试论过圆、椭圆、双曲线上一点的切线方程的统一性

合集下载

试论过圆、椭圆、双曲线上一点的切线方程的统一性

试论过圆、椭圆、双曲线上一点的切线方程的统一性

攀, 其 一 (1) 即’一 一呵 一 1, 将 ” 入、 ‘ ”得kin"kilo 代 一 即 p ”’ ‘ ’ “ ‘ 一
匕几叼 = 900.

(b2k2+ a2)x2一 b2k3娜
+b4 一,” , 一 则一bk 一 22+a2 望 △, 6 4(bk )( 24

事实上, 于平面上的任意椭圆与抛物线 由
x o 一m yo 一n

a2Y 一 Y = b2X X一 X , , oy a2y2 a O O b2x2( ) 0 : M 在 线 … x若 a2端二 双曲 上, 护 一 护护,
切线方程为

L2
_ .. , v
,_ _ 一
y 一 一 a2’ - n kx 一 y” 而二元 x01’
b2(x。 一m) (x 一 + a2(y。 ) (y 一 xo) 一n
_ 2
门 才 ,气 一 丫 于 产 二 J
, ,, 。
+1 一,, 普 8 0 即。 一 5
9

I L 、 工0
1 5 , 丈 9 一1 上求一点, 例3 在双曲线 x2一 一 使
一 5
、 1 2
r }') l 一 二~ ~ 、j
。 , 9
x 0, / 5一 T 、奋 it i
丫 少
1, 解之
用联系的 观点学习中学数学, 可使分散的 知识得到集中, 孤立的 知识得到统一, 这对于我 们构建知识网络, 有着重要意义.
证明: 由对称性知, 只要证明,
在 x 轴上 部分即可.
_ 互
轴上 部分即可.
x
了 x2,y a2一
b

31圆与椭圆抛物线双曲线相切的性质

31圆与椭圆抛物线双曲线相切的性质

· 32·
中学数学研究
2015 第 2 期
少? ( 数学通讯 2012 年 12 下半月第 31 页问题 221 ) 学生提出解法: 以点 A 为 圆心, 1 为半径的圆的方程为 2 + y2 = 1 , 则 ︴ PA ︴ 取 ( x - a) 最小值时圆与椭圆相切, 于是 2 2 ( x - a) + y = 1 , 有 x2 5 x2 y2 + = 1 9 4 - 18 ax + 9 a2 + 27 = 0 在 x ∈ 图1 [ - 3, 3 ]上有两相等实根. 由
举了应用判别式与韦达定理解题的常见错误文2中例举了一类圆锥曲线交点问题的常用解法以上文献中好的地方是举例全面不足之处是没有对为什么用判别式解题会出现错误的原因加以说本文就学生在平时训练过程中产生的问题做了分析找到了在某些特定条件下一定满足相关性质请大家斧正
2015 年第 2 期 = - xtanα, 分别与 QA 方程联立, 得 yA =
a2 为定值. 所以 P 点 c y0 的轨迹是焦点 F1 对应的准线. 又因为 k PF = , x0 + c 由 ③, ④ 化简可得 x0 = x0 = y0 b2 x a2 , 所以 k PF ·k AB = · ( - 2 0 )= c x0 + c a y0 a2 ) c
= - 1, 即 PF1 ⊥ AB. a2 a[ ( - )+ c] c 双曲线、 抛物线的证明类似, 从略. 圆锥曲线的经典性质及结论近年来受到更多的 重视, 散见于各地的高考及模拟试题中, 教师要加强 研究, 以便更好的指导教学.
a y0 c y c2 c2 x - 20, 令 y = 0 得 x = 2 x0 , 令 m = 2 x0 , 易知 2 b x0 b a a

专题 切线与切点弦问题-高考数学大一轮复习

专题 切线与切点弦问题-高考数学大一轮复习

专题36 切线与切点弦问题【方法技巧与总结】1、点()00 M x y ,在圆222x y r +=上,过点M 作圆的切线方程为200x x y y r +=.2、点()00 M x y ,在圆222x y r +=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为200x x y y r +=.3、点()00 M x y ,在圆222x y r +=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为直线200x x y y r +=.4、点()00 M x y ,在圆222()()x a y b r -+-=上,过点M 作圆的切线方程为()()200()()x a x a y b y b r --+--=.5、点()00 M x y ,在圆222()()x a y b r -+-=外,过点M 作圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()()200()()x a x a y b y b r --+--=.6、点()00 M x y ,在圆222()()x a y b r -+-=内,过点M 作圆的弦AB (不过圆心),分别过 A B ,作圆的切线,则两条切线的交点P 的轨迹方程为()()200()()x a x a y b y b r --+--=.7、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>上,过点M 作椭圆的切线方程为00221x x y y a b +=.8、点()00 M x y ,在椭圆2222x y a b +=1(0)a b >>外,过点M 作椭圆的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为00221x x y ya b+=. 9、点()00 M x y ,在椭圆2222x y a b+=1(0)a b >>内,过点M 作椭圆的弦AB (不过椭圆中心),分别过A B ,作椭圆的切线,则两条切线的交点P 的轨迹方程为直线02x x a +021y yb=. 10、点()00 M x y ,在双曲线2222x y a b -=1(0 0)a b >>,上,过点M 作双曲线的切线方程为00221x x y y a b -=.11、点()00 M x y ,在双曲线22x a-221(0 0)y a b b =>>,外,过点M 作双曲线的两条切线,切点分别为A B ,,则切点弦AB 的直线方程为00221x x y ya b-=. 12、点()00 M x y ,在双曲线22x a -221(0 0)y a b b =>>,内,过点M 作双曲线的弦AB (不过双曲线中心),分别过 A B ,作双曲线的切线,则两条切线的交点P 的轨迹方程为直线00221x x y ya b-=. 13、点()00 M x y ,在抛物线2y =2(0)px p >上,过点M 作抛物线的切线方程为()00y y p x x =+.14、点()00 M x y ,在抛物线2y =2(0)px p >外,过点M 作抛物线的两条切线,切点分别为 A B ,,则切点弦AB 的直线方程为()00y y p x x =+.15、点()00 M x y ,在抛物线2y =2(0)px p >内,过点M 作抛物线的弦AB ,分别过 A B ,作抛物线的切线,则两条切线的交点P 的轨迹方程为直线()00y y p x x =+.【题型归纳目录】 题型一:切线问题 题型二:切点弦过定点问题题型三:利用切点弦结论解决定值问题 题型四:利用切点弦结论解决最值问题 题型五:利用切点弦结论解决范围问题 【典例例题】 题型一:切线问题例1.已知平面直角坐标系中,点(4,0)到抛物线21:2(0)C y px p =>准线的距离等于5,椭圆22222:1(0)x y C a b a b+=>>,且过点. (1)求1C ,2C 的方程;(2)如图,过点(E m ,0)(2)m >作椭圆2C 的切线交1C 于A ,B 两点,在x 轴上取点G ,使得AGE BGE ∠=∠,试解决以下问题:①证明:点G 与点E 关于原点中心对称;②若已知ABG ∆的面积是椭圆2C 四个顶点所围成菱形面积的16倍,求切线AB 的方程.【解析】(1)解:因为点(4,0)到抛物线1C 的准线2px =-的距离等于5, 所以452p +=,解得2p =,所以抛物线1C 的方程为24y x =; 因为椭圆2C,且过点,所以222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪-=⎪⎪⎩,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=;(2)①证明:因为2m >,且直线AB 与椭圆2C 相切, 所以直线AB 的斜率存在,设直线AB 的方程为()y k x m =-, 联立22()14y k x m x y =-⎧⎪⎨+=⎪⎩,得22222(41)8440k x k mx k m +-+-=, 因为直线AB 与椭圆2C 相切,所以△42222644(41)(44)0k m k k m =-+-=,即2214k m =-,联立2()4y k x m y x=-⎧⎨=⎩,得2440ky y km --=,设1(A x ,1)y ,2(B x ,2)y ,则12124,4y y y y m k+==-;设(,0)G t ,因为AGE BGE ∠=∠,所以0AG BG k k +=, 则12120y yx t x t+=--,即211212()0x y x y t y y +-+=, 即121212()()04y y y y t y y +-+=,又120y y +≠,所以124y y t m ==-,即(,0)G m -, 即点G 与点E 关于原点中心对称;②解:椭圆2C 四个顶点所围成菱形面积为122242S a b ab =⨯⨯==,所以ABG ∆的面积为16464⨯=,则1211||||222ABG S GE y y ∆=-=⨯==,令64,即22(4)256m m m -+=, 即42342560m m m -+-=,即42(256)(4)0m m m -+-=, 即22(4)[(16)(4)]0m m m m -+++=, 即32(4)(51664)0m m m m -+++=,因为2m >,所以4m =,2211412k m ==-,k =所以直线AB 的方程为4)y x =-. 例2.某同学在探究直线与椭圆的位置关系时发现椭圆的一个重要性质:椭圆2222:1(0)x y C a b a b +=>>在任意一点0(M x ,0)y 处的切线方程为00221xx yy a b+=.现给定椭圆22:143x y C +=,过C 的右焦点F 的直线l 交椭圆C 于P ,Q 两点,过P ,Q 分别作C 的两条切线,两切线相交于点G . (1)求点G 的轨迹方程;(2)若过点F 且与直线l 垂直的直线(斜率存在且不为零)交椭圆C 于M ,N 两点,证明:11||||PQ MN +为定值.【解析】(1)解:设直线PQ 为1x ty =+,1(P x ,1)y ,2(Q x ,2)y , 易得在P 点处切线为11143x x y y +=,在Q 点处切线为22143x x y y+=, 由11221,431,43x x y yx x y y ⎧+=⎪⎪⎨⎪+=⎪⎩得2112214()y y x x y x y -=-,又111x ty =+,221x ty =+,可得4x =,故点G 的轨迹方程4x =.(2)证明:联立l 的方程与C 的方程221,1,43x ty x y =+⎧⎪⎨+=⎪⎩消去x ,得22(34)690t y ty ++-=.由韦达定理,得122634t y y t +=-+,122934y y t =-+,所以2212(1)||34t PQ t +==+, 因为PQ MN ⊥,将t 用1t -代,得222112(1)12(1)||13434t t MN t t ++==+⋅+, 所以22221134347||||12(1)12(1)12t t PQ MN t t +++=+=++. 例3.已知圆222:(0)O x y r r +=>.(1)求证:过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.类比前面的结论,写出过椭圆2222:1(0)x y C a b a b+=>>上一点0(N x ,0)y 的切线方程(不用证明). (2)已知椭圆22:143x y C +=,Q 为直线4x =上任一点,过点Q 作椭圆C 的切线,切点分别为A 、B ,求证:直线AB 恒过定点.【解析】(1)证明:因为圆222:O x y r +=, 故圆心(0,0)O ,半径为r , 又0(M x ,0)y , 所以0OM y k x =, 因为0(M x ,0)y 在圆上, 所以过M 的圆的切线斜率0x k y =-,所以过M 的圆的切线方程为0000()x y y x x y -=--,① 又因为22200x y r +=,② 由①②整理得,为200x x y y r +=.所以过圆O 上点0(M x ,0)y 的切线方程为200x x y y r +=.过椭圆2222:1(0)x y C a b a b +=>>上一点0(N x ,0)y 的切线方程为00221x x y ya b+=;(2)设(4,)Q t ,()t R ∈,1(A x ,1)y ,2(B x ,2)y , 由(1),则直线QA 的方程11143x x y y +=, 因为Q 在QA 上,所以1113ty x +=,① 同理可得2213ty x +=,② 由①②可得直线AB 的方程为13tx y +=,令0y =,得1x =, 所以直线AB 恒过点(1,0).变式1.已知点(1,0)A -,(1,0)B ,动点P 满足||||4PA PB +=,P 点的轨迹为曲线C .(Ⅰ)求曲线C 的方程;(Ⅱ)已知圆222x y R +=上任意一点0(P x ,0)y 处的切线方程为:200x x y y R +=,类比可知椭圆:22221x y a b+=上任意一点0(P x ,0)y 处的切线方程为:00221x x y ya b+=.记1l 为曲线C 在任意一点P 处的切线,过点B 作BP 的垂线2l ,设1l 与2l 交于Q ,试问动点Q 是否在定直线上?若在定直线上,求出此直线的方程;若不在定直线上,请说明理由.【解析】解:(Ⅰ)由椭圆的定义知P 点的轨迹为以A ,B 为焦点,长轴长为4的椭圆,设椭圆方程为2222:1x y a b +=,则241a c =⎧⎨=⎩,∴2a b =⎧⎪⎨=⎪⎩曲线C 的方程为22143x y +=.(Ⅱ)设0(P x ,0)y ,由题知直线1l 的方程为00:143x x y y+=, 当01x ≠时,001PB y k x =-,2l ∴的斜率为0201x k y -=,0201:(1)x l y x y -=-,1l 与2l 的方程联立00001(1)143x y x y x x y y -⎧=-⎪⎪⎨⎪+=⎪⎩,消y 得000034(1)(1)120(4)4(4)x x x x x x x +---=⇒-=-, 4x ∴=.动点Q 在定直线4x =上, 当01x =时,032y =±,1:142x yl ±=, 2:0l y =,(4,0)Q ,Q 在直线4x =.综上所述,动点Q 在定直线4x =上.变式2.下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为 .理由如下: .(2)椭圆22221(0)x y a b a b+=>>上一点0(x ,0)y 处的切线方程为 ;(3)(,)P m n 是椭圆22:13x L y +=外一点,过点P 作椭圆的两条切线,切点分别为A ,B ,如图,则直线AB的方程是 .这是因为在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x xy y +=和2213x x y y +=.两切线都过P 点,所以得到了1113x m y n +=和2213x my n +=,由这两个“同构方程”得到了直线AB 的方程;(4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-,由22()33y n k x m x y -=-⎧⎨+=⎩,得222(13)6()3()30k x k n km x n km ++-+--=, 化简得△0=得222(3)210m x mnk n -++-=.若PA PB ⊥,则由这个方程可知P 点一定在一个圆上,这个圆的方程为 . (5)抛物线22(0)y px p =>上一点0(x ,0)y 处的切线方程为00()y y p x x =+;(6)抛物线2:4C x y =,过焦点F 的直线l 与抛物线相交于A ,B 两点,分别过点A ,B 作抛物线的两条切线1l 和2l ,设1(A x ,1)y ,2(B x ,2)y ,则直线1l 的方程为112()x x y y =+.直线2l 的方程为222()x x y y =+,设1l 和2l 相交于点M .则①点M 在以线段AB 为直径的圆上;②点M 在抛物线C 的准线上. 【解析】解:(1)圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. 理由如下:①若切线的斜率存在,设切线的斜率为k ,则001OM OM k k y k x⋅=-⎧⎪⎨=⎪⎩,所以0x k y =-, 又过点0(M x ,0)y , 由点斜式可得,0000()x y y x x y -=--, 化简可得,220000y y x x x y +=+, 又22200x y r +=,所以切线的方程为200y y x x r +=; ②若切线的斜率不存在,则(,0)M r ±, 此时切线方程为x r =±.综上所述,圆222:O x y r +=上点0(M x ,0)y 处的切线方程为200y y x x r +=. (3)在1(A x ,1)y ,2(B x ,2)y 两点处,椭圆L 的切线方程为1113x x y y +=和2213x xy y +=, 因为两切线都过P 点(,)m n , 所以得到了1113x m y n +=和2213x my n +=, 由这两个“同构方程”得到了直线AB 的方程为13mxny +=; (4)问题(3)中两切线PA ,PB 斜率都存在时,设它们方程的统一表达式为()y n k x m -=-, 由22()33y n k x m x y -=-⎧⎨+=⎩,可得222(13)6()3()30k x k n km x n km ++-+--=, 由△0=,可得222(3)210(*)m k mnk n -++-=, 因为PA PB ⊥, 则1PA PB k k ⋅=-,所以(*)式中关于k 的二次方程有两个解且其乘积为1-,则2122113n k k m-⋅==--, 可得224m n +=,所以圆的半径为2,且过原点,其方程为224x y +=. 故答案为:(1)200y y x x r +=,理由见解析; (3)13mxny +=; (4)224x y +=.题型二:切点弦过定点问题例4.定义:若点0(P x ,0)y 在椭圆22221(0)x y a b a b +=>>上,则以P 为切点的切线方程为:00221x x y ya b+=.已知椭圆22:132x y C +=,点M 为直线260x y --=上一个动点,过点M 作椭圆C 的两条切线MA ,MB ,切点分别为A ,B ,则直线AB 恒过定点( ) A .11(,)23-B .11(,)23-C .12(,)23-D .12(,)23-【解析】解:因为M 在直线260x y --=上,则可设点M 的坐标为(26,)t t +,t R ∈, 设1(A x ,1)y ,2(B x ,2)y ,所以直线MA ,MB 的方程分别为: 11221,13232x x y y x x y y +=+=,显然点M 的坐标适合两个方程, 代入可得:1122(26)132(26)132x t y tx t y t +⎧+=⎪⎪⎨+⎪+=⎪⎩,则直线AB 的方程为:(26)132x t yt++=,即2(26)360t x yt ++-=, 即(43)612x y t x +=-,令4306120x y x +=⎧⎨-=⎩,解得12,23x y ==-,所以直线AB 过定点12(,)23-,故选:C .例5.已知经过圆2221:C x y r +=上点0(x ,0)y 的切线方程是200x x y y r +=.(1)类比上述性质,直接写出经过椭圆22222:1(0)x y C a b a b+=>>上一点0(x ,0)y 的切线方程;(2)已知椭圆22:16x E y +=,P 为直线3x =上的动点,过P 作椭圆E 的两条切线,切点分别为A 、B ,①求证:直线AB 过定点. ②当点P 到直线AB时,求三角形PAB 的外接圆方程. 【解析】解:(1)切线方程为:00221x x y ya b+=. (2)设切点为1(A x ,2)y ,2(B x ,2)y ,点(3,)P t ,由(1)的结论的AP 直线方程:1116x x y y +=,BP 直线方程:2216x xy y +=, 通过点(3,)P t ,∴有1122316316x y t x y t ⨯⎧+⨯=⎪⎪⎨⨯⎪+⨯=⎪⎩,A ∴,B 满足方程:12x ty +=,∴直线AB 恒过点:1020xy ⎧-=⎪⎨⎪=⎩即直线AB 恒过点(2,0).又已知点(3,)P t 到直线AB.∴22|354t t t-=+ 425410t t ⇒--=,22(51)(1)0t t +-=,1t ∴=±.当1t =时,点(3,1)P ,直线AB 的方程为:220x y +-=. 2222066x y x y +-=⎧⎨+=⎩求得交点121(0,1),(,),(3,1)55A B P -. 设PAB ∆的外接圆方程为:220x y Dx Ey F ++++=,代入得131012529E F D E F D E F +=-⎧⎪++=-⎨⎪-+=-⎩,解得:PAB ∆的外接圆方程为223210x y x y +--+= 即PAB ∆的外接圆方程为:2239()(1)24x y -+-=.例6.已知抛物线2:2C x py =的焦点为F ,抛物线上一点(A m ,2)(0)m >到F 的距离为3. (1)求抛物线C 的方程和点A 的坐标;(2)设直线l 与抛物线C 交于D ,E 两点,抛物线C 在点D ,E 处的切线分别为1l ,2l ,若直线1l 与2l 的交点恰好在直线2y =-上,证明:直线l 恒过定点. 【解析】(1)解:由题意知232p +=,得2p =,所以抛物线C 的方程为24x y =. 将点(A m ,2)(0)m >代入24xy =,得m =,所以点A 的坐标为.(2)证明:设221212(,),(,)44x x D x E x ,由题意知.直线l 的斜率存在,设直线l 的方程为y kx n =+, 联立方程24y kx nx y=+⎧⎨=⎩,得2440x kx n --=,所以△216160k n =+>,124x x k +=,124x x n =-,24x y =,即24x y =, 则2xy '=,所以抛物线C 在点D 处的切线1l 的方程为2111()24x x y x x =-+,化简得21124x x y x =-,同理直线2l 的方程为22224x x y x =-,联立方程2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩. 又因为直线1l 与2l 的交点恰好在直线2y =-上,所以1224x x =-,即128x x =-. 所以1248x x n =-=-.解得2n =.故直线l 的方程为2y kx =+,所以直线l 恒过定点(0,2).题型三:利用切点弦结论解决定值问题例7.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且点P 在椭圆C 上,O 为坐标原点(1)求椭圆C 的标准方程(2)过椭圆22122:153x y C a b +=-上异于其顶点的任一点Q ,作圆224:3O x y +=的切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 的横纵截距分别为m ,n ,求证:22113m n+为定值 【解析】解:(1)由题意得:1c =,所以221a b =+,又因为点P 在椭圆C 上,所以223314a b+=, 可解得24a =,23b =,所以椭圆标准方程为22143x y +=.(2)证明:由题意:2213:144x y C +=,设点1(Q x ,1)y ,2(M x ,2)y ,3(N x ,3)y ,因为M ,N 不在坐标轴上,所以1QM OMk k =-,直线QM 的方程为2222()x y y x x y -=-, 化简得:2243x x y y +=,① 同理可得直线QN 的方程为3343x x y y +=,② 把Q 点的坐标代入①、②得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线MN 的方程为1143x x y y +=---------------③, 令0y =,得143m x =,令0x =得143n y =,所以143x m=,143y n =,又点Q 在椭圆1C 上,所以2244()3()433m n+=, 即22113m n+为定值. 例8.已知1F 、2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,且右焦点2F 的坐标为(1,0),点P 在椭圆C 上,O 为坐标原点. (1)求椭圆C 的标准方程;(2)若过点2F 的直线l 与椭圆C 交于A ,B两点,且||AB =l 的方程; (3)过椭圆C 上异于其顶点的任一点Q ,作圆22:1O x y +=的两条切线,切点分别为M ,(N M ,N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,那么2212m n +是否为定值?若是,求出此定值;若不是,请说明理由.【解析】解:(1)椭圆C 的右焦点2F 的坐标为(1,0),∴椭圆C 的左焦点1F 的坐标为(1,0)-,由椭圆的定义得12||||2PF PF a +=,2a ∴=a ∴=,22a =由题意可得1c =,即2221b a c =-=,即椭圆C 的方程为2212x y +=;(2)直线l 与椭圆C 的两个交点坐标为1(A x ,1)y ,2(B x ,2)y , ①当直线l 垂直x轴时,易得||AB = ②当直线l 不垂直x 轴时,设直线:(1)l y k x =-联立2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩,消y 得,2222(12)4220k x k x k +-+-=,①则2122421k x x k +=+,21222221k x x k -=+,222222222121222224228(1)||(1)[()4](1)[()24]2121(21)k k k AB k x x x x k k k k -+∴=++-=+-⨯==+++,解得1k =±,∴直线方程l 的方程为10x y --=或10x y +-=(Ⅲ)设点0(Q x ,0)y ,3(M x ,3)y ,4(N x ,4)y ,连接OM ,ON , 0M MQ ⊥,ON NQ ⊥,M ,N 不在坐标轴上,303M y k x ∴=,404N y k x =-, ∴直线MQ 的方程为3333()y y y x x x -=-,即331xx yy +=,⋯① 同理直线NQ 的方程为441xx yy +=,⋯②, 将点Q 代入①②,得0303040411x x y y x x y y +=⎧⎨+=⎩,显然3(M x ,3)y ,4(N x ,4)y 满足方程001xx yy +=,∴直线MN 的方程为001xx yy +=,分别令0x =,0y =,得到01n x =,01m y =. 01y m ∴=,01x n=, 0(Q x ,0)y 满足2212x y +=;∴221112m n+=,即22122m n +=题型四:利用切点弦结论解决最值问题例9.已知抛物线22x py =上一点0(M x ,1)到其焦点F 的距离为2. (1)求抛物线的方程;(2)如图,过直线:2l y =-上一点A 作抛物线的两条切线AP ,AQ ,切点分别为P ,Q ,且直线PQ 与y 轴交于点N .设直线AP ,AQ 与x 轴的交点分别为B ,C ,求四边形ABNC 面积的最小值.【解析】解:(1)由||122pMF =+=,得2p =, 所以抛物线的方程为24x y =. (2)设1(P x ,1)y ,2(Q x ,2)y , 由12y x '=可得在P 处的切线方程为2111()42x x y x x -=-,整理可得112()x x y y =+,同理在Q 处的切线方程为222()x x y y =+,又因为两切线都过(,2)A t -,∴11222(2)2(2)tx y tx y =-⎧⎨=-⎩,即可得直线PQ 的方程为2(2)tx y =-,所以直线过点(0,2),即(0,2)N , 又1(2x B ,0),2(2xC ,0), ∴四边形ABNC 的面积122||||ABC NBC S S S BC x x ∆∆=+==-,联立122()4tx y y x y =+⎧⎨=⎩,可得2280x tx --=,122x x t ∴+=,128x x =-所以12||3242S x x =-.(当0t =时取等号),∴四边形ABNC 面积的最小值为例10.已知(,1)T m 为抛物线2:2(0)C x py p =>上一点,F 是抛物线C 的焦点,且||2TF =. (1)求抛物线C 的方程;(2)过圆22:(2)1E x y ++=上任意一点G ,作抛物线C 的两条切线1l ,2l ,与抛物线相切于点M ,N ,与x 轴分别交于点A ,B ,求四边形ABNM 面积的最大值.【解析】解:(1)||2TF =,由抛物线定义知,122p +=,2p ∴=,24x y ∴=. (2)设1(M x ,1)y ,2(N x ,2)y ,0(G x ,0)y ,0[3y ∈-,1]-, 切线11:2()AM x x y y =+,因此:11122A y x x x ==, 切线22:2()AN x x y y =+,因此:22222B y x x x ==, 另一方面,点0(G x ,0)y 在两切线上,从而满足:011020202()2()x x y y x x y y =+⎧⎨=+⎩,因此切点弦MN 的方程为:002()x x y y =+,直线MN 与抛物线24x y =进行方程联立:200240x x x y -+=, 从而1202x x x +=,1204x x y =,且||MN ==, ABMN GMN GAB S S S ∆∆=-212011||||2222x x y =⋅-33222220001200111[(4)||](4)242x y y x x x y =---=-2200000(4)(73)x y y y y =-+=---, 当0[3y ∈-,1]-1323=, 2200073773[()]924y y y ---=-++,∴93ABMN S ,当且仅当03y =-时,取到最大值.题型五:利用切点弦结论解决范围问题例11.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为6,C 上一点M 关于原点O 的对称点为N ,F 为C 的右焦点,若MF NF ⊥,设MNF α∠=,且3sin()44πα+=.(1)求椭圆C 的标准方程;(2)经过圆22:10O x y+=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,求AOB ∆面积的取值范围.【解析】解:(1)由26a =,即3a =,又22122cos 2sin )4c c e a c c πααα====++所以c =2221b a c =-=,则椭圆的方程为2219x y +=;(2)设1(A x ,1)y ,2(B x ,2)y , 则直线PA 的方程为1119x x y y +=,直线PB 的方程为2219x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上, 所以101019x x y y +=,202019x x y y +=,所以直线AB 的方程为0019x xy y +=, 由00221999x xy y x y ⎧+=⎪⎨⎪+=⎩消去y ,结合220010x y +=,和220010x y =-,可得22200(810)1881810y x x x y +-+-=, △242018(8)y y =+,120|||AB x x -=0=202018108y y +=+,又点O 到直线AB的距离为d ==,2020018119||922108y S AB d y +=⋅=⋅=+,又2010y,记[1t ,9],所以9[6t t +∈,10], 所以9[10S ∈,3]2.例12.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点1(F 0),点Q 在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆22:5O x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点. (ⅰ)求证:0OM ON +=; (ⅱ)求OAB ∆的面积的取值范围.【解析】解:(Ⅰ)由题意可得c =221314a b+=,222a b c =+,解得24a =,21b =, 所以椭圆的方程为:2214x y +=;(Ⅱ)()i 证明:设0(P x ,0)y ,①当直线PA ,PB 的斜率都存在时,设过P 与椭圆相切的直线方程为00()y k x x y =-+, 联立直线与椭圆的方程0022()440y k x x y x y =-+⎧⎨+-=⎩, 整理可得2220000(14)8()4()40k x k y kx x y kx ++-+--=,△2222000064()4(14)[4()4]k y kx k y kx =--+--,由题意可得△0=,整理可得222000(4)210x k x y k y -++-=, 设直线PA ,PB 的斜率分别为1k ,2k ,所以20122014y k k x -=-,又2205x y +=,所以220022001(5)4144x x x x ---==---, 所以PM PN ⊥,即MN 为圆O 的直径,所以0OM ON +=; ②当直线PA 或PB 的斜率不存在时,不妨设(2,1)P , 则直线PA 的方程为2x =,所以(2,1)M -,(2,1)N -,也满足0OM ON +=; ()ii 设点1(A x ,1)y ,2(B x ,2)y ,当直线PA 的斜率存在时,设直线PA 的方程为:111()y k x x y =-+,联立直线PA 与椭圆的方程11122()440y k x x y x y =-+⎧⎨+-=⎩,消y 可得2221111111(14)8()4()40k x k y k x x y k x ++-+--=,△22221111111164()4(14)[4()4]k y k x k y k x =--+--, 由题意△0=,整理可得222111111(4)210x k x y k y -++-=, 则11111122111444x y x y x k x y y -=-==--, 所以直线PA 的方程为:1111()4x y x x y y =--+, 化简可得22111144x x y y y x +=+, 即1114x xy y +=, 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-也满足1114x xy y +=,同理可得直线PB 的方程2214x xy y +=, 因为0(P x ,0)y 在直线PA ,PB 上,所以101020201414x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以可得直线AB 的方程为0014x x y y +=,而P 在圆225x y +=上,所以22005x y +=, 联立直线AB 与椭圆的方程为00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,整理可得22200(35)816160y x x x y +-+-=, 020853A B x x x y +=+,2020161653A B y x x y -=+, 所以O 到直线AB的距离d =,弦长0|||A B AB x x - 又点O 到直线AB的距离d ==,令t ,[1t ∈,4],则2144||424OAB t S d AB t t t∆=⋅==++,而4[4t t+∈,5],所以OAB ∆的面积的取值范围是4[5,1].例13.椭圆2222:1(0)x y C a b a b+=>>的两焦点分别为1F ,2F ,椭圆与y轴正半轴交于点Q ,122QF F S =.(1)求曲线C 的方程;(2)过椭圆C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC 、PD ,切点分别为C 、D ,直线CD 与椭圆C 交于E 、G 两点,O 为坐标原点,求OEG ∆的面积S 的取值范围.【解析】解:(1)椭圆与y轴正半轴交于点Q ,122QF F S=.可得121222QF F b Sc b bc ==⨯⨯==,∴2c a ==, ∴椭圆方程为22142x y +=.(2)设0(P x ,0)y ,线段OP 的中点为00(,)22x y ,22222000001,2(1)24242x y x x y +==-=-,2004x <, 以OP以OP 为直径的圆的方程为22220000()()224x y x y x y +-+-=,即00()()0x x x y y y -+-=,又圆22:1O x y +=, 两式相减00:1CD x x y y +=,由0022124x x y y x y +=⎧⎨+=⎩,消去y 并化简得22220000(2)4240x y x x x y +-+-=, ∴22222220000000164(2)(24)8(412)x x y y y x y =-+-=-+22222000008[41(4)]24(1)y x x y x =-+-=+,0000||EG ==O EG d -=∴200000001||2222S EG d x =⋅====+-=由于2004x <,所以20115x +<,2011x +<对于函数211()3(15),()30h t t t h t tt '=+<=->,()h t在上递增.(1)4,h h ===所以20431x +<1114<,62<,∴62S <.S ∈. 变式3.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,动点P 到焦点1F的距离的最大值为2+(1)求椭圆1C 的方程;(2)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求||ABCD的取值范围.【解析】解:(1)动点P 在椭圆上,且使得01290F PF ∠=的点P 恰有两个,b c ∴=, 动点P 到焦点1F 的距离的最大值为2+∴2a c +=+可得2a =,b c =所以椭圆1C 的方程为:22142x y +=;(2)圆2C 的方程为224x y +=,设直线x =-T 的坐标为)t ,设1(A x ,1)y ,2(B x ,2)y ,则直线AT 的方程为114x x y y +=,直线BT 的方程为224x x y y +=,又)T t 在直线AT 和BT上,即112244ty ty ⎧-+=⎪⎨-+=⎪⎩,故直线AB 的方程为4ty -+=.由原点O 到直线AB的距离d =得||AB =联立224142ty x y ⎧-+=⎪⎨+=⎪⎩,消去x 得22(16)8160t y yt +--=,设3(C x ,3)y ,4(D x,4)y ,则343422816,1616t y y y y t t -+==++,从而222(8)16t CD t +==+记28(8)t m m +=,则||AB CD =11(0)8y y m =<,则||AB CD =11(0)8y y m =<,所以||AB CD3()112256f y y y =+-, 所以由2()127680f y y y '=-=得18y =, 所以3()112256f y y y =+-在1(0,]8上单调递增,()(1f y ∴∈,2]即||ABCD∈. 变式4.已知椭圆22122:1(0)x y C a b a b+=>>的两个焦点1F ,2F ,动点P 在椭圆上,且使得1290F PF ∠=︒的点P 恰有两个,动点P 到焦点1F 的距离的最大值为2+(Ⅰ)求椭圆1C 的方程;(Ⅱ)如图,以椭圆1C 的长轴为直径作圆2C ,过直线x =-T 作圆2C 的两条切线,设切点分别为A ,B ,若直线AB 与椭圆1C 交于不同的两点C ,D ,求弦||CD 长的取值范围.【解析】解:()I 由使得1290F PF ∠=︒的点P 恰有两个可得,b c a ==;动点P 到焦点1F 的距离的最大值为2+2a c +=2,a c ==所以椭圆1C 的方程是22142x y +=⋯(4分)()II 圆2C 的方程为224x y +=,设直线x =-T 的坐标为()t -设1(A x ,1)y ,2(B x ,2)y ,则直线AT的方程为114x x y y+=,直线BT的方程为224x x y y+=,又()t-在直线AT和BT上,即112244tyty⎧-+=⎪⎨-+=⎪⎩,故直线AB的方程为4ty-+=⋯(6分)联立224142tyx y⎧-+=⎪⎨+=⎪⎩,消去x得22(16)8160t y yt+--=,设3(C x,3)y,4(D x,4)y.则343422816,1616ty y y yt t-+==++,⋯(8分)从而21224(8)|||(16)tCD y yt+=-=⋯+(10分)232416t-=++,又21616t +,从而2322016t--<+,所以||[2CD∈,4)⋯(12分)变式5.已知椭圆22122:1(0)x yC a ba b+=>>的离心率为12,且直线1:1x yla b+=被椭圆1C截得的弦长为.()I求椭圆1C的方程;()II以椭圆1C的长轴为直径作圆2C,过直线2:4l y=上的动点M作圆2C的两条切线,设切点为A,B,若直线AB与椭圆1C 交于不同的两点C,D,求||||CD AB的取值范围.【解析】解:()I线1:1x yla b+=,经过点(,0)a,(0,)b,被椭圆1C227a b+=.又12ca=,222a b c=+,解得:24a=,23b=,1c=.∴椭圆1C的方程为22143x y+=.()II由()I可得:圆2C的方程为:224x y+=.设(2,4)M t,则以OM为直径的圆的方程为:222()(2)4x t y t-+-=+.与224x y+=联立可得:直线AB的方程为:2440tx y+-=,设1(C x,1)y,2(D x,2)y,联立222440143tx yx y+-=⎧⎪⎨+=⎪⎩,化为:22(3)480t x tx+--=,则12243tx xt+=+,12283x xt-=+,2236||43tCDt+==+.又圆心O到直线AB的距离d==||AB∴===,22222364||||243t tAB CD tt t+∴=+⨯=+令233t m+=,则||||8AB CD=3m,可得3233m-<,可得:2||||83AB CD<变式6.如图,已知点P在半圆22:(2)4(2)Q x y y++=-上一点,过点P作抛物线2:2(0)C x py p=>的两条切线,切点分别为A,B,直线AP,BP,AB分别与x轴交于点M,N,T,记TNB∆的面积为1S,TMA∆的面积为2S.(Ⅰ)若抛物线C的焦点坐标为(0,2),求p的值和抛物线C的准线方程;(Ⅱ)若存在点P,使得128SS=,求p的取值范围.【解析】解:(Ⅰ)22p=,4p=.准线方程为直线2y=-.(Ⅱ)设1(A x,1)y,2(B x,2)y,过点A的切线方程11:()Al x x p y y=+,于是1(,0)2xM;过点B的切线方程22:()Bl x x p y y=+,于是2(,0)2xN;点(P x,)y在两条切线上,所以10012002()()x x p y yx x p y y=+⎧⎨=+⎩,可得点P坐标为1212(,)22x x x xPp+.1212:()22ABx x x xl x p yp+=+,于是12112112121212()(,0).||||||22()x x x x x x x xT TMx x x x x x-=-=+++,2222121212()||||||22()x x x x x x TN x x x x -=-=++, 而23122111||||2||81||||2TN y S x S x TM y ⋅===⋅,所以212x x =-. 于是点211(,)2x x P p --,点P 的轨迹方程为24px y =-,问题转化为抛物线24p x y =-与半圆22:(2)4(2)Q x y y ++=-有交点. 记24()f x x p =-,则4(2)42f p=-⨯-,又因为0p >, 解得:08p <.所以p 的取值范围为(0,8].变式7.如图,设抛物线2:4C y x =的焦点为F ,点P 是半椭圆221(0)4y x x +=<上的一点,过点P 作抛物线C 的两条切线,切点分别为A 、B ,且直线PA 、PB 分别交y 轴于点M 、N . (Ⅰ)证明:FM PA ⊥; (Ⅱ)求||||FM FN ⋅的取值范围.【解析】解:(Ⅰ)设点P 的坐标为0(x ,0)y ,直线PA 方程为00()(0)x m y y x m =-+≠.令0x =,可知点M 的坐标为00(0,)x y m-. 由,消去x 得2004440y my my mx -+-=. 因为直线与抛物线只有一个交点, 故△0=,即2000m y m x -+=. 因为点F 的坐标为(1,0), 故00(1,)x FM y m =--,00(,)xPM x m=--.则20002()0x FM PM m y m x m⋅=-+=. 因此FM PM ⊥,亦即FM PA ⊥.(Ⅱ)设直线PB 的方程为00()(0)x n y y x n =-+≠. 由(1)可知,n 满足方程2000n y n x -+=.故m ,n 是关于t 的方程2000t y t x -+=的两个不同的实根. 所以.由(1)可知:FM PA ⊥,同理可得FN PB ⊥. 故||FM ||FN =.则||||FM FN ⋅= 因为22001(0)4y x x +=<.因此,||||FM FN ⋅的取值范围是.。

