北师大版七年级数学上有理数分类复习题学习资料
第2章 有理数及其运算-专题练 北师大版七年级数学上册课件
• •
(解1):(-原2)式×=3+-86-÷+138×(-;3) =-6+(-24)
=-30.
(2)2-(-5)+6×(-3)÷-322;
解:原式=|2+5|+6×(-3)÷ 9
=7+6×(-3)× 4
4
9
=7-8
=-1.
• 二、新定义运算
3.我们定义一种新运算,规定如图
表示 a-b+c,图形
表
• (3)(-3)+(-4)-(+11)-(-19); • 解:原式=-3-4-11+19 =-18+19 =1.
(4)(-7.3)-(-656)+|-3.3|+116. 解:原式=(-7.3)--656+3.3+116 =[(-7.3)+3.3]+(656+116) =-4+8=4.
• 2.计算:
8
3
• (3)一般地,如果点A表示的数为a,将点A先向左移动b个单位长 度__,__再__向__右__移;动c个单位长度到达点B,那么点B表a-示b的+数c 是
• (4)如果点A表示的数为-100,点B表示的数是99,在数轴上有点 P到点A和点B的距离相等,则点P表示-的0.5数是________.
• 8.阅读:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示 为|AB|.
• ①当A,B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB| =|b|=|a-b|;
• ②当A,B两点都不在原点时,如图2,点A,B都在原点的右边|AB|=|OB| -|OA|=|b|-|a|=b-a=|a-b|;
• 6.定义新运算:对于任意有理数a,b.都有a⊕b=a(a-b)+b.等 式右边是通常的加法、减法及乘法运算.
• 比如:3⊕5=3(3-5)+5=3×(-2)+5=-1.
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题(教师版)
2021-2022学年北师大版七年级数学上册第二章 有理数及其运算 章末专题复习练习题专题课1 绝对值的应用类型1 绝对值的非负性①|a |≥0.①若|a |+|b |=0,则a =b =0.1.若|x |=x ,则x 的取值范围是( )A .x >0B .x ≤0C .x ≥0D .x <0 2.若|x -2|=2-x ,则x 的取值范围是__________. 3.已知|x -3|+|y -1|=0,求2x +3y 的值.4.已知有理数|x -2|与|y -3|互为相反数,求x +y +xy 的值.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是________. 6.当b =12 时,5-|2b -1|会有最大值,最大值是________.7.已知x 为有理数,则|x -5|+|x -3|的最小值是________.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =________;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x-3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少?专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 ________-0.009;-2 0192 020 ________-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;(2)-45 与-56 ;(3)-821 与-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是________.4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度?5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴,标出A,B,C三点在数轴上的位置,并写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D表示的数.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=________,b=________.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是________.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A.-4 B.0 C.-2 D.4 12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b时,正确的是( )13.有理数a,b在数轴上的位置如图所示,且|a|=2,|b|=3,则a=________,b=________.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B→D(________),C→________(-3,-4);(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程.类型4利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52 ,-3,观察数轴,与点A 的距离3的点表示的数是________,A ,B 两点之间的距离为________;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是________;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是________,点N 表示的数是________. 16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是________; ①从-2到2有5个整数,分别是________________; ①从-3到3有7个整数,分别是________________________; ①从-100到100有________个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有________个整数;(3)在单位长度是1 cm 的数轴上任意画一条长为1 000 cm 的线段AB ,线段AB 盖住的整点最多有多少个?专题课4 有理数的加减运算技巧有理数的加减运算的简便方法归纳 方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).方法2 同号结合法——把正数和负数分别结合相加 【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.方法3 同分母结合法 【例3】 计算:(1)-23 -35 +78 -13 -25 +18 ;(2)-479 -(-315 )-(+229 )+(-615 ).方法4 凑整结合——分数相加,把相加得整数的数先结合相加 【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78 .方法5 分解——将一个数拆分成两个数的和或差 【例5】 计算:-156 +(-523 )+2434 +312 .方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14 ,…,根据规律完成下列各题. (1)19×10=________; (2)计算12 +16 +112 +120 +…+19 900的值为________.易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123 .强化训练 计算:(1)(-7)-(+5)+(-4)-(-10);(2)-9+6-(+11)-(-15);(3)3.5-4.6+3.5-2.4;(4)12 +(-23 )+45 +(-12 )+(-13 );(5)-478 -(-512 )+(-412 )-318 ;(6)0.25+112 +(-23 )-14 +(-512 );(7)|-12 |-(-2.5)-(-1)-|0-212 |;(8)0+1-[(-1)-(-37 )-(+5)-(-47 )]+|-4|;(9)-205+40034 +(-20423 )+(-112 );(10)-12 -16 -112 -120 -130 -142 -156 -172 ;(11)1-2-3+4+5-6-7+8+…+97-98-99+100.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳 方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412 ).方法2 运用乘法对加法的分配律 【例2】 计算:(1)-16×(34 -78 +12 )+(-1)2020.(2)391314 ×(-14);方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367 .方法4 除法变乘法,再利用乘法对加法的分配律 【例4】 计算:(113 -58 +712 )÷(-124 ).强化训练计算:(能用简便方法的尽量用简便方法计算) (1)-0.75×(-112 )÷(-214 );(2)-(3-5)×32÷(-1)3;(3)(-1.5)×45 ÷(-25 )×34 ;(4)-14-(12 -23 +14 )×12;(5)(-5)÷(-127 )×(-214 )÷7;(6)1318 ÷(-7);(7)(-5)-(-5)×110 ÷110 ×(-5);(8)2×(-137 )-234 ×13+(-137 )×5+14 ×(-13);(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18 ;(10)-14-(-512 )×411 +(-2)3÷|-32+1|;(11)1-(-112 )÷(12 -14 -16 );(12)1-0.52 -|0.5-23 |÷13 ×|-2-(-3)2|;(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.2021-2022学年北师大版七年级数学上册第二章有理数及其运算章末专题复习练习题专题课1绝对值的应用类型1绝对值的非负性①|a|≥0.①若|a|+|b|=0,则a=b=0.1.若|x|=x,则x的取值范围是( C )A.x>0 B.x≤0 C.x≥0 D.x<02.若|x-2|=2-x,则x的取值范围是x≤2.3.已知|x-3|+|y-1|=0,求2x+3y的值.解:因为|x-3|和|y-1|均为非负数,即|x-3|≥0, |y-1|≥0,又因为|x-3|+|y-1|=0,所以|x-3|=0,|y-1|=0.所以x-3=0,y-1=0.所以x=3,y=1.所以2x+3y=2×3+3×1=9.4.已知有理数|x-2|与|y-3|互为相反数,求x+y+xy的值.解:因为|x-2|与|y-3|互为相反数,所以|x-2|=-|y-3|.所以|x-2|+|y-3|=0.所以x-2=0,y-3=0.所以x=2,y=3.所以x+y+xy=2+3+2×3=11.类型2 绝对值的最值问题5.当a =2时,|2-a |+2会有最小值,且最小值是2. 6.当b =12 时,5-|2b -1|会有最大值,最大值是5.7.已知x 为有理数,则|x -5|+|x -3|的最小值是2.8.同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可以理解成5和-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)若|x -2|=5,则x =7或-3;(2)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|有最小值,请写出当x 在什么范围时|x -3|+|x -6|有最小值,并求出最小值;(3)当x 取何值时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值是多少? 解:(2)当3≤x ≤6时,|x -3|+|x -6|有最小值,最小值为3. (3) 当x =2时,|x -2|+|x -(-3)|+|x -4|有最小值,最小值为7.专题课2 有理数的大小比较类型1 利用数轴比较有理数的大小1.如图,数轴上的四个点分别表示有理数a ,b ,c ,d ,则下列说法正确的是( C )A .a >bB .c <0C .b <cD .-1>d2.已知有理数在数轴上对应的点如图所示,则a ,-a ,-1,1的大小关系是( A )A .a <-1<1<-aB .-a <-1<a <1C .a <-1<-a <1D .-a <-1<1<a 3.大于-2.5而小于3.5的整数共有( A )A .6个B .5个C .4个D .3个4.已知a ,b 两数在数轴上的位置如图所示,试在数轴上找出表示-a ,-b 的点,并用“<”连接a ,b ,-a ,-b .解:-a ,-b 对应的点如图所示. 由数轴上点的位置可得-b <a <-a <b .5.在数轴上表示下列各数,并把这些数用“>”连接起来: 3.5,3.5的相反数,-12 ,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12 >-1>-3>-3.5.类型2 利用比较大小的法则比较有理数的大小 6.下列各数中:-1,0,12,0.5,最小的数是( D )A .0.5B .0C .12D .-1 7.下列比较大小结果正确的是( D )A .-3<-4B .-(-3)<|-3|C .-12 >-13D .|-16 |>-178.比较大小:1100 >-0.009;-2 0192 020 >-2 0202 019 .9.已知数:0,-2,1,-3,5.