的效率。

在传统的光学器件中,部分光会因为折射等问题而在界面上发生反射、散射等损耗,降低了器件的效率。

而表面等离激元的引入可以减小光的折射因素,增强能量在体系中的传播。

这使得纳米光学器件在能量转换、光电能源等方面具有更高的效率,为绿色能源的研发提供了新的思路和方法。

除了在光学方面的应用之外,表面等离激元还可以在电学器件中发挥重要作用。

由于等离激元波的高度局域化,可以使得光与电子之间的相互作用变得非常强。

这就为纳米材料的功能化提供了新的可能性。

例如,通过在金属纳米粒子上吸附有机分子,可以实现强化拉曼散射信号,从而提高传感器的灵敏度。

此外,表面等离激元还可以实现超高速的光电开关效应,用于高速通信等领域。

在热学方面,表面等离激元的应用也是研究的热点之一。

等离激元波的传播受到热衰减的影响,因此可以用于纳米热辐射场的调控。

通过调控等离激元波的传播路径和能量损失,可以实现纳米材料的热辐射的增强或抑制,从而实现纳米器件的热学性能的调控。

总之,表面等离激元在纳米器件中的应用已经取得了重要进展,并具有广阔的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面等离子体共振波长
1.共振波长的基本求解思路
表面等离激元(SP)是指在金属和电介质界面处电磁波与金属中的自由电子藕合产生的振动效应。

它以振动电磁波的形式沿金属和电介质的界面传播,并且在垂直离开界面的方向,其振幅呈现指数衰减。

表面等离激元的频率与波矢可以通过色散关系联系起来。

其垂至于金属和电解介质界面方向电磁场
可表达为:
式中表示离开界面的垂直距离,当时取+,时取一。

式中为虚数,引起电场的指数衰减。

波矢平行于方向,,其中为表面等离子体的共振波长。

由表达式可见,当时,电磁场完全消失,并在时为最大值。

函数,以及电介质的介电常数来求解表面等离激元的的色散关系,由公式: ,可得到等离激元色散关系式为: ,如果假设和都为实数,且
,则可获得一个较为复 杂的色散关系式 其中, (从实部可以计算SPPs 的波长
'2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=
2. 金属表面等离体子频率的求解 当波矢较大或者时,的值趋向于21P SP ωωε=+ 对于自由电子气,,是金属体电子密度,是电子有效质 量,是电子电荷。

因此,随增大而减小。

(1)具有理想平面的半无限金属
全空间内电势分布满足拉普拉斯方程:由于在方向上介质和金属都是均匀的,所以可令解的形式为得拉普拉斯方程的解
由以及边界条件:
可以得到介质与金属相对电容率之间的关系:
,假设介质的相对电容率为与
频率无关的常数,由金属相对电容率的表示式可知因此金属表面等离体子频率为当介质为真空时,得到金属表面等离体子频率为
(2)金属中存在着大量的价电子,它们可以在金属中自由地运动.由于价电子的自由移动性及电子间存在着库仑相互作用,所以在金属内部微观尺度上必然存在着电子密度的起伏.由于库仑作用的长程性,导致电子系统既存在集体激发(即等离体子振荡),也存在个别激发(即准电子).而在小波矢近似下只存在集体激发,故可以将电子密度的傅里叶分量作为集体坐标来描述这种关联,在k 一0的极限下,有式中为单位体积内的电子数.由此方程可以得到金属内等离体子振荡频率
从以上讨论及推导可以看出,金属等离体子振荡实际上是在库仑作用参与下的高粒子数密度系统中电子的集体运动,等离体子就是电子集体振荡的能量量子.由于库仑势场是纵场,因此等离体子是纵振动的量子.以上所讨论的情况没有考虑到金属边界的影响,即认为金属是无限大的,计算得到的频率为块状金属中的体相等离体子频率.
3.金属介电常数的求解
(1)另外,根据Drude 自由电子气模型,理想金属的介电方程可写为: 22()1p i ωεωωτω
=-- ,p ω是等离子体振荡频率,,τ是散射速率描述电子运动遭遇散射而引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=⨯=⨯对于银,。

