概率论与数理统计公式集合

合集下载

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。

2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。

3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。

4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。

二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。

4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。

3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。

4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式概率论是一门研究随机现象规律的数学学科,是现代数学的基础之一、而数理统计则是利用概率论的工具和方法,分析和处理统计数据,从而得出推断、估计、决策等信息的科学。

在概率论与数理统计的学习过程中,掌握一些重要的公式是非常关键的。

下面是一些概率论与数理统计中常用的公式:1.概率公式:-加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法公式:P(A∩B)=P(A)*P(B,A)-条件概率公式:P(A,B)=P(A∩B)/P(B)2.期望与方差公式:-期望:E(X)=∑(x*P(X=x))- 方差:Var(X) = E((X-μ)^2) = ∑((x-μ)^2 * P(X=x))3.常用概率分布及其特征:-二项分布:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)-泊松分布:P(X=k)=(λ^k*e^(-λ))/k!-正态分布:f(x)=(1/(σ*√(2π)))*e^(-((x-μ)^2)/(2*σ^2))4.样本与总体统计量公式:-样本均值:x̄=(∑x)/n-样本方差:s^2=(∑(x-x̄)^2)/(n-1)-样本标准差:s=√(s^2)5.参数估计公式:-点估计:-总体均值估计:μ的点估计为x̄-总体方差估计:σ^2的点估计为s^2-区间估计:-总体均值的置信区间:x̄±Z*(σ/√n)-总体比例的置信区间:p±Z*√((p*(1-p))/n)6.假设检验公式:-均值检验:-单样本均值检验:t=(x̄-μ0)/(s/√n)-双样本均值检验:t=(x̄1-x̄2)/√((s1^2/n1)+(s2^2/n2))-比例检验:-单样本比例检验:z=(p-p0)/√((p0*(1-p0))/n)-双样本比例检验:z=(p1-p2)/√((p*(1-p))*((1/n1)+(1/n2)))以上是概率论与数理统计中一些常用的公式,这些公式为解决问题提供了有力的工具和方法。

概率论与数理统计计算公式

概率论与数理统计计算公式

概率论与数理统计计算公式概率论和数理统计是数学中的两个重要分支,广泛应用于自然科学、社会科学和工程技术等领域。

在实际中,我们经常需要计算各种概率和统计量,因此理解和掌握概率论和数理统计中的计算公式是十分重要的。

接下来,我将给出概率论和数理统计中一些常用的计算公式。

一、概率计算公式:1.加法原理:如果A和B是两个事件,那么它们的和事件(A∪B)的概率可以由如下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)2.条件概率:如果A和B是两个事件,且P(A)>0,那么事件B在已知事件A发生的条件下发生的概率可以由如下公式计算:P(B,A)=P(A∩B)/P(A)3.全概率公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A,我们有:P(A)=ΣP(A,Bi)P(Bi),其中i取1到n。

4.贝叶斯公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A和i取1到n,我们有:P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中j取1到n。

5.乘法定理:如果A和B是两个事件,那么它们的交事件的概率可以由如下公式计算:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)二、统计量计算公式:1.样本均值:对于由n个观测值组成的样本,样本的均值可以由如下公式计算:\(\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n x_i\)2.样本方差:对于由n个观测值组成的样本,样本的方差可以由如下公式计算:\(S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (x_i - \bar{X})^2\) 3.标准差:样本的标准差是样本方差的平方根\(S = \sqrt{S^2}\)4.相关系数:对于两个随机变量X和Y,它们的相关系数可以由如下公式计算:\(\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\)5.协方差:样本的协方差可以由如下公式计算:\(Cov(X,Y) = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})\)以上只是概率论和数理统计中的一些常用计算公式,实际应用中还有很多其他的公式和方法。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全概率论和数理统计作为数学的两个重要分支,被广泛应用于各个领域。

无论是在学术研究还是实际应用中,熟悉并掌握相关的公式是非常重要的。

本文将为您提供概率论与数理统计公式的大全,帮助您更好地理解和应用这两门学科。

一、概率论公式1. 概率公式- 概率的定义:P(A) = N(A) / N(S),其中P(A)表示事件A发生的概率,N(A)代表事件A的样本点个数,N(S)表示样本空间中的样本点总数。

