八年级数学《轴对称和轴对称图形》教案

合集下载

轴对称图形教案(6篇)

轴对称图形教案(6篇)

轴对称图形教案(6篇)轴对称图形教案篇一教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识对称图形。

2、使学生能根据对称图形初步认识,在图形中识别对称图形,用一些方法做出对称图形。

3、使学生在认识和制作简单的对称图形的过程中,感受到物体或图形的对称美。

激发数学学习的兴趣。

教学重点:对称图形的初步认识和制作。

教学难点:对称图形的初步认识。

教学准备:1.师:课件等2.生:剪刀、纸、等材料教学过程:一、谈话激趣。

1、你们喜欢玩吗?给你们一张纸,你们能玩吗?怎么玩?2、你们猜猜老师会玩吗?想知道老师是怎么玩的?(撕纸)只有一张纸,先对折,认真的撕一部分……同学们注意看老师是在很认真的撕……3、想学老师这样玩吗?请拿出纸玩玩。

(认真的撕)4、作品展示二、“认”对称,悟特征。

1.以撕(剪)出的图形为例。

撕(剪)出的图形,有什么特点?动手试一试,互相交换试试。

(对折,完全重合。

)师:像这样的图形,对称图形。

(板书课题)对折,两侧完全重合,这个图形就是对称图形,2、巩固判断对称图形。

课件①同学们,我们刚才认识了一种新的图形(对称图形)。

问:想一想,我们学过哪些图形?强调:有些图形看起来象是轴对称图形,但他们却不是轴对称图形;有些图形看起来不象是轴对称图形,但他们却是轴对称图形;折一折,看一看哪些是对称图形,投影出示,折一折,说明是否是对称图形,并说说各原因。

三、观对称,加强认识。

(课件)1、展示数学课件,欣赏图片。

今天,老师为同学们带来了一些美丽的'图案。

请看。

请判断这些图案是不是对称图形?(课件)2、判断电脑中的图案是否是对称的。

(学生说说判断的依据)。

四、猜图案自己想。

选择你喜欢的一个说说……奥运五环(奥运五环也称为奥林匹克环,从左至右为天蓝、黄、黑、绿、红五色。

五环的含义是“象征五大洲的团结,全世界的运动员以公正、坦率的比赛和友好的精神,在奥运会上相见”。

《轴对称图形》教案(最新5篇)

《轴对称图形》教案(最新5篇)

《轴对称图形》教案(最新5篇)《轴对称图形》教案篇一教学目标:1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。

3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

教学重点:理解轴对称图形的特征。

教学难点:掌握并能准确辨别较为复杂的轴对称图形。

教具准备:多媒体网络课件、钉子板、剪刀等教学过程:一、活动导入谈话:同学们,老师今天带来了一个美丽的朋友,大家看!(出示只有一个触角的蝴蝶的图片。

)提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?学生回答。

教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。

板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)二、识轴对称图形1、课件出示天安门、飞机、奖杯图片。

引导学生观察图片上的物体,说说它们有什么共同特征。

教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?(先小组讨论,再汇报)引导学生用手摸一摸对折后的两边,说说有什么样的感觉。

得出结论:这些图形对折后“两部分完全重合”。

介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。

(板书轴对称图形定义)。

中间这条折痕就是轴对称图形的对称轴。

(板书:对称轴)谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?(学生交流并回答)2、试一试谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

3、判断轴对称图形谈话:下面我们一起到“轴对称图形博物馆”去看看。

八年级上册数学轴对称标准教案

八年级上册数学轴对称标准教案

八年级上册数学轴对称标准教案一、教学目标知识与技能:1. 让学生理解轴对称的概念,识别轴对称图形。

2. 学会画轴对称图形,并找出对称轴。

3. 能够运用轴对称的性质解决实际问题。

过程与方法:1. 通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。

2. 学会用坐标表示对称点,理解对称点坐标之间的关系。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的观察力和创造力。

2. 让学生感受数学在生活中的应用,体会数学的乐趣。

二、教学重点与难点重点:1. 轴对称的概念及性质。

2. 轴对称图形的识别及其对称轴的确定。

难点:1. 对称点的坐标表示及对称点坐标之间的关系。

2. 运用轴对称性质解决实际问题。

三、教学准备教师准备:1. 教学课件或黑板。

2. 轴对称图形的相关图片或实物。

3. 练习题及答案。

学生准备:1. 笔记本用于记录。

2. 尺子、圆规等绘图工具。

四、教学过程1. 导入新课:通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引导学生观察并思考这些图形的特征。

