二维图形基本变换规则及应用
第六讲二维及三维空间的变换概念及其矩阵表示-精品
现在考虑绕任意一点P1旋转物体的问题。 1)将P1点平移到原点; 2)旋转; 3)平移还原P1点。
2019/11/20
二维变换的复合(例二)
关于任意 点P1比例 变换一个 物体。
2019/11/20
二维变换的复合(小结)
假设我们想要使图中的房子以任意点P1为中心进行旋转、平移和缩放(比例)变换 。这时具体步骤与上述类似:先将点P1平移到原点,待完成比例变换和旋转变换后 再将房子从坐标原点平移到新的位置P2,因此记录变换的数据结构可以是包含比例 变换因子、旋转角、平移量和变换顺序的数据结构,或者只是简单地记录复合变换
过除以W)而得到形式为(x,y,1)的
坐标,因此,齐次化的点就形成
平面
了(x,y,W)空间中的一个平面,由等
式W=1定义。图中示出了这种联 系,注意:无穷远点没表示在该 平面中。
XYW齐次坐标系,其中示有W=1的平面和投影 到该平面上的点P(X,Y,W)
2019/11/20
二维变换的矩阵表示
平移变换
0, 10
1
绕x旋转
Rx()
0 0
0
cos sin
0
sin cos
0 0. 0
Байду номын сангаас
0 0 0 01
0 0
实验.四二维图形的基本几何变换
实验报告学院:计算机学号:姓名:实验四 二维图形的基本几何变换一、实验目的1.掌握二维图形基本的几何变换原理及变换矩阵; 2.掌握矩阵运算的程序设计。
二、实验内容实现二维图形的基本变换,包括平移、旋转、比例、对称变换。
三、实验环境硬件平台:PC运行环境: Windows 平台,Visual C++四、算法描述二维图形齐次坐标变换矩阵一般表达式 T = 这 3×3 矩阵中各元素功能一共可分成四块,即a 、b 、c 、d 四项用于图形的比例、对称、错切、旋转等基本变换; k 、m 用于图形的平移变换;p 、q 用于图形的透视变换; s 用于图形的全比例变换。
平移变换 旋转变化放缩变换五、实验过程5.1打开Visualc++6.0程序5.2新建一个C++项目⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s m kq dc p b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1),(110010011y x t t T y x t t y x y x y x 记为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1)(11000cos sin 0sin cos 1y x R y x y x θθθθθ记为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡''1),(11000001y x s s S y x s s y x y x y x记为5.3单击完成,双击源文件里的二维图形几何变换View.cpp,出现下图5.5找到其中的OnDraw函数,并将其改成如下,使其实现了一条直线的平移。
void C二维图形几何变换View::OnDraw(CDC* pDC){C二维图形几何变换Doc* pDoc = GetDocument();ASSERT_VALID(pDoc);if (!pDoc)return;// TODO: 在此处为本机数据添加绘制代码int a[3][3];int i,j;for(i=0;i<3;i++)for(j=0;j<3;j++)a[i][j]=0;for(i=0;i<3;i++)a[i][i]=1;int x0=80,x1=350,y0=120,y1=120;pDC->MoveTo(x1,y1);E:\c++6.0安装\MSDev98\MyProjects\pDC->LineTo(x0,y0);a[2][0]=80;//使直线在行方向上平移了80个单位a[2][1]=50;//使直线在列方向上平移了50个单位x0=x0*a[0][0]+y0*a[1][0]+a[2][0];y0=x0*a[0][1]+y0*a[1][1]+a[2][1];x1=x1*a[0][0]+y1*a[1][0]+a[2][0];y1=x1*a[0][1]+y1*a[1][1]+a[2][1];pDC->MoveTo(x1,y1);pDC->LineTo(x0,y0);}5.6单击运行程序并有如下结果5.7找到其中的OnDraw函数,并将其改成如下,使其实现了一条直线的平移和缩放。
计算机图形学-变换
第3章 变换
基本的二维几何变换 二维复合变换 其他二维变换 三维几何变换 OpenGL几何变换函数 三维图形的显示流程 投影 裁剪
2
几何变换
应用于对象几何描述并改变它的位置、方 向或大小的操作称为几何变换(geometric transformation) 基本的二维几何变换包括平移、旋转和缩 放
8
矩阵表示和齐次坐标
许多图形应用涉及到几何变换的顺序 需要用一个通式来表示平移、旋转和缩放
P M1 P M 2
将2×2矩阵扩充为3×3矩阵,可以把二维几 何变换的乘法和平移项组合为单一矩阵表示
9
二维平移矩阵
x 1 0 t x x y 0 1 t y y 1 0 0 1 1
三维坐标轴旋转
X轴坐标不变,循环替代x、y、z三个 轴可以得到绕x轴旋转的公式
z
y ' y cos z sin
y
z ' y sin z cos x' x
x
35
三维坐标轴旋转
y轴坐标不变,循环替代x、y、z三个 轴可以得到绕y轴旋转的公式
x
z
y
z ' z cos x sin x' z sin x cos y' y
glMatrixMode (GL_MODELVIEW); glColor3f (0.0, 0.0, 1.0); glRecti (50, 100, 200, 150); //显示蓝色矩形
glColor3f (1.0, 0.0, 0.0); glTranslatef (-200.0, -50.0, 0.0); glRecti (50, 100, 200, 150); //显示红色、平移后矩形
计算机图形学第五章图形变换
第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。
难 点:理解常用的平移、比例、旋转变换,特别是复合变换。
课时安排:授课4学时。
图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。
为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。
有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。
例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。
点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。
所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。
例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。
将通一地用矩阵乘法来实现变换的组合。
常笛卡尔坐标用齐次坐标表示时, W 的值取1。
采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。
图形变换平移变换图示如图所示,它使图形移动位置。
新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。
计算机图形学之图形变换
4 T
3
2 p
1
0
012 34 567 8
线段和多边形的平移可以通过顶点的
平移来实现。同样线段和多边形的其它几 何变换也可以通过对顶点的几何变换来实 现。
2. 旋转变换(Rotation) 二维旋转有两个参数:
旋转中心: 旋转角:
?