- 加法法则:P(A∪B) = P(A) + P(B) - P(A∩B),其中P(A∪B)表示事件A或事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

- 乘法法则:P(A∩B) = P(A) × P(B|A),其中P(B|A)表示在事件A 发生的条件下,事件B发生的概率。

2. 条件概率公式- 条件概率的定义:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率。

- 全概率公式:P(A) = ∑[P(Bi) × P(A|Bi)],其中Bi为样本空间的一个划分,P(Bi)表示事件Bi发生的概率,P(A|Bi)表示在事件Bi发生的条件下,事件A发生的概率。

3. 事件独立性公式- 事件A和事件B独立的定义:P(A∩B) = P(A) × P(B),即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。

- 事件的相互独立:若对于任意的事件A1,A2,...,An,有P(A1∩A2∩...∩An) = P(A1) × P(A2) × ... × P(An),则称事件A1,A2,...,An相互独立。

4. 随机变量- 随机变量的定义:随机变量X是样本空间到实数集的映射。

- 随机变量的分布函数:F(x) = P(X≤x),表示随机变量X小于等于x的概率。

- 随机变量的概率密度函数(连续型随机变量):f(x)是非负函数,且对于任意实数区间[a, b],有P(a≤X≤b) = ∫[a, b]f(x)dx。

概率论与数理统计公式总结(湖南大学)

概率论与数理统计公式总结(湖南大学)
(3) = ~t(n-1)
2.设 的 和 两个样本,则有:
(1)
5.相关性
对于随机变量X,Y下列结论是等价的:
(1)X与Y不相关 (3)ρ=0 (5)D(X Y)=D(X)+D(Y)
(2)Cov(X,Y)=0 (4)E(XY)=E(X)E(Y)
X,Y相互独立可以推出上述五个结论。
※切比雪夫不等式
表明:对于任意正数ε,当随机变量X的方差越小时,事件 的概率越小,其对立面概率越大。

定理(2)X Y相互独立,g(x)和h(y)是两个一元连续函数,则g(X)和h(Y)也相互独立。
定理(3) 则 。且 只差一个常数因子。
(重点)※期望与方差的性质
1期望的性质
(1)一维的:
若Y=g(X),
二维的:
若Z=g(X,Y),
(2)性质:E(C)=C E(CX)=CE(X) (C为常数)
E(X+Y)=E(X)+E(Y)
3.边缘概率密度函数
4.二维正态分布(还是看一下会比较好)
(1)二维正态分布中X,Y相互独立的充要条件是参数ρ(相关系数)=0
※连续型随机变量之和的分布
1.一般地:
卷积公式:
2.其他分布
(1)瑞利分布: X, Y均服从N(0, )则 的概率密度为
(2)Max与Min 分布:(自己推广到n个变量的情况)
(3)若X,Y独立,则Cov(X,Y)=0
(4)Cov(aX,bY)=abCov(X,Y)
(5)Cov( )=Cov( Y)+Cov( )
3.标准化随机变量
4.相关系数
也可写做为X,Y的标准化协随机变量的协方差
性质:(1)
(2)|ρ|=1的充要条件,存在常数a,b(b不等于0),使P{Y=a+bX}=1即X,Y以概率1线性相关。

概率论与数理统计公式大全

概率论与数理统计公式大全

第1章随机事件及其概率第二章随机变量及其分布Ihl ttamitai'l例1.16设某人从一副扑克中(52张)任取13张,设A为 至少有一张红桃”,B 为恰有2张红桃”,张方块”,求条件概率P( B| A), P( B| C) 解 P(A)1 P(A)P(BA)P(AB) P(A)1 c;3CTG ;c3;C 13 C52C52C39—C13一C 13 C 13C 52 C 39—血39P(AB)P(C)C 13C 39 c ;3P(BC)5 26C13C 13C 2652P(B C )P ( BC ) P(C)C13 C 13 C 2613 --------- C 52C 5 C 8C13 C 39C13~ —C 522 6C 13 C 26C 8C39C 为恰有5 C 23C 3113T -某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现 年为20岁的这种动物活到25岁的概率.解 设A 表示事件 活到20岁以上”,B 表示 事件活到25岁以上”, P(A) 0.7 P(B) 0.56P(B A)P(AB) P(A)显然P(AB) 0.56 0.7P(B) 0.560.81例 1.21例1.21 某工厂生产的产品以 超过 4件,且具有如下的概率: 一批产品中的次品数 0概率 0.1 0.2现进行抽样检验,从每批中随机抽取 为该批产品不合格。