高考之【圆锥曲线篇】-秒杀技巧切线方程

高考之【圆锥曲线篇】-秒杀技巧切线方程

大招九圆锥曲线的切线方程及其应用现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆上一点的切线方程为;当在圆外时,过点引切线有且只有两条,过两切点的弦所在直线方程为。

那么,在圆锥曲线中,又将如何?我们不妨进行几个联想。

联想一:(1)过椭圆上一点切线方程为;(2)当在椭圆的外部时,过引切线有两条,过两切点的弦所在直线方程为:证明:(1)的两边对求导,得,得,由点斜式得切线方程为,即。

(2)设过椭圆外一点引两条切线,切点分别为、。

由(1)可知过、两点的切线方程分别为:、。

又因是两条切线的交点,所以有、。

观察以上两个等式,发现、满足直线,所以过两切点、两点的直线方程为。

评注:因在椭圆上的位置(在椭圆上或椭圆外)的不同,同一方程表示直线的几何意义亦不同。

联想二:(1)过双曲线上一点切线方程为;(2)当在双曲线的外部时,过引切线有两条,过两切点的弦所在直线方程为:。

(证明同上)联想三:(1)过圆锥曲线(A,C不全为零)上的点的切线方程为k;(2)当在圆锥曲线(A,C不全为零)的外部时,过引切线有两条,过两切点的弦所在直线方程为:证明:(1)两边对求导,得得,由点斜式得切线方程为化简得………………….①因为…………………………………………………②由①-②×2可求得切线方程为:(2)同联想一(2)可证。

结论亦成立。

根据前面的特点和圆上点的切线方程,得到规律:过曲线上的点的切线方程为:把原方程中的用代换,用代换。

若原方程中含有或的一次项,把用代换,用代换,得到的方程即为过该点的切线方程。

当点在曲线外部时,过引切线有两条,过两切点的弦所在直线方程为:通过以上联想可得出以下几个推论:推论1:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:推论2:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

推论3:(1)过抛物线上一点切线方程为;(2)过抛物线的外部一点引两条切线,过两切点的弦所在直线方程为:。

二次曲线的切线方程及应用

二次曲线的切线方程及应用

二次曲线的切线方程及应用[摘要] 本文主要利用隐函数求导的方法推导常见二次曲线(圆、椭圆、双曲线、抛物线)上某点处的切线方程,并得出一般二次曲线的切线方程及切点弦方程,再将相应结论进行应用。