2. 探究新知:1. 介绍轴对称的概念,让学生尝试解释轴对称的含义。

2. 引导学生通过观察和操作,发现轴对称图形的性质。

3. 讲解如何找出轴对称图形的对称轴,并让学生在纸上画出对称轴。

3. 巩固练习:设计一些练习题,让学生独立完成,检验学生对轴对称概念的理解和运用情况。

4. 课堂小结:对本节课的主要内容进行总结,强调轴对称的概念及其在实际中的应用。

五、课后作业1. 完成练习册上的相关题目。

2. 收集生活中的轴对称图形,下节课分享。

注意:教师在教学过程中要关注学生的学习情况,及时解答学生的疑问,引导学生主动参与课堂活动。

在设计练习题时,要考虑题目的难易程度,尽量让所有学生都能参与到课堂中来。

六、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习积极性、对轴对称概念的理解程度以及课堂互动情况。

针对反思结果,调整教学方法,以便更好地指导学生学习。

初中数学《轴对称与轴对称图形》教案设计:轴对称图形的对称中心及性质

初中数学《轴对称与轴对称图形》教案设计:轴对称图形的对称中心及性质

本教案旨在帮助初中学生掌握轴对称与轴对称图形的概念,并深入了解轴对称图形的对称中心及其性质,从而提高学生的数学素养和综合能力。

【教学目标】1.学习轴对称与轴对称图形的概念。

2.进一步了解轴对称图形的对称中心及其性质。

3.掌握轴对称图形的复合对称和单纯对称。

4.练习绘制轴对称图形和根据已知的轴对称图形画出其对称轴。

【教学重难点】1.轴对称与轴对称图形的概念。

2.理解对称中心的概念和作用。

3.绘制对称图形和找出其对称轴的能力。

【教学内容】一、轴对称与轴对称图形1.轴对称的定义:轴对称是指将一个图形绕着某一条直线对称,使得对称前后的图形重合的变换。

2.轴对称的特点:两侧的图形是完全对称的,且对称轴将图形分成两个完全相同的部分。

3.轴对称图形的定义:轴对称图形是指可以利用轴对称变换得到重合的图形。

4.轴对称图形的特点:轴对称图形的两侧是完全对称的,且轴对称图形在对称轴上的投影也是对称的。

二、对称中心及其性质1.对称中心的定义:对称中心是指轴对称变换中的对称轴上的一个点,通过将该点作为对称点,使得对称前后的图形重合。

2.对称中心的性质:(1)在轴对称图形中,轴对称图形上的每个点都和对称中心对称。

(2)对称中心在线段的中垂线上。

(3)图形中一个对称中心可以对应多个对称轴,但一个对称轴只能对应一个对称中心。

三、轴对称图形的复合对称和单纯对称1.复合对称:指将轴对称图形绕两条不同的轴对称。

2.单纯对称:指将轴对称图形绕同一条轴对称。

四、绘制轴对称图形和找出其对称轴1.绘制轴对称图形的步骤:(1)构造一条直线作为对称轴。

(2)在对称轴上选择一个点作为对称中心。

(3)以对称轴为中心,对称中心为半径,绘制出对称图形的一半。

(4)将所画部分沿对称轴对称得到完整的图形。

2.找出轴对称图形的对称轴的步骤:(1)选择图形中的一个点作为对称中心。

(2)连接这个点和它的副本所在位置上的点,所连接的线段即为对称轴。

【教学过程】一、简单的轴对称图形展示1.教师展示几个简单的轴对称图形,并让学生讨论对称中心和对称轴的位置。

初中数学八年级上册《轴对称》教案(二十四)

初中数学八年级上册《轴对称》教案(二十四)

轴对称第一课时★新课标要求一、知识与技能1.在生活实例中认识轴对称图形.2.分析轴对称图形,理解轴对称的概念.3.了解两个图形成轴对称性的性质,了解轴对称图形的性质.二、过程与方法通过丰富的生活实例认识轴对称,能识别简单的轴对称图形及其对称轴.观察生活中的轴对称,探索轴对称现象的特征.三、情感、态度与价值观1.从观察、实验、操作等活动中激发学生的兴趣,增强他们对数学美感的体会.2.在与同学老师的讨论交流中,培养学生团结协作的精神.★教学重点轴对称图形的概念.★教学难点轴对称图形和关于某条直线对称的区别和联系.★教学方法教师搜集图片投影给学生,学生观察,阅读,总结交流.★教学过程一、引入新课我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中有些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥妙,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,从这节课开始,我们来学习轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.二、进行新课1.轴对称图形的有关概念.对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都是对称的.教师活动:指导学生阅读下面一段内容.了解轴对称图形和对称轴的概念.像窗花一样,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.观察下图中的图片是否是轴对称图形,如果是,指出它们的对称轴.学生活动:阅读下面内容,找出图中的轴对称图形和它的对称轴.图中的每一对图形,如果沿着虚线折叠,左边的图形能与右边的图形重合.2.关于某条直线对称的有关概念.了解了轴对称图形及其对称轴的概念后,我们来做一做.取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.结论:位于折痕两侧的图案是对称的,它们可以互相重合.由此可以得到轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条。

八年级数学上册轴对称教案

八年级数学上册轴对称教案

八年级数学上册轴对称教案八年级数学上册轴对称教案作为一名教师,常常需要准备教案,借助教案可以更好地组织教学活动。

快来参考教案是怎么写的吧!下面是小编收集整理的八年级数学上册轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。

八年级数学上册轴对称教案1教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1、知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。

2、能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。

3、情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。

教学重点:理解对称图形的概念,能正确找、画对称轴。

教学难点:准确找对称轴。

教学具准备:1、教具:图片、剪刀、彩纸、课件2、学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。

师:谁来说说蝴蝶和蜻蜓怎么说?蜻蜓说:“:蝴蝶姐姐,你为什么总是绕着我飞呀?”蝴蝶说:“你不知道吧!在图形王国里我们都是对称图形呢!”蜻蜓说:“我才不信呢!”师:你们想知道对称图形的那些知识?生1:什么样的图形是对称图形?生2:对称图形有什么特点?[设计理念:充分体现了“数学来源于生活,又服务于生活”的理念,让学生感受对称图形的美,提出问题。

]二师生互动、探究新知(一)教学对称图形现在请同学们认真观察这些图形(出示对称和不对称图形,如下图),看看有什么发现?生1:我发现蝴蝶的左右两边是一样的。

生2:我发现年年有鱼的纸花的左右两边是不一样的。

生3:我发现京剧脸谱的左右两边是一样的。

让学生动手折一折、比一比、画一画,蜻蜓、树叶、蝴蝶、京剧脸谱的实物图共同的特点。

[设计理念:教学对称图形,引导学生仔细观察、动手折一折、比一比、画一画,在观察发现的基础上进行分类。

苏科版初中数学八年级上册精品教案第一章 轴对称图形

苏科版初中数学八年级上册精品教案第一章 轴对称图形

义务教育基础课程初中教学资料第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。

教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。

如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。

3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

动手画出第5页几幅图片的对称轴。

说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。

轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。

学生口述对称轴的位置。

4、讨论、交流:轴对称与轴对称图形的区别与联系。

区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。

联系:两部分都完全重合,都有对称轴,都有对称点。

5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。

6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。

三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。

9 人教初中数学八上 13.1 轴对称教案 【2023,最新经典教案】

9 人教初中数学八上 13.1 轴对称教案 【2023,最新经典教案】

《轴对称》一、教材分析1、地位与作用《轴对称》是第一节,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,将为学生以后学习“空间与图形”奠定基础;同时这一节也是联系数学与生活的桥梁。

