航空器系统整理完整版
科学探究航空知识点总结
科学探究航空知识点总结一、飞行原理1. 卡夫特定律卡氏的定律是通过科学的方法总结和规律飞行员道出的一句俗语:“机翼下的气流速度增加,压力降低;机翼上的气流速度减慢,压力增加。
”卡氏的定律最重要的贡献是把飞行问题引入了流体动力学研究的范畴。
2. 升力产生原理升力产生原理是飞机起飞和飞行的基础。
当飞机在不同的速度和攻角下,可以产生不同大小的升力,这是由于空气流经机翼两侧造成了压力差异,从而形成了升力。
3. 空气动力学空气动力学是研究空气的流动和与物体的相互作用的学科。
在航空科学中,空气动力学是用来研究飞机的气动特性、飞行器性能和气动设计方法的科学。
二、航空器结构1. 机翼机翼是飞机的主要承载结构,用来产生升力。
不同类型的飞机有不同形状的机翼,如直翼、后掠翼、前掠翼等。
2. 发动机发动机是提供飞机推进力的设备。
根据发动机的工作原理,可以分为活塞发动机和喷气发动机。
喷气发动机的原理是利用燃料燃烧产生高温高压气体,通过喷口喷出,产生推力。
3. 机身机身是飞机的主要承载结构,同时也包含了飞行舱、货舱等重要部分。
机身的结构必须具有足够的强度和刚度,以支撑机翼和发动机。
三、飞行器控制1. 俯仰、横滚、偏航飞机的姿态由俯仰、横滚、偏航三个自由度控制。
俯仰是飞机绕纵轴旋转,横滚是绕机翼的轴旋转,偏航是绕垂直轴旋转。
2. 飞行控制表面飞机通过不同的控制表面来实现不同的控制,如升降舵、方向舵、副翼等。
这些控制表面能够改变飞机在空气中的运动状态。
3. 飞行控制系统飞行控制系统由操纵杆、踏板、发动机驱动装置、液压引导装置等组成。
通过操纵杆、踏板,飞行员可以控制飞机的姿态、方向和高度。
四、航空器系统1. 起落架系统飞机的起落架是用于地面行驶和起降的设备。
根据飞机的类型和用途,起落架有不同的形式,如固定起落架、收放起落架等。
2. 燃油系统燃油系统主要用于存储和供应飞机的燃料。
它包括燃油箱、油泵、传输管道等,确保飞机在飞行过程中有足够的燃料供应。
飞机系统知识点总结
飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。
本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。
通过本文的阅读,读者可以对飞机系统有一个全面的了解。
一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。
1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。
通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。
飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。
2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。
比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。
此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。
3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。
自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。
二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。
飞机的动力系统通常由发动机和推进系统组成。
1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。
涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。
螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。
2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。
这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。
三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。
1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。
起落架系统 自己整理
目录(答案仅供参考)ATA32-起落架系统 (4)1. 前三点式起落架的优点? (4)2. 主起落架结构分类及特点? (4)3. 滑行装置?(主要是指机轮在起落架上的固定方式) (5)4. 减震器的种类?(几种减震器的优缺点?现在广泛适用的减震器?) (6)5. 起落架减震支柱如何吸收和消耗地面撞击能量?// 筒述起落架油气式减震器的减震原理(豆) (6)6. 现代飞机减震支柱中设置的调节油针,其作用是什么?(豆) (7)7. 反跳现象和防反跳活门,//画图说明防反跳活门的工作原理(豆) (7)8. 减震器的维护事项?起落架镜面高度偏离要求,如何处理 (8)9. 减震支柱油多气少怎么排除?什么原因造成的? (9)10. 对减震支柱的油气充灌中,如果气压正常,油量少于规定数据,可能会有什么结果?为什么(真题)? (9)11. 某飞机主起落架减震支柱镜面高度在飞机空载时正常,在旅客登机(同时装货、加油)过程中,机务人员发现镜面高度下降过大,不满足放行标准,但经检查未发现减震支柱存在漏油、漏气现象。
试分析造成此问题的可能原因并提出解决和预防办法。