[关键词] 二次曲线切线方程切点弦方程有关二次曲线的切线方程及其应用问题,近年来在各类考试中出现的频率颇高,为更好地解决此专题的问题,笔者将常见二次曲线的切线方程及切点弦方程的有关结论及推导过程整理一遍,并简述其应用,以供广大教师及学生参考.1几个常见结论及推导1.在圆上一点处的切线方程为:.(注:为与求其它二次曲线的切线方程所用方法一致,这里利用涉及隐函数求导的方法来推导.)将圆的方程中的y视为关于x的函数(即y是x的隐函数),那么就可以在上式两边分别对x求导数.隐函数求导法则,实际与复合函数求导法则一致,将y看作中间变量,外函数是,内函数为,故.于是有:在两边分别对x求导,得,若,则有.由导数的几何意义知,曲线上某点处切线的斜率是该点的导数值.故对于圆上点,若,则有,此即为在点M处切线的斜率,故所求切线方程为.又,① 为所求.若,由图象可知,此时所求切线方程为:或.又,故所求切线方程为:或.也满足①式.故在圆上一点处的切线方程可统一写为:.2.在椭圆上一点处的切线方程为:.推导过程如下:在两边分别对x求导得:,对于点,若,则有,此即为在点M处切线的斜率.故所求切线方程为,又,故②为所求.若,此时所求切线方程为:或,也满足②式.故在椭圆上一点处的切线方程为:.3.在双曲线上一点处的切线方程为:③.注:推导过程与结论1和结论2的推导过程类似,可让学生动手推导,体会其中的思想.4.在抛物线上一点处的切线方程为:.在两边对x求导,得.对于点,若,则有,此即为在点M处的切线的斜率.故所求切线方程为,即,又在抛物线上,故,因此所求切线方程为:④.若,此时所求切线方程为:也满足④式.故在抛物线上一点处的切线方程为:.结论4的切线方程形式与前3个结论有些不同,引导学生从抛物线的方程的形式观察,得到结论:抛物线的切线方程实际上可写为,进而得到一般性的结论5.将以上四个结论推广,可得到以下结论:5.设是二次曲线上一点,则此曲线在点M处的切线方程为:⑤.注:二次曲线的方程中不含项.此结论推导过程可仿照上述结论的推导过程来完成,这里不再赘述.从结论5出发,进一步思考,若点在二次曲线外,则过点M可作曲线的两条切线,设切点分别为,那么由切点在曲线上及结论5可知,曲线在点A处的切线方程为,曲线在点B处的切线方程为,因点在切线上,故⑥,同理,⑦,综合⑥⑦得,点,的坐标都满足方程.因为经过点的直线是唯一的,故过点A,B的直线方程为:.由此,我们可以得到另一个结论:6.设是二次曲线外一点,则过点M可作曲线的两条切线,设切点分别为,则直线AB的方程(即切点弦方程)为:.由结论6,将曲线方程特殊化为高中常见的二次曲线方程,即可得到关于圆、椭圆、双曲线和抛物线的切点弦方程的相应结论.2应用有关切线方程及切点弦方程的考题,近几年均是热点,比如广州市2013届普通高中毕业班综合测试(一)数学(理科)(简称“广州市一模”)第20题,2013年普通高等学校招生全国统一考试(广东卷)数学(文科/理科)第20题,2014年清华等七校自主招生考试(简称“华约卷”)第5题等.2013年广东高考的解析几何题虽和当年广州市一模的解析几何题有较大相似度,但考试结果仍不理想,文[1]指出,2013年的解析几何题“不仅加大了计算量,而且对计算的技巧性的要求大大增强,与压轴题的难度接近(第20题得分2.85分,第21题得分2.13).”因此,有必要对切线方程及切点弦方程这一专题内容做一个梳理.现将2013年普通高等学校招生全国统一考试(广东卷)数学第20题展示如下:已知抛物线的顶点为原点,其焦点到直线 :的距离为 .设为直线上的点,过点作抛物线的两条切线 ,其中为切点.(Ⅰ) 求抛物线的方程;(Ⅱ) 当点为直线上的定点时,求直线的方程;(Ⅲ) 当点在直线上移动时,求的最小值.略解:(Ⅰ)易得所求抛物线方程是:.(Ⅱ)利用第1部分的结论6,即得所求直线的方程(即切点弦方程)为:,即.(注:高考需将结论6的过程在答卷上推演一遍,因其不是高中课本内的结论.第(Ⅲ)小题解答略.)从此题的解答看,熟知第1部分的几个结论虽可立即得正解,但在高考题的作答中仍要将推导过程再演算一遍,似乎不太便捷,这是因为此题直接考查结论(求切点弦方程),若考查的是利用切点弦方程再求其它问题,那熟知结论的优越性立刻体现.请看2014年华约卷第5题:过椭圆上一点作圆的两条切线,切点为,设直线与轴、轴分别交于点,求的面积的最小值.解析:法一:设,由结论6知,直线的方程为:,,,故的面积.又点在椭圆上,故.由基本不等式得:,即(当且仅当时,等号成立),.,即的面积的最小值为.法二:(利用椭圆的参数方程求解)因点在椭圆上,故可设,由结论6知,直线的方程为:,故,的面积(当且仅当,即或时,等号成立),故的面积最小值为.解法一与解法二虽具体利用的知识不同,但其求解思路是一致的,关键的一步在于写出直线PQ的方程,而在自主招生或竞赛类考试中,直接写出二次曲线的切线方程或切点弦方程是允许的.因此,教师可将有关二次曲线的切线方程及切点弦方程问题形成一个小专题,根据学生水平及实际需要,适当讲解以上结论作为拓展,为学生获得更佳成绩打好基础.3小结由于高中阶段没有涉及到隐函数求导的内容,因此高考题在考纲范围内只能考查形如的抛物线的切点弦方程,对于一般水平的学生,教师只需讲透高中常见的解法即可.而第1部分的结论是常见二次曲线的有关切线方程和切点弦方程的结论,结论5、结论6将常见二次曲线的切线方程、切点弦方程统一起来,得到一般二次曲线的切线方程、切点弦方程.实践表明,对于能力较强的学生,是可以理解第1部分的几个结论的推导,并且利用这些结论对于他们应对自主招生或竞赛类考试有一定的帮助.参考文献[1] 彭建开.于平凡处见“真功夫”——2013年高考广东理科试题第20题解析[J].广东教育(高中版), 2013(7·8): 59-60.。

高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论)清华附中高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质(学生版)-高中数学

双曲线方程及其性质1.5年真题考点分布5年考情考题示例考点分析关联考点2024年新I卷,第12题,5分求双曲线的离心率无2024年新Ⅱ卷,第19题,17分求直线与双曲线的交点坐标由递推关系证明等比数列向量夹角的坐标表示2023年新I卷,第16题,5分利用定义解决双曲线中集点三角形问题求双曲线的离心率或离心率的取值范围无2023年新Ⅱ卷,第21题,12分根据a、b、c求双曲线的标准方程直线的点斜式方程及辨析双曲线中的定直线问题2022年新I卷,第21题,12分求双曲线标准方程求双曲线中三角形(四边形)的面积问题根据韦达定理求参数2022年新Ⅱ卷,第21题,12分根据双曲线的渐近线求标准方程求双曲线中的弦长由中点弦坐标或中点弦方程、斜率求参数根据韦达定理求参数2021年新I卷,第21题,12分求双曲线的标准方程双曲线中的轨迹方程双曲线中的定值问题2021年新Ⅱ卷,第13题,5分根据a,b,c齐次式关系求渐近线方程由双曲线的离心率求参数的取值范围2020年新I卷,第9题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2020年新Ⅱ卷,第10题,5分判断方程是否表示双曲线二元二次方程表示的曲线与圆的关系判断方程是否表示椭圆2.命题规律及备考策略【命题规律】本节内容是新高考卷的常考内容,设题稳定,难度中等或偏难,分值为5-17分【备考策略】1.熟练掌握双曲线的定义及其标准方程,会基本量的求解2.熟练掌握双曲线的几何性质,并会相关计算3.能熟练计算双曲线的离心率4.会求双曲线的标准方程,会双曲线方程简单的实际应用5.会求双曲线中的相关最值【命题预测】本节内容是新高考卷的常考内容,常常考查标准方程的求解、基本量的计算及离心率的求解,需重点强化训练知识讲解1.双曲线的定义平面上一动点M x ,y 到两定点F 1-c ,0 ,F 2c ,0 的距离的差的绝对值为定值2a 且小于F 1F 2 =2c 的点的轨迹叫做双曲线这两个定点F 1,F 2叫做双曲线的焦点,两焦点的距离F 1F 2 叫做双曲线的焦距2.数学表达式:MF 1 -MF 2 =2a <F 1F 2 =2c3.双曲线的标准方程焦点在x 轴上的标准方程焦点在y 轴上的标准方程标准方程为:x 2a 2-y 2b2=1(a >0,b >0)标准方程为:y 2a 2-x 2b2=1(a >0,b >0)4.双曲线中a ,b ,c 的基本关系(c 2=a 2+b 2)5.双曲线的几何性质焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b2=1(a >0,b >0)y 2a 2-x 2b2=1(a >0,b >0)范围x ≤-a 或x ≥ay ∈R y ≤-a 或y ≥ax ∈R 顶点坐标A 1(-a ,0),A 2(a ,0)B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b ,0),B 2(b ,0)实轴A 1A 2 =2a 实轴长,A 1O =A 2O =a 实半轴长虚轴B 1B 2 =2b 虚轴长,B 1O =B 2O =b 虚半轴长焦点F 1(-c ,0),F 2(c ,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2 =2c 焦距,F 1O =F 2O =c 半焦距对称性对称轴为坐标轴,对称中心为(0,0)渐近线方程y =±baxy =±a bx离心率e =ca(e >1)e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=1+b a 2⇒e =1+b a2离心率对双曲线的影响e 越大,双曲线开口越阔e 越小,双曲线开口越窄6.离心率与渐近线夹角的关系e =1cos α7.通径:(同椭圆)通径长:MN =EF =2b 2a,半通径长:MF 1 =NF 1 =EF 2 =FF 2 =b 2a8.双曲线的焦点到渐近线的距离为b考点一、双曲线的定义及其应用1.(2024·河北邢台·二模)若点P 是双曲线C :x 216-y 29=1上一点,F 1,F 2分别为C 的左、右焦点,则“PF 1 =8”是“PF 2 =16”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件2.(2023·全国·模拟预测)已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线交双曲线左支于A 、B 两点,且AB =5,若双曲线的实轴长为8,那么△ABF 2的周长是()A.5B.16C.21D.263.(2024高三·全国·专题练习)若动点P x ,y 满足方程x +2 2+y 2-x -2 2+y 2 =3,则动点P 的轨迹方程为()A.x 294-y 274=1 B.x 294+y 274=1C.x 28+y 24=1D.x 216-y 212=11.(2024·陕西榆林·模拟预测)设F 1,F 2是双曲线C :x 24-y 28=1的左,右焦点,过F 1的直线与y 轴和C 的右支分别交于点P ,Q ,若△PQF 2是正三角形,则|PF 1|=()A.2B.4C.8D.162.(23-24高三下·山东青岛·阶段练习)双曲线x 2a2-y 212=1(a >0)的两个焦点分别是F 1与F 2,焦距为8;M 是双曲线上的一点,且MF 1 =5,则MF 2 =.3.(23-24高二上·四川凉山·期末)已知点M 2,0 ,N -2,0 ,动点P 满足条件PM -PN =2,则动点P 的轨迹方程为()A.x 23-y 2=1x ≥3B.x 23-y 2=1x ≤-3C.x 2-y 23=1x ≥1 D.x 2-y 23=1x ≤-1 考点二、双曲线的标准方程1.(2024高三下·全国·专题练习)双曲线方程为x 2k -2+y 25-k =1,则k 的取值范围是()A.k >5B.2<k <5C.-2<k <2D.-2<k <2或k >52.(2023高三上·湖北孝感·专题练习)过点2,2 且与椭圆9x 2+3y 2=27有相同焦点的双曲线方程为()A.x 26-y 28=1B.y 26-x 28=1C.x 22-y 24=1D.y 22-x 24=13.(22-23高二下·甘肃武威·开学考试)求适合下列条件的双曲线的标准方程:(1)a =4,经过点A 1,4103;(2)焦点y 轴上,且过点3,-42 ,94,5.4.(23-24高三上·河北张家口·开学考试)“k >2”是“x 2k +1-y 2k -2=1表示双曲线”的( ).A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(2024·辽宁·二模)已知双曲线C :x 2-y 2=λ(λ≠0)的焦点为(0,±2),则C 的方程为()A.x 2-y 2=1B.y 2-x 2=1C.x 2-y 2=2D.y 2-x 2=26.(2022高三·全国·专题练习)已知某双曲线的对称轴为坐标轴,且经过点P3,27,Q-62,7,求该双曲线的标准方程.考点三、双曲线的几何性质1.(2024·福建福州·模拟预测)以y=±3x为渐近线的双曲线可以是()A.x23-y2=1 B.x2-y29=1 C.y23-x2=1 D.y2-x29=12.(2024·广西柳州·模拟预测)双曲线x24-y216=1的一个顶点到渐近线的距离为( ).A.5B.4C.455D.233.(2024·河南新乡·三模)双曲线E:x2a2+a+2-y22a+3=1的实轴长为4,则a=.4.(2024·湖南益阳·模拟预测)已知双曲线x2m -y2n=1(m>0,n>0)与椭圆x24+y23=1有相同的焦点,则4m+1n的最小值为()A.6B.7C.8D.95.(2022·福建三明·模拟预测)已知双曲线C1:x2+y2m=1m≠0与C2:x2-y2=2共焦点,则C1的渐近线方程为( ).A.x±y=0B.2x±y=0C.x±3y=0D.3x±y=06.(2024·贵州·模拟预测)我们把离心率为5+12的双曲线称为“黄金双曲线”.已知“黄金双曲线”C:x2 25-2-y2b2=1(b>0),则C的虚轴长为.1.(24-25高三上·江苏南通·开学考试)过点P2,3的等轴双曲线的方程为.2.(2024·安徽合肥·一模)双曲线C:x2-y2b2=1的焦距为4,则C的渐近线方程为()A.y=±15xB.y=±3xC.y=±1515x D.y=±33x3.(23-24高三上·河南漯河·期末)已知双曲线C:mx2-y2=1(m>0)的一条渐近线方程为mx+3y =0,则C的焦距为.4.(24-25高三上·山东泰安·开学考试)若双曲线x2a2-y2b2=1a>0,b>0的一个焦点F5,0,一条渐近线方程为y=34x,则a+b=.5.(2024·河南新乡·模拟预测)(多选)已知a>0,b>0,则双曲线C1:x2a2-y2b2=1与C2:x2a2-y2b2=4有相同的()A.焦点B.焦距C.离心率D.渐近线考点四、双曲线的离心率1.(2023·北京·高考真题)已知双曲线C的焦点为(-2,0)和(2,0),离心率为2,则C的方程为.2.(2024·上海·高考真题)三角形三边长为5,6,7,则以边长为6的两个顶点为焦点,过另外一个顶点的双曲线的离心率为.3.(2024·全国·高考真题)已知双曲线的两个焦点分别为0,4,0,-4,点-6,4在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.24.(2022·浙江·高考真题)已知双曲线x2a2-y2b2=1(a>0,b>0)的左焦点为F,过F且斜率为b4a的直线交双曲线于点A x1,y1,交双曲线的渐近线于点B x2,y2且x1<0<x2.若|FB|=3|FA|,则双曲线的离心率是.5.(2022·全国·高考真题)双曲线C的两个焦点为F1,F2,以C的实轴为直径的圆记为D,过F1作D的切线与C交于M,N两点,且cos∠F1NF2=35,则C的离心率为()A.52B.32C.132D.1726.(2024·广东江苏·高考真题)设双曲线C:x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1、F2,过F2作平行于y轴的直线交C于A,B两点,若|F1A|=13,|AB|=10,则C的离心率为.1.(2024·河南周口·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距与其虚轴长之比为3:2,则C 的离心率为()A.5B.455C.355D.522.(2024·四川成都·模拟预测)双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则其离心率为( ).A.233B.63C.103D.2633.(2024·湖北武汉·模拟预测)已知双曲线y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线的倾斜角为5π6,则此双曲线的离心率为()A.2B.3C.2D.54.(2024·山东·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过F 2的直线与E 的右支交于A ,B 两点,且BF 2 =2AF 2 ,若AF 1 ⋅AB=0,则双曲线E 的离心率为()A.3B.173C.233D.1035.(2024·福建泉州·一模)O 为坐标原点,双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F 1,点P 在E 上,直线PF 1与直线bx +ay =0相交于点M ,若PM =MF 1 =2MO ,则E 的离心率为.考点五、双曲线中的最值问题1.(22-23高三上·湖北黄冈·阶段练习)P 为双曲线x 2-y 2=1左支上任意一点,EF 为圆C :(x -2)2+y 2=4的任意一条直径,则PE ⋅PF的最小值为()A.3B.4C.5D.92.(22-23高三下·江苏淮安·期中)已知F 1,F 2分别为双曲线x 29-y 24=1的左、右焦点,P 为双曲线右支上任一点,则PF 12-PF 2PF 2最小值为()A.19B.23C.25D.853.(22-23高二上·浙江湖州·期末)双曲线x 2m -y 2n =1(m >0,n >0)的离心率是2,左右焦点分别为F 1,F 2,P 为双曲线左支上一点,则PF 2 PF 1的最大值是()A.32B.2C.3D.41.(22-23高三下·福建泉州·阶段练习)双曲线C :x 2-y 2=1的左、右顶点分别为A ,B ,P 为C 上一点,直线P A ,PB 与x =12分别交于M ,N 两点,则MN 的最小值为.2.(2022高三·全国·专题练习)长为11的线段AB 的两端点都在双曲线x 29-y 216=1的右支上,则AB 中点M 的横坐标的最小值为()A.75B.5110C.3310D.323.(23-24高二下·江苏南京·期中)已知A ,B 分别是双曲线C :x 29-y 25=1的左、右顶点,P 是双曲线C上的一动点,直线P A ,直线PB 与x =2分别交于M ,N 两点,记△PMN ,△P AB 的外接圆面积分别为S 1,S 2,则S 1S 2的最小值为()A.316B.181 C.34D.2581考点六、双曲线的简单应用1.(23-24高三上·江西·期末)阿波罗尼斯(约公元前262年~约公元前190年),古希腊著名数学家﹐主要著作有《圆锥曲线论》、《论切触》等.尤其《圆锥曲线论》是一部经典巨著,代表了希腊几何的最高水平,此书集前人之大成,进一步提出了许多新的性质.其中也包括圆锥曲线的光学性质,光线从双曲线的一个焦点发出,通过双曲线的反射,反射光线的反向延长线经过其另一个焦点.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,其离心率e =5,从F 2发出的光线经过双曲线C 的右支上一点E 的反射,反射光线为EP ,若反射光线与入射光线垂直,则sin ∠F 2F 1E =()A.56B.55C.45D.2552.(22-23高二上·山东德州·期末)3D 打印是快速成型技术的一种,通过逐层打印的方式来构造物体.如图所示的笔筒为3D 打印的双曲线型笔筒,该笔筒是由离心率为3的双曲线的一部分围绕其旋转轴逐层旋转打印得到的,已知该笔筒的上底直径为6cm ,下底直径为8cm ,高为8cm (数据均以外壁即笔筒外侧表面计算),则笔筒最细处的直径为()A.5748cm B.2878cm C.5744cm D.2874cm 3.(2023·浙江杭州·二模)费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P 为双曲线(F 1,F 2为焦点)上一点,点P 处的切线平分∠F 1PF 2.已知双曲线C :x 24-y 22=1,O 为坐标原点,l 是点P 3,102 处的切线,过左焦点F 1作l 的垂线,垂足为M ,则OM=.4.(2024·全国·模拟预测)在天文望远镜的设计中,人们利用了双曲线的光学性质:从双曲线的一个焦点射出的光线,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.如图,已知双曲线的离心率为2,则当入射光线F 2P 和反射光线PE 互相垂直时(其中P 为入射点),cos ∠F 1F 2P 的值为()A.5+14B.5-14C.7+14D.7-145.(2024·吉林延边·一模)祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等”.某同学在暑期社会实践中,了解到火电厂的冷却塔常用的外形可以看作是双曲线的一部分绕其虚轴旋转所形成的曲面(如图).现有某火电厂的冷却塔设计图纸,其外形的双曲线方程为x 2-y 24=1(-2≤y ≤1),内部虚线为该双曲线的渐近线,则该同学利用“祖暅原理”算得此冷却塔的体积为.6.(2023·广东茂名·三模)我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:F 1,F 2是双曲线的左、右焦点,从F 2发出的光线m 射在双曲线右支上一点P ,经点P 反射后,反射光线的反向延长线过F 1;当P 异于双曲线顶点时,双曲线在点P 处的切线平分∠F 1PF 2.若双曲线C 的方程为x 29-y 216=1,则下列结论正确的是()A.射线n 所在直线的斜率为k ,则k ∈-43,43B.当m ⊥n 时,PF 1 ⋅PF 2 =32C.当n过点Q7,5时,光线由F2到P再到Q所经过的路程为13D.若点T坐标为1,0,直线PT与C相切,则PF2=12一、单选题1.(23-24高三下·重庆·期中)已知双曲线y212-x2b2=1b>0的焦距为8,则该双曲线的渐近线方程为()A.y=±13x B.y=±3x C.y=±3x D.y=±33x2.(2024·湖南邵阳·模拟预测)若点-3,4在双曲线C:x2a2-y2b2=1a>0,b>0的一条渐近线上,则C的离心率为()A.259B.2516C.53D.543.(2024·全国·模拟预测)设双曲线x2a2-y2b2=1(a>0,b>0)的一个顶点坐标为(-2,0),焦距为23,则双曲线的渐近线方程为()A.y=±2xB.y=±2xC.y=±12x D.y=±22x4.(2024高三上·全国·专题练习)已知双曲线C的左、右焦点分别是F1,F2,P是双曲线C上的一点,且PF1=5,PF2=3,∠F1PF2=120°,则双曲线C的离心率是()A.7B.72C.73D.745.(2024·全国·模拟预测)若双曲线x2a2-y2b2=1(a>0,b>0)的右焦点F c,0到其渐近线的距离为32c,则该双曲线的离心率为()A.12B.32C.2D.26.(2024·四川·模拟预测)已知F1,F2分别为双曲线C的左、右焦点,过F1的直线与双曲线C的左支交于A ,B 两点,若AF 1 =2F 1B ,AB =BF 2 ,则cos ∠F 1BF 2=()A.118B.19C.29D.237.(2024·全国·模拟预测)设椭圆x 2a 2+y 2b 2=1(a >b >0)和双曲线x 2a 2-y 2b 2=1的离心率分别为e 1,e 2,若e 1∈55,1 ,则e 2的取值范围是()A.1,255B.1,355C.255,+∞D.355,+∞二、填空题8.(2024·湖南岳阳·三模)已知双曲线C 过点(1,6),且渐近线方程为y =±2x ,则C 的离心率为.9.(2024高三·全国·专题练习)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C ,则C 的方程为.10.(2024高三·全国·专题练习)求适合下列条件的曲线的标准方程:(1)过点A (3,2)和点B (23,1)的椭圆;(2)焦点在x 轴上,离心率为2,且过点(-2,2)的双曲线.一、单选题1.(2024·江西·模拟预测)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线交双曲线左支于A ,B 两点,AB ⊥AF 2,tan ∠AF 2B =43,则双曲线C 的渐近线方程为()A.y =±32xB.y =±3xC.y =±32x D.y =±62x 2.(2024·山西太原·模拟预测)在平面直角坐标系中,已知点A 坐标为0,-6 ,若动点P 位于y 轴右侧,且到两定点F 1-3,0 ,F 23,0 的距离之差为定值4,则△APF 1周长的最小值为()A.3+45B.3+65C.4+45D.4+653.(2024·广东广州·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,一条渐近线的方程为y =2x ,直线y =kx 与C 在第一象限内的交点为P .若PF =PO ,则k 的值为()A.52B.32C.255D.4554.(2024·湖南长沙·二模)已知A 、B 分别为双曲线C :x 2-y 23=1的左、右顶点,过双曲线C 的左焦点F作直线PQ 交双曲线于P 、Q 两点(点P 、Q 异于A 、B ),则直线AP 、BQ 的斜率之比k AP :k BQ =()A.-13B.-23C.-3D.-325.(2024·河北·三模)已知O 是坐标原点,M 是双曲线x 2a 2-y 2b2=1a >0,b >0 右支上任意一点,过点M作双曲线的切线,与其渐近线交于A ,B 两点,若△AOB 的面积为12b 2,则双曲线的离心率为()A.2B.3C.5D.26.(2024·陕西商洛·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1作直线与双曲线C 的左、右两支分别交于A ,B 两点.若AB =83AF 1 ,且cos ∠F 1BF 2=14,则双曲线C 的离心率为()A.2B.53C.43D.37.(2024·宁夏银川·二模)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),点B 的坐标为(0,b ),若C 上存在点P使得PB <b 成立,则C 的离心率取值范围是()A.2+12,+∞ B.5+32,+∞ C.2,+∞D.5+12,+∞二、填空题8.(2024·浙江·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M 为双曲线渐近线上的点,且F 1M ⋅F 2M=0,若MF 1 =2MF 2 ,则该双曲线的离心率e =.9.(2024·辽宁·模拟预测)设O 为坐标原点,F 1,F 2为双曲线C :x 29-y 26=1的两个焦点,点P 在C 上,cos ∠F 1PF 2=45,则|OP |=10.(2024·广西来宾·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若双曲线的左支上一点P 满足sin ∠PF 1F 2sin ∠PF 2F 1=3,以F 2为圆心的圆与F 1P 的延长线相切于点M ,且F 1M =3F 1P ,则双曲线的离心率为.1.(2024·天津·高考真题)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2.△PF 1F 2是面积为8的直角三角形,则双曲线的方程为()A.x 28-y 22=1B.x 28-y 24=1C.x 22-y 28=1D.x 24-y 28=12.(2023·全国·高考真题)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,C 的一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则|AB |=()A.55B.255C.355D.4553.(2023·全国·高考真题)设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-44.(2023·天津·高考真题)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.过F 2向一条渐近线作垂线,垂足为P .若PF 2 =2,直线PF 1的斜率为24,则双曲线的方程为()A.x 28-y 24=1B.x 24-y 28=1C.x 24-y 22=1D.x 22-y 24=15.(2023·北京·高考真题)已知双曲线C 的焦点为(-2,0)和(2,0),离心率为2,则C 的方程为.6.(2023·全国·高考真题)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C 的方程;(2)记C 的左、右顶点分别为A 1,A 2,过点-4,0 的直线与C 的左支交于M ,N 两点,M 在第二象限,直线MA 1与NA 2交于点P .证明:点P 在定直线上.7.(2022·天津·高考真题)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=45x 的准线l 经过F 1,且l 与双曲线的一条渐近线交于点A ,若∠F 1F 2A =π4,则双曲线的方程为()A.x 216-y 24=1B.x 24-y 216=1C.x 24-y 2=1D.x 2-y 24=18.(2022·北京·高考真题)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =.9.(2022·全国·高考真题)若双曲线y 2-x 2m2=1(m >0)的渐近线与圆x 2+y 2-4y +3=0相切,则m =.10.(2022·全国·高考真题)记双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值.11.(2021·全国·高考真题)双曲线x 24-y 25=1的右焦点到直线x +2y -8=0的距离为.12.(2021·全国·高考真题)若双曲线x 2a 2-y 2b2=1的离心率为2,则此双曲线的渐近线方程.13.(2021·北京·高考真题)若双曲线C :x 2a 2-y 2b2=1离心率为2,过点2,3 ,则该双曲线的方程为()A.2x 2-y 2=1B.x 2-y 23=1 C.5x 2-3y 2=1D.x 22-y 26=114.(2021·全国·高考真题)已知双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则C 的焦距为.15.(2021·全国·高考真题)在平面直角坐标系xOy 中,已知点F 1-17,0 、F 217,0 ,MF 1 -MF 2 =2,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA ⋅TB =TP ⋅TQ ,求直线AB 的斜率与直线PQ 的斜率之和.。