6 P’
5
4
3
P
2
1
0
012 34 567 8
设OP与x轴的夹角为 则:
由于采用齐次坐标矩阵表示几何变换, 多个变换的序列相应地可以用矩阵链乘来表 示。
需要注意:先作用的变换其矩阵在右边, 后作用的变换其矩阵在左边。
变换函数
平移变换 void glTanslate{fd}(TYPE x, TYPE y, TYPE z);
旋转变换 void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z); 绕矢量v=(x,y,z)T逆时针方向旋转angle指定的角度。 旋转角度的范围是0~360度。当angle=0时, glRotate()不起作用。
二维旋转有两个参数: 旋转中心: 旋转角:
上述变换可以分解为三个基本变换:
•平移:
•旋转:
•平移: 回原位。
使旋转中心移到坐标原点; 使旋转中心再移
二维旋转有两个参数: 旋转中心: 旋转角:
因此上述变换可以写成矩阵乘积形式:
4. 5 基本三维几何变换(Basic three-dimensional geometric transformation)
1. 矩阵表示(Matrix representation) 前面三种变换都可以表示为如下的矩
阵形式
计算机图形学_ 二维图形变换_53 二维图形变换原理及齐次坐标_
为什么要采用齐次坐标?
在笛卡儿坐标系内,向量(x,y)是位于z=0的平面上的点 ;而向量(x,y,1)是位于z=1的等高平面上的点
对于图形来说,没有实质性的差别,但是却给后面矩阵运 算提供了可行性和方便性
假如变换前的点坐标为(x,y),变换后的点坐标为(x*,y* ),这个变换过程可以写成如下矩阵形式:
x*, y*x,
x* a1x b 1 y c1
y•M
x*, y*x
a1
y
1
b 1
c1
a2 b2 c2
上两式是完全等价的。对于向量(x,y,1),可以在几何意义 上理解为是在第三维为常数的平面上的一个二维向量。
这种用三维向量表示二维向量,或者一般而言,用一个n+1维 的向量表示一个n维向量的方法称为齐次坐标表示法
n维向量的变换是在n+1维的空间进行的,变换后的n维结果 是被反投回到感兴趣的特定的维空间内而得到的。
如n维向量(p1,p2,...,pn)表示为(hp1,hp2,...,hpn,h), 其中h称为哑坐标。 普通坐标与齐次坐标的关系为“一对多”:
变换图形就是要变换图形的几何关系,即改变顶点的坐 标;同时,保持图形的原拓扑关系不变
仿射变换(Affine Transformation或 Affine Map)是一 种二维坐标到二维坐标之间的线性变换 (1)“平直性”。即:直线经过变换之后依然是直线
(2)“平行性”。即:平行线依然是平行线,且直线上 点的位置顺序不变)
采用了齐次坐标表示法,就可以统一地把二维线形变换表示 如下式所示的规格化形式:
几何变换与变换矩阵
几何变换与变换矩阵几何变换是计算机图形学中常用的一种技术,用于对二维或三维图形进行平移、旋转、缩放和剪切等操作。
这些操作可以通过变换矩阵来描述和计算。
本文将介绍几何变换的基本概念及其与变换矩阵的关系。
一、几何变换的基本概念1. 平移变换平移变换是将图形沿着指定的方向移动一定的距离。
在二维空间中,平移变换可以通过在原始坐标上加上一个向量来实现。
例如,将原始坐标(x, y)进行平移变换得到新的坐标(x', y'),可以表示为:x' = x + dxy' = y + dy其中,dx和dy分别为在x和y方向上的平移距离。
2. 旋转变换旋转变换是将图形绕指定的点或轴旋转一定的角度。
在二维空间中,旋转变换可以通过将原始坐标(x, y)绕着指定点(xc, yc)逆时针旋转θ角度得到新的坐标(x', y'),可以表示为:x' = (x - xc) * cosθ - (y - yc) * sinθ + xcy' = (x - xc) * sinθ + (y - yc) * cosθ + yc其中,(xc, yc)为旋转中心点,θ为旋转角度。
3. 缩放变换缩放变换是将图形沿着指定的方向进行放大或缩小。
在二维空间中,缩放变换可以通过将原始坐标(x, y)分别乘以指定的缩放因子sx和sy得到新的坐标(x', y'),可以表示为:x' = x * sxy' = y * sy其中,sx和sy分别为在x和y方向上的缩放因子。
4. 剪切变换剪切变换是将图形沿着指定的方向进行截取或拉伸。
在二维空间中,剪切变换可以通过将原始坐标(x, y)进行线性变换得到新的坐标(x', y'),可以表示为:x' = x + kx * yy' = y + ky * x其中,kx和ky分别为在x和y方向上的剪切因子。
二、变换矩阵的基本概念与计算方法变换矩阵是一种矩阵表示方法,用于描述几何变换的转换规则。
计算机图形学 5.1二维变换
a11b13 a12b23 a13b33 a 21b13 a 22b23 a 23b33 (5-1) a n1b13 a n 2 b23 a n3b33
由线性代数知道,矩阵乘法不满足交换律,只有左矩 阵的列数等于右矩阵的行数时,两个矩阵才可以相乘。 特别地,对于二维变换的两个3×3的方阵A和B,矩阵 相乘公式为:
5.1.1 规范化齐次坐标
为了使图形几何变换表达为图形顶点集合矩阵与 某一变换矩阵相乘的问题,引入了规范化齐次坐标。 所谓齐次坐标就是用n+1维矢量表示n维矢量。 例如,在二维平面中,点P(x,y)的齐次坐标表示为 (wx,wy,w)。类似地,在三维空间中,点P(x,y,z) 的齐次坐标表示为(wx,wy,wz,w)。这里,w为任一 不为0的比例系数,如果w=1就是规范化的齐次坐标。 二维点P(x,y)的规范化齐次坐标为〔x,y,1〕,三维 点P(x,y,z)的规范化齐次坐标为〔x,y,z,1〕。不 能写成下标形式,w和x,w和y,w和z是乘法的关系。 定义了规范化齐次坐标以后,图形几何变换可以 表示为图形顶点集合的规范化齐次坐标矩阵与某一变换 矩阵相乘的形式。
x1 x P 2 xn y1 y2 yn 1 1 1
变换后图形顶点集合的规范化齐次坐标矩阵为:
x'1 x' ' P 2 x' n y '1 y' 2 y'n 1 1 1
a b 二维变换矩阵为: T c d l m
a11b11 a12b21 a13b31 a11b12 a12b22 a13b32 a b a b a b a 21b12 a 22b22 a 23b32 21 11 22 21 23 31 a n1b11 a n 2 b21 a n3b31 a n1b12 a n 2 b22 a n3b32