求一批产品通过检验的概率。

解设B 表示事件 “一批产品通过检验 品”100 1 2 0.4 0.2 件为一批,假定每一批产品中的次品最多不 3 0.1 10件来检验,若发现其中有次品,则认 ”,A (=0,1,234) 表示 ,贝U A 0 ,A 1 , A 2, A 3, A 4组成样本空间的一个划分, C 10C99 C 10C100P(A) 0.1P(B|") 1P(A) 0.2,P (B |A )0.900 P(A)'一批产品含有 0.4,P(B A 2)i 件次P(A 3) 0.2, P(B A 3)c 10崗 0.727 C 100P(A 4)0.1 , P(B A 4)C 10C 96C 10 C0.652C 1098C 101000.8094P ( A k )P ( B |A k ) k 0 顾客买到的一批合格品中,含次品数为0的概率是类似可以计算顾客买到的一 批合格品中,含次品数为 1、2、 3、 4件的概率分别约 为 0.221 、0.398 、0.179 、 0.080贝叶斯公式(Bayes)P(B) P (A 。

概率论与数理统计完整公式

概率论与数理统计完整公式

概率论与数理统计完整公式概率论与数理统计是数学的一个分支,研究随机现象和随机变量之间的关系、随机变量的分布规律、经验规律及参数估计等内容。

在概率论与数理统计的学习中,有许多重要的公式需要掌握。

以下是概率论与数理统计的完整公式。

一、概率论公式:1.全概率公式:设A1,A2,…,An为样本空间S的一个划分,则对任意事件B,有:P(B)=P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P(B│An)·P(An)2.贝叶斯公式:对于样本空间S的一划分A1,A2,…,An,其中P(Ai)>0,i=1,2,…,n,并且B是S的任一事件,有:P(Ai│B)=[P(B│Ai)·P(Ai)]/[P(B│A1)·P(A1)+P(B│A2)·P(A2)+…+P (B│An)·P(An)]3.事件的独立性:若对事件A,B有P(AB)=P(A)·P(B),则称事件A,B相互独立。

4.概率的乘法公式:对于独立事件A1,A2,…,An,有:P(A1A2…An)=P(A1)·P(A2)·…·P(An)5.概率的加法公式:对事件A,B有:P(A∪B)=P(A)+P(B)-P(AB)6.条件概率的计算:对事件A,B有:P(A,B)=P(AB)/P(B)7.古典概型的概率计算:设事件A在n次试验中发生k次的次数服从二项分布B(n,p),则其概率可表示为:P(X=k)=C(n,k)·p^k·(1-p)^(n-k),其中C(n,k)=n!/[k!(n-k)!]二、数理统计公式:1.样本均值的期望和方差:样本的均值X̄的期望和方差分别为: E(X̄) = μ,Var(X̄) = σ^2 / n,其中μ 为总体的均值,σ^2 为总体方差,n 为样本容量。

2.样本方差的期望:样本方差S^2的期望为:E(S^2)=σ^2,其中σ^2为总体方差。

(完整版)概率论与数理统计公式整理(超全版)

(完整版)概率论与数理统计公式整理(超全版)
,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
(17)伯努利概型
我们作了 次试验,且满足
每次试验只有两种可能结果, 发生或 不发生;
次试验是重复进行的,即 发生的概率每次均一样;
每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。
并且同时满足P(ABC)=P(A)P(B)P(C)
那么A、B、C相互独立。
对于n个事件类似。
(15)全概公式
设事件 满足
1° 两两互不相容, ,
2° ,
则有