椭圆曲线“切点弦”的性质

椭圆曲线“切点弦”的性质

椭圆曲线“切点弦”的性质_本人通过对椭圆曲线性质的研究,得出椭圆曲线切点弦的一条有趣的性质,现把它的探索过程写出来,与大家分享。

为了方便,不防从抛物线进行探究,然后再推广到其他椭圆曲线。

y2=2px的准线l上任意一点p作抛物线的两条切线,设切点分别为A、B,我们把线段AB称为切点弦,则切点弦AB必过定点所以切点弦AB所在的直线方程是tp=p(x-,即为抛物线y2=2px 的焦点探究1:如果性质1中直线L非抛物线的准线l,而是直线l:x=-c(c0),那么切点弦AB是否也具有类似的性质呢?自直线l:x=-c(c0)上任意一点p作抛物线y2=2px的两条切线,设切点分别为A、B,则切点弦AB必恒经过定点证明:设AB,P(c0)则经过点P的两条切线的方程是Ty1=p(x1-c)③,ty2=p(x2-c)④由③④得,显然AB都在直线ty=p(x-c)上,切点弦AB所在的直线的方程是ty=p(x-c)切点弦恒过定点显然性质1是性质2的特殊情形探究2:一般地,如果性质2中直线x=-c(c0)改为直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,那么切点弦AB是否也具有类似的性质呢?若直线l:y=kx+b(其中k,b为常量),且l与抛物线y2=2px没有公共点,自直线l上任意一点P作抛物线的两条切线,设切点分别为A、B,那么切点弦AB恒过定点我们之所以假设直线l与抛物线没有公共点,是因为如果直线l 与抛物线相交,那么过l上任意一点并不总能作抛物线的切点;如果直线l与抛物线相切,那么切点弦显然恒过定点y=p(x+t)上,所以切点弦AB所在的直线的方程是y=p(x+t)k0,(y-k(p))=p(x-k(b)),所以切点弦AB恒过定点现在我们将抛物线切点弦的这条性质推广到椭圆和双曲线设直线l:y=kx+m(其中k,m为常量)与椭圆C:a2(x2)+b2(y2)=1没有公共点,直线l上任意一点p作椭圆C的两条切线,设切点分别为A、B则切点弦AB恒过定点,B,P(t,kt+m)同理可以得出:设直线l:y=kx+m(其中k,m为常量)与圆C:x2+y2=r2没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点综上所述,我们得到椭圆曲线切点弦的性质如下:已知定直线l与椭圆曲线C没有公共点,自直线l上任意一点P作椭圆C的两条切线,设切点分别为A、B,则切点弦AB恒过定点。