第4章二维变换
• 性质
U •V = V •U U •V = 0 ⇔ U ⊥ V U •U = 0 ⇔ U = 0
变换的数学基础(3/4) 变换的数学基础
– 矢量的长度
• 单位矢量 • 矢量的夹角
2 U = U • U = u x + u y + u z2 2
U •V cos θ = U •V
– 矢量的叉积
i U ×V = ux vx
– 在世界坐标系( 在世界坐标系(WCS)中指定的矩形区域 , ) 用来指定要显示的图形 。
2. 视区
– 在设备坐标系(屏幕或绘图纸) 在设备坐标系(屏幕或绘图纸)上指定的矩形区域 , 用来指定窗口内的图形在屏幕上显示的大小及位置。 用来指定窗口内的图形在屏幕上显示的大小及位置。
3. 窗口到视区的变换
P′=P+Tm 等价于
[x’ y’]=[x y] +[Mx My]
图形变换的特点( 4.3.1 图形变换的特点(续)
比例变换 P′=P×Ts
Sx 0 Ts= 0 Sy Sx、Sy分别表示比例因子。 cosθ sinθ Tr= -sinθ cosθ θ>0时为逆时针旋转 θ<0时为顺时针旋转
旋转变换 P'=P×Tr
变换后的 顶点坐标
P
变换前的 顶点坐标
•
T2D
二维变换矩阵
二维变换矩阵中: a b 是对图形进行缩放、旋转、对称、错切等变换。 c d [ l m] 是对图形进行平移变换
• 计算机图形场景中所有图形对象的空间定位和定义,包括观 计算机图形场景中所有图形对象的空间定位和定义, 察者的位置视线等,是其它坐标系的参照。 察者的位置视线等,是其它坐标系的参照。
2.模型坐标系(Modeling Coordinate System,也称局部坐标系) 模型坐标系
二维图形几何变换
⼆维图形⼏何变换⼀、基本变换1. 平移定义:将物体沿直线路径从⼀个坐标位置移到另⼀个坐标位置的重定位。
不产⽣变形⽽移动物体的刚体变换。
原始坐标位置:(x ,y ),平移距离t x 、t y ,新位置(x ′,y ′),则x ′=x +t x ,y ′=y +t y 表⽰为矩阵形式,令:→P =x y→P ′=x ′y ′→T =t x t y⼆位平移⽅程:→P ′=→P +→T2. 旋转当参考点为(0,0)定义:以某个参考点为圆⼼,将对象上的各点(x ,y )围绕圆⼼转动⼀个逆时针⾓度θ,变成新的坐标(x ′,y ′)的变换。
x ′=rcos (φ+θ)=rcos φcos θ−rsin φsin θy ′=rsin (φ+θ)=rsin φcos θ+rcos φsin θ∵x =rcos φ,y =rsin φ∴x ′=xcos θ−ysin θy ′=xsin θ+ycos θ令:→R =cos θ−sin θ−sin θcos θ写成矩阵形式:→P ′=→R ⋅→P绕任意指定的旋转位置(x r ,y r )旋转的变换⽅程1. 将坐标系原点平移到(x r ,y r )2. 在新的坐标系下做旋转变换3. 将坐标原点平移回原坐标系x ′=x r +(x −x r )cos θ−(y −y r )sin θy ′=y r +(x −x r )sin θ+(y −y r )cos θ3. 变化(缩放)Scaling定义:使对象按⽐例因⼦Sx 和Sy 放⼤或缩⼩的变换。
x ′=x ⋅S xy ′=y ⋅S y令→S =S x 00S y矩阵形式:→P ′=→S ⋅→PS x 、S y 均⼩于1,缩⼩物体尺⼨,S x 、S y 均⼤于1,放⼤物体。
S x =S y ,则保持物体相对⽐例缩放⼀致。
特殊情况当Sy =−1、Sx =1,按x 轴反射当Sy =1、Sx =−1,按y 轴反射()()()()()当Sy =−1、Sx =−1,按原点(0,0)反射⼆、变换矩阵每个基本变换均可表⽰为普通矩阵形式:→P ′=→M 1→P +→M 2平移将2×2矩阵扩充为3×3矩阵,将⼆维⼏何变换的乘法和平移项组合成单⼀矩阵表⽰平移。
-图形学实验报告-二维基本变换
一、 实验目的和要求利用VC6.0编写二维基本几何变换算法的实现。
实现平移,比例,旋转等变换。
二、 算法原理介绍齐次坐标表示法就是用N+1维向量来表示一个N 维向量。
在齐次坐标系统中,点(X,Y)用(X,Y ,H)来表达,其中H 为非零的一个任意数。
点(X,Y)的标准齐次坐标表达为(X/H,Y/H,1),由于H 是一个任意非零常量,为了简便起见,我们通常取H=1。
齐次坐标系统中的点(X,Y ,1)包含有笛卡尔坐标上的点(X,Y)。
平移变换:比例变换:旋转变换:对称变换:关于x 轴对称:关于y 轴对称:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000000y x SS ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001关于原点对称:关于y=x 对称:关于y=-x 对称:错切变换:当b=0时: (x` y` 1)=(x+cy y 1)。
图形的y 坐标不变。
当c>0:图形沿+x 方向作错切位移。
ABCD →A1B1C1D1当c<0:图形沿-x 方向作错切位移。
ABCD → A2B2C2D2当c=0时, (x` y` 1)=(x bx+y 1):图形的x 坐标不变。
当b>0:图形沿+y 方向作错切位移。
ABCD → A1B1C1D1当b<0:图形沿-y 方向作错切位移。
ABCD → A2B2C2D2当b 不等于0且c 不等于0时,(x` y` 1)=(x+cy bx+y 1) :图形沿x,y 两个方向作错切位移。
∴错切变换引起图形角度关系的改变,甚至导致图形发生变形。