用“>”把各数连接起来. 解:5>1>0>-2>-3.类型3 利用绝对值比较大小 10.比较下列各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2,所以-0.1>-0.2.(2)-45 与-56;解:因为|-45 |=45 =2430 ,|-56 |=56 =2530 ,且2430 <2530 , 所以-45 >-56 .(3)-821 与-|-17 |.解:-|-17 |=-17.因为|-821 |=821 ,|-17 |=17 =321 ,且821 >321 , 所以-821 <-|-17 |.类型4 利用特殊值比较有理数的大小11.如图,数轴上的点表示的有理数是a ,b ,则下列式子正确的是( B )A .-a <bB .a <bC .|a |<|b |D .-a <-b 12.如果a >0,b <0,a <|b |,那么a ,b ,-a ,-b 的大小关系是( A ) A .-b >a >-a >b B .a >b >-a >-b C .-b >a >b >-a D .b >a >-b >-a专题课3 一线串起有理数类型1 数轴与有理数1.数轴上,如果表示数a 的点在原点的左边,那么a 是( B )A .正数B .负数C .零D .以上皆有可能2.点M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( A )A .3B .5C .-7D .3或-7【变式】 在数轴上,点A ,B 分别表示数a ,2,若将点B 在数轴上平移3个单位长度后与点A 重合,则数a 为( C )A .5B .-1C .5或-1D .5或-2 3.在数轴上,点A 表示数-4,距A 点3个单位长度的点表示的数是-7或-1. 4.请在数轴上表示下列各数:-|-3|,4,-1.5,-5,212 并将它们用“>”连接起来,并回答表示最大数与最小数两点之间相距多少个单位长度? 解:如图所示.4>212>-1.5>-|-3|>-5.最大数与最小数两点之间相距9个单位长度.5.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C .(1)画出数轴,标出A ,B ,C 三点在数轴上的位置,并写出A ,B ,C 三点表示的数; (2)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?(3)若蚂蚁从点D 出发,先向右爬了7个单位长度,再向左爬了4个单位长度,此时它恰好回到了原点,求点D 表示的数. 解:(1)如图:A ,B ,C 三点表示的数分别为4,6,-4.(2)点C 可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.(3)从原点向右爬4个单位长度,再向左爬7个单位长度,可以到D ,结合数轴可得,点D 表示的数为-3.类型2数轴与相反数6.已知数轴上A,B两点间的距离是6,它们分别表示的两个数a、b互为相反数(a>b),那么a=3,b=-3.7.在数轴上,点A表示1,点B、点C所表示的数互为相反数,且点C与点A间的距离为3,则点B所表示的数是2或-4.8.小明做题时,画了一个数轴,在数轴上原有一个点A,其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在了-3的相反数的位置,想想,要把数轴画正确,原点要向哪个方向移动几个单位长度?( A )A.向右移6个单位长度B.向右移3个单位长度C.向左移6个单位长度D.向左移3个单位长度9.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?解:(1)点C表示的数是-1.(2)点C表示的数是0.5,D表示的数是-4.5.类型3数轴与绝对值10.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( D )A.点A B.点B C.点C D.点D 11.如图,已知数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( C )A .-4B .0C .-2D .412.已知a ,b 是不为0的有理数,且|a |=-a ,|b |=b ,|a |>|b |,那么用数轴上的点来表示a ,b 时,正确的是( C )13.有理数a ,b 在数轴上的位置如图所示,且|a |=2,|b |=3,则a =2或-2,b =3.14.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A 处出发去寻找B ,C ,D 处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)B →D (+3,-2),C →A (-3,-4);(2)若贝贝的行走路线为A →B →C →D ,请计算贝贝走过的路程.解:|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10(米).答:贝贝走过的路程为10米.类型4 利用数轴探究问题15.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,-52,-3,观察数轴,与点A 的距离3的点表示的数是4或-2,A ,B 两点之间的距离为3.5;(2)以点A 为分界点,把数轴折叠,与点B 重合的点表示的数是4.5;(3)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是0.5;若此数轴上M ,N 两点之间的距离为11(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则点M 表示的数是-6.5,点N 表示的数是4.5.16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;①从-2到2有5个整数,分别是-2,-1,0,1,2;①从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;①从-100到100有201个整数;(2)根据以上规律,直接写出,从-3.9到3.9有7个整数,从-10.1到10.1有21个整数;(3)在单位长度是1 cm的数轴上任意画一条长为1 000 cm的线段AB,线段AB盖住的整点最多有多少个?解:依题意,得①当线段AB起点在整点时覆盖1 001个数;①当线段AB起点不在整点,即在两个整点之间时覆盖1 000个数.综上所述,线段AB盖住的整点最多有1 001个.专题课4有理数的加减运算技巧有理数的加减运算的简便方法归纳方法1相反数结合法【例1】计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2同号结合法——把正数和负数分别结合相加【例2】计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.方法3同分母结合法【例3】计算:(1)-23 -35 +78 -13 -25 +18; 解:原式=(-23 -13 )+(-35 -25 )+(78 +18) =-1-1+1=-1.(2)-479 -(-315 )-(+229 )+(-615). 解:原式=[-479 -(+229 )]+[-(-315 )+(-615)] =-7-3=-10.方法4 凑整结合——分数相加,把相加得整数的数先结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18 |+78. 解:原式=0.75-3+0.25+18 +78=(0.75+0.25)+(18 +78)-3 =1+1-3=-1.方法5 分解——将一个数拆分成两个数的和或差【例5】 计算:-156 +(-523 )+2434 +312. 解:原式=(-1-56 )+(-5-23 )+(24+34 )+(3+12) =[(-1)+(-5)+24+3]+[(-56 )+(-23 )+34 +12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12 =11×2 =1-12 ,16 =12×3 =12 -13 ,112 =13×4 =13 -14,…,根据规律完成下列各题.(1)19×10 =19 -110 ; (2)计算12 +16 +112 +120 +…+19 900 的值为99100 .易错点 分解带分数时易弄错符号【例7】 计算:634 +313 -514 -312 +123. 解:原式=6+34 +3+13 -5-14 -3-12 +1+23=(6+3-5-3+1)+(34 +13 -14 -12 +23) =2+1=3.强化训练计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(4)12 +(-23 )+45 +(-12 )+(-13); 解:原式=[12 +(-12 )]+[(-23 )+(-13 )]+45=0+(-1)+45=-15.(5)-478 -(-512 )+(-412 )-318; 解:原式=-478 +512 -412 -318=(-478 -318 )+(512 -412) =-8+1=-7.(6)0.25+112 +(-23 )-14 +(-512); 解:原式=14 +112 +(-23 )-14 +(-512) =(14 -14 )+[112 +(-23 )+(-512)] =-1.(7)|-12 |-(-2.5)-(-1)-|0-212|; 解:原式=12 +2.5+1-212=12 +1+(2.5-212) =112.(8)0+1-[(-1)-(-37 )-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37 -5+47]+4 =1-[(-1+37 +47)-5]+4 =10.(9)-205+40034 +(-20423 )+(-112); 解:原式=(-205)+400+34 +(-204)+(-23 )+(-1)+(-12) =(400-205-204-1)+(34 -23 -12) =-10+(-512) =-10512.(10)-12 -16 -112 -120 -130 -142 -156 -172; 解:原式=-(12 +16 +112 +120 +130 +142 +156 +172) =-(1-12 +12 -13 +13 -14 +14 -15 +15 -16 +16 -17 +17 -18 +18 -19 ) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100)=-1+1-1+1-…-1+1=0.专题课5 有理数的混合运算技巧有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531 ×(-29 )×(-2115 )×(-412). 解:原式=-531 ×29 ×3115 ×92=-(531 ×3115 )×(29 ×92) =-13×1 =-13.方法2 运用乘法对加法的分配律【例2】 计算:(1)-16×(34 -78 +12)+(-1)2020. 解:原式=-16×34 +16×78 -16×12+1 =-12+14-8+1=-5.(2)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.方法3 逆用乘法对加法的分配律【例3】 计算:4×(-367 )-3×(-367 )-6×367. 解:原式=-367×(4-3+6) =-27.方法4 除法变乘法,再利用乘法对加法的分配律【例4】 计算:(113 -58 +712 )÷(-124). 解:原式=(43 -58 +712)×(-24) =43 ×(-24)-58 ×(-24)+712×(-24) =-32+15-14=-31.强化训练计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112 )÷(-214); 解:原式=-34 ×(-32 )×(-49) =-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45 ÷(-25 )×34; 解:原式=32 ×45 ×52 ×34=94.(4)(2020·成都成华区期末)-14-(12 -23 +14)×12; 解:原式=-1-12 ×12+23 ×12-14×12 =-1-6+8-3=-2.(5)(-5)÷(-127 )×(-214)÷7; 解:原式=-5×79 ×94 ×17=-54.(6)1318÷(-7); 解:原式=1318 ×(-17) =(14-78 )×(-17) =-2+18=-178.(7)(-5)-(-5)×110 ÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5) =-5-25=-30.(8)2×(-137 )-234 ×13+(-137 )×5+14×(-13); 解:原式=-137 ×(2+5)-13×(234 +14) =-107×7-13×3 =-10-39=-49.(9)12.5×6.787 5×18 +1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)-14-(-512 )×411+(-2)3÷|-32+1|; 解:原式=-1+112 ×411-8÷8 =-1+2-1=0.(11)1-(-112 )÷(12 -14 -16); 解:原式=1+112 ÷(612 -312 -212) =1+112 ÷112=1+1=2.(12)1-0.52-|0.5-23 |÷13 ×|-2-(-3)2|; 解:原式=-4-16×3×11 =-4-112=-192.(13)[(-1)2 021-(32 -56 -19 )×18]÷|-22|.解:原式=[(-1)-32 ×18+56 ×18+19×18]÷4 =(-1-27+15+2)÷4 =(-11)÷4=-114.。
北师大版七年级上册数学各章节知识点总结及经典练习题.