专题17 椭圆与双曲线共焦点问题 微点1 椭圆与双曲线共焦点问题

专题17  椭圆与双曲线共焦点问题  微点1  椭圆与双曲线共焦点问题

专题17 椭圆与双曲线共焦点问题 微点1 椭圆与双曲线共焦点问题专题17 椭圆与双曲线共焦点问题微点1 椭圆与双曲线共焦点常用结论及其初步应用 【微点综述】圆锥曲线是高中数学的重要研究对象,其中具有相同焦点的椭圆与双曲线更是引人瞩目,耐人寻味.在近年高考及全国各地模拟考试中,频繁出现以共焦点的椭圆与双曲线为背景的两离心率之积与两离心率倒数之和的最值与范围问题,此类问题因涉及知识的交汇、体现综合运用能力,学生面对此类问题往往束手无策,本文介绍与此类问题有关的结论,通过具体例子说明结论的应用,供同学们复习时参考. 一、常用结论【结论1】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n-=>>共同的焦点,12,e e 分别为12,C C 的离心率,点()00,P x y 是1C 与2C 的一个公共点,则0000,,y am bn bnx y c c x am===. 证明:由已知得222222221,1,x y a b x y m n ⎧+=⎪⎪⎨⎪-=⎪⎩消去y 得()22222222222222221111,a m b n x x a n b m b n a n b m +⎛⎫+=+∴= ⎪+⎝⎭, 又()()()2222222222222a n mbc b n c n b b n c +=++-=+,因此22202,a m amx x c c=∴=.又222222222200000022222201,11,,x y x y a m b n bn bn y b b y a b a c a c c x am ⎛⎫⎛⎫+=∴=-=-=∴=∴= ⎪ ⎪⎝⎭⎝⎭.【结论2】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n-=>>共同的焦点,12,e e 分别为12,C C 的离心率,点()00,P x y 是1C 与2C 的一个公共点,12F PF θ∠=,则1222221212,,PF F PF PF a m PF PF b n S bn ∆⋅=-⋅=-=.证明:由椭圆与双曲线的定义得12122,2,PF PF a PF PF m ⎧+=⎪⎨-=±⎪⎩两式分别平方再相减得2212PF PF a m ⋅=-.在12PF F ∆中,由余弦定理得22212122cos 4PF PF PF PF c θ+-⋅=,()()()222212121221cos 4,421cos 4PF PF PF PF c a PF PF c θθ∴+-⋅+=∴-⋅+=,()2121cos 2PF PF b θ∴⋅+=,同理可得()2121cos 2PF PF n θ⋅-+=-,()()()22221212121cos 1cos 2,cos PF PF PF PF b n PF PF b n θθθ∴⋅++⋅-+=-∴⋅=-,2212PF PF b n ∴⋅=-.由椭圆与双曲线的焦点三角形面积公式得 1212222222tan ,tan ,22tan 2PF F PF F n n nS b S b bnb bθθθ∆∆==∴=∴=⋅=. 【结论3】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n -=>>共同的焦点,12,e e 分别为12,C C 的离心率,点()00,P x y 是1C 与2C 的一个公共点,12F PF θ∠=,则2222tan ,cos 2n b n b a m θθ-==-.证明:由结论2得222tan 2n bθ=,又tan 0,tan 22n b θθ>∴=. 注意到221212221212cos ,cos PF PF PF PF b n a mPF PF PF PF θθ⋅⋅-=∴==-⋅⋅.【结论4】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n -=>>共同的焦点,12,e e 分别为12,C C 的离心率,点()00,P x y 是1C 与2C 的一个公共点,则222212n b b n e e ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭.证明:222222222222222222221212111,1,a b c b m c n n n b b n e c c c e c c c e e ⎛⎫⎛⎫+-===+===-∴+=+ ⎪ ⎪⎝⎭⎝⎭. 【评注】结论4反映1212,,,e e b b 之间的等量关系式,等式左边是两分式之和,分母分别是2211,e e ,分子分别是2221,b b ,等式右边是1b 与2b 的平方和.【结论5】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n-=>>共同的焦点,12,e e 分别为12,C C 的离心率,点()00,P x y 是1C 与2C 的一个公共点,12F PF θ∠=,则2212sin cos 221e e θθ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即22121cos 1cos 2e e θθ-++=. 证明:证法1:在12PF F ∆中,由余弦定理得22212122cos 4PF PF PF PF c θ+-⋅=,即2222212122cos sin 422PF PF PF PF c θθ⎛⎫+-⋅-= ⎪⎝⎭,()()22221212222221212sin cos 4,sin cos 1222222PF PF PF PF PF PF PF PF c c c θθθθ⎛⎫⎛⎫+-∴++-=∴+= ⎪ ⎪⎝⎭⎝⎭,即2212sin cos 221e e θθ⎛⎫⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,亦即22121cos 1cos 2e e θθ-++=. 证法2:借助焦点三角形面积公式运用面积公式,设椭圆的短半轴长为1b ,双曲线的虚半轴长为2b ,则121tan 2PF F S b θ=△,1222tan2PF F b S θ=△,所以2221tan 2tan 2b b θθ=,2221b a c =-,2222b c m =-, ()()22222tan 2a c c m θ-=-,整理得:222212sin cos 221e e θθ+=,即22121cos 1cos 2e e θθ-++=.【结论6】已知点()()()12,0,,00F c F c c ->是椭圆()22122:10x y C a b a b +=>>与双曲线()22222:10,0x y C m n m n-=>>共同的焦点,点()00,P x y 是椭圆1C 与双曲线2C 的一个公共点,则椭圆1C 与双曲线2C 在点()00,P x y 处的切线相互垂直.证明:椭圆1C 在点()00,P x y 处的切线方程为00221x x y ya b+=,该切线的斜率为20120x b k y a =-, 双曲线2C 在点()00,P x y 处的切线00221x x y ym n-=,该切线的斜率为20220x n k y m =,222220001222222000x b x n x b nk k y a y m y a m∴=-⋅=-;又由结论1得222222222000122220,,1y b n y a m x b n k k x a m=∴=∴=-, 则椭圆1C 与双曲线2C 在点()00,P x y 处的切线相互垂直.【结论7】若点()00,P x y 是椭圆()22122:10x y C a b a b+=>>与双曲线()22222:10,0x y C m n m n-=>>的一个公共点,且它们在点()00,P x y 处的切线相互垂直,则椭圆1C 与双曲线2C 有共同的焦点.证明:由已知得222222221,1,x y a b x y m n ⎧+=⎪⎪⎨⎪-=⎪⎩消去y 得()22222222222222221111,a m b n x x a n b m b n a n b m +⎛⎫+=+∴= ⎪+⎝⎭, 因此()2222222222000222222222222222222211,11m b n x y x b n a m a m a n b m b n n a n a n b m a n b m ⎡⎤+⎛⎫+-⎢⎥==-=-= ⎪+++⎢⎥⎝⎭⎣⎦. 由已知得222222222220000012222222222222222220001,,x b x n x b n x y b n a m k k y a y m y a m a m b n a n b m a n b m+-=-⋅=-=-∴=∴=++,22222222,,a m b n a b m n ∴-=+∴-=+∴椭圆1C 与双曲线2C 有共同的焦点.二、应用举例 (一)公共点问题1.已知点1F ,2F 分别为椭圆221:110x C y +=的左、右焦点,椭圆1C 与双曲线222:18x C y -=的一个交点为P ,O 为坐标原点,直线OP 的斜率为k ,则k =___________. (二)公共焦点三角形问题2.已知椭圆()2212:11x C y m m +=>与双曲线()2222:10x C y m n-=>有公共焦点12,F F ,P是它们的一个公共点,则12PF F △的面积为_________,12PF F △的形状是_________. 例3.(2022·上海·高三专题练习)3.已知1(2,0)F -、2(2,0)F ,设P 是椭圆2228x y +=与双曲线222x y -=的交点之一,则12PF PF ⋅=___________.(三)角度问题4.设椭圆22162x y += 与双曲线2213x y -= 有公共焦点1F ,2F ,P 是两条曲线的一个公共点,则12cos F PF ∠ 等于__________. (四)公共点处切线有关问题5.已知椭圆221259x y +=与双曲线()2222:10,0x y C m n m n-=>>有公共焦点12,F F ,点94,5P ⎛⎫⎪⎝⎭在双曲线C 上,则该双曲线在点P 处的切线的斜率为_________________. (五)求离心率的值例5.(2022·云南云南·高二月考)6.已知椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>有相同的焦点12F F 、,点P 是两曲线的一个公共点,且123F PF π∠=,若双曲线为等轴双曲线,则椭圆的离心率为______.7.若两曲线在交点P 处的切线互相垂直,则称这两条曲线在点P 处正交.设椭圆()2221024x y b b +=<<与双曲线2212x y -=在交点处正交,则椭圆22214x y b+=的离心率为__________.不难看出,有了以上性质之后,在解决有关共焦点的椭圆与双曲线的相关问题时,处理起来往往会比较简便,真正达到“少算、巧算”的目的.当然在具体的题目中,以上性质是否有用,取决于相应的题目条件.在教学过程中我们可以适当引导学生作出相应的归纳总结,如本文中由于经常出现共焦点的椭圆与双曲线的相关问题,我们不妨将其进行有效地研究与归纳总结,帮助学生提高计算的准确性与方法选择的恰当性,从而高效地解决问题.(五)求椭圆、双曲线离心率之积的取值范围或最值问题 (六)求12u ve e +(,u v 为正常数)型最值问题综上可知,共焦点的椭圆与双曲线一般有如下几类题型:一是求两离心率之积的取值范围或最值问题;二是求两离心率的倒数之和的最大值问题.不论是哪种题型,一般先由结论4或结论5得出12,e e 的等量关系式,将问题转化为二元条件最值问题,若求12e e 的取值范围或最值问题,一般可考虑均值不等式、三角换元、消元等方法处理;若求12u ve e +(,u v 为正常数)的最大值,一般可考虑柯西不等式或三角换元等方法处理.8.设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则2212212()e e e e +的值为A .12B .1C .2D .不确定9.已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且122πFPF 3∠=,记椭圆和双曲线的离心率分别为1e ,2e .则221231(e e += ) A .4B.C .2 D .310.已知椭圆和双曲线有共同的焦点1F ,2F ,P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则当121e e 取最大值时,1e ,2e 的值分别是( ) AB .12CD例4.(2021·新江宁这育·高二期末)11.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( ) A .25B .100C .9D .36例5.(2021·全国高三专题练习)12.设1F ,2F 分别为椭圆1C :()2211221110x y a b a b +=>>与双曲线2C :()2222222210x y a b a b -=>>的公共焦点,它们在第一象限内交于点M ,1290F MF ∠=︒,若椭圆的离心率134e ⎡∈⎢⎣⎦,则双曲线2C 的离心率2e 的取值范围为________________________.例6.(2021·河南郑州市·高三一模(文))13.已知12,F F 知是椭圆221:14x C y +=与双曲线2C 的公共焦点,A 是12,C C 在第二象限的公共点.若12AF AF ⊥,则双曲线2C 的离心率为( ) A .65BCD例7.(2021·全国高二课时练习)14.椭圆与双曲线共焦点1F 、2F ,它们的交点为P ,且123F PF π∠=,若椭圆的离心率___________. 例8.(2021·浙江绍兴市·高二期末)15.已知12,F F 为椭圆和双曲线的公共焦点,P 为其一个公共点,且1223F PF π∠=,若椭圆与双曲线的离心率分别为12,e e ,则12e e ⋅的最小值为( )A .1BCD 例9.(2021·陕西渭南市,高二期末(理))16.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”,已知1F 、2F 是一对相关曲线的焦点,P 是椭圆和双曲线在第一象限的交点,当1260F PF ∠=时,这一对相关曲线中双曲线的离心率是AB C D .2自我检测 (2014·湖北卷)17.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A B C .3 D .218.已知椭圆()222210x y a b a b+=>>,与双曲线()222210,0x y m n m n -=>>具有相同焦点F 1、F 2,且在第一象限交于点P ,椭圆与双曲线的离心率分别为e 1、e 2,若∠F 1PF 2=3π,则2212e e +的最小值是AB .2CD 19.设1e ,2e 分别为具有公共焦点1F 与2F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足120PF PF ⋅=,则22124e e +的最小值为( )A .3B .92C .4D .53(2021·江西南昌市·(理))20.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且124F PF π∠=,则椭圆和双曲线的离心率乘积的最小值为( )A .12B C .1 D (2021·江苏徐州市高二月考)21.已知点1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别是1C 和2C 的离心率,点P 为1C 和2C 的一个公共点,且1223F PF π∠=,若(2e ∈,则1e 的取值范围是( )A.⎝⎭B.⎝⎭C.⎝⎭D.⎝⎭(2021·甘肃省民乐县第一中学高二期中(理))22.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则1212e e 的最大值为( ) A .32BCD .1(2021·江西高三其他模拟(文))23.已知椭圆1C 与双曲线2C 的焦点相同,离心率分别为1e ,2e ,且满足21e ,1F ,2F 是它们的公共焦点,P 是椭圆和双曲线在第一象限的交点,若12120F PF ∠=︒,则双曲线2C 的离心率为( )ABC .2D(2021·贵州黔东南苗族侗族自治州·凯里一中高三开学考试(理))24.已知椭圆与双曲线有公共焦点,1F ,2F ,1F 为左焦点,2F 为右焦点,P 点为它们在第一象限的一个交点,且124F PF π∠=,设1e ,2e 分别为椭圆双曲线离心率,则1211e e +的最大值为 AB.C.D.(2021·江苏省前黄高级中学高二期末)25.1F ,2F 是椭圆1C 和双曲线2C 的公共焦点,1e ,2e 分别为曲线1C ,2C 的离心率,P 为曲线1C ,2C 的一个公共点,若123F PF π∠=,且22e ⎤∈⎦,则1e ∈___________. (2021·天津静海区·高二期中)26.已知椭圆1C 与双曲线2C 有公共焦点12F F ,,M 为1C 与2C 的一个交点,12MF MF ⊥,椭圆1C 的离心率为1e ,双曲线2C 的离心率为2e ,若212e e =,则1e =_______. (2021·江苏省天一中学高三一模)27.设P 为有公共焦点12,F F 的椭圆1C 与双曲线2C 的一个交点,且12PF PF ⊥,椭圆1C 的离心率为1e ,双曲线2C 的离心率为2e ,若213e e =,则1e =______________. (2021·江苏省如皋中学高二月考(文))28.设P 为有公共焦点12F F 、的椭圆1C 与双曲线2C 的一个交点,且12PF PF ⊥,若椭圆1C 的离心率为1e ,双曲线2C 的离心率为2e ,则22129e e +的最小值为_________.(2019.湖北(理))29.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,椭圆、双曲线的离心率分别为12,e e ,则22122e e +的最小值是__________.(2021·浙江嘉兴市·高二月考(理))30.设椭圆22162x y +=和双曲线2213x y -=的公共焦点为12,,F F P 是两曲线的一个公共点,则12cos F PF ∠的值等于 A .13B .14C .19D .35(2021·江苏泰州市·泰州中学高二开学考试)31.已知椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>有相同的焦点1F ,2F ,点P 使两曲线的一个公共点,且1260F PF ∠=︒,若椭圆离心率1e =双曲线2C 的离心率2e =( ) AB .2 CD .3(2021·江苏省镇江第一中学高二期末)32.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠= ,记椭圆和双曲线的离心率分别为12,e e,则121e 的最大值为( ) A.3BC.D.(2021·全国高三专题练习(理))33.若椭圆22221(0)x y a b a b+=>>与双曲线()2211221110,0x y a b a b -=>>有相同的焦点12,F F ,点P 是两条曲线的一个交点,122F PF π∠=,椭圆的离心率为1e ,双曲线的离心率为2e ,122e e ,则2212e e +=__________.(2021·江西南昌市·南昌二中高二月考(文))34.椭圆与双曲线共焦点1F 、2F ,它们的交点P 对两公共焦点1F 、2F 的张角为122F PF θ∠=,椭圆与双曲线的离心率分别为1e 、2e ,则A .222212cos sin 1e e θθ+=B .222212sin cos 1e e θθ+= C .2212221cos sin e e θθ+=D .2212221sin cos e e θθ+=(2021·陕西汉中市·高三月考(理))35.椭圆与双曲线共焦点1F ,2F ,它们的交点P 对两公共焦点1F ,2F 张的角为123F PF π∠=.椭圆与双曲线的离心率分别为1e ,2e ,则 A .221231144e e += B .221213144e e += C .22124413e e +=D .22214413e e +=参考答案:1【分析】设点()00,P x y ,根据直线的斜率公式得到0y k x =;联立两方程解出0x ,0y ,即可代入得出答案.【详解】设点()00,P x y ,根据直线的斜率公式得到0y k x =, 联立方程22110x y +=与2218x y -=消去y ,得:222108x x +=,解得x =0x =,代入22110x y +=解得:13y =±,即013y =±,00001y y k x x ∴====2. 1 直角三角形【分析】根据椭圆和双曲线的定义可得12,PF m n PF m n =+=-,进而根据勾股定理可判断直角三角形,进而可求面积.【详解】不妨设P 在第一象限,12,F F 为左右焦点,焦距为2c ,由椭圆和双曲线的定义可得:12122,2PF PF m PF PF n +=-=,故12,PF m n PF m n =+=-,又22211m n c -=+=,故可得22122PF PF m n =-=且()()2222222212122,42PF PF m n F F c m n +=+==+,故 2221212PF PF F F +=,因此12PF F △形状是直角三角形,以P 为直角, 1212112122PF F SPF PF ==⨯=, 故答案为:1;直角三角形. 3.6【分析】由于椭圆与双曲线共焦点,利用两者的定义列出等式求出112||,||PF PF 即可得到答案.【详解】椭圆和双曲线分别化为标准方程为22184x y +=、22122x y -=,可知两曲线共焦点, 设1122||,||PF r PF r ==,由定义有:121122r r r r r r ⎧⎧+==⎪⎪⎨⎨-==⎪⎪⎩⎩11226r r r r ⎧=⎪⨯=⎨=⎪⎩. 故答案为:6.4.13【详解】试题分析:,,,则,,考点:1.椭圆定义;2.双曲线定义;3.余弦定理; 5.54##1.25【分析】依题意,注意到点94,5P ⎛⎫ ⎪⎝⎭在椭圆221259x y +=上,由此得到椭圆在点P 处的切线方程;再结合上述性质得到椭圆与双曲线在其公共点P 处的斜率间的关系,进而求出双曲线在点P 处的切线的斜率.也可以利用结论6直接得到答案.【详解】根据结论6,由题意得椭圆221259x y +=在点94,5P ⎛⎫ ⎪⎝⎭处的切线方程为4912595x y +=⨯,即45250x y +-=,该直线的斜率为45-,由结论5得知,该双曲线在点P 处的切线的斜率为54. 故答案为:54.6【分析】设12,PF s PF t ==,由椭圆和双曲线的定义,解方程可得,s t ,再由余弦定理,可得a ,m 与c 的关系,结合离心率公式,可得1e ,2e 的关系,计算可得所求值.【详解】设1212,,2PF s PF t F F c ===,P 为第一象限的交点,设椭圆的离心率为1e ,双曲线的离心率为2e ,由椭圆和双曲线的定义可得22s t a s t m +=⎧⎨-=⎩,解得s a mt a m =+⎧⎨=-⎩,在三角形12F PF 中,123F PF π∠=,由余弦定理可得,()22222222242cos223c s t st a m am a m am a m π=+-=++++---,即有22234a m c +=,可得222234a m c c+=,即为2212134e e +=,由双曲线为等轴双曲线,所以2e1e =7【分析】设椭圆与双曲线的交点为00(,)P x y ,联立两曲线方程解得00,x y 的值,再写出两曲线在P 的切线方程及斜率,由121k k =-解出b 的值,进而可求椭圆的离心率. 【详解】解:设椭圆()2221024x y b b +=<<与双曲线2212x y -=的交点为00(,)P x y ,解方程组2200222001412x y bx y ⎧+=⎪⎪⎨⎪-=⎪⎩ ,得220222024422b x b b y b ⎧+=⎪⎪+⎨⎪=⎪+⎩ , 椭圆()2221024x y b b +=<<在P 处的切线方程为00214x x y y b +=,斜率20104x b k y =-;双曲线2212x y -=在P 处的切线方程为0012x x y y -=,斜率0202x k y =; 因为椭圆()2221024x y b b +=<<与双曲线2212x y -=在交点处正交,所以2001200142x b x k k y y =-⋅=-, 所以222008b x y =,即2222244822b b b b b +⋅=⋅++,解得1b =. 所以椭圆22214x y b+=的离心率c e a ===.8.C【分析】根据题意,设它们共同的焦距为2c 、椭圆的长轴长2a 、双曲线的实轴长为2m ,由椭圆和双曲线的定义及勾弦定理建立关于a 、c 、m 的方程,联解可得a 2+m 2=2c 2,再根据离心率的定义求解.【详解】由题意设焦距为2c ,椭圆的长轴长2a ,双曲线的实轴长为2m , 设P 在双曲线的右支上,由双曲线的定义得|PF 1|﹣|PF 2|=2m ∠ 由椭圆的定义|PF 1|+|PF 2|=2a ∠ 又∠120PF PF ⋅=,∠12PF PF ⊥,可得∠F 1PF 2=900, 故|PF 1|2+|PF 2|2=4c 2∠,∠平方+∠平方,得|PF 1|2+|PF 2|2=2a 2+2m 2∠将∠代入∠,化简得a 2+m 2=2c 2,即2222112c c a m+=, 可得2212112e e +=, 所以()2212212e e e e +=2212112e e +=. 故选:C 【点睛】9.A【分析】设椭圆的长半轴长为a 1,双曲线的实半轴长a 2,焦距2c .结合椭圆与双曲线的定义,得112PF a a =+,212PF a a =- ,在∠F 1PF 2中,根据余弦定理可得到12,a a 与c 的关系式,变形可得221231e e +的值. 【详解】如图所示:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,则根据椭圆及双曲线的定义:1212PF PF a +=,1222PF PF a -=,∠112PF a a =+,212PF a a =-, 设122F F c =,122π3F PF ∠=,则 在12PF F 中由余弦定理得,()()()()222121212122π42cos3c a a a a a a a a =++--+-, ∠化简得2221234a a c +=,该式可变成2212314e e +=. 故选A .【点睛】本题考查了椭圆及双曲线的定义和离心率,考查了余弦定理的应用;涉及圆锥曲线的离心率时,常通过结合圆锥曲线a,b,c 的关系式和其他已知条件,转化只含有a,c 的关系式求解. 10.A【分析】设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c ,2222111x y a b -=,c =根据123F PF π∠=,利用余弦定理得到2221340a a c +-=,进而得到2221314e e +=,再利用基本不等式求解.【详解】解:不妨设椭圆与双曲线的标准方程分别为:()222210x y a b a b+=>>,c =2222111x y a b -=,c 设1PF m =,2PF n =.m n >.则2m n a +=,12m n a -=,∠1m a a =+,1n a a =-. 因为123F PF π∠=,所以()22221cos 322m n c mn π+-==, 即()()()()22211114a a a a c a a a a ++--=+-. ∠2221340a a c +-=,∠2221314e e +=,∠4≥121e e ≤1e =2e =时取等号. 故选:A . 11.A【解析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值.【详解】记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长), 又由余弦定理得2224m n mn c ++=,所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立.故选:A .【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MF MF a '-=,不能混淆.12.7⎡⎢⎣ 【分析】由题意,根据椭圆和双曲线的定义,表示出焦半径,整理齐次方程,根据离心率定义以及二次函数的性质,可得答案.【详解】由椭圆及双曲线定义得1212MF MF a +=,1221122MF MF a MF a a -=⇒=+,212MF a a =-,因为1290F MF ∠=︒,所以()()22212124a a a a c ++-=,222122a a c +=,2212112e e +=,因为134e ⎡∈⎢⎣⎦,2198,169e ⎡⎤∈⎢⎥⎣⎦,211916,89e ⎡⎤∈⎢⎥⎣⎦,所以222111272,98e e ⎡⎤=-∈⎢⎥⎣⎦,则2e ∈⎣⎦,因为22a b >,221b a <,由22c e a ==<21e <<2e ∈⎣.故答案为:⎣. 13.B【解析】求出椭圆焦点得双曲线焦点,从而得双曲线的c ,利用勾股定理和椭圆的定义求得12AF AF -得双曲线的实轴长,可得双曲线离心率. 【详解】易知椭圆221:14x C y +=的焦点坐标为(,设双曲线方程为22221(0,0)x y a b a b-=>>,则c记12,AF m AF n ==,由A在椭圆上有2224x y x y +=⎧⎪⎨+=⎪⎩, ∠22222()2()()21248x y x y x y -=+-+=⨯-=,即2a x y =-=a = ∠双曲线离心率为c e a ===. 故选:B .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是利用双曲线与已知椭圆共焦点,有公共点求出半焦距c 和半实轴长a ,注意点椭圆与双曲线的定义的不同:椭圆中是122PF PF a +=,双曲线中是122PF PF a -=.14【解析】设点P 为第一象限内的点,设椭圆与双曲线的焦点都在x 轴上,设椭圆的长轴长为12a ,双曲线的实轴长为22a ,两曲线的焦距为2c ,椭圆和双曲线的离心率分别为1e 、2e ,利用余弦定理、椭圆和双曲线的定义可得出2221234a a c +=,进而可得出2221314e e +=,结合1e =2e 的值,即可得解. 【详解】设椭圆与双曲线的焦点都在x 轴上,设椭圆的长轴长为12a ,双曲线的实轴长为22a ,两曲线的焦距为2c ,椭圆和双曲线的离心率分别为1e 、2e , 不妨设P 为第一象限的点,在椭圆中:1212+=PF PF a ∠,在双曲线中:1222-=PF PF a ∠, 联立∠∠解得,112=+PF a a ,212=-PF a a ,在12PF F △中由余弦定理得:()22212122+2cos3c PF PF PF PF π=-⋅,即()()()()222121212121422c a a a a a a a a =++--+-⋅即()()2222222121212423c a a a a a a =+--=+,即22122234a a c c =+,所以,2221314e e +=,因为椭圆的离心率1e =24e =,【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率. 15.D【分析】先设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,不妨设点P 在第一象限,然后根据椭圆和双曲线的定义可得12||,||PF PF ,再利用余弦定理列等式,转化为离心率的等式后,根据基本不等式可求得. 【详解】如图所示:设椭圆的长半轴长为1a ,双曲线的半实轴长为2a , 不妨设点P 在第一象限,则根据椭圆及双曲线的定义得, 121||||2PF PF a += ,122||||2PF PF a -=,所以112||PF a a =+,212||PF a a =-, 设12||2F F c =,1223F PF π∠=, 在12PF F △中,由余弦定理得2221212121224()()2()()cos3c a a a a a a a a π=++--+-⨯, 化简可得:2221243c a a =+,所以222212314c c a a =+,即2212314e e +=,由221212314e e =+≥12e e ⋅≥. 故选:D 16.A【分析】设1PF x =,2PF y = (x > 0)y >,设椭圆的长半轴长为1a ,双曲线的实半轴长为a ,根据余弦定理可得2222242cos60c x y xy x y xy =+-=+-,利用椭圆和双曲线的定义,结合离心率的公式,求得结果.【详解】设椭圆的长半轴长为1a ,椭圆的离心率为1e ,则11c e a =,11c a e =. 双曲线的实半轴长为a ,双曲线的离心率为e ,ce a =,c a e=, 设1PF x =,2PF y = (x > 0)y >, 则2222242cos60c x y xy x y xy =+-=+-,当点P 被看作是椭圆上的点时,有()22214343c x y xy a xy =+-=-, 当点P 被看作是双曲线上的点时,有24c = ()224x y xy a xy -+=+, 两式联立消去xy 得222143c a a =+,即222143c c c e e ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,所以2211134e e ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,又11e e =,所以2234e e+=,整理得42430e e -+=, 解得23e =或21e =(舍去),所以e =故选A .【点睛】该题考查的是有关椭圆和双曲的有关问题,涉及到的知识点有椭圆和双曲线的定义,新定义,椭圆和双曲线的离心率,余弦定理,属于中档题目. 17.A【详解】试题分析:设椭圆的长半轴为a ,双曲线的实半轴为()11,a a a >,半焦距为c , 由椭圆和双曲线的定义可知,设1122122PF r PF r F F c ===,,,,椭圆和双曲线的离心率分别为12e e ,12,3F PF π∠=∴由余弦定理可得2221212423c r r r r cosπ=+-()(),∠在椭圆中,∠化简为即2212443c a r r =-,即122213114r r c e -=,②在双曲线中,∠化简为即221244c a r r =+,即12222114r r c e -+=,∠ 联立∠∠得,2212431e e +=,由柯西不等式得22212121111331e e e ⎛⎛⎫⎛⎫++≥⨯ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即(21211443e e ⎛⎫+≤⨯ ⎪⎝⎭,即1211e e +≤=12e e A 考点:椭圆,双曲线的简单性质,余弦定理 18.A【分析】首先根据椭圆与双曲线的定义,得出1PF 与2PF 所满足的关系,列出式子,求得边长,之后借助于余弦定理,求得22234a m c +=,之后应用椭圆的离心率与双曲线的离心率的式子,化简应用基本不等式求得最小值.【详解】根据题意,可知12122,2+=-=PF PF a PF PF m , 解得12,PF a m PF a m ,根据余弦定理,可知222(2)()()2()()cos 60c a m a m a m a m =++--+-, 整理得22234a m c +=,所以222222221222223344c c a m a m e e a m a m +++=+=+2222131()14m a a m =++≥=, 故选A.【点睛】该题考查的是有关椭圆和双曲线的离心率的问题,涉及到的知识点有椭圆和双曲线的定义,余弦定理,椭圆和双曲线的离心率,基本不等式求最小值的问题,正确理解知识点是正确解题的关键. 19.B【分析】对椭圆和双曲线的离心率分别求出,首先根据椭圆及双曲线的定义求出22221222PF PF a m +=+,120PF PF ⋅=可得12PF PF ⊥,得222124PF PF c += ,就得到了,,a m c 的关系,最后利用基本不等式求得最小值. 【详解】解:由题意设焦距为2c ,椭圆的长轴长2a ,双曲线的实轴长为2m , 不妨令P 在双曲线的右支上,由双曲线的定义122PF PF m -=①,由椭圆的定义122PF PF a +=②,又120PF PF ⋅=,故222124PF PF c +=③,22+①②得22221222PF PF a m +=+④,将④代入③得2222a m c +=,∠2222221222224525942222c c m a e e a m a m +=+=++≥+. 故选:B . 20.B【分析】设P 为第一象限点,椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,根据双曲线的124=,再根据基本不等式求解最值即可. 【详解】设P 为第一象限点,椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,则12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩112212,PF a a PF a a ⇒=+=- 222121212124()()2()()cos4c a a a a a a a a π⇒=++--+-⇒((22211124224c a a =+=12≥=⇒12e e . 故选:B. 21.D【解析】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦点坐标为(,0)c ±,由椭圆与双曲线的定义和余弦定理,可得2212314e e =-,再由2e ∈求1e 的取值范围. 【详解】设椭圆的长半轴长为1a ,双曲线的实半轴长为2a , 焦点坐标为(,0)c ±,不妨设P 为第一象限的点,由椭圆与双曲线的定义得1212PF PF a +=,∠,1222PF PF a -=,∠, 由余弦定理得22212124PF PF PF PF c ⋅++=,∠联立∠∠∠得2221234a a c +=,由11c e a =,22ce a =,得2212314e e +=, ∴2212314e e =-,2e ∈,∴22111(,)74e ∈,则21315(4e ∈,27)7, ∴2115(4e ∈,9)7,217(9e ∈,4)5, 又1(0,1)e ∈,1e ∴∈. 故选:D.【点睛】本题考查椭圆、双曲线的离心率的范围,考查余弦定理和定义法的运用,需要一定的计算能力,属于中档题. 22.B【分析】首先设椭圆的方程为221122111(0)x y a b a b +=>>,双曲线方程为2222221x y a b -=22(0,0)a b >>,点P 在第一象限,根据椭圆和双曲线的定义得到:1212+=PF PF a ,1222-=PF PF a ,从而得到112=+PF a a ,212=-PF a a ,利用余弦定理得到2221234a a c +=,从而得到2221314e e +=,再利用基本不等式即可得到答案。

椭圆_双曲线_知识点

椭圆_双曲线_知识点

椭圆_双曲线_知识点
椭圆与双曲线是以二次曲线为基础的曲线,这两种曲线同属于双曲线族。

椭圆曲线的
二次方程如下:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
其中,a,b代表椭圆的两个半径;同时,双曲线的标准二次方程为:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
可以看出,两者只有被除数和方向不同,同是都为常数。

从表面上看,椭圆是左右对称,而双曲线则形式各不相同,收放自如,具有左右对称性以及上下对称性。

这两种曲线均为二次曲线,但两者间仍有明显区别:对于同一点,椭圆曲线的切线是
弧形的,而双曲线的切线是折线的。

而且,椭圆的极点的横纵坐标都有实数值,而双曲线
的极点的横坐标为实数,纵坐标都是无穷小。

另外,椭圆、双曲线等二次曲线的性质有共同之处,比如可以到达任一点的过渡性、
经过原点的轨迹是完美的圆周、经过任一点的二阶导数值为0 。

椭圆曲线在数学中被广泛用于实际应用,比如加密技术中的椭圆曲线加密,常用于方
便快捷的现代加密算法;双曲线方程式是高等数学中重要的内容,可用于证明费马小定理。

(易错题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(答案解析)

(易错题)高中数学选修1-1第二章《圆锥曲线与方程》测试题(答案解析)