三、 程序核心源代码void CChangeView::Tmove(double Tx,double Ty) //平移变换矩阵{ ClearMatrix(TM);RedrawWindow();TM[0][0]=1;TM[1][1]=1;TM[2][0]=Tx;TM[2][1]=Ty;TM[2][2]=1;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100001010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000101c bCalculate(P,TM);AfxGetMainWnd()->SetWindowText("二维几何变换-平移变换");Draw(P,p3);}void CChangeView::Tscale(double Sx,double Sy) //比例变换矩阵{ ClearMatrix(TS);RedrawWindow();TS[0][0]=Sx;TS[1][1]=Sy;TS[2][2]=1;Calculate(P,TS);AfxGetMainWnd()->SetWindowText("二维几何变换-比例变换");Draw(P,p3);}void CChangeView::Trotate(double thta)//旋转变换矩阵{ ClearMatrix(TR);RedrawWindow();TR[0][0]=cos(thta*PI/180);TR[0][1]=sin(thta*PI/180);TR[1][0]=-sin(thta*PI/180);TR[1][1]=cos(thta*PI/180);TR[2][2]=1;Calculate(P,TR);AfxGetMainWnd()->SetWindowText("二维几何变换-旋转变换");Draw(P,p3);}void CChangeView::Treflect(double Fx,double Fy) //反射变换矩阵{ ClearMatrix(TF);RedrawWindow();TF[0][0]=Fx;TF[1][1]=Fy;TF[2][2]=1;Calculate(P,TF);AfxGetMainWnd()->SetWindowText("二维几何变换-反射变换");Draw(P,p3);}void CChangeView::Treform(double b,double c) //错切变换矩阵{ ClearMatrix(TC);RedrawWindow();TC[0][0]=1; TC[0][1]=b; TC[1][0]=c; TC[1][1]=1; TC[2][2]=1;Calculate(P,TC);AfxGetMainWnd()->SetWindowText("二维几何变换-错切变换");Draw(P,p3);}void CChangeView::OnMENUup(){// TODO: Add your command handler code hereTmove(0,10);}void CChangeView::OnMENUdown(){// TODO: Add your command handler code hereTmove(0,-10);}void CChangeView::OnMENUleft(){// TODO: Add your command handler code hereTmove(-10,0);}void CChangeView::OnMENUright(){// TODO: Add your command handler code hereTmove(10,0);}void CChangeView::OnMENUClockwise() //顺时针旋转{// TODO: Add your command handler code hereTrotate(-30);}void CChangeView::OnMENUAnticlockwise() //逆时针旋转{// TODO: Add your command handler code hereTrotate(30);}void CChangeView::OnMENUIncrease(){// TODO: Add your command handler code hereTscale(2,2);}void CChangeView::OnMENUDecrease(){// TODO: Add your command handler code here Tscale(0.5,0.5);}void CChangeView::OnMENUY(){// TODO: Add your command handler code here Treflect(-1,1);}void CChangeView::OnMENUO(){// TODO: Add your command handler code here Treflect(-1,-1);}void CChangeView::OnMENUX(){// TODO: Add your command handler code hereTreflect(1,-1);}void CChangeView::OnMENUXdirectionplus(){// TODO: Add your command handler code here Treform(0,1);}void CChangeView::OnOnMENUXdirectionneg() {// TODO: Add your command handler code here Treform(0,-1);}void CChangeView::OnMENUITYdirectionplus(){// TODO: Add your command handler code here Treform(1,0);}void CChangeView::OnMENUYdirectionneg(){// TODO: Add your command handler code here Treform(-1,0);}void CChangeView::OnMENUReset(){// TODO: Add your command handler code here if(p3==4){ KeepMatrix(OSquare,P); }if(p3==3){ KeepMatrix(OTriangle,P); }if(p3==2){ KeepMatrix(OLine,P); }Draw(P,p3);}void CChangeView::Onre(){// TODO: Add your command handler code here Treflect(-1,-1);}四、实验结果抓图原图:平移变换后:对称变换后:(关于X轴对称)旋转变换后:(顺时针旋转)比例变换后:缩小放大错切变换后:Y正向五、参考文献[1]赵建忠,段康廉.三维建模在虚拟矿山系统中的应用[J].中国科技论文.[2]许惠平,陈越,陈华根,廖晓留,王智博.青藏高原亚东-格尔木地学断面域岩石圈结构演化虚拟现实表达[J].中国科技论文.[3]罗斌,魏世民,黄昔光,张艳.基于OpenGL的3P-6SS并联机构的仿真与轨迹规划研究[J].;国家自然科学基金资助项目.。
计算机图形学-第三章-变换及裁剪