(16)贝叶斯公式
设事件 , ,…, 及 满足
1° , ,…, 两两互不相容, >0, 1,2,…, ,
2° , ,

,i=1,2,…n。
此公式即为贝叶斯公式。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
例如P(Ω/B)=1 P( /A)=1-P(B/A)
(13)乘法公式
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论公式1.概率的基本性质:-非负性:对于任意事件A,有P(A)>=0;-规范性:对于必然事件S,有P(S)=1;-可列可加性:对于互不相容的事件Ai(i=1,2,...),有P(A1∪A2∪...)=P(A1)+P(A2)+...。

2.条件概率:-事件B发生的条件下,事件A发生的概率:P(A,B)=P(A∩B)/P(B);-乘法公式:P(A∩B)=P(A,B)*P(B)。

3.全概率公式:-事件A的概率:P(A)=ΣP(A,Bi)*P(Bi),其中Bi为样本空间的一个划分。

4.贝叶斯公式:-事件Bi发生的条件下,事件A发生的概率:P(Bi,A)=P(A,Bi)*P(Bi)/ΣP(A,Bj)*P(Bj),其中Bj为样本空间的一个划分。

5.独立性:-事件A与事件B相互独立的充要条件是P(A∩B)=P(A)*P(B)。

二、数理统计公式1.随机变量的概率分布:-离散型随机变量的概率分布函数:P(X=x);-连续型随机变量的概率密度函数:f(x)。

2.数理统计的基本概念:-样本均值:X̄=ΣXi/n;-样本方差:s^2=Σ(Xi-X̄)^2/(n-1);-样本标准差:s=√s^2;- 样本协方差:sxy = Σ(Xi-X̄)(Yi-Ȳ) / (n-1)。

3.大数定律:-样本均值的大数定律:当样本容量n趋向于无穷大时,样本均值X̄趋向于总体均值μ。

4.中心极限定理:-样本均值的中心极限定理:当样本容量n足够大时,样本均值X̄服从近似正态分布。

5.参数估计:-点估计:用样本统计量对总体参数进行估计;-置信区间估计:用样本统计量构造一个区间,以估计总体参数的范围。

6.假设检验:-假设检验的基本步骤:提出原假设H0和备择假设H1,选择适当的检验统计量,计算拒绝域,进行假设检验。

以上只是概率论与数理统计中的一些重要公式和定理,还有很多其他的公式和定理没有一一列举。

掌握这些公式和定理,可以帮助我们更好地理解和应用概率论与数理统计的知识。

概率论与数理统计 公式(全)

概率论与数理统计 公式(全)

对于 n 个事件类似。
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
n
A Bi

i1 ,
则有
P(A) P(B1)P(A | B1) P(B2)P(A | B2) P(Bn)P(A | Bn) 。
密度函数具有下面 4 个性质:
1° f (x) 0 。

f (x)dx 1


P(X x) P(x X x dx) f (x)dx
积分元 f (x)dx 在连续型随机变量理论中所起的作用与 P( X x
;..
(4)分布函数 (5)八大分布
;..
..
设事件 B1, B2 ,…, Bn 及 A 满足
1° B1, B2 ,…, Bn 两两互不相容, P(Bi) >0, i 1,2,…, n,
n
A Bi

i1 , P( A) 0 ,

P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,…n。
P(Bj )P(A/ Bj )
..
第 1 章 随机事件及其概率
(1)排 列组合 公式
Pmn

m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn

m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
(2)加 法和乘 法原理
(3)一 些常见 排列 (4)随 机试验 和随机 事件
(5)基 本事 件、样 本空间 和事件
3° F() lim F(x) 0, F() lim F(x) 1;

概率论与数理统计公式整理(大学考试必备)

概率论与数理统计公式整理(大学考试必备)

设 F (x) 是随机变量 X 的分布函数,若存在非负函数 f (x) ,对任意实数 x ,有
x
F(x) f (x)dx

则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概
率密度。 密度函数具有下面 4 个性质:
1° f (x) 0 。
f (x)dx 1

则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形
式给出:
X
| x1, x2,, xk,
P( X xk) p1, p2,, pk, 。
显然分布律应满足下列条件:
(1) pk 0 , k 1,2,,
pk 1
(2) k 1