一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B C .23D 2.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54 B .45C .43D .343.设直线l 与圆C :22(2)3x y -+=相切于N ,与抛物线22(0)y px p =>交于,A B 两点,且N 是线段AB 的中点,若直线l 有且只有4条,则p 的取值范围是( )A .B .(1,3)C .(0,3)D .4.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分5.已知F 是抛物线2:4E y x =的焦点,若直线l 过点F ,且与抛物线E 交于B ,C 两点,以BC 为直径作圆,圆心为A ,设圆A 与y 轴交于点M ,N ,则MAN ∠的取值范围是( )A .20,3π⎛⎫ ⎪⎝⎭B .20,3π⎛⎤ ⎥⎝⎦C .2,33ππ⎛⎤⎥⎝⎦D .2,33ππ⎡⎤⎢⎥⎣⎦6.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .7.已知点P 是抛物线22y x =上的一个动点,则点P 到点D ⎛ ⎝的距离与点P 到y 轴的距离之和的最小值为( )A .2B .52C .3D .728.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,直线:l y kx =与C 交于A ,B 两点,以AB 为直径的圆过点F ,若C 上存在点P 满足4=BP BF ,则C 的离心率为( ) A .3B .102C .5D .109.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫ ⎪⎝⎭B .2623⎛⎫ ⎪ ⎪⎝⎭C .22223⎛ ⎝⎭D .332,3⎛⎫⎪ ⎪⎝⎭11.已知直线l 的方程为1y kx =-,双曲线C 的方程为221x y -=.若直线l 与双曲线C 的右支相交于不同的两点,则实数k 的取值范围是( ) A .(2,2)B .2)C .[2,2]D .2)12.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( ) A .)2,+∞B .)2,⎡+∞⎣C .(2D .(2⎤⎦二、填空题13.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.14.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.15.已知双曲线()2222:10,0x y C a b a b-=>>的左、焦点为1F 、2F ,点P 为双曲线C 的渐近线上一点,120PF PF ⋅=,若直线1PF 与圆222x y a +=相切,则双曲线C 的离心率为___________.16.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.17.已知双曲线2222:1x y C a b-=(0a >,0b >)的两条渐近线与直线1x =-所围成的三角形的面积为4,则双曲线C 的离心率为________.18.已知P 为椭圆22143x y +=上一点,1F 、2F 是焦点,1260F PF ∠=︒,则12F PF S =△______.19.对抛物线C :24x y =,有下列命题:①设直线l :1y kx =+,则直线l 被抛物线C 所截得的最短弦长为4;②已知直线l :1y kx =+交抛物线C 于A 、B 两点,则以AB 为直径的圆一定与抛物线的准线相切;③过点()()2,P t t R ∈与抛物线有且只有一个交点的直线有1条或3条;④若抛物线C 的焦点为F ,抛物线上一点()2,1Q 和抛物线内一点()()2,1R m m >,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分RQF ∠;其中你认为是正确命题的所有命题的序号是______.20.椭圆22221(0)x y a b a b +=>>上一点A 关于原点的对称点为B ,F 为椭圆的右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率的最大值为______.三、解答题21.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.22.已知抛物线()2:20C y px p =>过点()4,4-,直线2y x m =-+与抛物线C 相交于不同两点A 、B .(1)求实数m 的取值范围;(2)若AB 中点的横坐标为1,求以AB 为直径的圆的方程.23.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为2,离心率为12.(1)求椭圆C 的标准方程;(2)直线l 与x 轴正半轴和y 轴分别交于点,Q P ,与椭圆分别交于点,M N ,各点均不重合且满足,PM MQ PN NQ λμ==.若4λμ+=-,证明:直线l 恒过定点.24.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.25.已知抛物线24C y x =:的交点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点 (1)当直线l 的倾斜角为135°时,求AB(2)若过点P (1,2)的直线m 与抛物线C 相切,且直线//m 直线l ,求直线l 的方程 26.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点(2,)A m 在抛物线E 上, 且|AF |=3.(1)求抛物线E 的方程;(2)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.2.D解析:D 【分析】设112233(,),(,),(,)P x y Q x y G x y ,则可得切线,GP GQ 的方程,即可得到直线PQ 的方程,进而可求出点点,M N 的坐标,再结椭圆方程可求出2231OMON+的值【详解】解:设112233(,),(,),(,)P x y Q x y G x y ,则切线GP 的方程为114x x y y +=,切线GQ 的方程为224x x y y +=, 因为点G 在切线,GP GQ 上,所以13134x x y y +=,23234x x y y +=, 所以直线PQ 的方程为334x x y y +=, 所以3344(,0),(0,)M N x y , 因为点33(,)G x y 在椭圆221124y x+=上,所以2233312x y +=,所以22223333223311123(3)161616164x y x y OM ON+=+=+==, 故选:D 【点睛】关键点点睛:此题考查椭圆的标准方程,以及简单性质有应用,解题的关键是设点33(,)G x y ,再由已知条件得到直线PQ 的方程为334x x y y +=,从而可得,M N 的坐标,进而可得答案,考查计算能力和转化能力,属于中档题3.B解析:B 【分析】根据l 有且只有4条,易知直线l 的斜率不存在时,有两条,得到直线l 斜率存在时,有两条,根据N 是线段AB 的中点,利用点差法得到0ky p =,再根据直线l 与圆C :22(2)3x y -+=相切于N ,得到0012y x k=--,结合得到02x p =-,2203y p =-再根据点N 在抛物线内部求解. 【详解】设()()()112200,,,,,A x y B x y N x y , 因为l 有且只有4条,当直线l的斜率不存在时,有两条,即2=±x 所以直线l 斜率存在时,有两条, 因为AB 在抛物线上,所以21122222y px y px ⎧=⎨=⎩,两式相减得()2212122y y p x x -=-,因为N 是线段AB 的中点, 所以1202y y y +=, 所以12121202y y p pk x x y y y -===-+, 即0ky p =,因为直线l 与圆C :22(2)3x y -+=相切于N , 所以0012y x k=--,即002x ky p -=-=-, 所以02x p =-,代入抛物线22y px =,得()222y p p =-,因为点N 在抛物线内部,所以()2022y p p <-,因为点N 在圆上,所以2200(2)3x y -+=,即2203p y +=, 所以2203y p =-,所以()220322y p p p =-<-,即2430p p -+<,解得13p <<, 故选:B 【点睛】方法点睛:解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.4.D解析:D 【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线. 【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离, 因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.5.B解析:B 【分析】设设()11,B x y ,()22,C x y BC 的中点()00,A x y ,直线l :()1y k x =-与 2:4E y x =联立可得()2222240k x k x k -++=,由韦达定理计算12x x +,12x x ,再求以BC 为直径作圆的半径12r BC =,求出圆心A 点横坐标,设MN 的中点为D ,则12MAD MAN ∠=∠,由圆的性质可得0cos x MAD r∠=并求出其范围,进而可得MAD ∠的范围,再讨论斜率不存在时MAD ∠的值,即可求解. 【详解】由抛物线2:4E y x =可知,焦点()1,0F ,设()11,B x y ,()22,C x y BC 的中点()00,A x y 设直线l :()1y k x =-代入2:4E y x =可得()2222240k x k x k -++=,所以212224k x x k++= ,121=x x ()()22222121212241612444k k x x x x x x k k +⎛⎫+-=+-=-= ⎪⎝⎭,()()()2222212416111k BC k x x k k+=+-=+⨯,所以()2241k BC k +=,以BC 为直径作圆的半径()222112k r BC k+==,圆心为BC 的中点()20122122k x x x k+=+=, 设MN 的中点为D ,则12MAD MAN ∠=∠, 则()()()22202222221111cos 1222212121k x k k MAD r k k k k ++∠====+<+=+++ 且1cos 2MAD ∠>,所以03MAD π<∠<, 当k 不存在时,1,2x y ==±,此时2r ,01x =,1cos 2MAD ∠=,3MAD π∠=,所以03MAD π<∠≤可得203MAN π<∠≤, 所以MAN ∠的取值范围是20,3π⎛⎤⎥⎝⎦故选:B 【点睛】关键点点睛:本题解题的关键点是联立直线与抛物线的方程,求出圆的半径和圆心坐标,由圆的性质知圆心与弦中点的连线与弦垂直可求出12MAN ∠的范围,进而可计算MAN ∠的范围.6.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).7.B解析:B 【分析】利用抛物线的定义,把P 到y 轴的距离转化为1||2PF -,利用几何法求最值 【详解】抛物线22y x =的焦点1,02F ⎛⎫ ⎪⎝⎭,准线1:2l x =-,如图示:过P 作PP 1⊥y 轴于P 1,作PP 2⊥l于P 2,则211||||2PP PP -= 所以点P 到点332D ⎛ ⎝的距离与点P 到y 轴的距离之和为 1211||||||||||||22PD PP PD PP PD PF +=+-=+- 由图示,易知,当P 落在Q 时,DPF 三点共线,||||||PD PF DF +=, 其他位置,都有||||||PD PF DF +> 所以点P 到点332D ⎛⎝的距离与点P 到y 轴的距离之和的最小值为: 221111335||||||||||2022222PD PP PD PF DF ⎛⎫⎛⎫+=+-≥-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭当D 、P 、F 三点共线时取最小值. 故选:B 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.8.B解析:B 【分析】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,求出BP ,AF ,BF 的坐标,根据4=BP BF 得到,m n ,由点F 在圆上得到22200=+c x y ,把点P ,B 坐标代入双曲线方程联立,可得答案. 【详解】由题意设()00,B x y ,(c,0)F ,(,)P m n ,则()00,A x y --,()00,=--BP m x n y ,()00,=+AF c x y ,()00,=--BF c x y . 4=BP BF ,()000044,c x m x y n y ⎧-=-∴⎨-=-⎩,00433m c x n y =-⎧⎨=-⎩. 以AB 为直径的圆过点F ,()()00,,0AF BF c x y c x y ∴⋅=+⋅--=,即22200=+c x y ①,点P ,B 均在双曲线上,2200221x y a b ∴-=②,()()2200224331---=c x y a b ③.②-③整理得()()2000222--=-c x x c y a b ,将22200=-y c x 代入,整理得()22220223-=c a x c,于是()22222200233-=-=b a c y c x c ,最后将20x ,20y 代入双曲线方程,整理得22410c a =,所以2e ==. 故选:B. 【点睛】本题考查了直线与双曲线的位置关系、圆的有关性质及与向量的结合,关键点是利用4=BP BF 和AF BF ⋅得到点之间的关系,考查了学生分析问题、解决问题的能力.9.D解析:D 【分析】由题意作出MD 垂直于准线l ,然后得2PM MD =,得30∠=︒DPM ,写出直线方程,联立方程组,得关于y 的一元二次方程,写出韦达定理,代入焦点弦公式计算. 【详解】如图,过点M 做MD 垂直于准线l ,由抛物线定义得MF MD =,因为PF FM =,所以2PM MD =,所以30∠=︒DPM ,则直线MN方程为1)x y =-,联立21)4x y x y ⎧=-⎪⎨=⎪⎩,,消去x 得,231030y y -+=,设()()1122,,,M x y N x y ,所以121210,13y y y y +==,得121016||2233MN y y =++=+=. 故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=, 利用2112sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭,∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<,124πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是2⎛ ⎝⎭, 故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.11.D解析:D 【分析】联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+,由于直线1y kx =-与双曲线221x y -=的右支交于不同两点,可得210k -≠,由2248(1)0k k ∆=+->,1k <,解得即可【详解】解:联立直线方程1y kx =-和双曲线方程221x y -=,化为22(12)20k x kx --=+, 因为直线1y kx =-与双曲线221x y -=的右支交于不同两点, 所以210k -≠,且2248(1)0k k ∆=+->,1k <,解得1k <<,所以实数k 的取值范围为, 故选:D 【点睛】关键点点睛:此题考查直线与双曲线的位置关系,解题的关键是直线方程和双曲线方程联立方程组,消元后结合题意可得2248(1)0k k ∆=+->,1k <,从而可得答案12.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.二、填空题13.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意.易知抛物线C 的焦点为1,02F ⎛⎫ ⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝, 当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 14.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解解析:2【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t=-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴t =故答案为:2. 【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.15.【分析】作出图形设与圆相切于点分析出可求得的值进而可得出双曲线的离心率为即可得解【详解】如下图所示设与圆相切于点则则则为的中点则为的中点由直角三角形的性质可得因为为的中点则由于双曲线的两渐近线关于轴 解析:2【分析】作出图形,设1PF 与圆222x y a +=相切于点E ,分析出23POF π∠=,可求得ba的值,进而可得出双曲线C 的离心率为21b e a ⎛⎫=+ ⎪⎝⎭,即可得解. 【详解】如下图所示,设1PF 与圆222x y a +=相切于点E ,则OE a =,120PF PF ⋅=,则12PF PF ⊥,1OE PF ⊥,则2//OE PF , O 为12F F 的中点,则E 为1PF 的中点,222PF OE a ∴==,由直角三角形的性质可得1OF OP =,因为E 为1PF 的中点,则1EOF POE ∠=∠, 由于双曲线的两渐近线关于y 轴对称,可得21POF EOF ∠=∠,所以,12EOF POE POF ∠=∠=∠,则1223EOF POE POF POF π∠+∠+∠=∠=, 所以,23POF π∠=,则tan 33b a π==, 因此,双曲线C 的离心率为22222212c c a b b e a a a a +⎛⎫====+= ⎪⎝⎭. 故答案为:2. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.16.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.17.【分析】求出双曲线的渐近线方程求解时的值然后求解三角形的面积推出离心率即可【详解】双曲线的渐近线方程为将代入中解得故故故双曲线的离心率故答案为:【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1【分析】求出双曲线的渐近线方程,求解1x =-时,y 的值,然后求解三角形的面积,推出离心率即可. 【详解】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为b y x a=±,将1x =-代入b y x a =±中,解得by a=±, 故12142ba =,故4b a=,故双曲线C 的离心率c e a ===.【点睛】方法点睛:求圆锥曲线的离心率常用的方法有:(1)公式法(求出,a c 的值再代离心率的公式求解);(2)方程法(根据已知找到关于离心率的方程再解方程得解).要根据已知条件灵活选择方法求解.18.【分析】利用余弦定理以及椭圆的定义可得再由三角形面积公式计算可得结果【详解】由已知得所以从而在中即①由椭圆的定义得即②由①②得所以故答案为:【点睛】方法点睛:本题考查椭圆的定义考查余弦定理的应用三角【分析】利用余弦定理以及椭圆的定义可得124PF PF ⋅=,再由三角形面积公式计算可得结果. 【详解】由已知得2a =,b =1c ==,从而1222F F c ==,在12F PF △中,2221212122cos60F F PF PF PF PF ︒=+-⋅,即2212124PF PF PF PF =+-⋅,① 由椭圆的定义得124PF PF +=, 即221212162PF PF PF PF +=+⋅,② 由①②得124PF PF ⋅=,所以12121sin 602F PF S PF PF ︒=⋅=△【点睛】方法点睛:本题考查椭圆的定义,考查余弦定理的应用、三角形面积公式,对于焦点三角形面积问题,一是结合余弦定理和面积公式,二是利用椭圆定义可得解,考查逻辑思维能力和运算求解能力,属于常考题.19.①②④【分析】①将抛物线与直线联立消去利用根与系数关系求出再由弦长公式即可求出弦长进而可求出弦长的最小值即可判断①的正误;②利用中点坐标公式求出以为直径的圆的圆心的纵坐标判断圆心到直线的距离与半径的解析:①②④ 【分析】①将抛物线与直线联立消去y ,利用根与系数关系求出12x x +,12x x ,再由弦长公式即可求出弦长,进而可求出弦长的最小值,即可判断①的正误;②利用中点坐标公式,求出以AB 为直径的圆的圆心的纵坐标,判断圆心到直线的距离121y y ++与半径||2AB r =的大小关系,即可判断②的正误; ③将2x =代入24x y =,可得()2,1P 在抛物线上,此时当直线的斜率不存在时,只有一个交点,当直线与抛物线相切时,也只有一个交点,故与抛物线只有一个交点的直线有可能有2条,可判断③错误;④设1l 的方程为()12y k x -=-,将直线与抛物线联立消去y ,利用判别式即可求出k ,进而可求出直线1l 的倾斜角,即可判断④的正误. 【详解】①联立方程241x yy kx ⎧=⎨=+⎩,消去y 可得2440x kx --=,216160k ∆=+>恒成立,设两交点坐标分别为()11,A x y ,()22,B x y , 所以由根与系数的关系得124x x k +=,124x x ⋅=-,故AB ==2444k =+≥,当0k =时,AB 取得最小值4,所以最短弦长为4,故①正确,②由①可知124x x k +=,则21212242y y kx kx k +=++=+,故以AB 为直径的圆的圆心坐标为()22,21k k +,半径2222ABr k ==+, 抛物线24x y =的准线方程为1y =-,故圆心到准线1y =-的距离2221122d k k r =++=+=, 所以以AB 为直径的圆一定与抛物线的准线相切,故②正确,③将2x =代入24x y =,解得1y =,所以当1t =时,即()2,1P 在抛物线上, 当直线的斜率不存在时,方程为2x =,此时只有一个交点()2,1,当直线斜率存在且只与抛物线只有一个交点时,当且仅当该直线为切线时满足条件, 所以过点()2,P t 只与抛物线只有一个交点的直线有可能有2条,故③错误, ④因为抛物线的焦点为()0,1F ,又()2,1Q ,()2,R m , 所以三角形FQR 为直角三角形且过()2,1Q 的切线斜率一定存在, 设1l 的方程为()12y k x -=-,代入24x y =,可得24840x k k -+-=,由()2164840k k ∆=--=可得1k =,即直线1l 的倾斜角为45︒,因为直线2l 过点Q 且与1l 垂直,所以一定平分RQF ∠,故④正确. 故答案为:①②④ 【点睛】思路点睛:直线与抛物线交点问题的解题思路:(1)求交点问题,通常解直线方程与抛物线方程组成的方程组; (2)与交点相关的问题通常借助根与系数的关系或用向量法解决.20.【分析】设左焦点为根据椭圆的定义有且O 是直角三角形斜边的中点所以离心率由角的范围可求得离心率的最大值【详解】因为关于原点对称所以B 也在椭圆上设左焦点为根据椭圆的定义:又因为所以O 是直角三角形斜边的中【分析】设左焦点为F ',根据椭圆的定义有,||||2AF BF a +=,且O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,离心率11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭,由角的范围可求得离心率的最大值. 【详解】因为,B A 关于原点对称,所以B 也在椭圆上,设左焦点为F ',根据椭圆的定义:||2AF AF a '+=,又因为||BF AF '=,所以||||2AF BF a +=,O 是直角三角形ABF 斜边的中点,所以||2,||2sin ,||2cos AB c AF c BF c αα===,所以2(sin cos )2c a αα+=,所以11sin cos 4c a πααα==+⎛⎫+ ⎪⎝⎭, 由于,124ππα⎡⎤∈⎢⎥⎣⎦,所以当12πα=,故答案为:3. 【点睛】关键点点睛:求椭圆的离心率关键在于由椭圆的定义,善于利用平面几何中的边、角关系建立关于,,a b c 的等式或不等式.三、解答题21.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-.与抛物线方程联立,得214y x y x =-⎧⎨=⎩,消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=.由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式. 22.(1)1,2⎛⎫-+∞ ⎪⎝⎭;(2)()()2215114x y -++=.【分析】(1)将点()4,4-的坐标代入抛物线C 的方程,求出p 的值,可得出抛物线C 的方程,再将直线2y x m =-+的方程与抛物线C 的方程联立,利用0∆>可求得实数m 的取值范围;(2)设点()11,A x y 、()22,B x y ,列出韦达定理,由线段AB 的中点的横坐标可求得m 的值,可求得线段AB 的中点坐标,利用弦长公式可求得AB ,进而可求得以线段AB 为直径的圆的方程. 【详解】(1)将点()4,4-的坐标代入抛物线C 的方程,可得()28416p =-=,解得2p =,所以,抛物线C 的方程为24y x =,联立224y x m y x=-+⎧⎨=⎩,整理可得()224440x m x m -++=,由已知条件可得()22441632160m m m ∆=+-=+>,解得12m >-, 因此,实数m 的取值范围是1,2⎛⎫-+∞ ⎪⎝⎭; (2)设()11,A x y 、()22,B x y ,由韦达定理可得121x x m +=+,2124m x x =,由于AB 中点的横坐标为1,则1212x x m +=+=,解得1m =,1214x x ∴=, 由弦长公式可得12AB x x =-===,所以,所求圆的圆心坐标为()1,1- 因此,以AB 为直径的圆的方程为()()2215114x y -++=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)22143x y +=;(2)证明见解析.【分析】(1)由题意可得122,2c c a ==,再由222b a c =-求出b 的值,从而可得椭圆C 的标准方程;(2)设()()(0,),(,0)(0),,,,M M N N P p Q q q M x y N x y >,从而得()()()(),,,,,,,M M M M N N N N PM x y p MQ q x y PN x y p NQ q x y =-=--=-=--,然后由,PM MQ PN NQ λμ==,可得()222312244120q p λλ--+-=和()222312244120qp μμ--+-=,由此可知,λμ为方程()222312244120q x x p --+-=的两不相等实数根,所以有2244312q λμ+==--,可求出q 的值,从而可得答案 【详解】(1)依题意,22,1c c =∴=.由12c a =,得2,a b =∴= 故椭圆方程为22143x y +=.(2)设()()(0,),(,0)(0),,,,M M N N P p Q q q M x y N x y >,()()()(),,,,,,,M M M M N N N N PM x y p MQ q x y PN x y p NQ q x y ∴=-=--=-=--.由PM MQ λ=,得()()M M M M x q x y p y λλ⎧=-⎪⎨-=-⎪⎩,11M M q x p y λλλ⎧=⎪⎪+∴⎨⎪=⎪+⎩.∵点M 在椭圆上,2211143q p λλλ⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭∴+=,整理得()222312244120qp λλ--+-=.同理,由PN NQ μ=可得()222312244120q p μμ--+-=.,λμ∴为方程()222312244120q x x p --+-=的两不相等实数根,2244312q λμ∴+==--. 22q ∴=.又0,q q >∴=∴直线l恒过定点Q .【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是由,PM MQ PN NQ λμ==,得到()222312244120q p λλ--+-=和()222312244120q p μμ--+-=,从而有,λμ为方程()222312244120qx x p --+-=的两不相等实数根,再利用根与系数的关系可得答案,考查数学转化思想,属于中档题24.(1)22143x y +=;(2)7. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;。