(x,y)点对应的齐次坐标为三维空间的一条 直线
xh hx
yh
hy
zh h
7
齐次坐标的作用
1. 将各种变换用阶数统一的矩阵来表示。提供了用矩阵 运算把二维、三维甚至高维空间上的一个点从一个坐 标系变换到另一坐标系的有效方法。
2. 便于表示无穷远点。
例如:(x h, y h, h),令h等于0
25
3 规格化设备坐标系 用于用户的图形是定义在用户坐标系里,
而图形的输出定义在设备坐标系里,它依赖于 基体的图形设备。由于不同的图形设备有不同 的设备坐标系,且不同设备间坐标范围也不尽 相同, 例如:分辨率为1024*768的显示器其屏幕坐标的 范围:x方向为0~1023,y方向为0~767,分辨 率为640*480的显示器,其屏幕坐标范围为:x 方向0~639,y方向0~479
y 1),则
1 0 0
P'x' y' 1 x y 1 0 1 0 x
Tx1
Ty1
1
y 1Tt1
经第二次平移变换后的坐标为P*(x* y* 1)
P * x *
y * 1 x'
y'
1
1 0
0 0 1 0
Tx
2
Ty 2
1
1 0 0 1 0 0
x y 1 0 1 0 0 1 0 x y 1 Tt1Tt2
44
关于透视投影
一点透视投影
两点透视投影
三点透视投影
45
内容
二维变换 三维变换 裁剪
二维线裁剪 二维多边形裁剪 文本裁剪 三维裁剪 关于三维变换与裁剪
46
三维变换流程图
平移知识点总结
平移知识点总结平移是二维几何变换中的一种重要方式,它保持图形的大小和形状不变,只是位置发生了移动。
下面将对平移的基本概念、性质以及应用进行总结。
1. 基本概念平移是指在二维平面上,将一个图形沿着某个方向移动一定距离而不改变其形状和大小的变换。
平移由两个要素确定:平移方向(直线)和平移距离(长度)。
2. 平移的表示平移可以用向量表示。
设平移向量为(a, b),其中a表示平移在x轴方向上的位移,b表示平移在y轴方向上的位移。
若点P(x, y)经过平移变换后得到点P'(x+a, y+b),则向量PP'即为平移向量。
3. 平移的性质(1)平移是保形变换,即图形的大小和形状不发生改变。
(2)平移是保角变换,即平移前后的两个角度大小保持不变。
(3)平移满足可逆性,即平移后再进行逆向平移,可恢复原图形。
4. 平移的性质证明(1)保形性证明:设平移前有线段AB和平行线l,进行平移后,线段A'B'与线段AB平行,且长度相等,平行线l'与直线l仍平行。
故平移保持图形的大小和形状不变。
(2)保角性证明:设平移前有两个角度∠ABC和∠DEF,进行平移后,有∠A'B'C'≌∠DEF。
故平移保持角度的大小不变。
(3)可逆性证明:设平移前有点P和平移向量(a,b),进行平移后得到P',再进行以向量(-a,-b)的平移,可将P'恢复为原点P。
故平移满足可逆性。
5. 平移的应用(1)地图导航:在地图导航软件中,通过平移操作可以在地图上任意移动,实现地图的整体平移。
(2)图像处理:在图像处理软件中,平移操作可以将图像在画布上的位置进行调整,达到移动图像的效果。
(3)建筑设计:在建筑设计中,平移操作可以实现建筑物在平面图上的位置调整,方便对房间、门窗等元素进行布局。
总结:平移是二维几何变换中的一种重要方式,通过保持图形的大小和形状不变,只改变位置来实现。
二维图形连续变换算法分析及实现
次坐标 。 显然齐 次坐标 并不是 唯一 的 这里规定 H 很 : 1则 称为 规范齐 次坐标 以下讨 论 的就是用规 范齐次 , 坐标来表 示二维 图形的平 移 、 缩放 、 旋转 的变换矩 阵 。 () 2 用规 范齐次坐 标表示 的变换 矩阵
①计算 R = (x y SS S ; IT T, ) (… ) T
一
1 1
O O l
[ ,,= ,, 0 1 0 l xy 1 [ Y ‘ ‘】 x
l x 1 1 J T I Y
() 1
T , 别 为 沿 X, xT 分 Y轴 的 平 移 量 。
②缩放 变换
种 变换 . 常连 续进 行 作多 个变 换 . 常 即连续 变 换或
f 0 a 0 1
[, ,= ,, l d 0} xy 1 [ Y1 0 ‘ ‘】 x 】
L 0 1 J l o 】
() 2
称组 合变 换 果仅只 做一次变 换或 只是一个点 作变 如 换也 许不需要 考虑其 算法 的效率 。 但是一 个 图形 是 由 成 千上 万 的点所 构 成 的 .而 且通 需要 连 续作 多个 变 换。 这样 在实 际绘图 中考 虑其算 法的效 率就显得 尤为
用统一的形式我们采用齐次坐标技术使其得到 统一 f) 1 齐次坐 标的基本 概念
首 先 将 二 维 空 间 的 点 ( ,) 三 维 空 间表 示 为 ( xy 在 X, Y, 且 满 足 x XH ,= / 则 ( Y, 为 ( , ) 齐 H) = / y Y H, X, H) x Y 的
算 法 2: 次求 各个 变换 后 的位 置坐 标 . 至求 依 直 出最后一个变换后 的位置坐标 为止 算法计算步 骤 其
计算机图形学基础教程(Visual C++版)第05章 二维图形变换与裁剪(清华大学出版社 孔令德)
y
5-19 设备坐标系
图形学中常用的坐标系
规格化设备坐标系(Normalized Device Coordinate,NDC) 将设备坐标系规格化到(0.0,0.0)到(1.0,1.0)的 范围内而定义的坐标系。 规格化设备坐标系独立于具体输出设备。 一旦图形变换到规格化设备坐标系中,只要作一个简 单的乘法运算即可映射到具体的设备坐标系中。
wyt (xw,yw) 0000 wyb
vyt (xv,yv) 0000 vyb
wxl
wxr
vxl
已知窗口内的一点P的坐标(xw,yw),求视区中 对应点P’的坐标(xv,yv) 这属于相对于任一参考点的二维几何变换
vxr
变换步骤为:
1.将窗口左下角点(wxl,wyb)平移到观察坐标系 原点
写成方程为:
xv S x xw vxl wxl S x yv S y yw vyb wyb S y
则窗视变换的展开式为:
令
xv a x w b yv c y w d
裁剪
图形变换到观察坐标系下,需要按照窗口进行 裁剪,即只保留窗口内的那部分图形,去掉窗 口外的图形 假设窗口是标准矩形,即边与坐标轴平行的矩 形,由 上(y=wyt)、 下(y=wyb)、 左(x=wxl)、 右(x=wxr) 四条边描述
30
裁剪——点的裁剪
点是构成图形的基本元素 点的裁剪:
wxl x wxr, 且wyb y wyt
把图形全部打散成点进行裁剪?