(9)12. 减震支柱的日常维护 (10)13. 拖飞机的注意事项 (10)14. 对起落架收放系统的要求?//对于起落架可收放的飞机,对其收放系统有何要求?(真题) (10)15. 起落架锁机构的分类及常见应用? (11)16. 现代飞机主起落架的下位锁多采用撑杆式锁,根据附图,分析说明其锁定原理:(豆豆图,真题,上一题)1217. 起落架收放作动的顺序控制方式? (12)18. 根据附件图示说明:在放起落架过程中,液压延时器如何实现先打开收上锁,后放起落架的顺序控制?(豆)1219. 起落架收上后机轮刹车的方式?//如何避免旋转的机轮损伤轮舱液压部件? (13)20. 现代飞机的起落架收放系统中的起落架位置指示和警告系统包括哪些部分? (14)21. 何时起落架红色指示灯亮?指示(补充) (14)22. 着陆警告? (15)23. 简述触发起落架音响警告的条件。
空运飞行员的航空器相关系统和设备
空运飞行员的航空器相关系统和设备航空运输是现代社会不可或缺的一部分,而空运飞行员则是航空运输的核心力量。
空运飞行员需要全面了解和熟练操作各种航空器相关系统和设备,以确保飞行的安全与顺利进行。
本文将就空运飞行员所需了解的航空器相关系统和设备进行探讨,主要包括飞行控制系统、导航系统、通信系统、机载设备和应急装置。
1. 飞行控制系统空运飞行员在驾驶飞机时必须熟悉并能够操作各种飞行控制系统。
这些系统包括飞行操纵面(如副翼、升降舵和方向舵),它们通过飞行操纵杆和脚蹬进行控制。
此外,还有自动驾驶系统,它可以帮助飞行员维持飞机在预定航线上的飞行状态,减轻飞行员的负担并提高飞行效率。
2. 导航系统导航系统对于空运飞行员来说至关重要。
全球定位系统(GPS)是一种常用的导航工具,可以准确地确定飞机在空中的位置。
此外,还有惯性导航系统(INS),它通过加速度计和陀螺仪来计算并跟踪飞机的运动状态。
这些导航系统的准确性和可靠性对于飞行员的导航决策至关重要。
3. 通信系统通信系统是飞行员与空中交通管制、机组成员以及地面服务人员进行交流的重要手段。
其中包括无线电通信设备、数据链路和卫星通信系统。
空运飞行员需要熟悉各种通信设备的操作,并能够在各种情况下进行正确的通信。
4. 机载设备机载设备是指飞机上安装的各种设备,用于提供飞行信息、监测飞机状态和改善乘客舒适度。
其中包括飞行显示系统、气象雷达、防冰系统、客舱通风系统等。
了解和操作这些设备对于飞行员来说是必不可少的,它们可以提供准确的数据和信息,帮助飞行员做出正确的决策。
5. 应急装置应急装置是为了应对飞行过程中可能出现的突发情况而设计的。
例如,紧急下降系统可以帮助飞行员在发生意外情况时迅速下降高度并确保乘客和机组成员的安全。
飞机上还配备有灭火系统、应急呼吸设备等,以应对各种可能的紧急情况。
综上所述,空运飞行员需要全面了解和熟练操作各种航空器相关系统和设备,以确保飞行的安全和顺利进行。
空运飞行员的航空器电气系统知识
空运飞行员的航空器电气系统知识航空器电气系统是现代航空运输中至关重要的一部分,对空运飞行员来说,了解和掌握航空器电气系统的知识至关重要。
本文将介绍空运飞行员需要了解的航空器电气系统的基本知识和相关要点。
一、航空器电气系统的组成航空器电气系统由多个部分组成,包括电源系统、分配系统、控制系统和保护系统等。
其中,电源系统提供电能,分配系统将电能分配到各个设备,控制系统用于控制各个电气设备的工作,而保护系统则负责保护电气系统免受过载和故障等不良影响。
二、航空器电气系统的功能航空器电气系统的功能十分重要,主要包括:1. 为飞机提供照明和通信设备所需的电能;2. 支持导航、操纵和监控系统的运行;3. 驱动各种飞行仪器、设备和其他航电设备;4. 提供紧急备用电源以应对电力中断等紧急情况。
三、航空器电气系统的类型根据电力来源的不同,航空器电气系统可以分为两类:直流电气系统和交流电气系统。
直流电气系统主要由直流电源提供电能,交流电气系统则由发动机产生的交流电源提供电能。
不同类型的电气系统在航空器上的应用也有所差异,空运飞行员需要了解并熟练掌握两种类型的系统。
四、航空器电气系统的故障排除由于航空器电气系统的复杂性,故障排除是空运飞行员必备的技能之一。
在遇到电气系统故障时,空运飞行员需要快速准确地判断故障原因,并采取相应的措施。
常见的电气故障包括电路短路、电源故障和设备故障等,空运飞行员需要通过仪器设备和手动操作完成故障排除工作。
五、航空器电气系统的维护和保养航空器电气系统的维护和保养对保证其正常运行至关重要。
空运飞行员需要按照相关要求和程序对电气系统进行定期检查和维护,包括检查电池状态、接线端子的状态和电源电压等。
此外,空运飞行员还应了解和掌握电气系统的保养技巧,如清洁电线和设备以确保正常的导电性能。
六、最新发展和趋势随着科技的不断发展,航空器电气系统也在不断更新和升级。
例如,最新的飞机电气系统采用了更先进的数字化技术和自动化控制系统,提高了电气系统的性能和可靠性。
民航概论——民用航空器之六
三 座舱环境控制系统
定义---随着飞行高度的增加,大气压的含氧量下降,在4000米高度上 人体中的气体已经不能维持正常的活动,出现缺氧症状。在6000米的 高度上人能维持正常知觉的时间下降到不足15分钟,到8000米高空时 这个时间只有3分钟,因而在飞行高度民主超过6000米以上的飞机必 须采用环境保护措施来保障乘客和机组人员的生命安全。这种保障系 统我们称为座舱环境控制系统。
油流入回流油路。 5. 调压阀 ---把液压泵输出的液压保持在一个稳定范围。 6. 减压阀---把系统的压力减到某一数值供给一些机构使用。
3)蓄压器---保证液压系统中压力稳定。 4)作动器---把液体压力变为机械运动、直线运动或旋转运动。 直线运动叫作动筒:就是液压缸和活塞系统。 旋转运动叫液压马达:是把液体压力变为轴的旋转从而输出功 率。
2)阀
分类: 流量控制阀
1. 换流阀 2. 截流阀 3. 过流阀
压力控制阀 1. 安全阀 2. 调压阀 3. 减压阀
各个阀的作用
1. 换流阀---用于改变方向。 2. 截流阀---也叫单向阀,只允许液体向单一方向流动,不能回流。 3. 过流阀---防止液压系统破损漏油。 4. 安全阀—把弹簧调在一定压力,当液压大于这个压力,球阀被压开,
客舱的布局是指座椅子、厨房、厕所、舱门的安排。 座椅可按照头等舱、公务舱、经济舱三个等级来安排。
2货舱
1)直流电源系统的组成
1. 直流发电机 2. 调节器---调节电压变化幅度,使之能为用电设备提供稳定电压。 3. 反流断路器---保证发电机向外供电,当发电机电压小于并联网路