(2)连续 型随机变 量的分布 密度
(3)离散 与连续型 随机变量 的关系
(16)贝叶 斯公式
设事件 B1 , B2 ,„, Bn 及 A 满足
1° B1 , B2 ,„, Bn 两两互不相容, P(Bi) >0, i 1,2,„, n ,
n
A Bi

i1 , P( A) 0 ,

P(Bi / A)
P(Bi )P( A / Bi )
n
,i=1,2,„n。
P(Bj )P(A/ Bj )
1
概率论与数理统计 公式
(13)乘法 公式
例如 P(Ω /B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A)
更一般地,对事件 A1,A2,„An,若 P(A1A2„An-1)>0,则有
P( A1A2 „ An) P( A1)P( A2 | A1)P( A3 | A1A2) „„ P( An | A1A2 „

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。

2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。

3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。

4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。

5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。

6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。

7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。

二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。

2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。

3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。

4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。

5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。

6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。

7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。

概率论与数理统计公式集锦完整版

概率论与数理统计公式集锦完整版

概率论与数理统计公式集锦HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】概率论与数理统计公式集锦一、随机事件与概率二、随机变量及其分布1、分布函数2、离散型随机变量及其分布3、续型随机变量及其分布4、随机变量函数Y=g(X)的分布 离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型:①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调三、多维随机变量及其分布1、离散型二维随机变量及其分布 分布律:(,),,1,2,i j ij P Xx Y y p i j ====分布函数(,)i i ijx x y yF X Y p ≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====2、连续型二维随机变量及其分布①联合分布函数及性质分布函数:⎰⎰∞-∞-=xydudvv u f y x F ),(),(=P (X<=x,Y<=y )性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,离散型:..ij i j p p p = ,连续型:(,)()()X Y f x y f x f y =4、二维随机变量和函数的分布 离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dx x xf X E )()(②性质:(),E C C =)()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =2、方差①定义:222()[(())]()()D X E X E X E X E X =-=-②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=±当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov ②相关系数:XY ρ,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++4、常见随机变量分布的数学期望和方差五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律: ①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i ≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<= ⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n P ni iXn113、中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n充分大时有:1((0,1)~nn k k Y X n N μ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:③近似计算:1()nk k P a X b =≤≤≈Φ-Φ∑ 概率论与数理统计公式整理1、总体和样本的分布函数 设总体()XF x ,则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11 ,样本k 阶原点距: 2,1,11==∑=kXnA ni ki k样本k 阶中心距:11(),1,2,3n k k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布:设随机变量(0,1)i X N (1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T性质:①()0(1),()(2)2n E T n D T n n =>=>-②22lim ()()x n n f x x ϕ-→∞== (3)F 分布:设随机变量22~(),~()X m Y n χχ,且X 与Y 独立,则称统计量(,)X mF m n Y n=服从第一自由度为m ,第二自由度为n 的F 分布,记为~(,)F F m n ,性质:设~(,)F F m n ,则1~(,)F n m F七、参数估计1.参数估计①定义:用12(,,,)n X X X θ∧估计总体参数θ,称12(,,,)n X X X θ∧为θ的估计量,相应的12(,,,)n x x x θ∧为总体θ的估计值。

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理一、概率论公式:1.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)2.乘法公式:P(A∩B)=P(A)×P(B,A)其中,P(A)和P(B)表示事件A和B的概率,P(B,A)表示已知事件A发生的条件下事件B发生的概率。

3.全概率公式:P(A)=∑[P(A,B(i))×P(B(i))]其中,B(i)表示互斥事件组,且它们的概率之和为14.贝叶斯公式:P(B(j),A)=P(A,B(j))×P(B(j))/∑[P(A,B(i))×P(B(i))]其中,P(B(j),A)表示已知事件A发生的条件下事件B(j)发生的概率。