有关圆,椭圆,双曲线,抛物线的详细知识点

有关圆,椭圆,双曲线,抛物线的详细知识点

<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。

(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。

⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。

⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。

圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。

令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。

浅议圆的切点弦所在直线方程的应用

浅议圆的切点弦所在直线方程的应用

浅议圆的切点弦所在直线方程的应用作者:吴麦根
来源:《读写算》2019年第17期
摘要做题时掌握一些特殊的结论有时能收到意想不到的效果。

因此有时不妨推导让学生见识见识。

既可以拓宽学生的视野,又能较快的处理一些问题。

本文我就圆的切点弦所在直线方程的推导及应用和大家分享。

敬请诸位提出宝贵意见。

关键词设而不求;圆的弦所在直线方程;小题不大作;升华;最高境界
中图分类号:G632;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 文献标识码:A;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 文章编号:1002-7661(2019)17-0190-01
参考文献:
[1]夏越春,邢益辉.圆锥曲线顶点定值子弦的性质[J].数学通讯,2011(10).
[2]徐文春.關于有心圆锥曲线切线的一组性质[J].数学通讯,2012(12).
[3]马志良.圆锥曲线弦的中点问题的一种简捷解法[J].数学通讯,1999.9(14-15).
[4]刘志修.试论过圆,椭圆,双曲线上一点的切线方程的统一性[J].中学数学研究,2007(1).。

解答题:利用“仿射变换”化椭为圆

解答题:利用“仿射变换”化椭为圆

浅谈仿射变换在解决椭圆问题中的应用一、仿射变换思想方法椭圆)0,0(1:2222>>=+b a b y a x C 中,令a x x =',by y =',,则椭圆方程变为单位圆 1'22=+y x C : ,该变换过程称为仿射变换。

相当于在xoy 与'''y o x 两个坐标系来研究问题,但圆中几何意义明显,便于计算。

但最后要还原到椭圆中去解决问题。

变化前后点的坐标对应变化:),()','(),(bya x y x y x =→ )','(),()','(by ax y x y x =→二、性质1、点线关系不变(1)同素性:在经过变换之后,点仍然是点,线仍然是线 (2)结合性:在经过变换之后,在直线上的点仍然在直线上 (3)原三点共线,后三点也共线;原直线平行,后直线也平行 2、原弦长||AB ,斜率k ,后弦长|''|B A ,22211||k k m AB ++=|''|B A (其中ba m =) 3. 直线与圆锥曲线的位置关系不变(相切、相交)已知直线0:=++C Bx Ax l ,椭圆1:2222=+b y a x C ,讨论直线与椭圆的位置关系。

由a x x =',byy =',仿射变换后,直线0:=++C Bx Ax l 变为0:'=++C Bbx Aax l 。

(此结论可以作为公式背下,提高平时做题的速度)椭圆变为1'22=+y x C : ,由直线与圆的位置关系易得答案。

例1 已知直线03=-+y x ,椭圆1422=+y x ,则直线与椭圆的位置关系是( ) A.相交 B.相切 C. 相离 D. 相切或相交解:由2'x x =,y y ='仿射变换后,直线03=-+y x ,椭圆1422=+y x 分别变为直线03''2=-+y x 、椭圆1''22=+y x ,而直线03''2=-+y x 到圆1''22=+y x 的距离15312|3|22>=+-=d ,所以直线和圆相离,由于仿射变换直线与圆锥曲线的位置关系不变,所以原直线和椭圆相离。

2023届浙江省宁波市慈溪市高三上学期期末数学试题(解析版)

2023届浙江省宁波市慈溪市高三上学期期末数学试题(解析版)

2023届浙江省宁波市慈溪市高三上学期期末数学试题一、单选题1.已知角α的终边经过点(-,则tan α=( )A .B C .D 【答案】A【分析】根据任意角的三角函数的定义求解即可.【详解】根据任意角的三角函数的定义,tan α==故选:A.2.已知抛物线22(0)y px p =>的焦点与双曲线2212y x -=的其中一个焦点相同,则p =( )A.1 B .2 C D .【答案】D【分析】根据给定条件,求出抛物线、双曲线的焦点坐标,即可计算作答.【详解】抛物线22(0)y px p =>的焦点(,0)2p ,双曲线2212y x -=的右焦点,依题意,2p=p =故选:D3.已知集合{}(){}2,R ,,1,,R A x y x x B x y y x x y ==∈==+∈,则( ) A .{1,2}A B = B .{(1,2)}A B = C .R A B == D .A B ⋂=∅【答案】D【分析】判断集合,A B 的元素类型,根据集合交集运算的含义,可得答案.【详解】由题意可知集合{}2,R A x y x x ==∈为数集,集合(){},1,,R B x y y x x y ==+∈表示点集, 二者元素类型不同,所以A B ⋂=∅, 故选:D.4.若A ,B ,C ,D ,E 五人排队照相,则A ,B 两人不相邻的概率为( ) A .45B .35C .12D .15【答案】B【分析】计算五人排队照相的全部排法:55120A =种,再计算A ,B 两人不相邻的排法,然后,两种排法相除,可得所求的概率.【详解】先排C 、D 、E ,有336A =种排法,再将A ,B 插入C 、D 、E 及其两侧空位,有2412A =种,故A ,B 不相邻有61272⨯=种,全部排法为55120A =种,故所求概率为7231205=. 故选:B.5.若二项式()(12)n x n *+∈N 的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是( ) A .3448x B .41120x C .51792x D .61792x【答案】B【分析】根据第6项与第7项的系数相等列出方程,求出8n =,进而得到二项式系数最大项为5T ,计算出答案.【详解】556667C (2),C (2)n n T x T x ==,所以6655C 2C 2n n ⋅=⋅,所以56C 2C n n =,即!2!(5)!5!6!(6)!n n n n ⋅=--,所以62(5)2168n n n =-⇒=⇒=,所以二项式系数最大项为44458C (2)1120T x x ==.故选:B.6.如图,是某种型号的家用燃气瓶,其盛气部分近似可以看作由一个半球和一个圆柱体组成,设球的半径为R ,圆柱体的高为h ,若要保持圆柱体的容积为定值3πV =立方米,则为使制造这种燃气瓶所用材料最省(温馨提示:即由半球和圆柱体组成的几何体表面积最小),此时Rh=( )A 2B .12C .13D .14【答案】C【分析】根据题意,先求出表面积的表达式,利用3πV =为定值求出h 与R 的关系,再利用基本不等式求解即可. 【详解】依题意,22π3π,3R h R h ==,所以()2222ππ2ππ32S R R Rh R Rh =++=+22263333π3π33π322R R R R R R R R ⎛⎫⎛⎫=+=++≥⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 当233R R=时取等,所以1,3R h ==,故13R h =.故选:C.7.在ABC 中,内角A ,B ,C 的对应边分别为a ,b ,c ,已知sin()sin 2A Cb B C a ++=,且ABC 的面积为23ABC 周长的最小值为( ) A .2B .3C .62D .63+【答案】C【分析】首先利用正弦定理及诱导公式,二倍角公式对原式化简得1sin 22B =,即求出B 的大小,再利用三角形面积公式得8ac =,从而求出a c +的最小值,最后得到2()()24ABCC a c a c =++-利用函数单调性即可求出其最小值. 【详解】因为πsin sin2Bb A a -=, 根据正弦定理及诱导公式得sin sin sin cos2B B A A ⋅=⋅, ()0,πA ∈,sin 0A ∴≠,sin cos2B B ∴=, 即2sincos cos 222B B B =,()0,πB ∈,则π0,22B ⎛⎫∈ ⎪⎝⎭,则cos 02B≠解得1sin 22B =,所以ππ263B B =⇒=,所以13sin 232acS ac B === 所以8,242ac a c ac =+≥=,当且仅当22a c == 根据余弦定理得222cos b a c ac B +-22b a c ac +- 设ABC 的周长为C ,所以22()3()()24ABCCa c a c ac a c a c =+++-=+++-,设,42a c t t +=≥,则()224f t t t =+-,根据复合函数单调性及增函数加增函数为增函数的结论得:()f t 在)42,⎡+∞⎣上为单调增函数,故()()min 4262f t f ==,故()min62ABC C=,当且仅当22a b c ===时取等. 故选:C.8.若单位向量,a b 满足,120a b 〈〉=︒,向量c 满足()()a b c c -⊥-,则max ||a b c c ⋅+⋅=( ). A .32B .134+ C .132+ D .3【答案】C【分析】设出,,(,)a OA b OB c OC x y ====,由()()c a c b -⊥-得到C 在以AB 为直径的圆上,表达出13132222a cbc x x y x y ⋅+⋅=-+=+,设1333cos ,sin 4242x y θθ=+=+,利用辅助角公式得到a c b c ⋅+⋅的最值.【详解】令,,(,)a OA b OB c OC x y ====,不妨13(1,0),,22a b ⎛==- ⎝⎭,所以3,AB AB =中点坐标为134⎛ ⎝⎭, 因为()()c a c b -⊥-,所以C 在以AB 为直径的圆上,即2213344x y ⎛⎛⎫-+= ⎪⎝⎭⎝⎭, 所以131322a c b c x x y x y ⋅+⋅=-=+,令1333,4x y θθ=+=,则11113sin 22424a c b c x y θθθθ⎛⎫⎫⋅+⋅==+=+ ⎪⎪ ⎪⎪⎝⎭⎝⎭111πcos 2223θθθ⎫⎛⎫==-∈⎪ ⎪⎪⎝⎭⎝⎭⎣⎦,因为[]1πc 1,os 3θ⎛⎫∈⎪⎭-- ⎝,所以1π223a c b c θ⎛⎫⋅+⋅=+-∈ ⎪⎝⎭⎣⎦,所以max1a c b c +⋅+⋅=故选:C.【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.二、多选题9.设,a β是两个不同的平面,m ,n 是两条不同的直线,( ) A .若,m n αα⊥⊥,则m n ∥B .若,,,m n m n ααββ⊂⊂∥∥,则αβ∥C .若,,m n αβαβ⊂⊥∥,则m n ⊥D .若αβ⊥,m β⊥,m α⊄,则m α 【答案】ACD【分析】垂直于同一平面的两条直线平行,A 正确;当m n ∥时结论未必成立,B 错误;证明CD 正确,得到答案.【详解】对选项A :垂直于同一平面的两条直线平行,正确; 对选项B :当m n ∥时结论未必成立,错误;对选项C :,n αββ⊥∥,故n α⊥,又m α⊂,故m n ⊥,正确;对选项D :αβ⊥,m β⊥,则m α或m α⊂,排除m α⊂,则m α,正确. 故选:ACD.10.已知0a b >>,则( )A.22<B .log log a <C.33ab +> D.a b +>【答案】AD【分析】根据不等式性质及指数函数、幂函数单调性可判断A ;举反例可判断B ;利用基本不等式可判断C,D.【详解】根据幂函数1y 22xy =在定义域内均为单调增函数,0,22a b >><<A 正确;由0a b >>,取12,2a b ==,可得21211log log 22>=-,故B 错误;由0a b >>可得33a b +≥=33a b =即9a b =取等号,C 错误;由基本不等式可知a b +≥,当且仅当a b =取等号, 但0a b >>,等号取不到,故D 正确, 故选:AD.11.已知12,z z C ∈,且11210z z z +=,则( ) A .当121i,i(,)z z x y x y =-=+∈R 时,必有22(1)(1)10x y ++-= B .复平面内复数1z的圆 C.1min i 1z -=D.21max1z z =+【答案】BD【分析】利用复数的模的定义以及其复数的几何意义,逐个选项进行计算,即可判断答案. 【详解】A 项:()()22121011100z z x y +=⇒++-=,故错误; B项:因为1z =C项:11||||1z i z i -≥-=,当1z 与i 对应向量同向时取等,故错误; D项:211z z =≤==+,当12z z +与1z 对应向量反向时取等,故正确. 故选:BD.12.在平面直角坐标系xOy 中,已知椭圆221:14x C y +=,圆22213:72C x y ⎛⎫+-= ⎪⎝⎭,直线::l y kx b =+(k ,b 为常数,且0k ≠).点2P ⎭,( )A .若点Q 在2C 上运动,则PQB .若l 与12C C 、都相切,则这样的l 共有4240y +-=C .若过P 点作1C 40+-=D .若2,Z k b =∈,l 与12C C 、都相交且截得的弦长相等,则0b = 【答案】AC【分析】A 选项:圆2C 的半径r =PQ 的最大值为2PC r +,利用两点间距离公式求出答案;B 选项:画出图形,由1C 与2C 外离,得到公切线有4条,由点到直线距离得到2C 240y +-=外离,不相切,从而判断B ;C 选项:先得到点P 在1C 上,切线唯一,再考虑过P ⎭的直线斜率不存在和斜率存在两种情况,将直线与椭圆方程联立,结合根的判别式为0,求出斜率,得到切线方程;D 选项,利用弦长公式得到l 与1C 相交弦长,利用垂径定理得到l 与2C 的弦长,列出方程,得到0b ≠.【详解】A 选项,22213:72C x y ⎛⎫+-= ⎪⎝⎭的圆心为130,2⎛⎫ ⎪⎝⎭,半径r =点Q 在2C 上运动,PQ 的最大值为2PC r +,2PC ==所以max 22||PQ PC C Q =+=A 正确;B 项:1C 的上顶点与2C 的圆心距离为13111722-=>1C 与2C 外离, 所以由图易知l 有4条,2C 3240x y +-=距离为777d ==> 2C 3240x y +-=外离,不相切,故B 错误;C 项:22,P ⎭满足221:14x C y +=,故点P 在1C 上,所以切线唯一,当过22,P ⎭的直线斜率不存在时,此时直线方程为2x 此时与221:14x C y +=不相切,舍去; 设过22,2P ⎭的切线方程为(22y k x =, 联立221:14x C y +=,得(221224x k x ⎡⎣+⎦=⎢,整理,得()()22221442828820k x k k x k k ++-+--=,由()()()22224224148820k k k k k ∆=--+--=,解得12k =-,故切线方程为(21222y x -=-2240x +-=,故C 正确; D 项:分别记l 与12,C C 交点为A ,B 和C ,D ,:l y kx b =+与221:14x C y +=,联立,得()222148440k x kbx b +++-=,设()()1122,,,A x y B x y ,则2121222844,1414kb b x x x x k k -+=-=++, 则l 与1C 截得弦长为()222222221212228444141||14141414kb b k k b AB k x x x x k k k -+⋅+-⎛⎫=++-+--⋅ ⎪++⎝⎭l 为圆心2C距离为d =所以||CD ==, 因为||||AB CD == 因为2k ==显然0b ≠,故D 错误. 故选:AC.【点睛】结论点睛:过圆()()222x a y b r -+-=上一点()00,x y 的切线方程为()()()()200x a x a y b y b r --+--=;过圆()()222x a y b r -+-=外一点()00,x y 的切点弦方程为()()()()200x a x a y b y b r --+--=;过椭圆22221x y a b+=上一点()00,P x y 的切线方程为00221x x y y a b +=;过双曲线22221x y a b-=上一点()00,P x y 的切线方程为00221x x y y a b -=.三、双空题13.在平面直角坐标系中,已知(2,0),(2,0),(0,1)A B C -三点,请写出2个函数关系式或曲线的方程,使函数图象或方程的曲线经过A ,B ,C 三点:______,______.【答案】 ||12x y =-(答案不唯一,符合题意即可) 214x y =-(答案不唯一,符合题意即可)【分析】根据题意设解析式,代入运算求解.【详解】∵(2,0),(2,0)A B -关于y 轴对称,且(0,1)C 在y 轴上, 可设y k x m =+,则可得201k m m +=⎧⎨=⎩,解得112m k =⎧⎪⎨=-⎪⎩,故||12x y =-; 可设2y ax bx c =++,则可得4204201a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得1401a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,故214x y =-.故答案为:||12x y =-;214x y =-.四、填空题14.已知变量x 和y 的统计数据如下表:如果由表中数据可得经验回归直线方程为ˆˆ0.85yx a =+,那么,当10x =时,残差为______.(注:残差=观测值-预测值) 【答案】0.3##310【分析】先求出回归方程,再根据回归方程求出预测值,最后计算残差即可. 【详解】678910 3.545 5.578,555x y ++++++++====,所以0.8550.85818ˆ.ay x =-=-⨯=-, 所以10x =时,50.8510 1.88.5 1.8 6.7y =⨯-=-=, 所以残差为7 6.70.3-=. 故答案为:0.3.15.若正数,,αβγ满足αβγπ++=,且sin sin 2022sin αγβ+=,则22cos sin cos sin 22sin()αγγααγ++的值为______. 【答案】20232##1011.5 【分析】利用和差化积公式和诱导公式化简sin sin 2022sin αγβ+=,得出2021tantan222023αγ=,再利用倍角公式与和差公式化简22cos sin cos sin 22sin()αγγααγ++,再利用弦切互化即可求解. 【详解】依题意,因为sin sin 2022sin 2022sin()αγβαγ+==+ 所以2sincos20222sincos2222αγαγαγαγ+-++⋅=⋅⋅又因为αβγπ++=,所以sin02αγ+≠,所以cos 2022cos22αγαγ-+=⋅,所以coscos sin sin 2022cos cos 2022sin sin 22222222αγαγαγαγ+=- 20212023sinsin2021coscostantan2222222023αγαγαγ⇒=⇒=, 所以222coscos cos sin cos sin cos sin cos sin 22222222sin()sin()αγαγγααγγααγαγ⎛⎫++ ⎪⎝⎭=++coscos11202322202121tan tan 1cos 2220232αγαγαγ====+⎛⎫-- ⎪⎝⎭.故答案为:20232. 16.已知数列{}n a 满足:11111,ln 1n n n a a a a ++=-=+,若()1142n n n n k a a a a n *++≤-+∈N 恒成立,则实数k 的取值范围是______. 【答案】(],0-∞【分析】根据数列{}n a 的递推公式利用数学归纳法即可证明{}n a 单调递减且01n a <≤,构造函数2()2(2)ln(1)f x x x x x =-+++可得()1n k f a +≤,判断出函数单调性根据恒成立问题即可求出k 的取值范围.【详解】由11111,ln1n n n a a a a ++=-=+,可得122ln(1)a a a =-+,即22ln(1)1a a ++=,因为()ln(1)F x x x =++在()1,x ∈-+∞上为单调递增,且(0)0,(1)1ln 2F F ==+, 而222()ln(1)1F a a a =++=,即2(0)()(1)F F a F <<,可得2110a a =<<, 可猜想数列{}n a 单调递减且01n a <≤,下面由数学归纳法证明:当1n =时,122ln(1)a a a =-+,即22ln(1)1a a ++=,满足2110a a =<<, 当n k =时,假设101k k a a +<<≤成立,当1n k =+时,()122ln 1k k k a a a +++=-+,即()()212ln 0,11k k k a a a +++++∈=, 即()22()0,1,(0)()(1)k k F a F F a F ++∈∴<<,可得201k a +<<, 又因为()()12211ln 11n 0l k k k k k a a a a a +++++--=++=<,即21k k a a ++<, 所以2110k k a a ++<<<成立,即数列{}n a 单调递减且01n a <≤成立,由单调有界收敛定理可知{}n a 收敛,设lim n n a a →+∞=, 所以()11lim lim ln 1n n n n n a a a ++→+∞→+∞=-+⎡⎤⎣⎦,所以ln(1)a a a =-+, 所以0a =,即{}n a 递减且趋于0,令2()2(2)ln(1)f x x x x x =-+++,则()1n k f a +≤恒成立,1()21ln(1)1f x x x x '=-++++,令1()()21ln(1)1g x f x x x x '==-++++, 则222(1)()0(1)x xg x x ++'=>+在()0,1恒成立, 所以()(0)0f x f ''>=在()0,1恒成立,所以()f x 在()0,1单调递增,所以由()1n k f a +≤恒成立可知()1lim n x k f a +→+∞≤,即(0)0k f ≤=, 所以(,0]k ∈-∞. 故答案为:(],0-∞.【点睛】关键点点睛:根据数列{}n a 的递推公式确定01n a <≤,再通过构造函数将问题转化成不等式恒成立问题,利用导数判断函数单调性即可求解.五、解答题17.甲、乙两位棋手,与同一台智能机器人进行国际象棋比赛,相互独立,互不影响,记分规则如下:在一轮比赛中,如果甲赢而乙输,则甲得1分;如果甲输而乙赢,则甲得1-分;如果甲和乙同时赢或同时输,则甲得0分.设甲赢机器人的概率为0.6,乙赢机器人的概率0.5.记甲在一轮比赛中的得分记为X ,在两轮比赛中的得分为Y .(1)若甲单独与机器人进行三次比赛,求甲恰有两次赢的概率; (2)求X 的分布列; (3)求Y 的均值. 【答案】(1)0.432 (2)分布列见解析 (3)()0.2E Y =【分析】(1)利用独立重复试验求概率公式进行求解;(2)写出X 的可能取值及相应的概率,得到分布列;(3)在第二问的基础上,写出Y 的可能取值及相应的概率,得到分布列,得到均值. 【详解】(1)设甲恰有两次赢的概率为1P ,2213C (0.6)(10.6)0.432P -=⨯=;(2)X 的可能取值为1-,0,1.根据记分规则,得()(1)10.60.50.2P X =-=-⨯=,()()(0)0.610.510.60.50.5P X ==⨯-+-⨯=, ()(1)0.610.50.3R X ==⨯-=,所以X 的分布列为(3)两轮比赛甲的得分Y 的可能取值为2,1,0,1,2--. 由于两轮比赛的结果是独立的,所以(2)0.20.20.04,(1)0.20.50.50.20.2P Y P Y =-=⨯==-=⨯+⨯=, (0)20.20.30.50.50.37,(1)20.30.50.3P Y P Y ==⨯⨯+⨯===⨯⨯=,(2)0.30.30.09P Y ==⨯=,所以Y 的分布列为故()(2)0.04(1)0.200.3710.320.090.2E Y =-⨯+-⨯+⨯+⨯+⨯=.18.在菱形ABCD 中,G 是对角线BD 上异于端点的一动点(如图1),现将ABD △沿BD 向上翻折,得三棱锥A BCD -(如图2).(1)在三棱锥A BCD -中,证明:DG AC ⊥; (2)若菱形ABCD 的边长为23,π3ABC ∠=,且2BG GD =,在三棱锥A BCD -中,当3AC =时,求直线AG 与平面ACD 所成角的正弦值. 【答案】(1)证明见解析 (2)1313【分析】(1)证明DG ⊥平面AOC ,根据线面垂直的性质定理即可证明结论;(2)由题意求得相关线段的长,证明AH ⊥平面COD ,建立空间直角坐标系,求得相关点坐标,求出平面ACD 的法向量,利用空间角的向量求法,即可求得答案. 【详解】(1)在图1中,连接AC 交BD 于O ,连接,AG CG , 由菱形的性质得,DG AO DG CO ⊥⊥,在图2中,因为,CO AO ⊂平面AOC 且AO CO O =,,DG AO DG CO ⊥⊥,所以由直线与平面垂直的判定定理得DG ⊥平面AOC , 因为AC ⊂平面AOC ,所以DG AC ⊥.(2)由DG ⊥平面,AOC DG ⊂平面COD ,得平面COD ⊥平面AOC , 菱形ABCD 的边长为3π3ABC ∠=,2BG GD =, 则26,2BD BO GD ===,则三棱锥A BCD -中,3CO AO ==3AC =,解AOC 得2223391cos 22233AO CO AC AOC AO CO +-+-∠===-⋅⨯⨯, 故120AOC ∠=︒,作AH CO ⊥,交CO 延长线于H ,得32AH =, 由于平面COD ⊥平面AOC ,平面COD 平面AOC CO =,AH ⊂平面AOC , 所以AH ⊥平面COD ,如图,以O 为原点,,OC OD 分别为,x y 轴,过O 作AH 的平行线作为z 轴, 建立空间直角坐标系,如图,所以33,(3,0,0),(0,3,0),(0,1,0)2A C D G ⎛⎫⎪⎝⎭, 3333333,0,,,3,,,1,222222AC AD AG ⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面ACD 的法向量为(,,)n x y z =,则333022333022n AC z n AD x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3x =1,3y z ==, 可得平面ACD 的法向量(3,1,3)n =,设直线AG 与平面ACD 所成角为θ,π[0,]2θ∈,所以|213sin |cos ,|||||132|n AG n AG n AG θ⋅=〈〉===⋅⨯另解提示:根据上述解法求出32AH =, 由2,23CG DG AG CD ====3CDG S △ 由3,3CD AD AC ===,可得339ACD S =△,设点G 到平面ACD 的距离为d ,直线AG 与平面ACD 所成角为θ,因为A CDG G ACD V V --=即1133CDG ACD AH S d S ⋅⋅=⋅⋅△△,可得21313d =,所以13sin 13d AG θ==. 19.如图,ABCD 是一个边长为8m 的有部分腐蚀的正方形铁皮,其中腐蚀部分是一个半径为6m 的扇形AMN ,其他部分完好可利用.铁匠师傅想在未被腐蚀部分截下一个长方形铁皮PRCQ (P 是圆弧上的一点),以用于制作其他物品.(1)当长方形铁皮PRCQ 为正方形时,求此时它的面积; (2)求长方形铁皮PRCQ 的面积S 的最大值.【答案】(1))282482cm -(2)()216cm【分析】(1)连接AP ,设π02PAD θθ⎛⎫∠=≤≤ ⎪⎝⎭,延长QP 交AD 于E ,当长方形铁皮PRCQ 为正方形时,π4θ=,可得32RD =(2)由(1)设,得sin 6sin ,cos 6cos PE PA AE PA θθθθ====,表示出()6448sin cos 36sin cos S θθθθ=-++,令sin cos t θθ=+,通过换元法求解即可. 【详解】(1)连接AP ,设π02PAD θθ⎛⎫∠=≤≤ ⎪⎝⎭,延长QP 交AD 于E ,当长方形铁皮PRCQ 为正方形时,显然π4θ=,此时πsin 324RD PE PA ===所以)222(832)82482cm S CR ==-=-;(2)由(1)设,得sin 6sin ,cos 6cos PE PA AE PA θθθθ====所以()()()86cos 86sin 6448sin cos 36sin cos S PR PQ θθθθθθ=⋅=--=-++, 其中,π02θ≤≤, 令sin cos t θθ=+,则21sin cos 2t θθ-=,所以()226448181184846S t t t t =-+-=-+,因为π02θ≤≤,所以π2sin [1,2]4t θ⎛⎫=+∈ ⎪⎝⎭,所以241814,[1,2]3S t t ⎛⎫=-+∈ ⎪⎝⎭,所以当1t =时,得()2max 16cm S =,即长方形铁皮PRCQ 的面积S 的最大值为()216cm .20.已知数列{}{}{},,n n n a b c 满足1111a b c ===,且12n n n nc b c b ++=. (1)若{}n a 是等比数列,且12,3n n n a a c b +=+=,求2023b 的值,并写出数列{}n b 的通项公式; (2)若{}n b 是等差数列,公差0d >,且1n n n b a a +=-,求证:3123321111,N 3n a n c c c c a *-++⋅⋅⋅⋅⋅⋅+<∈-. 【答案】(1)101120232b =,12222,,32,.n n n n b n --⎧⎪=⎨⎪⋅⎩为奇数为偶数 (2)证明见解析【分析】(1)根据等比数列的定义,对n 分奇数偶数两种情况讨论即可求解; (2)由累乘法求出2211111(2)n n n n n b b n c b b d b b ++⎛⎫==-≥ ⎪⎝⎭,由裂项相消法可求得123111111n c c c c d++⋅⋅⋅⋅⋅⋅+<+,再利用1n n n b a a +=-求出312a d -=+即可证明. 【详解】(1)依题意,因为211a a c =+,所以22a =,公比212a q a ==, 所以12n n a -=,所以12112,2n n n n n n n nb c c a a b c -+++=-===, 所以{}n b 的奇数项和偶数项分别是公比为2的等比数列,得101120232b =,故()1*12,21N 32,2k n k n k b k n k --⎧=-=∈⎨⋅=⎩,亦即12222,,32,.n n n n b n --⎧⎪=⎨⎪⋅⎩为奇数为偶数. (2)由12n n n n c b c b ++=,得2334451112233112,,,,n n nc b c b c b c b b c b c b c b c b b +===⋅⋅⋅⋅⋅⋅=, 由叠乘得1112n n nc b b c b b +=,所以12n n n b b c b +=,得2211111(2)n n n n n b b n c b b d b b ++⎛⎫==-≥ ⎪⎝⎭, 因为110,0,0n b d b +>>>,所以 21232334111*********n n n b c c c c db b b b b b +⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅⋅⋅⋅+=+-+-+⋅⋅⋅⋅⋅⋅+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦ 2221111111111n n b b d b b d b d++⎛⎫⎛⎫=+-=+-<+ ⎪ ⎪⎝⎭⎝⎭, 因为121232,b a a b a a =-=-,所以1231b b a a +=-即312a d -=+, 得3331121133a d a a -+=+=--, 故31233111123n a c c c c a -++⋅⋅⋅⋅⋅⋅+<-. 21.法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆2222:1(0)x y C a b a b+=>>中,离心率12e =,左、右焦点分别是1F 、2F ,上顶点为Q ,且22QF =,O为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为12-,求POH △面积的最大值.【答案】(1)椭圆C 的方程为22143x y +=,蒙日圆的方程为227x y +=【分析】(1)根据椭圆离心率结合题设求得,,a b c ,即得椭圆方程,进而写出蒙日圆的方程; (2)设00(,)P x y ,设过点P 的切线方程为()00y y k x x -=-,联立椭圆方程结合判别式确定点00(,)P x y的轨迹方程,进而利用基本不等式求得00x y ⋅≤,即可求得答案. 【详解】(1)设椭圆方程为22221,(0)x y a b a b+=>>,焦距为2c .由题意可知21,22c e QF a a ====,所以1,c b ==C 的方程为22143x y +=, 且蒙日圆的方程为227x y +=;(2)设00(,)P x y ,设过点P 的切线方程为()00y y k x x -=-,由()00223412y y k x x x y ⎧-=-⎨+=⎩,消去y 得()()22222200000034422484120k x ky k x x k x kx y y ++-+-+-=①, 由于相切,所以方程①的Δ0=,可得:22222200000016(22)4(34)(48412)0ky k x k k x k y y --+-+-=,整理成关于k 的方程可得:()()22200004230x k x y k y -++-=,由于P 在椭圆22143x y +=外,故22003412x y +>, 故()2200034124x y '-=+∆>,设过点P 的两切线斜率为12,k k ,据题意得,00122024x y k k x +=--,2122034y k k x -⋅=-, 又因为1212k k ⋅=-,所以可得20203142y x -=--, 即点00(,)P x y的轨迹方程为:()220000012,0105x y x x x +=≠±≠≠,由不等式可知:2200001105x y y =+≥=⋅,即00x y ⋅≤,当且仅当2200105x y =时取等号,此时00x y ==所以0012POH S x y =⋅≤△POH 【点睛】关键点点睛:求解POH △面积的最大值时,设出过点P 的切线方程并联立椭圆方程,利用判别式为0结合根与系数的关系求得点P 的轨迹方程后,关键要利用基本不等式求出00x y ⋅≤,即可求解.22.已知函数1()ln ,0f x x k x k x ⎛⎫=--> ⎪⎝⎭.(1)当3k =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若对()()0,1,0x f x ∀∈<恒成立,求k 的取值范围; (3)求证:对(0,1)x ∀∈,不等式22e 11ln x x x x x-<+恒成立. 【答案】(1)10x y +-= (2)(0,2] (3)证明见解析【分析】(1)对函数求导,利用导数的几何意义即可求解;(2)根据题意将不等式进行等价转化为求函数()f x 在(0,1)的最小值问题,利用导数求解即可;(3)结合(2)的结论,构造函数2e ()(01)1xm x x x =<<+,利用导数即可求解.【详解】(1)因22211331()3ln ,(1)0,()1x x f x x x f f x x x x x -+⎛⎫=--==+-=⎝' ⎪⎭,所以(1)1f '=-,所以所求切线方程为()()()111y f f x '-=-, 即10x y +-=;(2)因为1()ln 0f x x k x x ⎛⎫=--< ⎪⎝⎭在(0,1)上恒成立,而22211()1k x kx f x x x x '-+=+-=,令'()0f x =得210x kx -+= 所以24,0k k ∆=->①当2Δ40k =-≤,即02k <≤时,()0f x '≥,所以()f x 在(0,1)上单调递增,则()(1)0f x f <=,满足题意; ②当2Δ40k =->,即2k >时,设2()1,01x x kx x ϕ=-+<<, 则()ϕx 的对称轴为1,(0)1,(1)202kx k ϕϕ=>==-<,第 21 页 共 21 页 所以()ϕx 在(0,1)上存在唯一零点1x ,当()1,1x x ∈时,()0,()0x f x ϕ'<<, 所以()f x 在()1,1x 上单调递减,故()(1)0f x f >=,不合题意. 综上,k 的取值范围为(0,2];(3)由(2),当2k =时,12ln 0x x x --<在(0,1)恒成立,即212ln x x x->, 令2e ()(01)1xm x x x =<<+, 则()222e (1)()01x x m x x -'=>+,故()m x 在(0,1)上单调递增, 所以e ()(1)22m x m <=<,即2e 21xx <+在(0,1)上恒成立. 综上可得,对(0,1)x ∀∈,不等式22e 11ln x x x x x-<+恒成立. 【点睛】关键点点睛:第三问解题关键是在(2)中令2k =得到212ln x x x->,将所证明的不等式转化为证明2e 21xx <+在(0,1)上恒成立即可.。