北师大版七年级上册数学各章节知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体、五棱柱、……(按名称分锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
练习1.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是(2.下列各个平面图形中,属于圆锥的表面展开图的是((A(B(C(D3.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是(.A.5B. 6C.7D.84.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是(A BCD5.某同学的茶杯是圆柱形,如图是茶杯的立体图,左边下方有一只蚂蚁,从A 处爬行到对面的中点B 处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图,将圆柱的侧面展开成一个长方形,如图示,则A 、B 分别位于如图所示的位置,连接AB ,即是这条最短路线图.B BA A问题:某正方体盒子,如图左边下方A 处有一只蚂蚁,从A 处爬行到侧棱GF 上的中点M 点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.(6分第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可。
北师大版七年级数学上册第二章《有理数及其运算》基础概念练习题
第二章《有理数及其运算》基础概念整数:像-2,-1,0,1,2这样的数称为整数。
正整数、零与负整数构成整数系。
整数不包括小数,分数。
自然数:零和正整数统称。
正数:大于0的数。
负数:是小于0的数。
0:既不是正数也不是负数。
有理数:按照定义分为整数和分数。
按照性质分为正有理数、零、负有理数。
数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴的三要素:原点,正方向,单位长度。
相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0。
倒数:在数学上是指与某数相乘的积为1的数。
0没有倒数。
绝对值:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
反馈练习题一、选择题1.下列说法中正确的是()。
(1)带正号的数是正数,带负号的数是负数(2)任意一个正数,前面加上负号就是一个负数(3)0是最小的正数(4)大于0的数是正数A.(1)(2)B.(2)(4)C.(1)(2)(4)D.(3)2.下面说法正确的是()。
A.有理数是正数和负数的统称B.有理数是整数C.整数一定是正数D.有理数包括整数和分数3.下列说法不正确的是()。
A.任何一个有理数的绝对值都是正数B.0既不是正数也不是负数C.有理数可以分为正有理数,负有理数和零D.0的绝对值等于它的相反数4.在下列说法中,正确的有()。
①符号相反的数就是相反数②每个有理数都有相反数③互为相反数的两个数一定不相等④正数和负数互为相反数A.1个B.2个C.3个D.4个5.如果两个数不相等,在下列四种情况中,绝对值肯定相等的是()。
A.两个数都是正数B.两个都是负数C.两个数一正一负D.两个数互为相反数6.下列说法正确的是()。
A.0不是正数,不是负数,也不是整数B.正整数与负整数包括所有的整数C.–0.6是分数,负数,也是有理数D.没有最小的有理数,也没有最小的自然数7.下列说法中错误的是()。
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
北师大版数学初一上册同步练习:有理数(word解析版)
北师大版数学初一上册同步练习:22.1 有理数(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.某种药品的说明书上标明储存温度是(20±2)℃,则该药品在()范畴内储存才合适.A.18℃~20℃ B.20℃~22℃C.18℃~21℃D.18℃~22℃2.若一辆汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作()A.+3千米B.+2千米C.﹣3千米D.﹣2千米3.假如“收入10元”记作+10元,那么支出20元记作()A.+20元B.﹣20元C.+10元D.﹣10元4.﹣2,0,2,﹣3这四个数中是正数的是()A.﹣2 B.0 C.2 D.﹣35.下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有()A.1个B.2个C.3个D.4个6.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A.B.C.D.7.下列四个数中,正整数是()A.﹣2 B.﹣1 C.0 D.18.在数﹣2,π,0,2.6,+3,中,属于整数的个数为()A.4 B.3 C.2 D.19.最大的负整数是()A.0 B.1 C.﹣1 D.不存在10.下列四个数是负分数的是()A.﹣(﹣0.)B.π C.0.341 D.11.下列说法中不正确的是()A.﹣3.14既是负数,分数,也是有理数B.0既不是正数,也不是负数,然而整数C.﹣2021既是负数,也是整数,但不是有理数D.0是非正数12.在下列选项中,既是分数,又是负数的是()A.9 B.C.﹣0.125 D.﹣72二.填空题(共10小题)13.假如盈利200元记做+200元,那么亏损80元记做元.14.假如向东走10米记作+10米,那么向西走15米可记作米.15.把向东走4米记作+4米,那么向西走6米记作米.16.将高于平均水位2m记作“+2m”,那么低于平均水位0.5m记作.17.假如卖出一台电脑赚钱500元,记作+500,那么亏本300元,记作元.18.观看下面一列数:﹣1,2,﹣3,4,﹣5,6,﹣7,…将这列数排成下列形式:按照上述规律排下去,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.19.在﹣42,+0.01,π,0,120,这5个数中正有理数是.20.在+8.3,﹣4,﹣0.8,0,90,,,+24中,非负数有,负分数有.21.下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有个.22.有一个五位数,十位上数字是最小的素数,百位上的数字是最小的自然数,千位上的数字是最小的合数,假如那个数能被2,3,5整除,那个数万位上的数字能够是.三.解答题(共4小题)23.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动,它从A处动身去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A到B记为:A→B(+1,+4),从D到C记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(,),B→C(,),D→(﹣4,﹣2);(2)若这只甲虫从A处去P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请运算该甲虫走过的路程.24.某高速公路养护小组,乘车沿南北向公路巡视爱护,假如约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地点在动身点的哪个方向?距动身点多远?(2)养护过程中,最远处离动身点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?25.观看下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,)差不多上“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)26.阅读下面文字,依照所给信息解答下面问题:把几个数用大括号括起来,中间用返号隔开,如:{3,4};{﹣3,6,8,18},其中大括号内的数称其为集合的元素.假如一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合称为条件集合.例如;{3,﹣2},因为﹣2×3+4=﹣2,﹣2恰好是那个集合的元素因此吕{3,﹣2}是条件集合:例如;(﹣2,9,8,},因为﹣2×(﹣2)+4=8,8恰好是那个集合的元素,因此{﹣2,9,8,}是条件集合.(1)集合{﹣4,12}是否是条件集合?(2)集合{,﹣,}是否是条件集合?(3)若集合{8,n}和{m}差不多上条件集合.求m、n的值.2021-2021学年度北师大版数学七年级上册同步练习:2.1 有理数(w ord解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】药品的最低温度是(20﹣2)℃,最高温度是(20+2)℃,据此即可求得温度的范畴.【解答】解:20﹣2=18℃,20+2=22℃,则该药品在18℃~22℃范畴内.故选:D.2.【分析】由向南行驶为正,向北行驶为负.即可得到向北行驶3千米应记作﹣3千米.【解答】解:汽车向南行驶5千米记作+5千米,那么向北行驶3千米应记作﹣3千米,故选:C.3.【分析】依照正负数的含义,可得:收入记住“+”,则支出记作“﹣”,据此求解即可.【解答】解:假如收入10元记作+10元,那么支出20元记作﹣20元.故选:B.4.【分析】依照正数的定义进行判定.【解答】解:正数是2,故选:C.5.【分析】依照题目中的数据能够判定各个数是正数依旧负数,从而能够解答本题.【解答】解:∵﹣32=﹣9,﹣(﹣5.7)=5.7,∴在﹣8,0,﹣32,﹣(﹣5.7)中负数是﹣8,﹣32,即负数的个数有2个.故选:B.6.【分析】求出每个数的绝对值,依照绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.7.【分析】正整数是指既是正数依旧整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、0是非正整数,故选项错误;D、1是正整数,故选项正确.故选:D.8.【分析】整数包括正整数、负整数和0,依此即可求解.【解答】解:在数﹣2,π,0,2.6,+3,中,整数有﹣2,0,+3,属于整数的个数,3.故选:B.9.【分析】依照负整数的概念和有理数的大小进行判定.【解答】解:负整数是负数且是整数,即最大的负整数是﹣1.故选:C.10.【分析】依照负分数的概念,选项必须既是负数又是分数.【解答】解:A、﹣(﹣0.)是正数,不是负分数;B、π是无理数,不是负分数;C、0.341是正数,不是负分数;D、﹣既是负数,又是分数,因此是负分数.故选:D.11.【分析】本题需先依照有理数的定义,找出不符合题意得数即可求出结果.【解答】解:依照题意得:﹣2021既是负数,也是整数,但它也是有理数故选:C.12.【分析】利用分数及负数的定义判定即可得到结果.【解答】解:下列选项中,既是分数又是负数的是﹣0.125.故选:C.二.填空题(共10小题)13.【分析】此题要紧用正负数来表示具有意义相反的两种量:盈利记为正,则亏损记为负,直截了当得出结论即可.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作﹣80元.故答案为﹣80.14.【分析】明确“正”和“负”所表示的意义,再依照题意作答.【解答】解:∵向东走10米记作+10米,∴向西走15米记作﹣215米.故答案为:﹣15.15.【分析】此题要紧用正负数来表示具有意义相反的两种量:向西记为负,则向东就记为正,由此解答即可;【解答】解:假如把向东走4米记作+4米,那么向西走6米记作:﹣6米.故答案为:﹣616.【分析】依照正数和负数表示相反意义的量,高于平均水位记为正,可得低于平均水位的表示方法.【解答】解:将高于平均水位2m记作“+2m”,那么低于平均水位0. 5m记作﹣0.5m.