(2)球状金属的SP 介电常数可由以下公式给出:
式中为金属周围环境的介电常数。

从公式可以得到无限多的模式,在
时得到最低阶介电模式。

由于光子通过这些介电模式藕合进入SP ,
然后出现一个衰减的过程,所以这些模式都具有辐射的特征。

(3)利用Drude 模型可以得到块状金属中的相对电容率表达式:
式中,其中为金属内电子的平均自由程,
为电子的Fermi (费密〔长度单位,等于10-13厘米〕)速度,为金属电阻率.的数量级为,的数量级为,故的量级为.由于的量级为,远远小于,故当趋近于时,可以忽略不计,所以考虑等离体子振荡问题时,可忽略相对电容率的虚部,得到金属中相对电容率的经典表达式:
二维周期性结构排列,当入射光垂直照射时,其共振波长用
112222max ()()m d s m
d a i j εελεε-=++来表示,其中a 是晶格常数,i j 和是整数,m ε是金属的介电常数,d ε是和金属接触的介质的介电常数。

4.其它一些相关知识点
由以上公式可画出理想金属的表面等离激元色散曲线,如图1.2所示
因此,由上可知SP不能直接用光来激发。

我们可以利用快速电子来激发波
矢较大的SP,但它无法激发波矢较小的SP。

我们可以借助一些特殊的结构装置,可以利用光来激发SP下图就是其中一种装置。

表面结构衍射激发
(1)如果金属表面非常粗糙(粗糙度),SP会受到强烈的散射,其波形
将偏离扩散波的形状,不能以波的形式沿界面传播,而是被局域在金属表面,我
们把此时的SP称之为局域表面等离激元。

并且当光频率的入射光照
射到粗糙表面时,光就可以通过粗糙表面藕合进入SP。

(2)金属颗粒对光的散射截面和吸收截面由以下公式给出:
,其中
是颗粒的机化率。

是颗粒的体积,和。

,分别是颗粒和周围介质的介电函数。


时,颗粒机化率将会变得很大,此时便呈现表面等离激元共振的特性。

并且在发生表面等离激元共振时,散射截面会远远超过颗粒的几何截面。

同时,由公式可以看出,颗粒的散射截面与体积的平方成正比,而吸收截面与体积成线性关系。

由此可见,大尺寸的金属颗粒对光的散射更强。

但在随着颗粒的增大,颗粒的机化出现不均匀性,其表面等离激元辐射衰减增加,颗粒的表面等离激元共振频率将出现四偶极子等高阶等离激元模式,这会导致表面等离激元共振峰发生红移。

(3)均匀介质中的纳米金属球
如图3所示,介质相对电容率为;金属球相对电容率为,半径为.对于球状的金属微粒,不再存在光波与等离体子振荡的波矢失配问题,利用频率可调的光波照射纳米金属球,可以观察到等离体子对入射光波的吸收.这是因为入射光波将纳米金属球极化,在金属球内激发了表面等离体子振荡.
当入射光波在可见光波段时,光波波长远大于纳米金属球直径,所以可以利用准静电近似求解金属球内外的电场分布.在准静电近似下,选择极轴方向为外场方向,使的解与无
关,则拉普拉斯方程的解可写为
在介质中有
与通解比较,并利用边界条件可以得到:
计算得到球内外电场分布:
球内的场强与入射场强之比称为表面局域场增强因子.当
时,球内场强增至极大,产生共振,可得
由此可得纳米金属球的等离体子振荡频率为
具有此频率的入射光波将激发金属球表面等离体子振荡.
(4)制备等离激元结构的常用金属材料包括:铝、银、金和铜等。

铝和银是两种自由电子密度极高的金属材料,其等离激元共振峰可以达到极紫外波段。

金和铜的自由电子密度则要弱于前两者,创门的表面等离激元共振峰一般在可见光波段。

这几种材料中,银具有最低的损耗,最小的吸收系数的优异性能,是研究表面等离激元的理想材料。

另外,对于同一种金属颗粒,可以通过改变颗粒周围的介电材料来调节其表面等离激元共振峰的位置,高折射率的介电材料可以得到更大波长的共振峰位置。

相关文档
最新文档