或蓄电池电压时 ,断路器断开。 4. 稳定变压器 5. 蓄电池---是一种将化学能变为电能,又能将电能变为化学能的储
无人驾驶航空器系统标准体系框架
无人驾驶航空器系统标准体系框架下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言随着无人驾驶航空器技术的迅猛发展,相关标准体系也逐渐完善。
空运飞行员的航空器机械和电子系统
空运飞行员的航空器机械和电子系统航空业是一个高度复杂和精密的行业,航空器的机械和电子系统对于飞行员的安全和飞行任务的成功至关重要。
本文将介绍空运飞行员所需了解的航空器机械和电子系统,包括机械系统和电子系统的基本原理、常见问题和相关维修程序。
一、机械系统1. 涡轮发动机涡轮发动机是现代航空器的主要动力系统,它通过燃料的燃烧产生的高温高压气体驱动飞机前进。
飞行员需要了解涡轮发动机的基本工作原理、主要部件以及故障排除的基本方法。
在飞行过程中,飞行员应当监控涡轮发动机的性能,并且在必要时采取相应的措施来应对各种故障情况。
2. 起落架系统起落架系统是航空器的重要组成部分,它提供了飞机在地面和空中之间的平稳过渡。
飞行员需要了解起落架系统的结构和操作原理,以确保在起飞、降落以及地面操作过程中的安全。
此外,飞行员还应当熟悉起落架故障排除的基本程序,并能够在必要时采取正确的应对措施。
3. 操纵系统操纵系统是飞机的“大脑”,它负责控制飞机的姿态和飞行方向。
飞行员需要了解操纵系统的原理和组成部件,以便在飞行过程中灵活操作飞机。
同时,飞行员还应当熟悉操纵系统的常见故障,并能够迅速判断和纠正异常情况。
二、电子系统1. 通信和导航系统通信和导航系统是现代航空器的重要组成部分,它们负责飞机与地面和其他飞机的通信联系以及飞行导航。
飞行员需要了解通信和导航系统的基本原理和操作方法,以确保飞机在空中和地面上的正常通信与导航。
2. 飞行控制系统飞行控制系统是航空器的关键部件,它能够实时监测飞机的动态参数,并通过自动控制机构调整飞机的姿态和航向。
飞行员需要了解飞行控制系统的基本原理和工作方式,以及在自动驾驶模式下的应急操作方法。
3. 仪表和显示系统仪表和显示系统提供了飞行员在驾驶舱内观察和监测飞机状态的重要信息。
飞行员需要了解不同类型的仪表和显示系统的工作原理和读取方法,并能够快速准确地解读相关信息。
三、维护和故障排除飞行员虽然并不直接参与航空器的维护,但他们需要了解维修和故障排除的基本流程和程序,以便在必要时提供相关帮助和指导。
航空器系统.概要
航空器系统复习题1、在使用变量泵的液压系统中,造成油温过高的一个可能原因是(C)A、选择活门卡在关闭位。
B、液压泵出口处的高压油滤堵塞。
C、泵的壳体回油滤堵塞。
D、用压系统传动部件卡阻。
2、电子式防滞刹车系统的主要组成附件有:(A)A、轮速传感器、防滞控制器和防滞控制阀。
B、轮速传感器、防滞控制器和刹车计量阀。
C、轮速传感器、温度监视器和防滞控制阀。
D、轮速传感器、防滞控制器和往复阀。
3、结构油箱渗漏等级分为: (A)A、微渗、渗漏、严重渗漏、淌漏。
B、微渗、渗漏、严重渗漏。
C、渗漏、严重渗漏、淌漏。
D、微渗、渗漏、淌漏。
4、为防止油气式减震支柱在着陆撞击引起初次压缩之后伸张得太快,使用的方法是:(B)A、使用"V"型密封装置,以使减震支柱在伸张过程比压缩过程产生更大的摩擦力。
B、利用多种型式的浮动活门,对油液的反向流动进行限制。
C、随着减震支柱的伸长,调节油针渐渐减小通油孔面积。
D、在伸张行程时,空气被迫反向流过一个限流孔。
5、飞机上火警探测系统中烟雾探测器用于(A)A、货舱和厕所。
B、APU舱。
C、空调舱和货舱。
D、发动机舱。
6、如果在空气循环制冷系统中安装空气净化器,则其位置一般在:(D)A、进入座舱的供气口。
B、压气机进口。
C、涡轮出口。
D、一级热交换器进口。
7、松紧螺套的作用是:(A)A、调整操纵钢索的预加张力。
B、连接操纵钢索形成操纵回路。
C、补偿因温度等因素引起的钢索张力变化。
D、钢索断裂后的接头。
8、大、中型飞机上从燃油箱向发动机供油均有一定顺序,其目的是:(B)A、防止供油中断。
B、减小机翼结构受力。
C、维持飞机横侧稳定性。
D、保证飞机起飞爬升过程发动机推力。
9、在安装增压泵时,若误将左油箱和中央油箱增压泵对调错装,则在飞行中:(B)A、左油箱和中央油箱均不向发动机供油。
B、先由左油箱供油直到用完后,然后由右油箱和中央油箱接替供油。
C、先由中央油箱供油直到用完后,然后由左、右油箱接替供油。
飞机结构与系统.完整资料PPT
(2)飞机在地面上的使用限制
(3)结构的稳定性
2.飞机结构件的分类
根据结构件失效后对飞机安全性造成的后果,结 构件可划分为重要结构项目和一般(其他)结构项目。
重要结构项目是指一旦损坏,会破坏飞机结构的 完整性,且会危及飞机的安全性,如:机翼、尾翼、 操纵面及其系统、机身、发动机架、起落架及上述各 部分有关的主要连接构件等。
一般结构项目是指不包括在重要结构项目内的部 件或组件,如:机身与机翼连接部位的整流蒙皮等。
• 本次课小结 本次课介绍了两个内容,一是飞机结构的基本概念;二是飞机结构适航性要求和结构
分类。 涉及的概念有飞机外载荷及分类、载荷系数、飞机结构的承载能力和承载余量、飞机结构 的适航要求、飞机结构件的分类。重点是各概念,难点是各系数公式和结构件受力分析。 要记住重点理解难点。 思考题: 1.飞行中,作用在飞机上的外载荷有哪些?P3 2.飞机结构的适航性要求有哪些?P13 3.飞机结构件有哪些分类?P15
• 如图,飞机在某以高度上做水平匀速的巡航飞行,
作用在飞机上的外载荷有重力W、气动升力L0、气动 阻力D0和发动机推力P0。选机体坐标系(OXtYtZt), 并将外载荷向坐标系原点--全机中心O简化,得到作
用
在
重
心
处
的
共
点
力
系和 L0
抬 yt
头
力
矩M
O
A,
低
头
力
矩
M
B
。
MA
P0 xt
MB
D0 W
• 飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:∑x=0 P0=D0
歼10可超极限飞9G