2、教学目标根据上述教材分析,考虑到学生已有的认知心理特征,制定如下教学法目标:(一)知识与技能认识生活中的轴对称图形,初步理解轴对称的概念,并能深刻体会轴对称图形和两面三刀个图形成轴对称的区别与联系。

(二) 过程与方法通过大量的现实生活右的图形来认识轴对称图形及轴对称的概念,让学生体验轴对称在现实生活中的广泛应用,在具体教学过程中,可在教材的基础上适当拓展,使内容更为丰富。

(三) 情感与价值观通过本节学习,应达到培养学生体会数学美感的价值观。

3、重点、难点本着课程标准,在吃透教材的基础上,确立如下教学重点与难点:重点:掌握轴对称图形和成轴对称这二个概念的实质。

难点:轴对称图形和轴对称的区别与联系。

二、教法与学法分析1、教学方法的设计新课程理念强调“经历过程与获得结论同样重要”,但我觉得有时过程比结论更有意义,教学时我采用了探究式教学方法,整个探究的过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、学法指导本节课针对学生的认知规律,根据学法指导自主性和差异性原则,教学时指导他们动手操作、合作交流,体验发现问题、探索问题和解决问题的学习过程,参与知识的发生、发展、形成的过程,使学生掌握知识。

三、教学流程探究活动(一)(一)轴对称图形1、视图激趣,设疑导入(课件)今天,春光明媚,蝴蝶和蜜蜂来到花丛中游玩,这时蝴蝶对蜜蜂说:“咱们长得真象”,蜜蜂百思不得其解。

轴对称和轴对称图形数学教案

轴对称和轴对称图形数学教案

轴对称和轴对称图形数学教案标题:轴对称和轴对称图形的数学教案一、教学目标:1. 知识与技能:- 学生能够理解轴对称的概念,识别并绘制轴对称图形。

- 学生能掌握轴对称图形的特点,如线段、角度等在轴对称下的不变性。

2. 过程与方法:- 通过观察、比较、分析、操作等活动,培养学生观察、思考和解决问题的能力。

- 通过小组合作学习,提高学生的团队协作能力。

3. 情感态度价值观:- 培养学生对数学的兴趣和热爱,激发他们的好奇心和求知欲。

- 让学生体验到数学的美,从而提升他们的审美情趣。

二、教学内容:1. 轴对称的概念:如果一个图形沿着一条直线折叠,直线两侧的图形能够完全重合,那么这个图形就叫做轴对称图形,这条直线就叫做对称轴。

2. 轴对称图形的特点:轴对称图形有以下特点:(1)对应点到对称轴的距离相等;(2)对应角相等。

三、教学过程:1. 导入新课:展示一些生活中常见的轴对称图形(如蝴蝶、飞机等),引导学生观察这些图形的特点,引发学生对轴对称图形的兴趣。

2. 新课讲解:首先解释轴对称和轴对称图形的概念,然后通过具体的实例(如正方形、圆形、字母等)让学生理解和掌握轴对称图形的特点。

在此过程中,可以适当使用多媒体教学手段,使抽象的概念更加形象化。

3. 实践操作:组织学生进行动手实践活动,让他们自己动手画出一些轴对称图形,或者找出生活中的轴对称图形,并尝试找出它们的对称轴。

4. 小组讨论:分组讨论,每个小组选择一种轴对称图形,研究它的对称轴和对称性质,然后向全班汇报。

5. 巩固练习:设计一些有关轴对称和轴对称图形的问题,让学生解答,以检验他们是否真正掌握了所学的知识。

四、教学评价:1. 过程评价:在教学过程中,教师要关注每一位学生的学习状态,对于表现优秀的学生要及时表扬,对于遇到困难的学生要给予帮助。

2. 结果评价:通过课堂小测验和作业批改,了解学生对知识的理解程度和应用能力。

五、教学反思:本节课的教学效果如何,还需要根据学生的学习反馈和成绩来评估。

人教版八年级数学上册《轴对称(第1课时)》示范教学设计

人教版八年级数学上册《轴对称(第1课时)》示范教学设计

轴对称(第1课时)教学目标1.了解轴对称图形与两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.教学重点轴对称图形与两个图形成轴对称的概念,轴对称图形和两个图形成轴对称的区别与联系.教学难点成轴对称的两个图形的性质和轴对称图形的性质.教学过程新课导入对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品中,人们都可以找到对称的例子(如图).【师生活动】教师出示图片,学生观看.【设计意图】通过观看生活中常见的对称现象,引出本节课的新知,让学生感受数学和生活的紧密联系.新知探究一、探究学习【问题】1.如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?【师生活动】学生按照要求动手操作,教师提示“折痕处不要完全剪断”.【答案】这些窗花沿一条直线折叠,直线两旁的部分能够互相重合.【问题】2.结合下面动图,总结你的发现.【新知】像窗花一样,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.【问题】你能举出一些轴对称图形的例子吗?【师生活动】学生独立思考,然后教师展示图片给出参考答案.【答案】【设计意图】让学生亲自动手制作日常生活中熟悉的窗花剪纸,教师提出问题,学生分小组合作交流,激发学生的学习兴趣,培养学生的动手能力和观察归纳能力.二、典例精讲【例1】如图的每个图形都是轴对称图形吗?如果是,请画出它的对称轴.【师生活动】学生独立思考,教师给出答案并讲解.【答案】解:第1个图形上的字母不同,对折之后,直线两旁的部分不能互相重合,所以不是轴对称图形;第2个图形是轴对称图形,对称轴如图.【设计意图】通过例题1的练习与讲解,巩固学生对已学知识的理解及应用.三、探究学习【思考】下面的每对图形有什么共同特点?【师生活动】教师提出问题,学生独立思考并尝试作答.【答案】每一对图形沿着虚线折叠,左边的图形能与右边的图形重合.【新知】像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.【设计意图】通过问题思考,引出轴对称知识.【问题】请你标出图中点A,B,C的对称点A',B',C'.【师生活动】教师提出问题,学生独立作答.【答案】解:【设计意图】检验学生对轴对称知识的理解及应用.四、典例精讲【例2】下列给出的每幅图形中的两个图案是成轴对称吗?如果是,试着画出它们的对称轴.【师生活动】教师提出问题,学生独立作答.【答案】解:第1幅图形中的两个图案不成轴对称,第2幅图形中的两个图案成轴对称,对称轴如图.【归纳】成轴对称的两个图形一定全等,全等的两个图形不一定成轴对称.【设计意图】通过例题2的练习与讲解,让学生初步理解成轴对称的两个图形与全等的两个图形之间的关系.五、探究学习【思考】1.观察动图,试着说一说轴对称图形与轴对称有什么区别与联系?【师生活动】教师展示动图,学生观察并尝试归纳总结.【归纳】轴对称图形与轴对称的区别与联系【设计意图】通过对比讲解,加深学生对知识的理解与掌握.【思考】2.如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′,B ′,C ′分别是点A ,B ,C 的对称点,线段AA ′,BB ′,CC ′与直线MN 有什么关系?【分析】图中,点A,A′是对称点,设AA′交对称轴MN于点P,将△ABC或△A′B′C′沿MN折叠后,点A与A′重合.于是有AP=P A′,∠MP A=∠MP A′=90°.对于其他的对应点,如点B与B′,点C与C′也有类似的情况.因此,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【新知】轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.例如下图中,l垂直平分线段AA′,l垂直平分线段BB′.课堂小结板书设计一、轴对称图形二、轴对称三、轴对称及轴对称图形的性质课后任务完成教材第60页练习1~2题.。