故答案为:﹣0.5m.17.【分析】由赚钱为正,亏本为负.赚钱500元记作+500,即可得到亏本300元应记作﹣300元.【解答】解:依照题意,亏本300元,记作﹣300元,故答案为:﹣300.18.【分析】先从排列中总结规律,再利用规律代入求解.【解答】解:依照题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是﹣81,∴第10行从左边数第9个数是81+9=90,∵﹣201=﹣(142+5),∴是第15行从左边数第5个数.故应填:90;15;5.19.【分析】依照正有理数的定义解答即可.【解答】解:正有理数有:+0.01,120.故答案为:+0.01,120.20.【分析】依照有理数的分类:进行解答即可.【解答】解:非负数有+8.3,0,90,,+24;负分数有﹣0.8,;故答案为:+8.3,0,90,,+24;﹣0.8,.21.【分析】利用分数定义判定即可.【解答】解:下列各数:2,﹣5,0,﹣0.06,+,20%,0.1,其中分数有4个,故答案为:422.【分析】找出最小的素数,最小的自然数,以及最小的合数,再依照题意求出万位上的数即可.【解答】解:依照题意得:最小的素数是2,最小的自然数为0,最小的合数为4,能被2,3,5整除,个位上是0,其余各位上数字的和能够被3整除,可得那个数万位上的数字能够是3或6或9.故答案为:3或6或9.三.解答题(共4小题)23.【分析】(1)依照规定及实例可知A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标,在图中标出即可;(3)依照点的运动路径,表示出运动的距离,相加即可得到行走的总路径长.【解答】解:(1)规定:向上向右走为正,向下向左走为负∴A→C记为(3,4)B→C记为(2,0)D→A记为(﹣4,﹣2);(2)P点位置如图所示.(3)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C →D记为(1,﹣1);该甲虫走过的路线长为1+4+2+1+2=10.故答案为:(3,4);(2,0);A;24.【分析】(1)依照有理数的加法,可得答案;(2)依照有理数的加法,可得每次行程,依照绝对值的意义,可得答案;(3)依照单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+6=5(千米),答:养护小组最后到达的地点在动身点的北方距动身点5千米;(2)第一次17千米,第二次17+(﹣9)=8,第三次8+7=15,第四次15+(﹣15)=0,第五次0+(﹣3)=﹣3,第六次﹣3+11=8,第七次8+(﹣6)=2,第八次2+(﹣8)=﹣6,第九次﹣6+5=﹣1,第十次﹣1+6=5,答:最远距动身点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+6)×0.5=87×0.5=43. 5(升),答:这次养护共耗油43.5升.25.【分析】(1)依照“椒江有理数对”的定义即可判定;(2)依照“椒江有理数对”的定义,构建方程即可解决问题;(3)依照“椒江有理数对”的定义即可判定;(4)依照“椒江有理数对”的定义即可解决问题.【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,解得a=2.(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)=﹣(﹣n)×(﹣m)+1=﹣[(﹣n)×(﹣m)﹣1],∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).26.【分析】(1)依据一个集合满足:只要其中有一个元素a,使得﹣2a+ 4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(2)依据一个集合满足:只要其中有一个元素a,使得﹣2a+4也是那个集合的元素,如此的集合我们称为条件集合,即可得到结论;(3)分情形讨论:当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.【解答】解:(1)∵﹣2×(﹣4)+4=12,∴集合{﹣4,12}是条件集合;(2)∵﹣2×(﹣)+4=,∴{,,是条件集合;(3)∵集合{8,n}和{m}差不多上条件集合,∴当﹣2×8+4=n,解得:n=12;当﹣2n+4=8,解得:n=﹣2;当﹣2n+4=n,解得:n=;当﹣2m+4=m,解得:m=.。
北师大版七年级上册数学第二章有理数及其运算素养拓展+中考真题课件
5
3
5
5
3
(2)5×(-13)-(-5)×(-13)-13×(-15)
4
5
3
5
5
3
=-5 × 13 − 5 × 13 + 13×15
5
4 3
3
=13×[(-5)-5+15]
5
1
=13 × 5
1
=13.
类型3 运算律解答规律问题
8.先阅读并填空,再解答问题.
1
1
1
1
1
1
1
1
我们知道1×2=1-2,2×3 = 2 − 3,3×4 = 3 − 4,
定小于b的倒数,例如1>0,但是0没有倒数,不能说1的倒数小于0的倒数,所以⑤错误.故选B.
6.[202X山东枣庄期中]下列各式中,计算正确的是 (
)
A.(-5.8)-(-5.8)=-11.6
1
B.-42÷4×4=-16
C.-23×(-3)2=72
D.[(-5)2+4×(-5)]×(-3)2=45
斤.
10.如图是计算机计算程序,若开始输入x=-2,则最后输出的结果是
.
答案
9.1.2×1011
10.-17
果.
【解析】
根据题意可知,(-2)×4-(-3)=-8+3=-5,再把-5代入计算,(-5)×4-(-3)=-20+3=-17<-5,即-17为输出结
11.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8 ℃,已知山脚的温度是24 ℃,山顶的温度是4 ℃,
)
2.[202X北京通州区期末]点A,B,C在数轴上,点O为原点,点A,B,C对应的有理数为a,b,c.若ab<0,a+b>0,a+b+c<0,则以
北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (1)
一、选择题1. 对于任意非零实数 a ,b ,定义运算“⊕”,使下列式子成立;1⊕2=−32,2⊕1=32,(−2)⊕5=2110,5⊕(−2)=−2110,⋯,则 (−3)⊕(−4)= ( ) A .712B . −712C .2512D . −25122. 如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点 A ,B ,C ,D 对应的数分别是数 a ,b ,c ,d ,且 d −2a =11,那么数轴上原点的位置应在 ( )A .点 AB .点 BC .点 CD .点 D3. 若 √x −1+(y +2)2=0,则 (x +y )2020 等于 ( ) A . −1 B . 1C . 32020D . −320204. 下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为 ( ) 1429 26320 38435⋯⋯⋯a18b xA . 135B . 153C . 170D . 1895. 如图,数轴上 A ,B ,C 三点所表示的数分别为 a ,b ,c ,且 AB =BC .如果有 a +b <0,b +c >0,a +c <0,那么该数轴原点 O 的位置应该在 ( )A .点 A 的左边B .点 A 与 B 之间C .点 B 与 C 之间D .点 C 的右边6. 定义一种新运算:a ⋇b ={a −b,a ≥b3b,a <b ,则 2⋇3−4⋇3 的值 ( )A . 5B . 8C . 7D . 67. 已知 4−∣5−b∣−∣a +2∣=∣4+a∣+∣b −3∣,则 ab 的最大值是 ( ) A . −12 B . 20 C . −20 D . −68. 如图所示,数轴上点 A ,B 对应的有理数分别为 a ,b ,下列说法正确的是 ( )A . ab >0B . a +b >0C . ∣a∣−∣b∣<0D . a −b <09. 王老师有一个实际容量为 1.8 GB (1 GB =220 KB ) 的 U 盘,内有三个文件夹.已知课件文件夹占用了 0.8 GB 的内存,照片文件夹内有 32 张大小都是 211 KB 的旅行照片,音乐文件夹内有若干首大小都是 215 KB 的音乐.若该 U 盘内存恰好用完,则此时文件夹内有音乐 ( ) 首. A . 28 B . 30 C . 32 D . 3410. 一串数字的排列规律是:第一个数是 2,从第二个数起每一个数与前一个数的倒数之和为 1,则第 2020 个数是 ( ) A . 2B . −2C . −1D . 12二、填空题11. 对于正整数 n ,定义 F (n )={n 2,n <10f (n ),n ≥10,其中 f (n ) 表示 n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=12+32=10.规定 F 1(n )=F (n ),F k+1(n )=F(F (n ))(k 为正整数),例如,F 1(123)=F (123)=10,F 2(123)=F(F 1(123))=F (10)=1.按此定义,则由 F 1(4)= ,F 2019(4)= .12. 有理数 a ,b ,c 在数轴上的位置如图所示,化简:−∣c −a ∣−∣b −a ∣+∣c ∣= .13. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的,绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到野果 个.14. 定义新运算:对任意有理数 a ,b ,c ,都有 a ∗b ∗c =∣a−b−c∣+a+b+c2.例如:(−1)∗2∗3=∣−1−2−3∣+(−1)+2+32=5.将 −716,−616,−516,−416,−316,−216,−116,816,916,1016,1116,1216,1316,1416,1516 这 15 个数分成 5 组,每组 3 个数,进行 a ∗b ∗c 运算,得到 5 个不同的结果,那么 5 个结果之和的最大值是.15.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.×1×22,16.已知:13=1=14×22×32,13+23=9=14×32×42,13+23+33=36=14×42×52,13+23+33+43=100=14⋯根据上述规律计算:13+23+33+⋯+193+203=.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题18.计算:÷(−3)2];(1) −3−[−5+15×35(2) −12022+(−2)×(−3)2−(−2)3÷4.19.已知抛物线G:y=x2−2tx+3( t为常数)的顶点为P.(1) 求点P的坐标;(用含t的式子表示)(2) 在同一平面直角坐标系中,存在函数图象H,点A(m,n1)在图象H上,点B(m,n2)在抛物线G上,对于任意的实数m,都有点A,B关于点(m,m)对称.①当t=1时,求图象H对应函数的解析式;②当1≤m≤t+1时,都有n1>n2成立,结合图象,求t的取值范围.20.阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系,在数轴上,若点A,B分别表示数a,b,则A,B 两点之间的距离为AB=∣a−b∣,反之,可以理解式子∣x−3∣的几何意义是数轴上表示有理数x与有理数3的两点之间的距离.根据上述材料,利用数轴解决下列问题:(1) 若∣x−3∣=2,则x的值为;若∣x−5∣=∣x+1∣,则x的值为‘(2) 当x在什么范围时,∣x−2∣+∣x−5∣有最小值?并求出它的最小值.(3) 若a<2<b,在数轴上是否存在数x,使得∣x−a∣+2∣x−2∣+∣x−b∣的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由.21.