④部件过载
前面根据作用在飞机重心处升力L和飞机飞行重量W之比得出过载ny值,这个过载称为飞机 重心过载,也叫全机过载。知道全机过载,就可以知道全机升力的大小和方向。
飞机系统简介
储存液压油,并确保在任何时候液压油的数量都是充足的。
液压控制阀
控制液压油的流动和压力,以实现对飞机的精确控制。
气压系统
空气压缩机
将空气压缩到一定压力,然后将其储存到储气罐中以供后续使用 。
调压器
将压缩空气的压力调整到飞机各个部分所需的水平。
干燥器
去除压缩空气中的水分和杂质,以防止冰冻和其他问题。
自动驾驶技术主要包括:自动 导航、自动控制、自动监视等 。
高性能刹车与起飞/降落系统
高性能刹车系统可以快速、准确 地使飞机停止或减速,以确保飞
机的安全和高效运营。
起飞/降落系统是飞机在起飞和降 落过程中使用的关键系统,它包 括起飞辅助系统、着陆系统、反
推力系统等。
高性能刹车系统和起飞/降落系统 是保证飞机安全运营的关键因素
在紧急情况下,使用滑梯和救生船帮助乘客安全 降落。
3
紧急照明
在黑暗中为乘客提供紧急照明,以便他们能够找 到逃生路径。
防火系统
灭火器
在飞机上配备灭火器, 以便在火灾发生时及时 扑灭。
烟雾探测器
安装烟雾探测器,及时 发现并报警火灾。
防火材料
使用防火材料制造机舱 内部,以减少火灾蔓延 的风险。
防冰系统
之一。
05
飞机维护与保养系统
定期维护计划
预防性维护
根据飞机使用频率和时间,制定定期维护计划,包括检查 、保养、维修等,以确保飞机始终处于良好状态。
计划调整
根据实际情况,对维护计划进行调整,以适应飞机使用需 求和条件的变化。
记录与报告
对每次维护和检查活动进行详细记录,并提供报告,以便 查询和分析。
故障排查与维修
01
飞机各个系统的组成、原理及功用
飞机各个系统的组成、原理及功用08082332 洪懿液压系统飞机大型化以后,依靠驾驶员操纵控制各操纵面仅凭体力去搬动驾驶杆、踏踩脚蹬、拉动钢索使副翼或方向舵转动,那是绝对办不到的了。
此时飞机上就出现了助力机构。
飞机上的绝大部分助力机构采用的多为液压传动助力系统。
要在飞机的不同部件上使用液压,就要组成一个液压系统。
液压系统由泵、油箱、油滤系统、冷却系统、压力调节系统及蓄压器等组成。
液压传动是一种以液体位工作介质,利用液体静压来完成传动功能的一种传动方式。
飞机液压系统通常用来收放起落架、襟翼、减速板和操作机轮刹车以及操纵舵面的偏转。
液压系统作为操纵飞机部件的一个系统,具有许多优点,如重量轻、安装方便、检查容易等。
起落架缓冲支柱是主要的受力构件,起落架缓冲装置由轮胎和缓冲器组成。
她的功能是减小飞机在着陆接地和地面滑跑时所受的撞击力,并减弱飞机因撞击而引起的颠簸跳动。
起落架系统起落架主要功用是飞机滑跑、停放和滑行的过程中支撑飞机,同时吸收飞机在滑行和着陆的震动和冲击载荷。
利用液压进行起落架正常收放。
也可以人工应急放下起落架。
减震支柱的压缩可用空地感应控制。
在地面滑行时,可利用前轮进行转弯。
刹车组件装在主起落架机轮内,防滞系统用于提高刹车效率。
起落架的结构形式主要有构架式、支柱套筒式和摇臂式3种。
起落架缓冲支柱是主要的受力构件,起落架缓冲装置由轮胎和缓冲器组成。
她的功能是减小飞机在着陆接地和地面滑跑时所受的撞击力,并减弱飞机因撞击而引起的颠簸跳动。
起落架收放系统:为了减小飞行阻力,以提高飞行速度,增大航程和改善飞行性能。
它的主要组成部件有起落架选择活门,收放动作筒,收上锁及放下锁作动筒,起落架舱门作动筒,主起落架小车定位作动筒及小车定位往复活门,液压管路等。
起落架选择活门作用是将收放的机械信号转换成液压信号,引起液压油通到起落架收放管路,从而实现起落架的液压收放。
起落架位置信号:它主要有电气信号,机械指示信号和音响警告信号。
飞机系统重点
1、飞机机翼外载荷的类型,什么是卸荷作用机翼外载荷分为空气动力P气动、结构质量力P质量、部件质量力P部件。
卸荷作用:在机翼上安装部件、设备等,其重力向下与升力方向相反,相当于飞行中减小了机翼根部的内力值。
(卸载作用)2、飞机机翼的型式,以及各自结构特点1。
梁式机翼,梁强、蒙皮薄、桁条少而弱;2。
单块式机翼,多而强的桁条与较厚蒙皮组成壁板,再与纵墙和肋相连而成;3。
多腹板式(多墙式)机翼,机翼无梁、翼肋少,布置5个以上纵墙,蒙皮厚;4. 夹层和整体结构。
夹层结构,上、下壁板有两层很薄的内、外板,中间夹很轻的蜂窝、泡沫或波形板粘合;整体结构,整块铝镁合金板材加工成蒙皮、桁条、缘条的合并体与纵墙连接。
类型:硬式传动;软式传动;混合式传动硬式传动机构组成:刚性构件:如传动杆、摇臂、导向滑轮等.可以承受拉力或者压力。
可以利用差动摇臂实现副翼差动,即驾驶盘左右转动时,副翼上、下偏转的角度不同。
软式传动机构组成:钢索、滑轮、扇形轮、导向孔、摇臂、松紧螺套或钢索张力调节器等。
混合式传动机构组成:既有硬式、又有软式传动构件,利用二者的优点,避免缺点。
一般在操纵信号的输入和舵面作动段采用硬式传动,中间段采用采用软式传动。
6、飞机液压系统的基本组成及主要附件组成:供压系统、传动系统、操纵控制系统、工作信号主要附件:油箱、油泵、油滤、蓄压器、动作筒、液压马达、液压控制活门7、液压系统传动装置的类型(?)动作筒、液压助力器、液压马达9、飞机前轮偏转带来的问题及解决手段保证机轮滑行转弯的稳定,必须有适当的稳定距;控制前轮偏转必须有转弯系统;为了使飞机里低吼前轮回到中立位置,必须有中立结构;防止滑跑时前轮产生摆振须有减摆装置;有的小型飞机经旋转筒带动支柱内筒使前轮偏转,防止支柱内、外筒相对转动而加剧密封装置磨损,内筒端头必须安装旋转接头10、起落架收放锁定装置的作用,型式以及组成作用:用于将起落架可靠地固定在要求的位置1。
挂钩式收上锁:上锁动作筒、锁钩、锁簧、锁销;2.撑杆式放下锁:开锁动作筒、可折撑杆、可折锁杆;3。
飞机的其他系统
第六节 飞机的其他系统
2
通信系统 第六节 飞机的其他系统 一、飞机通信系统
高频通信系统(HF) 甚高频通信系统(VHF) 飞机寻址通信与报告系统
(ACARS) 选择呼叫系统 内话系统 飞行数据记录系统
驾驶舱语音记录器(CVR) 飞行数据记录器(FDR)
3