人教版数学八年级上册第十三章《轴对称》教案

人教版数学八年级上册第十三章《轴对称》教案

第十三章轴对称轴对称教课目的:1.认识轴对称图形和两个图形成轴对称的观点,知道轴对称图形和两个图形成轴对称的差别与联系.2.研究成轴对称的两个图形的性质和轴对称图形的性质,领会由详细到抽象认识问题的过程,感悟类比方法在研究数学识题中的作用.3.认识线段垂直均分线的观点.教课重、难点:轴对称的观点和性质教课过程:一、问题导入:前言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标记,甚至平时生活用品,都能够找到对称的例子,对称给我们带来美的感觉!二、课本精讲:问题 1 如图,把一张纸对折,剪出一个图案(折痕处不要完整剪断),再翻开这张对折的纸,就获取了漂亮的窗花.察看获取的窗花,你能发现它们有什么共同的特色吗?假如一个平面图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形对于这条直线(成轴)对称.教师:你能举出一些轴对称图形的例子吗?问题 2察看下边每对图形(如图),你能类比前方的内容归纳出它们的共同特色吗?共同特色:每一对图形沿着虚线折叠,左侧的图形都能与右侧的图形重合.把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形对于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.教师:你能再举出一些两个图形成轴对称的例子吗?教师:你能联合详细的图形说明轴对称图形和两个图形成轴对称有什么差别与联系吗?二者的联系:把成轴对称的两个图形当作一个整体,它就是一个轴对称图形.把一个轴对称图形沿对称轴分红两个图形,这两个图形对于这条轴对称.二者的区:称形指的是一个形沿称折叠后个形的两部分能完整重合,而两个形成称指的是两个形之的地点关系,两个形沿称折叠后能重合.3如,△ ABC和△ A′ B′ C′对于直MN 称,点 A′,B ′,C′分是点 A, B, C 的称点,段 AA ′, BB ′, CC ′与直 MN 有什么关系?教:你能明此中的道理?上边的明“假如△ ABC 和△ A′ B′ C′对于直MN 称,那么,直 MN 垂直段 AA ′, BB ′和 CC ′,而且直 MN 均分段 AA ′, BB ′和 CC ′”.假如将此中的“三角形”改“四形”“五形”⋯其余条件不,上述成立?3 点 A,B, C 如,△ ABC 的称点,段和△ A′ B ′ C′对于直MNAA ′, BB ′, CC ′与直称,点 A′,B ′,C′分是MN 有什么关系?段中点而且垂直于条段的直,叫做条段的垂直均分.教:你能用数学言归纳前方的?成称的两个形的性:假如两个形对于某条直称,那么称是任何一点所段的垂直均分.即称点所段被称垂直均分;称垂直均分称点所段.4下是一个称形,你能什么?能明原因?:直 l 垂直段 AA′,BB ′,直 l 均分段 AA ′,BB′(或直 l 是段 AA ′, BB ′的垂直均分).教:你能用数学言归纳前方的?称形的性:称形的称,是任何一点所段的垂直均分.三、稳固提升:教科 601、2 。