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.(1) 直接写出:最小的“和平数”是;最大的“和平数”是.(2) 一个“和平数”,十位数字为方程5x−13=3的解,千位数字与个位数字的比为2:3,百位数字比千位数字小1,求这个“和平数”.(3) 将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.请直接写出:和是3333的所有“相关和平数”.22.某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购数量(本)3321实际购数量与计划购数量的差值(本)+12−8−9(1) 完成表格;(2) 根据记录的数据可知4个班实际一共购书本?(3) 书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届1班实际购书最少花费多少元?23.观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a−b=ab+1成立的一对有理数对“a,b”为“共生有理数对”,记为(a,b).”是不是“共生有理数对”;(1) 通过计算判断数对“−4,2”,“7,34(2) 若(3,x)是“共生有理数对”,求x的值;(3) 若(m,n)是“共生有理数对”,则“−n,−m” 共生有理数对”(填“是”或“不是”),并说明理由.24.计算:已知∣m∣=1,∣n∣=4.(1) 当mn<0时,求m+n的值;(2) 求m−n的最大值.25.如图,圆的半径为2个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分π点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示−1的点重合.(1) 圆的周长为多少?(2) 若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(3) 若将数轴按照顺时针方向绕在该圆上(如数轴上表示−2的点与点B重合,数轴上表示−3的点与点C重合⋯),那么数轴上表示−2018的点与圆周上哪个点重合?答案一、选择题1. 【答案】B【解析】1⊕2=−32=12−221×2,2⊕1=32=22−121×2,(−2)⊕5=2110=(−2)2−52(−2)×5,5⊕(−2)=−2110=52−(−2)25×(−2),⋯,a⊕b=a2−b2ab,∴(−3)⊕(−4)=(−3)2−(−4)2(−3)×(−4)=−712.【知识点】有理数的加减乘除乘方混合运算2. 【答案】C【解析】若原点是A,则a=0,d=7,此时d−2a=7,和已知不符,排除;若原点是点B,则a=−3,d=4,此时d−2a=10,已知不符,排除,若原点是点C,则a=−4,d=3,此时d−2a=11,和已知相符,正确.故数轴的原点应是C点.【知识点】绝对值的几何意义3. 【答案】B【解析】∵√x−1+(y+2)2=0,∴x−1=0,y+2=0,∴x=1,y=−2,∴(x+y)2020=(1−2)2020=1.【知识点】有理数的乘方、算术平方根的性质4. 【答案】C【知识点】有理数的乘法5. 【答案】C【解析】因为AB=BC,a+b<0,b+c>0,a+c<0,所以a<0,b<0,c>0,所以数轴原点O的位置应该在点B与点C之间.故选:C.【知识点】有理数的加法法则及计算、数轴的概念6. 【答案】B【解析】2⋇3−4⋇3 =3×3−(4−3) =9−1=8.【知识点】有理数的乘法7. 【答案】D【解析】4−∣5−b∣−∣a+2∣=∣4+a∣+∣b−3∣即为4=∣5−b∣+∣a+2∣+∣4+a∣+∣b−3∣,由绝对值不等式的性质可得:∣a+2∣+∣a+4∣≥2,∣5−b∣+∣b−3∣≥2,∴−4≤a≤−2,3≤b≤5,∴ab的最大值为−6.【知识点】绝对值的几何意义8. 【答案】D【解析】根据图示,可得a<0<b,而且∣a∣>∣b∣,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且∣a∣>∣b∣,∴a+b<0,∴选项B不正确,选项D正确;∵∣a∣>∣b∣,∴∣a∣−∣b∣>0,∴选项C不正确.【知识点】绝对值的几何意义、利用数轴比较大小9. 【答案】B【知识点】有理数的乘方10. 【答案】A【解析】第一个数是2,倒数是12,第二个数是12,倒数是2,第三个数是−1,倒数是−1.第四个数是2.由规律可知,这串数由2,12,−1循环出现2020÷3=673⋯1,∴ 第 2020 个数是 2. 【知识点】倒数二、填空题11. 【答案】 16 ; 58【解析】 F 1(4)=16,F 2(4)=F (16)=12+62=37,F 3(4)=F (37)=32+72=58,F 4(4)=F (58)=52+82=89, F 5(4)=F (89)=82+92=145,F 6(4)=F (145)=12+52=26, F 7(4)=F (26)=22+62=40,F 8(4)=F (40)=42+0=16,⋯ 通过计算发现,F 1(4)=F 8(4), ∵2019÷7=288⋯3, ∴F 2019(4)=F 3(4)=58. 【知识点】有理数的乘方12. 【答案】 −b【解析】由数轴可知 c <0<a <b , ∴c −a <0,b −a >0, ∴−∣c −a ∣−∣b −a ∣+∣c ∣=c −a −(b −a )+(−c )=c −a −b +a −c =−b.【知识点】绝对值的几何意义13. 【答案】 1838【解析】由题意可知,题图中从右到左依次排列的绳子分别代表绳结数乘 1,6 的 1 次幂,6 的 2 次幂,6 的 3 次幂,6 的 4 次幂,则她一共采集到野果 2×1+3×62+2×63+1×64=1838(个).【知识点】有理数的乘方14. 【答案】158【解析】令 b ,c 取最大的正数 1416,1516,a 取最小的负数 −716, ∴a ∗b ∗c =∣∣−716−1416−1516∣∣−716+1416+15162=158.【知识点】有理数的加减乘除乘方混合运算15. 【答案】 1838【解析】 2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838. 【知识点】有理数的乘方16. 【答案】44100【解析】∵13=14×12×22,13+23=14×22×32,13+23+33=14×32×42,∴13+23+33+⋯+193+203=14×202×212=44100.【知识点】有理数的乘方17. 【答案】1838【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838.【知识点】有理数的乘法三、解答题18. 【答案】(1)−3−[−5+15×35÷(−3)2]=−3−(−5+15×35÷9)=−3−(−5+9÷9)=−3−(−5+1)=−3−(−4)=−3+4= 1.(2)−12022+(−2)×(−3)2−(−2)3÷4 =−1+(−2)×9−(−8)÷4=−1+(−18)+2=−17.【知识点】有理数的加减乘除乘方混合运算19. 【答案】(1) y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3.∴顶点P的坐标为(t,−t2+3).(2) ①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3,∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1,整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;②关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3,由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3.∴图象H的解析式为:y H=−x2+2tx+2x−3.配方,得y H=−[x−(t+1)]2+(t2+2t−2)∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c的图象20. 【答案】(1) 5或1;2(2) 当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3,当x>5时,x−2+x−5=2x−7>3,当2≤x≤5时,x−2+5−x=3,当x<2时,2−x+5−x=7−2x>3,故当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3.(3) ∵∣x−a∣+2∣x−2∣+∣x−b∣表示数x分别与a,2,b的距离之和,∴x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,∵a<2<b,∴∣x−a∣+2∣x−2∣+∣x−b∣的最小值是2−a+b−2=b−a.故x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,最小值是b−a.【解析】(1) ∵∣x−3∣=2,∴x−3=±2,∴x=5或1,∵∣x−5∣=∣x+1∣,∴x=2,故为5或1;2.【知识点】绝对值的几何意义21. 【答案】(1) 1001;9999.(2) x=2;6529.(3) 1212与2121;1221与2112;1203与2130;1230与2103.【知识点】一元一次方程的解、有理数的加法法则及计算22. 【答案】(1) 由于4班实际购入21本书,实际购入数量与计划购入数量的差值=−9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33−30=3本,3班实际购入数量=30−8=22本.故答案依次为42,+3,22.(2) 118(3) 如果按甲方案购书,花费=30×38=1140(元)(购买两次),如果按乙方案购书,则共花费=30×42×90%=1134(元).故按乙方案购入书花费最少为1134元.【解析】(2) 4个班一共购入数量=42+33+22+21=118本,另解:4个班一共购入数量=30×4+12+3−8−9=118.故答案为118.【知识点】有理数减法的应用、有理数乘法的应用、有理数加法的应用23. 【答案】(1) −4−2=−6,−4×2+1=−7,∴−4−2≠−4×2+1,∴“−4,2”不是“共生有理数对”;∵7−34=614,7×34+1=614,∴7−34=7×34+1,∴(7,34)是共生有理数对.(2) 由题意得:3−x=3x+1,解得x=12.(3) 是理由:−n−(−m)=−n+m,−n⋅(−m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m−n=mn+1,∴−n+m=mn+1,∴(−n,−m)是“共生有理数对”.【知识点】有理数的乘法、有理数的减法法则及计算、解常规一元一次方程24. 【答案】(1) 因为∣m∣=1,∣n∣=4,所以m=±1,n=±4,因为mn<0,所以m=1,n=−4或m=−1,n=4,所以m+n=±3.(2) m=1,n=4时,m−n=−3;m=−1,n=−4时,m−n=3;m=1,n=−4时,m−n=5;m=−1,n=4时,m−n=−5;所以m−n的最大值是5.【知识点】有理数的减法法则及计算、有理数的加法法则及计算25. 【答案】(1) 圆的周长=2π⋅2π=4个单位长度.(2) 若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度,此时与点A重合的点表示的数为:8−1=7.(3) 由图可知,每4个数为一个循环组依次循环,∵2018÷4=504⋯2,∴表示−2018的点是第505个循环组的第2个数B重合.【知识点】数轴的概念、圆的周长。
第二 章 有理数及其运算 单元复习 22—23学年北师大版数学七年级上册
加法的交换律: a+b=b+a.