通信系统 第六节 飞机的其他系统 1、高频通信系统(HF)
飞行管理系统是以飞行管理计算机系统 (FMCS)为核心的高级区域导航、制导系 统和性能管理系统。
44
飞行管理系统 第六节 飞机的其他系统 1、飞行管理计算机系统(FMCS)
CDU
飞行管 理计算
机
控制 显示 组件
FMC
45
飞行管理系统 第六节 飞机的其他系统 2、自动飞行系统
自动飞行系统可以在飞机起飞、爬升、巡 航、下降和进近着陆的整个飞行阶段中使用。
主要用于飞机在起飞、降落时或通过控制空域 时机组人员和地面人员的双向语音通信。
飞机上一般都装有2~3套系统。
6
通信系统 第六节 飞机的其他系统 2、甚高频通信系统(VHF)
7
通信系统 第六节 飞机的其他系统
3、飞机寻址通信与报告系统(ACARS)
ACARS把数据通过空地双向的数据链进 行交换,飞机用甚高频向地面发射,地面 站把这些数据再发往航空公司、管制塔台 等。
(1)过大下降率警告; (2)过大接近率警告; (3)起飞或复飞掉高度过
大警告; (4)不安全离地高度警告; (5)低于下滑道过大警告; (6)低于决断高度警告; (7)风切变警告。
35
36
37
38
39
40
41
42
43
飞机结构及系统(第八章飞行操纵系统)
主操纵系统
一、副翼操纵系统 横向(滚)运动
南京航空航天大学民航学院
主操纵系统
一、副翼操纵系统 B737副翼操纵系统
南京航空航天大学民航学院
主操纵系统
一、副翼操纵系统
驾驶盘柔性互联装置 • 正常情况-刚性连接 • 右驾驶盘卡滞 通过左钢索系统,只 允许副翼偏转。 • 左驾驶盘卡滞 右驾驶盘转过某角度, 操纵扰流板(副翼不 偏转)。
第八章 飞行操纵系统
本章内容
飞行操纵系统概述 操纵与传动机构 主操纵系统 辅助操纵系统 飞行操纵警告系统
南京航空航天大学民航学院
飞行操纵系统概述
一、飞机转动与平衡 纵轴(OX)——横滚 立轴(OY)——偏航 横轴(OZ)——俯仰
南京航空航天大学民航学院
飞行操纵系统概述
• 必须两根钢索组成回路实现双向操纵; • 重量轻、占空间小、容易绕过其他部件; • 易拉长、磨损,易振动。 • 硬式——传动杆、摇臂 • 刚度大,不易变形、振动; • 重量大、占空间大、不易绕过其他部件; • 混合式
南京航空航天大学民航学院
飞行操纵与传动机构
三、舵面补偿装置
随着飞行速度的提高和舵面尺寸的增大,舵面铰链
•增大翼面面积。
克鲁格襟翼
南京航空航天大学民航学院
辅助操纵系统
一、飞机增升装置
(3)前缘襟翼
作用与后缘襟翼类似: • 大迎角下,放下襟翼可减小 前缘与相对气流的角度,消除 旋涡; • 增大翼面弯度,延缓气流分 离,提高最大升力系数和临界 迎角。
•增大翼面面积。
克鲁格襟翼
南京航空航天大学民航学院
辅助操纵系统
南京航空航天大学民航学院
民用航空器基本知识
一战中飞行速度的提高带动了其它性能 的发展。特别一提的是战后空闲飞机的 利用,促进了航空运输事业的兴起。
三、一次大战中的飞机 1914-18
四、二次大战中的飞机 1939-45
四、二次大战中的飞机 1939-45
五、现代民航机的出现
早期的飞机解决了稳定、操纵和动力三个 方面的问题。经过第一次、第二次世界大 战的催化,已经形成了现代飞机的雏形。 比如可以收放的起落架,封闭的驾驶舱、 活塞式发动机的运用等。第一次世界大战 后,闲置的军用飞机投入民航运输中,开 始了民用航空的发展
1民用航空器基本知识主要内容第1章飞行器发展史第2章飞行器航空器的分类第3章飞行原理飞行环境第4章飞行原理流体二个基本定理第5章飞行原理升力的产生主要内容第6章飞机基本知识飞机结构第7章飞机基本知识动力装置第8章飞机基本知识飞机系统第9章机型介绍第10章厦航机型基本数据第1章飞行器发展史一世界上的第一架飞机1903年12月17日美国威尔伯和奥维尔
三、一次大战中的飞机 1914-18
第一次世界大战时所有的著 名作战飞机都是双翼机。
结构材料主要是优质木材。 外面再蒙以细密而结实的亚
麻布或棉布。
三、一次大战中的飞机 1914-18
三、一次大战中的飞机 1914-18
三、一次大战中的飞机 1914-18
三、一次大战中的飞机 1914-18
一、大气层概述
对流层是最接近地球表面的一层大 气,在不同的地区对流层顶界的高 度也不同。在赤道附近,对流层的 高度可达到17公里,而在两极附近, 对流层的高度仅有7到8公里。
飞机各个系统的组成及原理
飞机各个系统的组成及原理一、外部机身机翼结构系统二、液压系统三、起落架系统四、飞机飞行操纵系统五、座舱环境控制系统六、飞机燃油系统七、飞机防火系统一、外部机身机翼结构系统1、外部机身机翼结构系统组成:机身机翼尾翼2、它们各自的特点和工作原理1)机身机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。
在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。
2)机翼机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。
机翼通常有平直翼、后掠翼、三角翼等。
机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。
近来先进飞机还采用了边条机翼、前掠机翼等平面形状。
左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。
即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。
为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。
襟翼平时处于收上位置,起飞着陆时放下。
3)尾翼尾翼分垂直尾翼和水平尾翼两部分。
1.垂直尾翼垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。
通常垂直尾翼后缘设有方向舵。
飞行员利用方向舵进行方向操纵。
当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。