人教版八年级上册《轴对称》数学教学完整设计

人教版八年级上册《轴对称》数学教学完整设计

人教版八年级上册《轴对称》数学教学完整设计1. 教学目标1.1 知识与技能- 学生能够理解轴对称的概念,识别轴对称图形。

- 学生能够找到对称轴,并理解对称轴的意义。

- 学生能够运用轴对称的性质解决实际问题。

1.2 过程与方法- 学生通过观察、操作、思考、交流等活动,培养空间想象能力和逻辑思维能力。

- 学生能够运用轴对称的性质,进行图形的变换和设计。

1.3 情感态度与价值观- 学生感受数学与生活的联系,增强对数学的兴趣和自信心。

- 学生培养合作、交流、探究的学习态度,提高解决问题的能力。

2. 教学内容2.1 教材分析- 《轴对称》是人民教育出版社八年级上册数学教材的一部分,位于第三单元。

- 教材通过丰富的实例和活动,引导学生认识和理解轴对称的概念,探索轴对称的性质和运用。

2.2 学情分析- 学生已经学习了平面图形的认识,具备一定的观察和操作能力。

- 学生通过生活经验和前面的学习,对轴对称有一定的感知和认识。

3. 教学过程3.1 导入- 通过展示一些生活中的轴对称图形,如剪刀、飞机模型等,引起学生的兴趣。

- 引导学生观察和描述这些图形的对称性质,为学生提供直观的感受。

3.2 探究活动- 学生通过观察和操作,探索和发现对称轴的存在,理解对称轴的定义。

- 学生通过实际操作,找到常见图形的对称轴,并交流分享。

3.3 知识讲解- 引导学生通过观察和操作,发现轴对称的性质,如对称点的连线垂直于对称轴等。

- 讲解对称轴的意义和应用,如在实际问题中寻找对称轴解决问题。

3.4 巩固练习- 提供一些实际问题,让学生运用轴对称的性质解决,如剪裁纸张、设计图案等。

- 学生通过练习,巩固对轴对称的理解和运用。

3.5 总结拓展- 引导学生总结轴对称的概念、性质和应用,加深对知识的理解。

- 提供一些拓展问题,激发学生的思考和探究欲望。

4. 教学评价- 通过课堂观察、练习答案和学生的参与度,评价学生对轴对称的理解和运用能力。

- 通过学生的交流和分享,了解学生对轴对称的认识和感受。

数学八年级上册-《轴对称》全章教学设计-人教版

数学八年级上册-《轴对称》全章教学设计-人教版

数学八年级上册-《轴对称》全章教学设计-人教版教学目标1. 了解轴对称的概念和性质。

2. 掌握判断图形是否具有轴对称性的方法。

3. 能够找到图形的轴对称线,并进行标记。

教学内容1. 轴对称的概念和性质介绍。

2. 轴对称的判断方法。

3. 找到图形的轴对称线并进行标记。

教学步骤步骤一:导入新知1. 引入轴对称的概念,与学生一起讨论日常生活中具有轴对称性质的例子,如人的面孔、心形等。

2. 引导学生思考轴对称的特点和性质,如图形的两侧镜像对称等。

步骤二:学习判断轴对称性的方法1. 教师通过示例图形,引导学生观察图形的特点,判断是否具有轴对称性。

2. 介绍判断轴对称性的方法,如将图形对折、观察是否重合等。

3. 给学生一些练习题,帮助他们巩固判断轴对称性的方法。

步骤三:找到图形的轴对称线并进行标记1. 教师给学生展示一些图形,要求学生找出图形的轴对称线。

2. 引导学生通过观察图形的特点,找到轴对称线的位置,并进行标记。

3. 给学生一些练习题,让他们自己找出图形的轴对称线。

教学评价1. 在学习过程中观察学生的参与度和理解程度。

2. 对学生完成的练习题进行评价,检查他们对轴对称性的理解和判断能力。

拓展延伸1. 引导学生思考,日常生活中还有哪些具有轴对称性的例子。

2. 给学生一些更复杂的图形,让他们进一步掌握判断轴对称性和找到轴对称线的能力。

参考资源1. 《数学八年级上册》课本2. 《数学八年级上册》教师用书3. 网络资源:轴对称的相关教学视频、练习题等。

轴对称的教案八年级

轴对称的教案八年级

八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。

下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。

《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。

2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。

3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。

二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。

2. 教学难点:运用轴对称解决简单的几何问题。

三、教学准备1. 教师准备:课件、方格纸、彩色笔。

2. 学生准备:笔记本、笔。

四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。

2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。

(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。

(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。

3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。

4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。

5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。

五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。

人教初中数学八上第章《轴对称》教案 (公开课获奖)

人教初中数学八上第章《轴对称》教案 (公开课获奖)

工程设计内容备注课时第 1课时课型新课教具剪刀、红纸、直尺、铅笔。

教学目标知识与能力掌握轴对称图形和关于直线成轴对称等概念。

过程与方法通过生活中的具体实例认识,培养观察思维、操作、归纳能力。

态度与情感体验数学与生活的联系,开展审美观。

重点准确掌握轴对称图形和关于直线成轴对称的实质。

难点轴对称图形和关于直线成轴对称的区别和联系。

教学手段方法创设情境-主体探究-合作交流-应用提高.教学过程教师活动学生活动说明或设计意图创设情境,欣赏图片,感受生活中的轴对称现象和轴对称图形展示课本上的图片〔轴对称图形〕引导学生说出这些图形的共同特点.教师明确:对称的多样性,而其中轴对称是重要的一种;本节要研究的内容是:轴对称有哪些性质?学生展示他们事先自制的图片。

说出教师展示的图片的共同特征,并列举所见到的图形。

展示的图片,包含自然景象、建筑物、艺术作品等与生活实际相关的图形,让学生感知对称图形,激发学生的学习热情。

探究新知:1.轴对称图形的概念和成轴对称的概念。

教师先把长方形纸片对折,用剪刀剪出一个图案,再翻开这个图案,让学生欣赏。

展示一些窗花。

教师归纳轴对称图形的概念并板书概念。

45.教师引导得出两个图形关于某直线对称及轴对称的概念,并板书概念。

6.结合教材图13.1-2和13.1-3进行比拟,得出轴对称图形与两个图形成轴对称的区别和联系。

轴对称是说两个图形的位置关系.而轴对称图形是说一个具有特殊形状的图形.轴对称的两个图形和轴对称图形都有一条直线,都要沿这条直线折叠重合;如果把轴对称图形沿对称轴分成两局部,那么这两个图形就是关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.学生动手剪窗花。

学生在观察、互相交流的根底上描述图形的特征。

学生举例,4.学生观察图13.1-3,互相交流,得出两个图形关于某直线对称及对称轴、对称点的概念。

些生活中两个图形成轴对称的例子。

6.学生观察交流,得出轴对称图形与两个图形成轴对称的区别和联系。

《轴对称》数学教案设计

《轴对称》数学教案设计

《轴对称》數學教案設計标题:《轴对称》數學教案设计一、教学目标:1. 知识与技能:使学生理解轴对称的定义,能够识别和画出轴对称图形,并掌握轴对称图形的基本性质。

2. 过程与方法:通过观察、操作、推理等数学活动,培养学生的空间观念和几何直观能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养他们的创新意识和合作精神。