加法的结合律: (a+b)+c=a+(b+c
).
探究新知
方法点拨
使用运算律通常有下列情形:
(1)互为相反数的加数放在一起相加(相反数结合法);
(2)能凑整的加数放在一起相加(凑整法);
(3)同号的加数放在一起相加(同号结合法) ;
(4)同分母或易于通分的分数放在一起相加(同分母结合法).
负数的奇数次幂是负数.
当指数不断增加时,底数大于1 的幂的增长速度相当快 .
底数为10的幂的特点:10的n次幂
等于1的后面有n个0.
把一个大于10的数,写成 a×10n 的形式,其中1≤a<10,n是__正整数
_____,这种方法叫做科学记数法.
方法点拨:用科学记数法表示大于10的数的“三步法”
1.定a:确定a,a必须满足1≤a<10;
注意:一个数可以看作这个数本身的一次方,例如8就
是81,通常指数为1时省略不写.
当底数是负数或分数时一定要用括号把底数括起来.
探究新知
结论:正数的任何次幂都是正数.
负数的偶次幂是正数;负数的奇次幂是负数.
0的任意正整数次幂都是0.
利用有理数的乘方解决实际问题时,关键是找到
每次变化后所得的结果与变化次数之间的关系.
-8 + 10 - 6 - 4 ,看作和式,读作“负8、正10、负6、负4的
和”,按运算意义可读作“负8加10减6减4”.
有同分母、有相反数、有整数进行有理数的加减
混合运算时,可以考虑加法的交换律、结合律使
运算简便,在利用运算律时要注意:1.相加得整的
可先相加;2.同分母的可先相加;3.互为相反数的可
北师大版数学七年级上册 有理数单元复习练习(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.2.通过学习绝对值,我们知道的几何意义是数轴上表示数在数轴上的对应点与原点的距离,如:表示在数轴上的对应点到原点的距离. ,即表示、在数轴上对应的两点之间的距离,类似的, ,即表示、在数轴上对应的两点之间的距离;一般地,点,在数轴上分别表示数、,那么,之间的距离可表示为 .请根据绝对值的几何意义并结合数轴解答下列问题:(1)数轴上表示和的两点之间的距离是________;数轴上、两点的距离为,点表示的数是,则点表示的数是________.(2)点,,在数轴上分别表示数、、 ,那么到点 .点的距离之和可表示为_ (用含绝对值的式子表示);若到点 .点的距离之和有最小值,则的取值范围是_ __.(3)的最小值为_ __.【答案】(1)2;1或7(2)|x+1|+|x-2||-1≤x≤2(3)3【解析】【解答】解:(1)数轴上表示2和4的两点之间的距离是4-2=2;数轴上P、Q两点的距离为3,点P表示的数是4,则点Q表示的数是4-3=1或4+3=7;( 2 )A到B的距离与A到C的距离之和,可表示为|x+1|+|x-2|,∵|x-3|+|x+2|=7,当x<-1时,|x+1|+|x-2|=2-x-x-1=1-2x无最小值,当-1≤x≤2时,|x+1|+|x-2|=x+1+2-x=3,当x>2时,x+1+x-2=2x-1>3,故若A到点B、点C的距离之和有最小值,则x的取值范围是-1≤x≤2;(3)原式=|x-1|+|x-4|.当1≤x≤4时,|x-1|+|x-4|有最小值为|4-1|=3故答案为:(1)2,1或7;(2)|x+1|+|x-2|,-1≤x≤2;(3)3【分析】(1)根据数轴上两点间的距离的求法“数轴上两点间的距离即数轴上表示两个点的数的差的绝对值.”可求解;(2)同理可求解;(3)由(2)中求得的x的取值范围去绝对值,然后合并同类项即可求解.3.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .(1)求,,的值;(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.【答案】(1)解:∵是最大的负整数,∴b=-1,∵,∴a=-3,c=6(2)解:设当点与点重合时,对折点为D,则D点的坐标为(-2,0),∴此时与点重合的点对应的数是-10(3)解:由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非负数的和为0,则这两个数都为0,求出a,c的值;(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.4.如图,已知A、B两地在数轴上相距20米,A地在数轴上表示的点为-8,小乌龟从A地出发沿数轴往B地方向前进,第一次前进1米,第二次后退2米,第三次再前进3米,第四次又后退4米,……,按此规律行进,(数轴的一个单位长度等于1米)(1)求B地在数轴上表示的数;(2)若B地在原点的左侧,经过第五次行进后小乌龟到达点P,第六次行进后到达点Q,则点P和点Q到点A的距离相等吗?请说明理由;(3)若B地在原点的右侧,那么经过30次行进后,小乌龟到达的点与点B之间的距离是多少米?【答案】(1)解:, .答:地在数轴上表示的数是12或(2)解:令小乌龟从A地出发,前进为“+”,后退为“-”,则:第五次行进后相对A的位置为:,第六次行进后相对A的位置为:,因为点、与点的距离都是3米,所以点、点到地的距离相等(3)解:若地在原点的右侧,前进为“+”,后退为“-”,则当为100时,它在数轴上表示的数为:,∵B点表示的为12.∴AB的距离为(米 .答:小乌龟到达的点与点之间的距离是70米【解析】【分析】(1)由已知A,B两地在数轴上的距离为20米,且A地在数轴上表示的数为-8,可得到B地可能在A地的左边,也可能在A地的右边,然后列式可求出B地在数轴上表示的数。
新北师大版七年级上册数学第二章 有理数及其运算
基础认识篇
1、中国人最早使用负数,可追溯到两千年前的秦汉时期.﹣5 的相反数是( )
A.±5
B.5
C.
D.﹣
2、一个数的相反数是它本身,则这个数是( )
A.0
B.正数
C.负数
D.非负数
3、若 a+b=0,则 a 和 b 的关系为(
A.相等
B.互为倒数
) C.互为相反数
2、“0”的认识:0 既不是正数,也不是负数。 (易错提示:0 除了表示“一个也没有”外,还表示特定的意义。0 是最小的自然数)
基础认识篇
1、已知下列各数:﹣23,﹣101.1, ,﹣ ,﹣0.1,2.8,38,0,+1,
其中正数有:
,负数有:
.
2、在一次军事训练中,一架直升机“停”在离海面 80m 的低空,一艘潜水
A.
B.3
C.﹣
D.﹣3
3、下列说法正确的是( )
①﹣2 是相反数;②2 是相反数; ③﹣2 与 2 互为相反数;④a 的相反数是﹣
a; ⑤0 没有相反数.
A.1 个
B.2 个
C.3 个
D.4 个
4、若 n 与 m 互为相反数,则 n+m=
.
5、下列各对数中互为相反数的是( A.﹣(+8)和+(﹣8) C.﹣(+8)和﹣8
2、﹣|﹣2019|的值是( )
A.
B.