同样,蹬左舵时,方向舵左偏,机头左偏。
某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。
2.水平尾翼水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。
低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。
即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生附加的负升力(向下的升力),此力对飞机重心产生一个使机头上仰的力矩,从而使飞机抬头。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论1.旅客机按速度分类:1)低速客机Ma<0.42)亚音速客机0.4<Ma<0.63)高亚音速客机0.6<Ma<1.04)超音速客机Ma>1.02.对旅客机的基本要求:良好的气动外形;保证结构完整性及最小重量;使用维修方便;制造工艺性及经济性好。
3.对旅客机的专门要求:安全、快速、经济、舒适、环保。
最看重的基本要求是:安全、经济、舒适。
4.民用运输机的基本组成(P19图)机身、机翼(后缘襟翼、缝翼、副翼)、尾翼(垂直安定面、方向舵、水平安定面、升降舵)、主起落架、前起落架、动力装置第一章载荷及机体结构1.●飞机的载荷分类:飞行载荷、地面载荷、座舱增压载荷。
●飞机载荷主要由机体及起落架结构承受。
2.●平飞载荷受升力、重力、推力(或拉力)、阻力作用。
●平飞速度公式(p22)●平飞速度及迎角关系:大速度时以小迎角平飞;小速度时以大迎角平飞。
3.铅垂平面曲线飞行时的载荷●升力公式(p23)●影响升力因素:航迹曲率半径R;飞行速度V;飞机重量G。
●在航迹最低点处升力达到最大值。
4.●飞机水平转弯时,飞机具有一定倾斜角,称为坡度。
●对不允许特技飞行的通用机、运输机,使用中转弯坡度一般限制在20°~40°范围内。
5.●突风是方向、大小变化的不稳定气流,又称为紊流。
●突风可分为:水平突风、垂直突风、侧向突风。
6.水平突风(逆风或顺风)又称航向突风;只改变飞机相对气流速度,使升力或阻力变化。
7.垂直突风不仅告便相对气流速度的大小,而且改变相对气流方向影响迎角变化。
(P24)8.载荷系数n(或载荷因数或过载)通常定义为飞机在某种飞行状态的升力和重力的比值,即n=Y/G9.在不同的飞行状态下飞机重心载荷系数n的大小往往不一样,其值可能大于1、小于1、等于1、等于0甚至是负值。
n的大小取决于升力的大小;n的正负及升力的正负一致(升力及轴正方向一致为正、反之为负)10.飞机在几种典型飞行状态下的载荷系数值(p25)11.载荷系数的实用意义:1)n的大小表明飞机实际承受载荷的情况。
2)n设计及n使用表明飞机机动性好坏及总体承载能力。
12.飞行中遇垂直向上突风作用时,应适当减小飞行速度以减小运输机突风载荷系数。
13.●构件抵抗破坏的能力叫做构件的强度。
●构件抵抗变形的能力叫做构件的刚度。
●构件的强度、刚度和稳定性要保证构件有正常工作承载能力的基本要素。
14.机翼是飞机的一个重要部件,主要作用是产生和增加升力,并使飞机获得横测操纵性、稳定性以及装载燃油、安装起落架及发动机等。
15.飞行中,作用于机翼的外部载荷有空气动力、机翼结构质量力和部件等传递的集中力、机身反力。
16.机翼在载荷作用下既发生弯曲、剪切变形,也发生扭转变形。
17.机翼的总体结构不知特点:1)从翼尖到翼根气动力逐渐增大,在机翼气动力、结构质量力机翼剖面剪力、弯矩、扭矩也逐渐增大,因此机翼外形从翼尖到翼根逐渐变宽、增厚,内部结构逐渐增强。
2)机翼结构在有集中力作用的位置根据其载荷大小及作用形式进行加强。
3)在机翼上装载燃油、在适当位置安装设备、部件等,飞行中可减小机翼在翼根的最大剪力、弯矩及扭矩值,这相当于减小机翼载荷,故称之为卸载作用。
18.机翼整体油箱作用:减小飞机重量。
19.翼面结构:翼梁、桁条、翼助、蒙皮是最基本组成结构。
20.现代飞机普遍采用金属蒙皮机翼,其典型形式有:梁式、单块式、多墙式、混合式和夹层及整体结构等。
21.●飞机低速飞行时操纵内外副翼同时偏转;当飞机速度达到一定马赫数时,外副翼锁定,具有这种工作特性的副翼为内外混合副翼。
●外副翼又称为低速副翼,内副翼城外全速副翼。
22.副翼结构特点:1)副翼一般为梁式且翼型薄,后缘为夹层重量轻,强度、刚度较小易变形。
2)副翼以转动接头连于机翼后缘,机翼弯曲变形使转动轴线变弯可能引起卡阻,故一般翼展较大的飞机采用分段副翼双接头。
3)飞行速度过大,副翼偏转时机翼发生显著扭转变形,迎角改变产生的附加升力及副翼偏转产生的附加升力相反,可能导致飞机向操纵方向的反方向滚转,出现反操作现象。
23.增升装置:后缘襟翼、前缘缝翼,主要用于改善起飞和着陆性能。
24.尾翼的功能:1)保持飞机纵向及方向平衡;2)使飞机具有纵向和方向稳定性;3)实现飞机纵向和方向操纵。
25.为什么使用全动平尾?为了提高飞机的俯仰操纵性和局部激波产生时的俯仰操纵效率。
26.●现代飞机机身普遍采用骨架加蒙皮以骨架为基础的薄壁结构,故称为薄壳式机身。
按结构及受力特点,薄壳式机身分为桁梁式、桁条式和蒙皮式。
●桁条式和桁梁式也统称为半硬壳式机身。
高亚音速飞机大量采用桁条式结构型式。
27.登机门、勤务门及其他应急出口总体能力必须保证陆地上90秒内让全部乘员撤离飞机。
28.供旅客正常上下飞机的登机门布置在机身左侧;供上食品、维修等用的勤务门及货舱门布置在机身右侧。
29.V-n机动飞行包线、V-n突风飞行包线、速度-高度包线都是民用运输机设计规范所必须提供的典型飞行包线。
30.限制载荷也称使用载荷;极限载荷也称设计载荷。
31.安全系数可表示为设计载荷及使用载荷之比:f=n设计/n使用32.刚度结构要求:1)对结构的整体刚度要求;2)对局部刚度要求;3)对操纵及其操纵系统的刚度要求;4)在某些情况下,还可能对结构钢度分布提出要求。