二、教学重难点:重点:轴对称图形的识别和基本性质的理解。

难点:轴对称图形的绘制和实际应用。

三、教学过程:1. 导入新课:通过展示一些生活中的轴对称实例,引导学生思考这些实例的特点,引出轴对称的概念。

2. 新课讲解:(1)介绍轴对称的定义,强调轴对称图形的两个部分是完全一样的。

(2)演示如何识别轴对称图形,引导学生自己尝试识别。

(3)讲解轴对称图形的基本性质,如对称轴两边的点到对称轴的距离相等等。

3. 实践操作:(1)让学生在纸上画出一些常见的轴对称图形,如矩形、正方形、等腰三角形等。

(2)布置小组活动,让每个小组选择一个轴对称图形,然后用剪纸的方式制作出来。

4. 巩固练习:给出一些轴对称图形,让学生判断是否为轴对称图形,如果是,找出其对称轴。

5. 课堂小结:回顾本节课的主要内容,强调轴对称的重要性和应用。

四、作业布置:1. 完成课本上的相关习题。

2. 在生活中找寻更多的轴对称实例,并尝试解释为什么它们是对称的。

五、教学反思:通过对轴对称的教学,我希望能帮助学生建立良好的空间观念,提高他们的观察能力和动手能力。

同时,我也希望通过各种实践活动,激发他们对数学的兴趣,培养他们的创新思维和团队协作精神。

新人教版八年级数学第13章《轴对称》教案

新人教版八年级数学第13章《轴对称》教案

第十三章《轴对称》教材分析一、教材内容本章的主要内容是从生活中的图形入手,学习轴对称及其基本性质,了解轴对称在现实生活中的广泛应用,并利用轴对称变换,探索等腰三角形的性质,学习等腰三角形的判定方法,并进一步学习等边三角形的性质.在本章第1小节“轴对称”中,教科书立足于学生的生活经验和数学活动经历,从观察现实生活中的对称现象开始,引出轴对称图形和图形的轴对称的概念,概括出轴对称的特征.结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这一性质的得出,讨论了垂直平分线的性质定理及其逆定理.在第2节“画轴对称图形”中,首先通过操作对轴对称的性质进行了归纳,然后通过例题给出了画简单平面图形关于给定对称轴的对称图形的一般方法,最后用坐标从数量关系的角度刻画了轴对称.教科书从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的规律,并进一步探讨了如何利用这种规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.本章第3节等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质.等腰三角形的许多特殊性质,又都和它是轴对称图形有关,这也是教科书把这部分内容安排在本章的一个重要原因.在本章第3小节“等腰三角形”中,利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法等内容.本章第4节是“课题学习最短路径问题”.教科书在这一节中安排了两个问题,分别是“牧马人饮马问题”和“造桥选址问题”,解决这两个问题的关键是通过轴对称和平移等变化把问题转化为关于“两点之间,线段最短”的问题,在解决这两个问题的过程中渗透了化归的思想.二、教学目标1、知识与技能(1)通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质.(2)探索简单图形之间的轴对称关系,能够按照要求画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形;认识并欣赏自然界和现实生活中的轴对称图形.(3)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.(4)了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索等边三角形的性质定理及等边三角形的判定定理.2、过程与方法(1)在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;(2)在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。

轴对称和轴对称图形教案

轴对称和轴对称图形教案

轴对称和轴对称图形教案轴对称和轴对称图形教案篇1教学内容两个图形关于某条直线成对称的概念及画图。

教学目的1、使同学把握两个图形关于一条直线对称的概念。

2、使同学把握关于一条直线对称的两个图形的性质和判定,并会画出一个点的对称点。

3、培育同学“因有用而学习,和学了之后是为了将来用”这一思想预备4、渗透对称美,对同学进行美育训练教学重点两个图形关于某条直线对称的概念为重点教学过程一、复习提问什么叫线段垂直平分线,它的性质定理和逆定理是什么?二、引入新课由线段垂直平分线的定义引入新课,如图1,EF⊥AB于C点,且AC=CB,若沿着直线EF 对折,由于EF⊥AC,则CB将与CA重合,且CB=CA,点B也落在点A上,又如图2和图3,把轴线一旁的图形沿轴折叠,它与轴线另一旁的图形也能重合、这样的图形是一种特别位置的图形,是我们今日要学习的新课、(一)新课:板书课题--轴对称和轴对称图形1、定义:把一个图形沿着某条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称、这条直线叫对称轴,两个图形关于直线对称也称轴对称、再由同学举一些他们熟识的例子,如人体的两耳、两眼、两手等等、但要留意必需有一条直线为轴,才能说它们关于这条直线对称、2、性质:由定义引出性质、定理1:关于某条直线对称的两个图形是全等形、如图4,⊥ABC和⊥ABC关于MN对称,则⊥ABC⊥⊥ABC、此时A和A,B和BC和C分别是对应点,称为对称点、沿直线MN折叠后,A与A,B与B,C与C分别重合、连AA、BB、CC 则必有MN⊥AA且平分AA,同样MN⊥BB,平分BB,MN⊥CC平分CC,得到第2共性质、定理2:两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线、老师提问:能不能说两个全等三角形就是关于一条直线成轴对称呢?——不能、由此引出必需有一个判定定理、老师再问,定理2的逆命题怎么说、逆命题:假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称、如图4,线段AA,BB,CC均被直线MN垂直平分,则⊥ABC和⊥ABC关于直线MN对称、此逆命题成立,做为判定定理、(二)应用举例:例1 :如图5,直线l及直线l外一点P、求作:点P',使它与点P关于直线l对称由同学依据判定定理的'要求想出作法,并写出作法、再问,若点P在直线l上怎么办?—由同学答出此时P点关于直线l的对称点就是P点本身、例2:已知:如图6,MN垂直平分线段AB、CD,垂足分别是E、F、求证:AC=BD,⊥ACD=⊥BDC、老师启发同学用对称关系来证、已知MN垂直平分AB和CD,可得AC和BD关于MN对称,所以AC=BD,若沿MN翻折B点与A点重合,D点与C点重合,BD与AC重合,DF与FC重合,所以⊥ACD=⊥BDC (三)小结:今日学习了两个图形关于一条直线对称的定义、性质和判定,要把握好它的概念、三、作业1、思索下列问题(1)什么样的两个图形叫做关于某条直线对称?什么叫做对称点、对称轴?(2)成轴对称的两个图形有什么性质?(3)除定义外,有什么方法可以判定两个图形成轴对称?2、举出一些成轴对称的图形的实例、3、已知:如图,两点A、B、求作:直线l,使A、B关于l对称、此题要求写出作法、4、已知⊥ABC⊥⊥A'B'C',那么⊥ABC与⊥A'B'C'肯定关于某直线对称吗?假如⊥ABC与⊥A'B'C'关于直线l对称,那么它们全等吗?为什么?轴对称和轴对称图形教案篇2一、教材分析本节内容是苏科版数学八班级上册第一章第一节第1课时,本节立足于同学已有的生活阅历和初步的数学活动经受,从观看生活中的轴对称现象开头,从整体的角度熟悉轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不行分割的联系,通过对这一节课的学习,既可以让同学感受图形的三种基本运动中“翻折”在几何学问中的作用,又为同学后继学习对称变换、中心对称和中心对称图形及平行四边形的相关学问等做好充分预备;同时这一节也是联系数学与生活的桥梁。