5.期望值公式:E(X)=∑[x×P(X=x)]其中,X为一个随机变量,x为X的取值,P(X=x)为X等于x的概率。

6.方差公式:Var(X) = E[(X-E(X))^2]其中,Var(X)表示随机变量X的方差,E(X)表示X的期望值。

二、数理统计公式:1.样本均值公式:样本均值 = (x1 + x2 + ... + xn)/n其中,x1、x2、..、xn为样本中的观测值,n为样本容量。

2.样本方差公式(无偏估计):样本方差 = [(x1-样本均值)^2 + (x2-样本均值)^2 + ... + (xn-样本均值)^2]/(n-1)3.样本标准差公式(无偏估计):样本标准差=样本方差的平方根4.正态分布的标准化公式:Z=(X-μ)/σ其中,X为一个正态随机变量,μ为其均值,σ为其标准差,Z为标准正态分布的变量。

5.正态分布的累积分布函数:P(X≤x)=Φ((x-μ)/σ)其中,Φ表示标准正态分布的累积分布函数。

6.样本之间的协方差公式:Cov(X,Y) = ∑[(x(i)-X均值) × (y(i)-Y均值)]/(n-1)其中,X、Y为两个随机变量,x(i)、y(i)为X、Y的观测值,X均值、Y均值分别为X、Y的样本均值,n为样本容量。

概率论与数理统计公式整理(超全免费版)

概率论与数理统计公式整理(超全免费版)
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算
①关系:
如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
均匀分布
设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即
a≤x≤b
其他,
则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
a≤x≤b
0,x<a,
1,x>b。
当a≤x1<x2≤b时,X落在区间( )内的概率为
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
离散型
已知 的分布列为

的分布列( 互不相等)如下:
设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称
为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:
Y
X
y1
y2

概率论与数理统计超全公式总结

概率论与数理统计超全公式总结

~
χ 2 (n −1)
X − µ ~ t(n −1) s/ n
两个正态总体的方差之比
S12
σ
2 1
/ S22
/
σ
2 2
~F (n1 −1,n2 −1)第六章 点估计:参数的估计值为一个常数 矩估计 最大似然估计
n
Π Π n
L = f (xi ;θ )
i =1
L = p(xi ;θ )
i =1
似然函数
均值的区间估计——大样本结果
⎛ ⎜
x
±

/2

σ⎞ ⎟
n⎠
x — 样本均值 σ — 标准差(通常未知,可用样本标准差s代替) n — 样本容量(大样本要求n > 50) zα /2 — 正态分布的分位点
正态总体方差的区间估计 两个正态总体均值差的置信区间 大样本或正态小样本且方差已知
( ) ⎛
⎜ ⎜
S 2 — 样本方差
χ2 α /2
— 卡方分布的分位点
Z=
p − p0
p0 — —总体比例
p0 (1− p0 ) / n p — —样本比例
单正态总体均值的 t 检验
t = X − µ0 S/ n
单正态总体方差的卡方检验
χ 2 = (n −1)S 2
σ
2 0
拒绝域
双边检验
χ2

χα2 / 2或χ 2
k
∑∑ E(X)= xipij
ij
E( X ) = ∫ ∫ xf (x, y)dxdy
不相关不一定独立 第四章
正态分布 X ~ N (µ,σ 2 )
∑∑ E(XY) = xi yj pij
ij