33.什么是“适航”的航空器?1)航空器的型号设计应符合相应的适航标准并获得适航当局的批准;2)航空器由取得适航当局批准的单位制造,经过检查确认符合型号设计;3)航空器由持有合格证件的人员按照适航当局批准的大纲进行维修,贯彻执行了适航当局颁发的相应适航指令;4)航空器在上述检查、维修中没有发现重大故障,不需要进行大的修理或调整。
34.适航管理工作的主要内容:1)制定各类适航标准和审定监督规则。
2)民用航空器设计的型号合格审定。
3)民用航空器制造的生产许可审定。
4)民用航空器的适航检查。
5)民用航空器的持续适航管理。
35.我国的适航标准:《正常类、实用类、特技类和通勤类飞机适航标准》——CCAR-23《运输类飞机适航标准》——CCAR-25《一般类旋翼航空器适航标准》——CCAR-27《民用航空材料、零部件和机载设备技术标准规定》——CCAR-3736.适航标准的特点:(p52、53)1)适航标准是适航当局根据航空法颁布的法规性文件。
2)适航标准是最低安全标准。
3)适航标准的要求不是越高越好,应考虑到合理的社会经济负担和技术上的可行性。
37.载荷系数:n≤n使用≤n设计第二章起落架系统1.起落架系统主要用来保证飞机在地面的灵活运动,减轻飞机着陆撞击及颠簸,滑跑刹车减速、停放和支持飞机。
2.起落架性能要求:1)稳定性、操纵性2)减震性能3)刹车性能4)收放安全可靠5)刹车时机轮受力均匀3.及后三点式飞机比较,前三点式飞机地面运动的方向稳定性、侧向稳定性均较好。
4.多点式起落架优点:减小起落架对跑道的冲击力和分散过大的集中载荷,同时便于起落架的收放。
5.●按照结构特点,起落架型式主要有构架式、支柱套筒式、摇臂式及小车式起落架。
●摇臂式起落架受水平撞击的减震效果较好。
6.起落架的主要组成和功用:(p60)1)减震支柱——减震及受力;2)扭力臂——主要承受、传递扭矩,防止内外筒相对旋转;3)稳定减震器——主要减弱轮架在不平跑道上的俯仰振动4)刹车平衡机构——保证四轮小车式起落架在刹车时前后轮受力均匀5)轮架翻转机构——收上时翻转轮架以便收轮入舱7.前轮中立机构保证飞机在离地时,前轮回到中立位置而有利于收轮入舱;着陆接地前使前轮中立有利于滑跑方向控制。
8.现代飞机转弯机构的传动有机械式和液压式两种。
9.前轮操纵及其工作状态:1)前轮自由定位状态;2)滑行手操纵状态;3)滑跑脚操纵状态——大速度修正飞机滑跑方向。
10.轮胎分类:1)低压轮胎——充气压力2.5~3.5kg/cm22)中压轮胎——充气压力3.5~6.5 kg/cm23)高压轮胎——充气压力6.5~10 kg/cm24)超高压轮胎——充气压力10 kg/cm2以上11.飞机着陆减震的原理是:延长V y消失时间,吸收完接地动能,可减小地面撞击力,消耗吸收的能量则可减弱飞机的颠簸跳动。
12.按减震原理设置的飞机减震装置有起落架减震器和轮胎,现代飞机大都采用油气式减震支柱。
13.油气式减震支柱能量转换1)压缩行程——接地动能大部分转变为气体压缩能,一部分为克服油液及孔壁的摩擦力而以热的形式耗散。
2)伸张过程——部分气体压缩能量转变为机体抬高的位能,一部分能量以摩擦热的形式耗散。
14.●油气式减震支柱工作原理:利用气体压缩吸收接地动能减小撞击力;利用油液高速流过小孔的摩擦热耗散能量减弱飞机的颠簸跳动。
●减震性能的使用控制主要是控制充气压力及灌油量。
15.轮胎过热是指工作温度过高,引起气压显著增大,橡胶抗拉及抗剪强度显著降低,导致脱层、剥离和爆破。
工作温度升高的原因主要是轮胎变形热、地面摩擦热及刹车热。
16.起落架的载荷按使用状态主要有停机载荷、着陆及滑跑撞击载荷、刹车及滑行载荷。
17.●不按规定的高度、速度、接地角操纵而导致载荷超过规定的着陆称为粗猛着陆。
●超过规定重量的着陆称为超重着陆。
18.信号装置按其工作分为电气信号、机械信号及警告信号。
19.电气信号:绿灯亮表示起落架已放下锁好;红灯亮表示起落架正在收放过程中或起落架位置及起落架手柄位置不一致;红、绿灯熄灭表示起落架收上锁好。
20.现代大型客机的减速里包括放出减速板和襟翼的气动阻力,发动机反推力及刹车时的地面摩擦力。
其中刹车增大耳朵地面摩擦力(又称刹车力)起主要作用。
21.刹车装置的类型:弯块式刹车盘、胶囊式刹车装置、圆盘式刹车装置。
22.刹车时,刹车装置的摩擦力形成刹车力矩使组滚力矩增大,地面摩擦力随之增大。
23.主轮刹车功能:减速、止动、转弯。
刹车方式:正常及防滞刹车、自动刹车、备用刹车、停机刹车及收轮刹车等。
第三章飞行操作系统1.飞机飞行操作系统:自动飞行控制系统、人工飞行操纵系统2. 飞行操纵系统的功用:1)改变或保持飞机姿态2)改善起飞着陆性能和飞行品质3.系统的基本要求:1)操纵动作及人本能反应一致2)纵向或横向操纵时彼此互不干扰3)合适的杆力和杆位移4)灵活、准确5)设置限动机构4.横测操纵主操纵系统偏航操纵俯仰操纵配平操纵人工辅助操纵系统增生装置操纵扰流板操纵警告系统起飞警告失速警告5.主操纵机构:1)手:驾驶盘、驾驶杆、侧杆2)脚:脚蹬6.辅助操纵机构:扰流板、襟翼手柄安定面、配平轮7.传动机构或装置:软式、硬式、混合式1)软式:钢索、滑轮、扇形轮、导向孔、松紧螺套或钢索张力调节器(对钢索张力进行定期人工调节或自动调节,使之随时处于良好的绷直状态,不过紧或过松)等组成闭合双钢索回路系统优点:重量轻,易于绕过设备应用:大型运输机,某些小型飞机,应用最广2)硬式:传动杆、(单、双、多、差动)摇臂(作用:支撑传动杆和改变力的大小方向)、导向滑轮、扭力管优点:刚度大,灵敏性好,一根杆可双向转动缺点:重量大,占用空间大3)混合(传动装置):液压助力器、电动机、螺旋动作筒8.舵面锁定装置功用:防止陈风或持续性大风吹动舵面来回摆动而损坏舵面及其传动机构9.液压助力器:大型机用于帮助驾驶员克服舵面气动载荷,减小负担10.操纵力感觉装置1)作用:给飞行员提供适当的操纵感觉力2)类型:弹簧式感力定中装置(提供随舵面偏角改变的模拟感力)动压式感力装置(随高度速度变化)感力计算机(速度高度安定面位置等因素相关)11.电传操纵系统由驾驶杆、感力传感器、控制系统、执行机构组成12.增稳和控制增稳系统及电传操纵系统的区别:电传只有电信号、前者有电有机械信号13.配平调整片:1)定义:主操纵面后缘的活动小片,可以在飞行中操纵2)功用:减小消除操纵力、控制飞机姿态14.