八年级轴对称图形-教案

八年级轴对称图形-教案

轴对称辅导教案学员编号:年级:八年级课时数:学员姓名:辅导科目:数学学科教师:专题第二章轴对称图形星级★★授课日期及时段教学内容知识点1轴对称:1、轴对称是指两个图形之间的关系2、轴对称的特征是两个图形沿某条直线折叠后两个图形能够重合轴对称图形1、图形本身的特征(沿对称轴折叠,两旁部分能够完全重合)2、对称轴是经过图形的某条直线,可能只有一条,也可能不止一条常见的轴对称图形轴对称图形对称轴对称轴条数直线线段角等腰三角形等边三角形典型例题:1、(2010 •连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是()2、(2012 •连云港)下列图案是轴对称图形的是()A. B. D JA.①②B.②③C.②④D.①④3、如图所示的两位数中,是轴对称图形的有(A B C D知识点2线段的垂直平分线(中垂线):垂直平分一条线段的直线特点:1、一条线段有且只有一条垂直平分线2、垂直平分线上的点到线段两端的距离相等成抽对称的两个图形:1、两个图形全等2、对称轴是对称点连线的垂直平分线画对称轴:连接对称点的线段的垂直平分线(对称轴是一条直线,有时不止一条。

) 画轴对称的图形依据:垂直平分线典型例题:1、如图,将平行四边形ABCD 沿AC 折叠,使点B 落在点B,处, 么图形2、将三角形纸片ABC 沿DE 折叠使点A 落在A'处的位置,已知/1 + /2=100°,则NA=AB,交DC 于点M,试判断折叠后重合部分是什4、小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8: 00的是 ()3、已知五边形ABCDE 和43。

后,是成轴对称的图形,你能画出对称轴吗?E'.D, C f4、如图,DA 、CB 是平面镜前同一发光点S 发出的经平面镜反射后的反射光线,请通过画图确定发光点S 的位置,并将光路图补充完整.知识点3线段:垂直平分线上的点到线段两端的距离相等。

轴对称与轴对称图形教案

轴对称与轴对称图形教案

轴对称与轴对称图形教案一、教学目标:知识与技能:1. 理解轴对称的概念,能找出生活中的轴对称图形。

2. 学会用坐标表示轴对称图形的位置,并理解轴对称图形的性质。

过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

2. 学会用画图工具绘制简单的轴对称图形。

情感态度价值观:1. 激发学生对数学的兴趣,培养学生的创新意识和实践能力。

2. 培养学生合作学习的精神,提高学生的团队协作能力。

二、教学重点与难点:重点:1. 轴对称的概念及轴对称图形的性质。

2. 轴对称图形在生活中的应用。

难点:1. 轴对称图形的性质的证明。

2. 轴对称图形在实际问题中的灵活运用。

三、教学准备:教师准备:1. 教学课件或黑板。

2. 轴对称图形的实例。

3. 坐标纸或画图工具。

学生准备:1. 笔记本、笔。

2. 提前了解生活中的一些轴对称图形。

四、教学过程:1. 导入新课:利用生活中的实例引入轴对称的概念,如剪刀、飞机等,引导学生观察并思考这些物体的对称性。

2. 探究轴对称的定义:3. 学习轴对称图形的性质:4. 实践与应用:让学生分组讨论,找出生活中的轴对称图形,并用坐标表示它们的位置。

5. 小结与反思:五、作业布置:1. 完成课后练习题,巩固轴对称的概念和性质。

2. 搜集生活中的轴对称图形,下节课分享。

教学反思:本节课通过观察、操作、思考等活动,让学生掌握了轴对称的概念和性质,并能找出生活中的轴对称图形。

在实践与应用环节,学生能用坐标表示轴对称图形的位置,达到了预期的教学目标。

但在证明轴对称图形的性质时,部分学生还存在困难,需要在今后的教学中加强引导和练习。

要注重培养学生合作学习的精神,提高学生的团队协作能力。

六、教学拓展:1. 引导学生思考:除了生活中的轴对称图形,还有哪些领域的图形具有轴对称性?2. 举例说明轴对称图形在工程、艺术等领域的应用。

七、课堂小测:1. 请用坐标表示一个任意的轴对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:轴对称和轴对称图形
教学内容:轴对称和轴对称图形
学习目标
1、通过观察操作,认识轴对称图形的特点,了解轴对称图形的概念;
2、能准确判断哪些图形是轴对称图形;
3、了解轴对称的概念,理解轴对称图形和轴对称的区别;
4、会画简单图形关于已知直线对称的图形;
学习重点:认识轴对称图形的特点,并能准确判断生活中哪些事物是轴对称图形
学习难点:会画简单图形关于已知直线对称的图形;
教材分析:在我们的日常生活中有很多具有轴对称性质的图形。