过椭圆上任意一点的切线方程引发的思考与结论

过椭圆上任意一点的切线方程引发的思考与结论

过椭圆上任意一点的切线方程引发的思考与结论最近笔者在讲授高三第一轮复习时遇见复习资料上一个题目:过椭圆外一点向椭圆作切线,与椭圆切于两点,可知经过两点的直线的方程为.类比上述方法,过双曲线外一点向双曲线作切线,与双曲线切于两点,则经过两点的直线的方程为.资料书上虽然给出了答案.但是推导结论的方法,很多同学一知半解,授人以鱼,不如授人以渔,数学中不少结论和公式的推导过程本身蕴含着丰富的思想和方法,它们是我们进行研究性学习的良好素材,本文就这一结论的推导过程谈一点自己的思考.用同一种数学思想方法解决不同的数学问题我们称之为“多题一解”.在现代教育背景下,教师应当积极地将多题一解的思想融入教学当中去,从而促使学生的解题能力和知识理解能力得到强化.本文主要对多题一解思想在高中的数学教学中的渗透实施进行了分析,希望能为高中数学教学开展效果提升做出贡献.问题一已知圆的方程是,求经过圆上一点的切线的方程.解:如上图,设切线的斜率为,则,,.经过点的切线方程是:整理得.因为点在圆上,所以.所求的直线方程为.当点在坐标轴上时上面方程同样适用.问题二已知椭圆的方程是,求经过椭圆上一点的切线的方程.解:由对称性知,只要求椭圆在轴上方部分即可.,,.由点斜式得,变形得,化简即得.问题三已知双曲线的方程是,求经过双曲线上一点的切线的方程.解:由对称性知,只要求双曲线在轴上方部分即可.,,.由点斜式得,变形得,化简即得.问题四已知抛物线的方程是,求经过抛物线上一点的切线的方程.解:由得,,.由点斜式得,变形得,化简即得.问题五过圆外一点向圆作切线,与圆切于两点,求经过两点的直线的方程.解:设,由问题一可知、的方程分别为、,则有、.可知点在直线上,点在直线上,所以直线的直线方程为.问题六过椭圆外一点向椭圆作切线,与椭圆切于两点,求经过两点的直线的方程.解:设,由问题二可知、的方程分别为、,则有、.可知点在直线上,点在直线上,所以直线的直线方程为.问题七过双曲线外一点向双曲线作切线,与双曲线切于两点,求经过两点的直线的方程.解:设,由问题三可知、的方程分别为、,则有、.可知点在直线上,点在直线上,所以直线的直线方程为.问题八过抛物线外一点向抛物线作切线,与抛物线切于两点,求经过两点的直线的方程.解:设,由问题四可知、的方程分别为、,则有、.可知点在直线上,点在直线上,所以直线的直线方程为.由以上几个问题可知,用多题一解的思想学习高中数学,可使零散的知识得到集中,孤立的知识得到统一,这对于学生构建知识网络、提高学生分析问题、解决问题的能力,有着重要意义.参考文献:1、李红春.椭圆切线方程的两种巧妙求法.中学生数学?2014年10月上?第499期(高中).2、殷献云.论多题一解思想在高中数学学习中的渗透.《数学学习与研究》2018年第09期.3、刘志修.试论过圆、椭圆、双曲线上一点的切线方程的统一性.中学数学研究2007年第1期.。

切线方程的统一

切线方程的统一

切线方程的统一
惠州人
【期刊名称】《中学教研:数学版》
【年(卷),期】1990(000)010
【摘要】关于二次曲线切线的处理,我们注意到了一些需要也完全可以统一的情况: 第一:求解方法因曲线的类型而异,比如《课本》中,求圆的切线用了斜率关系,求抛物线、椭圆、双曲线时用了二次方程判别式。

第二:方程形式因已知点的位置而不同。

当已知点M在曲线上时,切线方程很简单;当M在曲线外时,情况就复杂了,通常的教材都没有给出方程。

第三:直线方程存在有斜率切线与无斜率切线的区别,并且常常
因此而导至失误。

在这方面,《课本》(甲种本)对圆和抛物线的处理都欠周密。

《课本》(甲)P74例2,求圆
【总页数】3页(P28-30)
【作者】惠州人
【作者单位】陕西师大数学系
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.过二次曲线上点P(xo,yo)的切线方程的统一形式 [J], 熊绍英;杨富利
2.斜率为定值的圆锥曲线切线方程的统一性 [J], 吴永芳
3.试论过圆、椭圆、双曲线上一点的切线方程的统一性 [J], 刘志修
4.用导数求切线方程的统一方法 [J], 廖福斌
5.抛物线的切线方程相关问题的统一认识及其应用 [J], 赵临龙;张云云;刘倩
因版权原因,仅展示原文概要,查看原文内容请购买。

经过曲线上一点的切线方程

经过曲线上一点的切线方程

经过曲线上一点的切线方程例1 求经过圆222r y x =+上一点()11,y x 的切线l 方程;分析:若P 不是切线与坐标轴的交点,则11x y k OP =, 由OP ⊥l 得,11y x k l -=, 由点斜式方程得:()1111x x y x y y --=-, 整理,得2212111r y x y y x x =+=+ 若P (r,0),则l :x=r 即rx+0y=r 2; 若P (-r,0),则l :x=-r 即-rx+0y=r 2; 若P (0,r ),则l :y=r 即0x+ry=r 2; 若P (0,-r ),则l :y=-r 即0x-ry=r 2;综上所述,经过圆222r y x =+上一点()11,y x 的切线l 方程为211r y y x x =+;例2 222()11,y x 的切线l 方程;)a xb y k CP --=11,by ax k l ---=11由点斜式方程得:()1111x x by ax y y ----=-即:()()()()()()()[]()()()[]()()()()()()()()()()211212111111111110r b y b y a x a x b y a x b y b y a x a x b y b y b y a x a x a x y y b y x x a x =--+---+-=--+--=----+----=--+-- 若切线的斜率不存在或为0时,切线方程都可表示为以上形式, 故经过圆()()222r b y a x =-+-上一点()11,y x 的切线l 方程为:()()()()211r b y b y a x a x =--+--例3 求经过圆22()11,y x 的切线l 方程;a xb y k CP --=11,by ax k l ---=11由点斜式方程得:()1111x x by ax y y ----=- 即:()111122x x E y Dx y y -++-=-整理,得()()02202222022111121211111111111=++++++=---++-+++=-⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛+F y y E x x D y y x x y x y y y E x x x Dy y x x x x D x y y E y 若切线的斜率不存在或为0时,上式仍成立,故经过圆022=++++F Ey Dx y x 上一点()11,y x 的切线l 方程为0221111=++++++F y y E x x Dy y x x 例4 求经过椭圆12222=+by a x 上一点()11,y x 的切线l 方程;()11x x k y y -=-解方程组⎩⎨⎧-+==+11222222kx y kx y b a y a x b()()()022221121122222=--+-++b a kx y a x kx y k a x k a b由△=0得,()[]()()[]0422221122222112=--+--b a kx y a k a b kx y k a()02221112221=-+--b y k y x k a x又()()()()044222212212221221211=-+=----b a y a x b b y a x y x所以22111ax y x k -=于是()()()()()()()12121212122112221222112122111122111221111=+-=--=⎪⎪⎭⎫ ⎝⎛--=+--=----=-byy a x x a x x b y y a a x x y y a b y a b a xy x a y y a xx x y x a x y y x x ax y x y y 若切线l 的斜率不存在或为0时,切线方程也符合12121=+byy a x x 综上所述,过椭圆12222=+by a x 上一点()11,y x 的切线l 方程为12121=+b y y a x x ;例5 求经过双曲线12222=-by a x 上一点()11,y x 的切线l 方程;分析:如图所示若切线l 的斜率存在,设l :()11x x k y y -=-解方程组⎩⎨⎧-+==-11222222kx y kx y b a y a x b()()()02)(222112112222222211222=------=-+-b a kx y a x kx y k a x k a b b a kx y kx a x b由△=0得:()()()[]()20442211122212211222221124=++--=+--+-b y k y x k a xb kx y k a b a kx y k a又()()()()0442222222221221211=---=+---b a y a x b b y a x y x故()221112211122ax y x ax y x k -=-=()()()()()1212111122222212111222111112211221111=-=+⎪⎪⎭⎫ ⎝⎛-+=+--=----=-byy a x x x y x y a y a b b a y a xy x y ay a xx x y x y y a x x x ax y x y y若切线l 的斜率不存在,切线l 的方程仍可表示为12121=-byy a x x 综上所述,经过双曲线12222=-by a x 上一点()11,y x 的切线l 方程为12121=-b y y a x x ;例6 求经过抛物线py x 22=上一点()11,y x 的切线l 方程;分析:如图所示设切线l 方程为:()11x x k y y -=-解方程组⎩⎨⎧-+==1122kx y kx y pyx代入得 ()022112=---kx y p pkx x 由△=0得:()()022082112112=+-=-+-y k x pk kx y p pk又()()02482121121=-=--py x py x故px k 1=于是切线l 方程为:()()y y p x x x x x py py x x px y y +=-=--=-112111111归纳:经过曲线()0,=y x f 上一点()11,y x 的切线l 方程可用如下方法做替代,直接写出切线方程:()()()()()()221112121212y y y x x x a y a y a y a x a x a x yy y x x x +→+→--→---→-→→。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档