C.﹣2019
基础认识篇
1、把下列各数填在相应的集合里 ﹣23,0.21,﹣ ,﹣3.4,15,0,7,1.6,0.86,﹣7.3
分数集合:{ 整数集合:{
…} 非负整数集合:{ …} 自然数集合:{
北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]
北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题 1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。
北师大版七年级数学上册第二章有理数及其运算练习题及答案全套
北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米B.+50米C.可能是+50米,也可能是-50米D.以上都不对3.下面的说法错误的是().A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数B.负数C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧B.右侧C.左侧或者右侧D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数B.大于另一个数的相反数C.等于另一个数的相反数D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05(2)(3)(4)-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则()A.B.C.D.2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.和的大小由两个加数的符号而定D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A.B.(-2)+(+2)=4C.D.(-71)+0=-713.如图,下列结论中错误的是()A.B.C.D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数差是正数D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23)D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加(1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0B.小于0C.大于或等于0D.小于或等于03.若,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________.987×(-9)+3=_________.__________________________.__________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30(2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B.C.D.2.已知,当时,,当时,的值是( ) .A.B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系..3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化..。
北师大版初中数学七年级上册知识讲解,巩固练习:第8讲第2章《有理数及其运算》全章复习和巩固(含答案)
《有理数及其运算》全章复习与巩固【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作.(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.π--a要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , . 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,1b2(3)9-=3(3)27-=-正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法把一个大于10的数表示成的形式(其中1≤,是正整数),此种记法叫做科学记数法.例如:200 000=.【典型例题】 类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【变式】(1)的倒数是 ;的相反数是 ;的绝对值是 . -(-8)的相反数是 ;的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .(4) 若a 、b 互为相反数,c 、d 互为倒数,则____ . 【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3; 10na ⨯10a <n 5210⨯321-321-321-21-=++)(323b a cd 35-21321333.7510⨯2.(2018•杭州模拟)已知|x|=|﹣3|,则x 的值为 . 【思路点拨】根据题意可知|x|=3,由绝对值的性质,即可推出x=±3. 【答案】±3.【解析】解:∵|﹣3|=3,∴|x|=3,∵|±3|=3,∴x=±3.【总结升华】本题主要考查绝对值的性质,关键在于求出3和﹣3的绝对值都为3. 3.在下列两数之间填上适当的不等号:________. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 <【解析】解法一:作差法由于,所以 解法二:倒数比较法:因为所以 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.200520062006200720052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯2005200620062007<2006112007112005200520062006=+>+=2005200620062007<举一反三:【变式】(2018•宁德)有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .a+b <0B . a ﹣b <0C . a•b>0D . >0【答案】B . 类型二、有理数的运算4.(2019•厦门)计算:.【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【答案与解析】解:原式=10+8×﹣2×5=10+2﹣10=2.【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:【变式】计算:(1) (2)【答案】解:(1) (2)11(2)(2)22-⨯÷⨯-()20064261031-+--⨯-111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-=()20064261031-+--⨯-=-16+4-3×1=-15类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系.A .-a <a <1B .1<-a <aC .1<-a <aD .a <1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y 的值.(3)转化思想:计算: 【答案与解析】解:(1)将-a 在数轴上标出,如图所示,得到a <1<-a ,所以大小关系为:a <1<-a . 所以正确选项为:D .(2)因为| x|=5,所以x 为-5或5因为|y|=3,所以y 为3或-3.当x =5,y =3时,x-y =5-3=2当x =5,y =-3时,x-y =5-(-3)=8当x =-5,y =3时,x-y =-5-3=-8当x =-5,y =-3时,x-y =-5-(-3)=-23135()147⎛⎫-÷- ⎪⎝⎭故(x-y )的值为±2或±8(3)原式= 【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】若a 是有理数,|a|-a 能不能是负数?为什么?【答案】解: 当a >0时,|a|-a =a-a =0;当a =0时,|a|-a =0-0=0;当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.类型四、规律探索6.将1,,,,,,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】 33135(7)357724614142⎛⎫--⨯-=⨯+⨯= ⎪⎝⎭12-1314-1516-1200-【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.【巩固练习】一、选择题1.(2019•益阳)的相反数是( )A .2019B .﹣2019C .D .2.(2018•菏泽)如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB . 点NC . 点PD . 点Q3. 在-(-2),-|-7|,-|+1|,|-)511(-|32+,中,负数的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×210人B .202×810人C .2.02×910人D .2.02×1010人5.若-1<a<0,则a ,2a ,a1从小到大排列正确的是( ) A .a 2<a<a 1 B .a <a 1< a 2 C .a 1<a< a 2 D .a < a 2 <a1 12101210-1200-6.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或67.a,b 两数在数轴上的位置如图,则下列正确的是( )A . a+b>0B . ab>0C .ba >0 D .a-b>0 8.已知有理数a ,b 在数轴上对应的两点分别是A ,B .请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b -二、 填空题9.(2018•湖州)计算:23×()2= .10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米.12.7=x ,则______=x ; 7=-x ,则______=x . 13.已知实数a , 在数轴上如下图所示,则|1|-a = .14.若|a-2|+|b+3|=0,则3a+2b= .15.()221---= .16.(2019春•江苏校级期末)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…你从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32019的个位数字是 .三、 解答题17.计算:(1)222172(3)(6)3⎛⎫-+⨯-+-÷- ⎪⎝⎭ (2)4211(10.5)[2(3)]3---⨯⨯--(3)21-49.5+10.2-2-3.5+19 (4)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭18.已知a 、b 互为倒数,c 、d 互为相反数,且x 的绝对值为3,求2x 2-(ab-c-d)+|ab+3|的值.19.(2018•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2018年用电量为3000度,则2018年小敏家电费为多少元?20.先观察下列各式: 11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭;11117103710⎛⎫=- ⎪⨯⎝⎭;...;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算:1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】一、选择题1.【答案】C【解析】解:∵﹣与只有符号不同,∴﹣的相反数是.故选:C .【解析】∵点M ,N 表示的有理数互为相反数. ∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .3.【答案】 C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-+4.【答案】D5.【答案】C 【解析】由-1<a<0可知2a 为正数,而其它两数均为负数,且| a |<a 1,所以a >a1,所以a1<a< a 2. 6.【答案】D【解析】2.5+3.5=6, 2.5-3.5=-17.【答案】D【解析】由图可知,a 、b 异号,且b 的绝对值较大.8.【答案】D【解析】按正负对a ,b 分类讨论.二、填空题9.【答案】2.【解析】23×()2=8×=2.10.【答案】水位无变化11.【答案】1.02×101412.【答案】7,7±±【解析】由图可知:a-1<0,所以│a-1│=-(a-1)=1- a14.【答案】0【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0;15.【答案】-5【解析】()221415---=--=-16.【答案】1【解析】解:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,……,∵2019÷4=504,∴32019的个位数字与第4个数的个数数相同,是1.故答案为:1.三、解答题17.【解析】解: (1) 原式1 4929(6)9 =-+⨯+-÷4918(6)949185485 =-++-⨯=-+-=-(2) 原式1111115 11[2(9)]11112 232366⎛⎫=---⨯⨯--=--⨯⨯=--=- ⎪⎝⎭(3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8(4) 原式=322 33519422519435⎡⎤⎛⎫⎛⎫⎛⎫-⨯--⨯+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2794319162700 8251943258⎛⎫=-⨯-⨯+=-⨯=⎪⎝⎭18.【解析】解:将ab=1,c+d=0,|x|=3代入所给式子中得: 2×32-1+|1+3|=21.所以2x2-(ab-c-d)+|ab+3|=2119.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元),则2018年小敏家电费为1446元.20.【解析】解:原式11111111111 1343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+-⎪⎝⎭1113200812007320086692008⎛⎫=-⎪⎝⎭=⨯=。
期末复习(一) 有理数及其运算-北师大版七年级数学上册作业课件
次测量数据的部分记录(用A-C表示观测点A相对观测点C的高度):
A-C C-D E-D F-E G-F B-G
90米 80米 -60米 50米 -70米 40米
根据这次测量的数据,可得观测点A相对观测点B的高度是( A )
A.210米
B.130米
C.390米
D.-210米
二、填空题(每小题3分,共15分)
重难点3 科学记数法
【例3】 森林是地球之肺,每年能为人类提供大约28.3亿吨的有
机物,28.3亿用科学记数法表示为( D )
A.28.3×107
B.2.83×108
C.0.283×1010
D.2.83×109
科学记数法的表示形式为a×10n,其中1≤a<10,n为正整数,表 示时关键要正确确定a的值以及n的值.
14.请把0,-2.5,
1 3
,-
1 2
,8,0.75这六个数按从小到大,从左
到右串成糖葫芦.
依次应填: -2.5,-12,0,13,0.75,8
.
期末复习(一) 有理数及其运算 期末复习(一) 有理数及其运算
期 期末末复复习 习((一一))15有 有.理 理数 数根及 及其 其据运 运算 算如图所示的程序计算,若输入x的值为1,则输出y的值
11.王老师把数学测验成绩高于班级平均分8分的记为+8分,则
低于平均分5分的可记为 -5 分.
12.据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2
800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法
可表示为 2.8×106
人.
13.计算12-7×(-4)+8÷(-2)的结果是 36 .
期末复习(一) 有理数及其运算
2024年北师大版七年级上册数学第二章有理数及其运算培优提升专题3:有理数的乘除运算
-
1 42
÷
1 3
-
5 21
+
3 14
-
2 7
.
解:先算
1 3
-
5 21
+
3 14
-
2 7
÷
-
1 42
3
-
5 21
+
3 14
-
2 7
×(-42)=-1,-1的
倒数是-1,
所以
-
1 42
÷
1 3
-
5 21
+
3 14
-
2 7
=-1.
·数学
4.(2024北京一模)若a,b,c都是有理数,|a|=4,|b|=9,|c| =6,且ab>0,bc<0,求a-b-(-c)的值.