通过蝴蝶枫叶脸谱和蜻蜓的实物图让学生观察、分析它们共同的特征,从而得出轴对称及轴对称图形的概念,使学生进一步加深对轴对称图形的认识。

教学过程
一、精彩课堂
一、导入新课:
在生活中有很多这样的图形,想想这些图形有什么共同特点。

二、典型例题
例1轴对称图形的定义是什么?并选择:
(1)(2008中考)下列图形中是轴对称图形的是()
(2)(2008中考)下列四副图案中,不是轴对称图形的是( )
练一练.1、下列图形中,①不是轴对称图形的是②画出轴对称图形的
对称轴
2、下面的数字或字母,哪些是轴对称图形?是的,在下面画对号
0 1 2 3 4 5 6 7 8 9 A B C D E F G H
例2轴对称的定义是什么?并选择: 1、下面哪组图形成轴对称 ( )
A B D E F
2、如图,把一个正方形纸片三次对折后沿虚线剪下,然后展开,则所得图形是( ).
3、下列命题中,正确的请打“√”,错误的请打“╳”。

(1) 如果△ABC 与△DEF 关于某条直线对称,那么一定有△ABC ≌△DEF 。

( ) (2)如果△ABC ≌△DEF ,那么△ABC 与△DEF 一定关于某条直线对称。

( )
例3如下图,△ABC 和直线MN ,画出△ABC 关于直线MN 的对称图形,(保留作图痕迹)
例4如图,在公路同侧有两个村庄A 、B ,要在公路旁建一个公共汽车站,使
其到两个村庄的距离之和最短,问:汽车站应建在什么地方?(画图,不写作法,指明结果)
例5如图,在右图中分别作出点P 关于OA 、OB 对称点P 1、P 2,连结P 1P 2交OA 于M ,交OB 于N ,若P 1P 2=5cm ,求△PMN 的周长.
二、课堂小结 (1)内容总结:通过本节课的学习,你学到了哪些知识?要注意什么问题?
轴对称图形 轴对称
N
M A
B
C
A
B
C A P B O
一分为二
合二为一
区别:一个图形 两个图形
联系:如果把一个轴对称图形位于对称轴两旁的部分看成2个图形,那么这两部分成轴对称。

如果把成轴对称的2个图形看成一个整体,那么这个整体就是一个轴对称图形。

三、课后练习
一、选择题:
1、下列四个图形中不是轴对称图形的是( )
2、右边图案中是轴对称图形的有:( ) .
(A )1个 (B )2个 (C )3个 (D )4个 3、(山东烟台)下列交通标志中,不是轴对称图形的是( )
4、 下列说法正确的是 ( )
A .圆的直径是对称轴
B .角的平分线是对称轴
C .角的平分线所在直线是对称轴
D .长方形只有4条对称轴
5、如图3是奥运会会旗上的五球圆形,它只有( )条对称轴. A .1 B .2 C .3 D .4
6、如图5,△ABC 与△A 1B 1C 1关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( ) A .△AA 1P 是等腰三角形 B .MN 垂直平分AA 1,CC 1 C .△ABC 与△A 1B 1C 1面积相等 D .直线AB 、A 1B 的交点不一定在MN 上
7、将一张矩形纸对折,然后用笔尖在上面扎出一个“B ”,再把它辅平,你可以看到( )
图3
N
M P A
B
C
C '
B '
A '
图5
图9
(3)
(1)
(2)
8、下列说法中错误的是 ( )
A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴
B.关于某直线对称的两个图形全等
C.面积相等的两个三角形对称
D.轴对称指的是两个图形沿着某一直线对折后重合
9、下列说法不成立的有( )个 A.1 B.2 C.3 D.4
(1)若两图形关于某直线对称,那么对称轴是对应点连线的中垂线 (2)等腰三角形是轴对称图形
(3)等腰三角形底边中线是等腰三角形的对称轴 (4)轴对称图形的对称轴有且只有一条
10、当你看到镜子中的你在用右手往左梳理你的头发时,实际上你是( )
A .右手往左梳
B .右手往右梳
C .左手往左梳
D .左手
二、填空:1、轴对称图形是对 个图形而言的,而轴对称是对 个图形而言 2、今天是2003年9月1日,小明拿起一盒牛奶刚要喝,妈妈说“牛奶保质期过了,”小明从镜子里看到保质期的数字是,牛奶真的过期了吗?回答: 5、用棋子摆成如图所示的“T ”字图案.
(1)摆成第一个“T ”字需要___________个棋子,第二个图案需______________个棋子; (2)按这样的规律摆下去,摆成第10个“T ”字需要_____个棋子,第n 个需_____个棋子.
三、以直线为对称轴,画出下列图形的另一部分使它们成为轴对称图形(保留作图痕迹)
四、如图所示,四边形EFGH 是一个矩形的球桌面,有黑白两球分别位于A 、D 两点,试问白球D 撞击到EF 哪一点,反弹后能击中黑球A ?
图(1) 图(2) 图14-17
图(3) 图(4)
四、探究乐园
1、以给定的图形“”(两个圆、两个三角形、两条平行线段)为构件,构思独特且有意义的图形.举例:(如图5),左框中是符合要求的一个图形,你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.
图5
2、为了美化环境,在一块正方形空地上分别种植四种不同的花草.现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等.现已有两种不同的分法:⑴分别作两条对角线(如图7-16中的图1);⑵过一条边的四等分点作这边的垂线段(图2)(图2中两个图形的分割看作同一方法).请你按照上述三个要求,分别在下面两个正方形中给出另外两种不同的分割方法.............(正确画图,不写画法)
五、课后反思
虽然生活中对称的东西很多,但是学生理解轴对称图形这一概念还是有点难度。

因此,这部分内容要结合实例,引导学生逐步认识和体会。

首先,通过观察实物或实物图片,认识生活中有些物体具有对称的特性;从而得出概念,再用概念判断前面图形是否为轴对称即轴对称图形以巩固对概念的理解;最后,让学生从学过的简单的平面图形中识别其中的轴对称图形,并能“做”出不同的轴对称图形。

因此,教学中采用了观察比较、动手实践、操作感悟等方法,让学生在活动中逐步感知,逐步体验,通过师生、生生相互间的互动作用来完成。

相关文档
最新文档