31
二维直线段的裁剪
直线的裁剪是二维图形裁剪的基础 裁剪的实质是判断直线是否与窗口相交,如相 交则进一步确定位于窗口内的部分
二维图形几何变换-PPT
cos sin 0
sin cos 0
0
0 1
旋转变换
简化计算(θ很小)
1 0
x' y' 1 x y 1 1 0
0 0 1
对称变换
对称变换后得图形就是原图形关于某一轴线或原点得镜像。
Y
Y
Y
X (a)关于x轴对称
X (b)关于y轴对称
X (c)关于原点对称
对称变换
对称变换后得图形就是原图形关于某一轴线或原点得镜像。
光栅变换
任意角度得Байду номын сангаас栅旋转变换:
旋转的 象素阵列
A
1A 3
光栅网格
2
n
Gray(A)=∑ [Gray(i) × A在i上得覆盖率](Gray(x)表示某点得灰度等级)
i=1 Gray(A)=Gray(1) × A在1上得覆盖率+ Gray(2) × A在2上得覆盖率+ Gray(3) × A在3上得覆盖率
光栅变换
光栅比例变换:
n
∑ [Gray(i) × Si] Gray(A)= i=1
n
∑ Si
i=1
缩小时原图 中的相应象 素区域
(a)Sx=1/2,Xy=1/2
(b)原图
12
1
43
2
放大时原图 中的相应象 素区域
(a)Sx=1,Xy=3/2
G=(G1+G2+G3+G4)/4
G=(G1×S1 + G2×S2)/(S1 + S2)
O
x0
x
图6-9 坐标系间的变换
坐标系之间得变换
分析: y
y'
p,也即p' x'
C语言图形编程(五、二维图形变换-02)
为了方便下次访问,建议你把网址加入以下收藏夹:
当线的一端点位于某一区域时,便将该区域的代码赋予端点。然后根据线从而段两端点代码就能很方便地判断出线段相对于窗口的位置关系,并决定对该线段如何进行裁剪。四位代码中每位(位的顺序由右向左排序)代码的意义如下:
第一位,点在窗口左边界线之左为1,否则为0;
第二位,点在窗口右边界线之右为1,否则为0;
下面介绍线段裁剪算法(编码裁剪法)。
由上面线段相对于窗口的位置的几种情况讨论可以得知,有些线段被窗口边界切割后会产生一条以上的窗口外的线段,而窗口内的线段却只有一条。这一点很重要,它意味着要确定窗口内的线段,只要计算出它位于窗口内的两个端点。丹科恩和伊凡.瑟萨兰德就根据这一思路设计出了线段裁剪的算法。这种算法分为两步:第一步先确定该线段是否整个位于窗口内或全部位于窗口外,若属于这两种情况,则全部保留或全部舍弃;第二步对不属于第一步那两种情况的线段,则被窗口某一边界线分成两部分,再对每一部分进行第一步。具本这两步留舍测试如下进行:延长窗口各边界,将窗口及其周围共划分为九个区域,中央就是所要裁剪的区域。每个区域各用一个四位二进制数组成的代码(即代码中每一位分别为0或1)来表示,如图2-7所示。
第三节 二维裁剪
一、线段裁剪
二、多边形裁剪
第三节 二维裁剪
在二维图形的绘制或显示处理中,有时需要给出或显示某一部分原始图形。这可在适当位置按一定边界范围定义一个矩形区域(即窗口),使窗口内图形为所需部分,将其保留下来作为绘制或显示之用,而窗口边界以外的图形则予以舍弃。这种对二维原始图形的处理称为二维裁剪。
相对任意方向的二维几何变换
相对任意方向的二维几何变换平面上的二维几何变换是指将平面上的一个点或一组点通过某种规则进行变换,得到新的点或点集的过程。
这些变换可以是平移、旋转、缩放、对称等。
在本文中,将分别介绍这些二维几何变换的定义、特点和应用。
一、平移变换平移变换是指将平面上的点沿着指定的方向进行移动,距离为指定的平移向量。
平移变换的特点是保持形状和大小不变,只改变位置。
平移变换可以用向量表示,即用平移向量将原始点的坐标进行平移,得到新点的坐标。
平移变换的应用非常广泛,比如在计算机图形学中,平移变换常用于图像的移动、平面的平移等。
此外,在几何学中,平移变换也可以用于解决平面图形的位置关系、求解线段的平移等问题。
二、旋转变换旋转变换是指将平面上的点绕着指定的旋转中心按照指定的角度进行旋转。
旋转变换的特点是保持形状和大小不变,只改变方向和位置。
旋转变换可以用旋转角度和旋转中心表示,即通过旋转矩阵将原始点的坐标进行旋转,得到新点的坐标。
旋转变换的应用也非常广泛,比如在航空航天中,旋转变换常用于描述飞机的姿态变化;在计算机图形学中,旋转变换常用于图像的旋转、三维模型的旋转等。
此外,在几何学中,旋转变换也可以用于解决线段的旋转、图形的对称等问题。
三、缩放变换缩放变换是指将平面上的点按照指定的比例进行放大或缩小。
缩放变换的特点是保持形状不变,只改变大小。
缩放变换可以用缩放因子表示,即通过缩放矩阵将原始点的坐标进行缩放,得到新点的坐标。
缩放变换的应用也非常广泛,比如在计算机图形学中,缩放变换常用于图像的放大、缩小、三维模型的缩放等。
此外,在几何学中,缩放变换也可以用于解决图形的相似性判断、线段的伸缩等问题。
四、对称变换对称变换是指将平面上的点按照指定的对称中心或对称轴进行镜像。
对称变换的特点是保持形状不变,只改变方向。
对称变换可以用对称中心或对称轴表示,即通过对称变换的公式将原始点的坐标进行镜像,得到新点的坐标。