解:∵|a|=4,|b|=9,|c|=6, ∴a=±4,b=±9,c=±6. 由ab>0,bc<0知a,b同号,b,c异号, 当a=4时,b=9,c=-6,a-b-(-c)=4-9-6=-11; 当a=-4时,b=-9,c=6, a-b-(-c)=-4-(-9)+6=11. 综上所述,a-b-(-c)的值为-11或11.
第二章 有理数及其运算
培优提升专题3:有理数的乘除运算
·数学
1.下面是小明同学完成的作业,他做对的题数是( C ) 判断题.(正确的打“√”,错误的打“×”) (1)-112的倒数是-23;(√) (2)若|a|=2,则a的值为2或-2;(√) (3)-12的相反数是2;(√) (4)绝对值等于它本身的数只有1;(√) (5)倒数等于它本身的数只有1和-1.(√)
A.1 B.2 C.3 D.4
·数学
2.有理数a,b在数轴上的位置如图所示,则下列结论中:
北师大版七年级数学上有理数分类复习题学习资料
北师大版七年级数学上有理数分类复习题学习资料北师大版七年级数学上有理数分类复习题11有理数复习知识点1:有理数的基本概念(有理数数轴相反数绝对值)有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.板块一、基本概念例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是()①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0 B.1 C.2 D.32、下面关于有理数的说法正确的是().A.有理数可分为正有理数和负有理数两大类. B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数板块二、数轴、相反数、倒数、绝对值3、a和b是满足ab≠0的有理数,现有四个命题:( ) A. 1个 B. 2个 C. 3个 D. 4个①22 4a b -+的相反数是224ab-+;②a b-的相反数是a的相反数与b的相反数的差;③ab的相反数是a的相反数和b的相反数的乘积;④ab的倒数是a的倒数和b的倒数的乘积.其中真命题有4、一个数的绝对值大于它本身,那么这个数是( )A、正有理数 B、负有理数 C、零 D、不可能5、数轴上离开原点2个单位长度的点表示的数是____________;6、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有________个,非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学上有理数分类复习题有理数复习知识点1:有理数的基本概念(有理数数轴相反数绝对值)有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.板块一、基本概念例题讲解1、选择下面是关于0的一些说法,其中正确说法的个数是()①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数. A.0 B.1 C.2 D.32、下面关于有理数的说法正确的是().A.有理数可分为正有理数和负有理数两大类. B. 正整数集合与负整数集合合在一起就构成整数集合C. 整数和分数统称为有理数D. 正数、负数和零的统称为有理数板块二、数轴、相反数、倒数、绝对值3、a和b是满足ab≠0的有理数,现有四个命题:( ) A. 1个 B. 2个 C. 3个 D. 4个①22 4a b -+的相反数是224ab-+;②a b-的相反数是a的相反数与b的相反数的差;③ab的相反数是a的相反数和b的相反数的乘积;④ab的倒数是a的倒数和b的倒数的乘积.其中真命题有4、一个数的绝对值大于它本身,那么这个数是( )A、正有理数 B、负有理数 C、零 D、不可能5、数轴上离开原点2个单位长度的点表示的数是____________;6、有理数-3,0,20,-1.25,1.75,-∣-12∣,-(-5)中,正整数有________个,非负数有______个;7、绝对值最小的有理数是________;绝对值等于3的数是______; 绝对值等于本身的数是_______;绝对值等于相反数的数是_________数;一个数的绝对值一定是________数。
8、-2.5的相反数是________,绝对值是________,倒数是________。
9、平方是它本身的数是 ;倒数是它本身的数是 ; 相反数是它本身的数是 ;立方是它本身的数是 。
绝对值小于4的所有整数的和是________;绝对值大于2且小于5的所有负整数的和是________。
10、在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 知识点2:比较大小比较大小的主要方法:① 代数法:正数大于非正数,零大于负数,对于两个负数,绝对值大的反而小. ② 数轴法:数轴右边的数比左边的数大.③ 作差法:0a b a b ->⇔>,0a b a b -=⇔=,0a b a b -<⇔<. ④ 作商法:若0a >,0b >,1a a b b >⇔>,1a a b b =⇔=,1a a b b<⇔<. ⑤ 取倒法:分子一样,通过比较分母从而判定两数的大小.⑥中间值法 板块一、数轴法1、a 、b 为有理数,在数轴上如图所示,则( )A .111a b <<B .111a b <<C .111b a <<D .111b a<<2、数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系3、若有理数a b ,在数轴上的位置如图所示,则下列各式中错误的是( ) A .2ab -< B .11ba>- C .12a b +<- D .1ba<-x4、在数轴上画出表示12.540252--,,,,各数的点,并按从小到大的顺序重新排列,用“<”;连接起来5、实数a b ,在数轴上的对应点如图,试比较a a b b a b a b --+-,,,,,的大小板块二、代数法 6、比较大小:12- 23-7、把四个数..2.371 2.37% 2.37---,, 和 2.37- 用“<”号连接起来8、比较23-,58-,1523-,1017-,1219-的大小. 9、已知01x <<,则2x ,x ,1x 的大小关系是什么?10、 若1a m <<,则21m m m,,的大小关系11、 如果10a -<<,请用“<”将a ,a -,2a ,2a -,1a ,1a-连接起来.12、 若20072008a =,20082009b =,试不用..将分数化小数的方法比较a ,b 的大小. 练习:1、比较大小:﹣1112____﹣1213; 56___67-- 20082009___20092010-- 2、把-31,-32,-0.3,-0.33按从大到小的顺序排列是_________________;3、当a >0时,a ,a 21,a 32,-2a ,3a ,由小到大的排列顺序为___________________;4、,下列说法中,正确的是( );A 、若│a ∣>│b ∣,则a >b;B 、若│a ∣= │b ∣,则a=b;C 、若22a b f ,则a >b;D 、若0<a <1,则a <a1。
5、a,b 两数在数轴上的位置如图,则下列说法不正确的是( ); │ │ │ A 、 a+b <0 B 、 ab <0 C 、ba<0 D 、a-b <0 b 0 a 6、如果a 、b 两有理数满足a>0,b<0,a <b ,则下面关系式中正确的是( )A、-a<b<a<-bB、b<-a<a<-bC、-a<-b<b<aD、b<-a<-b<a知识点3:运算及运算法则有理数加法法则:有理数加法的运算步骤:有理数加法的运算律:有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起. 有理数减法法则:有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.板块二、有理数基本乘法、除法Ⅰ:有理数乘法法则:有理数乘法运算律:有理数乘法法则的推广:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.②几个数相乘,如果有一个因数为0,则积为0.③在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算.在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.Ⅱ:有理数除法法则例题讲解:板块一、有理数的加减运算1、下列各组数中,数值相等的是()A 、-(-2)和+(-2); B、-2 2 和(-2)2;C、-32 和(-3)2 ; D、—2 3 和(-2)2、两数相加,其和小于每一个加数,那么( ).A 、这两个数相加一定有一个为零.B 、这两个加数一定都是负数.C 、这两个加数的符号一定相同.D 、这两个加数一正一负且负数的绝对值大 3、计算: ⑴21(4)(3)33-+- ⑵21(6)(9)|3|7.49.2(4)55-+-+-+++- ⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+ ⑸5317(9)15(3)(22.5)(15)124412-++-+-+- ⑹1132|1()|3553-----⑺434(18)(53)(53.6)(18)(100)555-+++-+++-⑻ 4.7( 3.3)( 5.6)( 2.1)--+---- ⑼1111(3)[(3)3](3)4444⎡⎤-------⎢⎥⎣⎦板块二、有理数的乘除运算1.奇数个负数相乘,积的符号为 , 个负数相乘,积的符号为正.2.计算下列各题:⑴()30.250.57045⎛⎫-⨯⨯-⨯ ⎪⎝⎭; ⑵()110.0333323⎛⎫⎛⎫-⨯⨯- ⎪ ⎪⎝⎭⎝⎭⑶735(1)(36)1246⎡⎤-+---⨯-⎢⎥⎣⎦⑷111(0.25)(5)( 3.5)()2244-⨯-+⨯-+-⨯ ⑸114()1()16845-⨯⨯-⨯ ⑹11171113()71113⨯⨯⨯++ 3、计算⑴111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; ⑵()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭⑶231(4)()324+÷⨯÷-;⑷71()2(3)93-÷⨯+ ⑸11111()()234560-+-÷-; ⑹44192()77÷-4、n 为正整数时,(-1)n +(-1)n +1的值是( )A.2 B.-2 C.0 D.不能确定5、混合运算:3520(4)-⨯+÷- 13+(+7)-(-20)-(-40)-(+6) 42000223(1)(2)-+⨯---753(36)964⎛⎫-+-⨯- ⎪⎝⎭51125()610-÷⨯- ()()232 5.524--⨯--÷ ()()233535162450.6258⎛⎫-⨯-+÷---⨯+- ⎪⎝⎭()20092010144⎛⎫⨯- ⎪⎝⎭= ()()201120100.1258-⨯-= 12552n n+⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭=6、字母相关的运算 已知|a |=5,|b |=2,ab <0. 求:3a +2b 的值知识点四、字母相关的运算1、若2,3==b a ,则=+b a ________。
2、若,3,4,==-=-n m m n n m 则=-n m ________。
3、若92=x ,则x 得值是 ;若83-=a ,则a 得值是 .4、61-+x 的最小值是 ,此时2009x = 。