(完整版)大学概率论与数理统计公式全集

(完整版)大学概率论与数理统计公式全集

大学概率论与数理统计公式全集一、随机事件和概率1、随机事件及其概率运算律名称交换律结合律分配律德摩根律2、概率的定义及其计算公式名称求逆公式加法公式条件概率公式乘法公式全概率公式贝叶斯公式(逆概率公式)伯努利概型公式两件事件相互独立相应公式P(AB)=P(A)P(B)表达式A+B=B+A(A+B)+C=A+(B+C)=A+B+CA(B±C)=AB±ACA+B=ABAB=BA(AB)C=A(BC)=ABCA+(BC)=(A+B)(A+C)AB=A+B公式表达式P(A)=1-P(A)P(A+B)=P(A)+P(B)-P(AB)P(B A)=P(AB)P(A)P(AB)=P(A)P(B A)nP(AB)=P(B)P(A B)i iP(B)=∑P(A)P(B A)i=1P(AjB)=P(Aj)P(B Aj)∑P(A)P(B A)j ii=1∞k kPn(k)=Cnp(1-p)n-k,k=0,1,Λn;P(B A)=P(B);P(B A)=P(B A);P(B A)+P(B A)=1;P(B A)+P(B A)=1二、随机变量及其分布1、分布函数性质P(X≤b)=F(b)P(a<X≤b)=F(b)-F(a)2、离散型随机变量分布名称0–1分布B(1,p)二项分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)3、连续型随机变量分布名称均匀分布U(a,b)密度函数⎧1⎪b-a,f(x)=⎨⎪0,⎩a<x<b其他分布律P(X=k)=p k(1-p)1-k,k=0,1k kP(X=k)=Cnp(1-p)n-k,k=0,1,Λ,nP(X=k)=e-λλkk!,k=0,1,2,ΛP(X=k)=(1-p)k-1p,P(X=k)=k n-kCMCN-MnCN,k=l,l+1,Λ,min(n,M)k=0,1,2,Λ分布函数0,x<a⎧⎪⎪x-aF(x)=⎨,a≤x<bb-a⎪1,x≥b⎪⎩指数分布E(λ)正态分布N(μ,σ2)标准正态分布N(0,1)f(x)=-λx⎧⎪λe,x>0f(x)=⎨⎪其他⎩0,x<0⎧0,F(x)=⎨-λx1-e,x≥0⎩2πσ⎰2πσ⎰11x12πσe-(x-μ)22σ2-∞<x<+∞F(x)=-∞e-(t-μ)22σ2d tϕ(x)=12πe-x22-∞<x<+∞F(x)=x-∞e-(t-μ)22σ2d t三、多维随机变量及其分布1、离散型二维随机变量边缘分布p i⋅=P(X=xi)=∑P(X=x,Y=y)=∑pi jj jijp⋅j=P(Y=yj)=∑P(X=x,Y=y)=∑pi ji iij2、离散型二维随机变量条件分布p i j =P(X=xiY=yj)=P(X=xi,Y=yj)P(Y=yj)=pijP⋅j,i=1,2Λx yp j i =P(Y=yjX=xi)=P(X=xi,Y=yj)P(X=xi)=pijPi⋅,j=1,2Λ3、连续型二维随机变量(X ,Y)的联合分布函数F(x,y)=⎰-∞⎰-∞f(u,v)dvdu4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:FX (x)=⎰-∞⎰-∞f(u,v)dvdu边缘密度函数:fX(x)=⎰-∞f(x,v)dvF Y (y)=x+∞+∞⎰⎰y+∞-∞-∞f(u,v)dudv fY(y)=⎰+∞-∞f(u,y)du5、二维随机变量的条件分布fY X (y x)=f(x,y)f(x,y),-∞<y<+∞fX Y(x y)=,-∞<x<+∞fX(x)fY(y)四、随机变量的数字特征1、数学期望离散型随机变量:E(X)=∑xk pk连续型随机变量:E(X)=⎰-∞xf(x)dxk=1+∞+∞2、数学期望的性质(1)E(C)=C,C为常数E[E(X)]=E(X)E(CX)=CE(X)(2)E(X±Y)=E(X)±E(Y)E(aX±b)=aE(X)±b E(C1X1+ΛCnXn)=C1E(X1)+ΛCnE(Xn)(3)若XY相互独立则:E(XY)=E(X)E(Y)(4)[E(XY)]2≤E2(X)E2(Y)3、方差:D(X)=E(X2)-E2(X)4、方差的性质(1)D(C)=0D[D(X)]=0D(aX±b)=a2D(X)D(X)<E(X-C)2(2)D(X±Y)=D(X)+D(Y)±2Cov(X,Y)若XY相互独立则:D(X±Y)=D(X)+D(Y)5、协方差:Cov(X,Y)=E(X,Y)-E(X)E(Y)若XY相互独立则:Cov(X,Y)=06、相关系数:ρXY =ρ(X,Y)=Cov(X,Y)D(X)D(Y)若XY相互独立则:ρXY=0即XY不相关7、协方差和相关系数的性质(1)Cov(X,X)=D(X)Cov(X,Y)=Cov(Y,X)(2)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)Cov(aX+c,bY+d)=abCov(X,Y)8、常见数学分布的期望和方差分布0-1分布B(1,p)二行分布B(n,p)泊松分布P(λ)几何分布G(p)超几何分布H(N,M,n)均匀分布U(a,b)正态分布N(μ,σ2)指数分布E(λ)数学期望p方差p(1-p)np(1-p)npλ1pλ1-ppn2nMNM M N-m(1-)N N N-1 a+b2(b-a)212σ2μ1λ1λ2五、大数定律和中心极限定理1、切比雪夫不等式)D (X )若E (X )=μ,D (X )=σ2,对于任意ξ>0有P {X -E (X )≥ξ}≤D (X 或P {X -E (X )<ξ}≥1-22ξξ2、大数定律:若X1ΛXn相互独立且n →∞时,1n(1)若X 1ΛX n 相互独立,E (X i )=μi ,D (X i )=σi 2∑i =1n1Xi−−→nD n∑E (X )ii =1n且σi 21≤M 则:n ∑i =11Xi−−→nP ∑E (X ),(n →∞)ii =1n1nP −→μ(2)若X1ΛXn相互独立同分布,且E (Xi )=μi则当n →∞时:∑X i−ni =13、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为σ2>0的独立同分布时,当n 充分大时有:∑X Y n=k =1nk -n μ~−−→N (0,1)n σ(2)拉普拉斯定理:随机变量ηn(n =1,2Λ)~B (n ,p )则对任意x 有:x →+∞lim P {ηn-npnp (1-p )≤x }=⎰x 12π-∞e-t 22dt=Φ(x )n(3)近似计算:P (a ≤∑Xk≤b )=P (a -n μ≤k =1n∑Xk =1k-n μ≤b -n μn σn σn σ)≈Φ(b -n μn σ)-Φ(a -n μn σ)六、数理统计1、总体和样本总体X 的分布函数F (x )样本(X 1,X 2Λ2、统计量(1)样本平均值:X =1n(3)样本标准差:S =Xn)的联合分布为F (x 1,x2Λx n)=∏F (x k)k =1n∑i =1n1X i(2)样本方差:S =n -12∑1(Xi-X )=n -1i =12nn ∑i =1n (Xi2-nX )21n -1∑1(X i -X ) (4)样本k 阶原点距:Ak=ni =12n ∑Xi =1k i,k =1,2Λ(5)样本k 阶中心距:Bk=M k =1n∑(Xi =1n i-X )k ,k =2,3Λ(6)次序统计量:设样本(X 1,X 2Λ序重新排列,得到x (1)≤x(2)≤Λ为样本(X 1,X 2ΛX n)X n)的观察值(x 1,x 2Λx n),将x 1,x 2Λxn按照由小到大的次≤x(n ),记取值为x (i )的样本分量为X (i ),则称X(1)≤X(2)≤Λ≤X(n )的次序统计量。