对称变换的应用也非常广泛,比如在几何学中,对称变换常用于解决图形的对称性判断、线段的对称等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维图形基本变换规则及应用(07级信息与计算科学傅强070350221)摘要利用计算机绘制的图形与我们日常见到的图片、照片是有相似之处。
除图片、照片等图形外,自然界中还存在丰富多彩的有形物体。
一般,根据图形所在空间的不同,可将图形分为:三维图形和二维图形。
图片、照片属二维图形,自然界中形形色色的物体属于三维图形。
在计算机绘图的过程中,二维图形的绘制是绘制三维图形的基础,研究计算机图形的生成必须从研究二维图形开始。
计算机绘制图形时,无论图形多么复杂,都是利用一些相应图形基元经过图形变换组成的。
在计算机绘图中,经常用到图形变换,图形变换是指图形信息经过几何变换后产生新的图形。
基本的几何变换研究物体坐标在直角坐标系内的平移、旋转和变比等规则。
本文主要介绍二维图形的一些基本变换规则及其应用关键词:直角坐标系内;平移;旋转;应用ABSTRACTUsing the computer graphics and see our daily drawings, photographs are similarities. Besides the drawings, photographs and other graphic, nature also exist rich and colorful tangible objects. In general, according to the different space, the graphics can be divided into: 3d graphics and 2d graphics. The drawings, photographs of 2d graphics, all kinds of objects in the nature belongs to 3d graphics. In computer graphics, the process of 2d graphics rendering 3d graphics drawing is the basis, research of computer graphics generation must start from the 2d graphics. Computer graphics, no matter how complex, graphics are using some corresponding graphic element composed by graphical transformation. In computer graphics, often use graphics transformation, graphics transform refers to the graphical information through after new graphics geometry transform. The basic research object coordinate geometry transform in cartesian coordinate system in translation, rotation and change rules than etc. This paper mainly introduces some basic transformation of 2d graphics and its application in the rules.Keywords: a cartesian coordinate system, Translation, Rotating, application1用户坐标到屏幕坐标的变换实际图纸上坐标系是实数域中的直角坐标系或极坐标系,统称为用户坐标系;计算机设备(如屏幕)上采用的坐标系为整数域(如屏幕一般为直角左手系),称为设备坐标系。
因此用户坐标系中图形需经过变换才能绘制在图2-1 窗口区和视口区示意图设备(如屏幕)上。
用户坐标系中图形一般只有部分图形需要在设备上显示(或绘制),用户坐标中需要显示的图形(矩形区域)称为窗口,在设备(屏幕)上,显示(或绘制)图形的区域(矩形区域)称为视口。
在计算机上绘制图形时,实际的窗口区与视图区往往不一样大小,要在视图区正确地显示形体的,必须将其从窗口区变换到视图区。
1.1窗口到视口的变换内容图形从窗口到视口的变换亦称为数据规格化。
窗口到视口变换包括以下内容:(1)窗口逻辑坐标与设备坐标的转换,当把用户坐标系(逻辑单位)中的图形变换到视口中,视口中的坐标单位不再为逻辑单位,而是设备坐标(以像素为单位),根据设备的无关性,图形映射在视口上的图形大小应是不变的,这要求有像素与逻辑单位的转换比例(这一比例的大小随屏幕的大小和分辨率的高低有关)。
(2)用户坐标系所选区域内图形的坐标转换到屏幕上坐标不一定为整数,对转换后坐标值取整。
可通过四舍五入的方法将实型值的绝对值圆整化,最简单的方法是用赋值的类型转化规则来实现实型到整型的变换。
(3)用户坐标系到设备(屏幕)坐标系,坐标轴方向变换。
(4)屏幕坐标系水平方向与垂直方向刻度若不等(即像素间距不等)时,为保证图形不走样,还要进行比例变换。