增升装置操纵系统:1)功用:改变翼剖面升力特性以增加升力,减少失速速度,改善起飞、着陆性能2)组成:襟翼控制手柄、传动机构、增升操纵面、位置指示器15.差动作用:襟翼放下不同步16.减速板操纵系统:飞行扰流板、地面扰流板飞行扰流板功用:辅助副翼横滚操纵、对称升起来卸升增阻、在地面及地面扰流板一同起卸升作用,从而提高刹车效率缩短滑跑停机距离第四章液压传动系统1.民用飞机液压油种类:1)植物基:绿色、用于早期飞机、酒精和蓖麻油混合物2)矿物基(石油基):红色、应用广泛,性能好,成本低3)磷酸酯基(人工合成):紫色、用于现代高性能飞机,成本高、防火性能特别好、耐低温、低腐蚀2.液压系统分为四个部分:供压、控制、执行、辅助3.液压油特性对传动的影响:1)压力损失(沿程、局部、阀3种):油液流动时由于粘性或速度变化引起的压力降低2)泄流损失:因液压管路的外漏或内漏造成工作油量不足和压力下降现象3)气穴(气塞):局部压力降低到一定程度,空气和从油液中离散出的油蒸汽形成夹杂在油液中的气泡及气囊;并到高压区突然消失而形成传动空穴的现象4)液压撞击:液压管路肿瘤提速度剧变时,压力瞬时增大或减小并引起高频压力振荡的现象4.油泵:1)功用:将机械能转变为油液压力能2)动力:发动机驱动、电动、气动-引气或冲压空气驱动5.液压油滤:1)功用:滤除杂质(5-10微米),确保油液清洁,保证系统工作可靠2)安全装置-油滤旁通活门:当油滤堵塞时打开,保证供油连续性(着陆维修)6.蓄压器功用:1)增大供压输出功率2)减小系统压力波动、防止液压撞击3)应急液压源4)保证油泵及卸荷活门稳定7.方向控制活门:单向活门、换向活门(选择活门)P111刹车计量活门:按刹车操纵量调节到刹车装置的压力大小,从而控制刹车压力卸荷活门:保证压力在规定的范围内工作1)系统压力低于规定下限时关闭,液压泵供压2)系统压力高于规定上限时打开卸荷,泵空转3)仅仅用于定量泵供压系统8.多液压源系统:具有多个相对独立的主供压,可实现传动部件的多通道控制(小型飞机液压系统压力一般小于2000PSI,大中型客机液压系统正常压力3000PSI)第五章燃油系统1.飞机燃料类型:1)航空汽油——活塞式发动机2)航空煤油——燃气涡轮发动机2.单发选择供油系统:1)特点:飞行员通过燃油选择器选择左、右或左右供油2)供油动力:自重,电动增压泵或发动机驱动泵3.双发独立及交输供油系统特点:正常情况为左、右系统独立向两发供油,两边油量不平衡或单发时可交输供油P117、1184.燃油系统基本组成——燃油箱及其通气:1)燃油箱种类:位置:机翼油箱、机身油箱、机翼或机身辅助油箱、尾翼油箱结构:固定油箱(硬壳式油箱和软油箱)、结构油箱(又称整体油箱)P1192)油箱通气系统:通气目的:消除内外压差、飞行中给油面提供正压、可排出燃油蒸汽、防止产生爆炸条件第六章环境控制系统1.座舱环控系统功用:在飞行高度范围内,调节气密座舱内空气的温度和压力,保证乘员的生理需求和安全舒适2.高空缺氧:10000ft——轻度缺氧15000ft——中度缺氧>20000ft——严重缺氧3.座舱空气压力要求:1)概念:座舱压力:指气密座舱内空气的绝对压力座舱高度:气密舱内空气绝对压力所对应的海拔高度2)舒适座舱高度:0~2400m(8000ft)安全座舱高度:3000m(10000ft)最大座舱高度:4500m(15000ft)4.座舱高度变化率要求:1)概念:指座舱高度(压力)随时间变化的快慢程度2)保证旅客较为舒适的座舱高度变化率要求:上升:≤500ft/min下降:≤350ft/min5.座舱余压要求:1)概念:气密座舱内外压力差,用△P表示2)要求:喷气机:△Pmax=7~9psi涡桨机:△Pmax=5~7psi6.座舱温度湿度要求:17~24℃适宜7.通风换气次数要求:不小于25~30次/小时8.气密座舱型式:再生式——宇宙航行用、通风式——运输机和少数通用机、9.通风式气密座舱的基本组成:气源+调温+调压10气密座舱安全要求:1)座舱气密性:气密座舱的漏气程度2)增压座舱强度:根据压差载荷和总体受力特点设计3)爆炸减压:增压飞行中因机身结构破损而导致的任何在1.5秒内发生的释压11.现代运输机的气源系统功用:向飞机座舱空调、飞机防冰、发动机启动、液压油箱和生活水箱增压提供压缩空气12.座舱压力调节系统功用:按调压规律调节舱压(或座舱高度)及变化速度,保证余压、防止超压、消除负压、确保乘客舒适安全13.座舱压力调节基本方法:供气量基本恒定,通过改变向舱外的排气量,以调节座舱压力14.主要附件功用1)排气活门:控制座舱向外的排气量,从而达到控制座舱压力的目的2)安全活门:当余压控制活门失效,座舱余压超过规定值时,安全活门打开使座舱释压3)负压释压活门:当外界压力大于座舱压力时,活门打开使座舱内外压力平衡15.运输类飞机的三类典型供氧系统:1)机组氧气系统2)乘客化学氧气发生器供氧系统3)便携式氧气设备16.机组氧气系统主要功能和特点:稀释供氧(需求)、100%供氧(需求)、应急供氧(连续)17.乘客供氧系统:1)型式:高压氧气瓶系统(至少供氧1小时)、化学氧气发生器系统(在座舱气压高度Hc达到15000ft以前)2)系统启用:Hc上升到14000ft,自动启用(PSU门自动开)电动接通(PSU门自动开)PSU门可人工打开供氧时间约12~15min,不能关断18.氧气系统使用注意事项1)机组:飞前检查:无热释放、瓶压力正常、面罩组件完好按需选用N(正常供氧—稀释供氧)位或100%位有烟或有害气体必须用100%纯氧稀释器控制失效,用调解器设置应急供氧2)化学:须至少下拉一根启动绳,方启动发生器将面罩盖住口鼻由流动指示器确认供氧19.典型防除冰系统:气热防/除冰系统、电热、液体、气动除冰系统(P151 表7.1应用部位)20.探冰、排雨、地面防/除冰:飞机探冰系统、风挡排雨系统、飞机地面防除冰21.结冰损害飞机性能:●机体(机、尾翼)结冰空气动力特性变差●操纵面结冰不能正常偏转实现正常操作●螺旋桨、发动机结冰导致:P↓、振动↑、揣振、熄火、停车●风档结冰或大雨:能见度↓、强度↓、操纵困难●探头、天线结冰:T、V、H、α等数据不可靠→飞行仪表、FMC、NAV、COM、A/P失误或失效。