1.2窗口区到视图区的坐标变换如图2-1 所示,根据图中比例关系,窗口区到视图区的坐标变换公式可写为:其中:总之,用矩阵表示为:2二维几何变换图形基本变换是指图形的比例变换、对称变换、旋转变换、错切变换、平移变换等。
通过对原图形上二维向量引进第三个坐标即三维点向量(又称齐次坐标点),简称齐次坐标,在三维齐次坐标下,二维几何变换都可统一用矩阵表示。
所谓齐次坐标就是将一个原本是n 维的向量用一个n+1 维向量来表示。
如向量的齐次坐标表示为,其中h 是一个实数。
显然一个向量的齐次表示是不唯一的,齐次坐标的h 取不同的值都表示的是同一个点,比如齐次坐标[8,4,2]、[4,2,1]表示的都是二维点[2,1]。
引进齐次坐标的优点:A.提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
B.可以表示无穷远的点。
n+1 维的齐次坐标中如果h=0,实际上就表示了n 维空间的一个无穷远点。
对于齐次坐标[a,b,h],保持a,b 不变,的过程就表示了在二维坐标系中的一个点沿直线ax+by=0 逐渐走向无穷远处的过程。
2.1基本变换2.1.1.平移变换若图形上任意一点的坐标为(x, y) ,通过沿x和y 轴分别平移Tx和Ty后成为新图形上的一点( x′, y′) ,坐标变换用齐次坐标表示的平移变换:其中平移变换矩阵为2.1.2 比例变换若图形上任意一点的坐标为(x, y) ,通过沿x和y轴分别变比变换S x和S y后成为新图形上的一点(x2, y2) ,坐标变换:用齐次坐标表示的比例变换为:其中比例变换矩阵为:2.1.3 旋转变换若图像上任一点的坐标为(x,y),通过将对象上的各点(x,y)围绕原点逆时针转动一个角度θ,后成为新图像上的一点,坐标变换:用齐次坐标表示的旋转变换为:其中旋转变换矩阵为2.1.4对称变换若图形上任意一点的坐标为(x,y),关于x,y和原点分别作对称变换后成为新图像上的一点,对称变换可分别表示为:关于x坐标对称变换用齐次矩阵表示的对称变换:其中关于x作对称变换矩阵为关于y坐标对称变换用齐次矩阵表示的对称变换:其中关于y作对称变换矩阵为关于原点坐标对称变换:用齐次矩阵表示的对称变换:其中关于原点作对称变换矩阵为2.1.5错切1、沿x方向错切:沿+x方向错切,坐标变换沿-x方向错切,坐标变换用齐次矩阵表示的对称变换:2、沿y方向错切:沿+y方向错切,坐标变换沿-y方向错切,坐标变换用齐次矩阵表示的对称变换:2.2二维几何变换的级联(1)实际中的几何变换一次有若干个;(2)基本形式有局限性。
图形的级联变换是指图形作一次以上的基本变换,变换结果为每次基本变换矩阵乘积。
设图形经过n 次基本几何变换,其变换矩阵分别为T1, T2,…, Tn则:经T1后:经T2后:经T3后:称T=T1·T2…·Tn 为级联变换的变换矩阵。
下面介绍几种常见级联变换。
2.2.1复合平移若对图形首先做平移变换T1,然后再做平移变换T2,相应的平移变换矩阵分别为:变换结果为复合平移变换T,其复合平移变换矩阵为:2.2.2复合比例设比例变换T1矩阵为:设比例变换T2矩阵为:则复合比例变换T矩阵为:2.2.3复合旋转设比例变换T1矩阵为:设比例变换T2矩阵为:则复合比例变换T矩阵为:旋转变换和比例变换都与参考点有关,上面的旋转合比例变换均是相对与原点的。
如果相对于某一参考点(x0,y0)作比例和旋转变换,则其变换过程是先将坐标原点平移到(x0,y0),在再新的坐标系下作比例、旋转变换,然后将坐标原点平移回去,即复合变换。
2.2.4相对于点(x0,y0)的比例变换2.2.5相对于点(x0,y0)的旋转变换对于复合变换问题,关键是将其分解为一定顺序的基本变换,然后逐一进行这些基本变换,最终得到复合变换结果;或者求出这些基本变换矩阵乘积,亦可得到复合变换。
综上所述,可以证明利用齐次坐标表示方法,二维图形几何变换矩阵的一般变换过程为:,其中称为二维几何变换的一般表达时,进一步可以分为以下四个矩阵:对图像进行比例、旋转、对称等变换;对图像进行平移变换;对图像做投影变换。
产生整体比例变换。
3二维图像变换在实际中的应用3.1二维裁剪在二维图形的绘制或显示处理中,有时需要给出或显示某一部分原始图形。
这可在适当位置按一定边界范围定义一个矩形区域(即窗口),使窗口内图形为所需部分,将其保留下来作为绘制或显示之用,而窗口边界以外的图形则予以舍弃。
这种对二维原始图形的处理称为二维裁剪。
二维裁剪处理主要是判断图形元素是否在所开的窗口内,若在内则进一步求出窗口内的那一部分。
也就是说裁剪处理工作有两点:第一是窗口内外的判断;第二是计算图形元素与窗口边界的交点。
在定义一个窗口时,一般规定窗口为矩形框。
它在用户坐标系中的位置和大小用窗口对角点坐标或右下角点坐标(x1,y1)和右上角点坐标(x2,y2)来表示,有时也可用窗口原点(左下角点或右上角点)和窗口边长来表示。
在某些情况下,用户也可以用圆心和半径来定图形窗口,或定义其它窗口。
在实际应用中,往往需要观察某一图形的各个细部,或切产生不同比例的显示图形,这些都需要对原图形作二维处理。
裁剪处理是把每个图形元素分成窗口内的与窗口外两部分,舍弃窗口外部分。
虽然对不同的图形元素(如点、线段、多边形等)有不同的裁剪算法,但它们的原理都是一致的。