概率论基本公式

概率论基本公式

概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--例:证明:成立。

得证。

成立,也即成立,也即(不发生,从而发生,则不发生,,知由(证明:(B A B A AB A B B A AB A B B B A B A B A AB A B B A --=-⋃-⋃-==-=-⋃--)).) 2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ;3、概率性率:(1))()()(212121A P A P A A P A A +=⋃为不相容事件,则、有限可加:(2))()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,(3))()()()(AB P B P A P B A P -+=⋃对任意两个事件有:)();();();()1(.4.0)(2.0)(5.0)(AB P B A P B A P AB P B P B A P A P ⋃-===--求:,,例:已知:.3.0)(1)(,7.0)()()()(3.0)()()(,5.0)(.,2.0)()()()(,=⋃-=⋃==-+=⋃=-=-∴===+∴=+---B A P B A P AB P AB P B P A P B A P AB P A P B A P A P AB P B P B A P AB P B A B B B A AB 又即是不相容事件,、且解:4、古典概型222n 2!)(n ,22)-n 2)!n 2(22nC n A P C A n n n ==!,则自成一双为:!!(解:分堆法:每堆自成一双鞋的概率只,事件堆,每堆为只,分为双鞋总共例: 5、条件概率称为无条件概率。

的条件概率,条件下,事件称为在事件)(,)()()|(B P B A A P AB P A B P =B)|P(B)P(A P(AB) A)|P(A)P(B P(AB)==乘法公式:)|()()(i i A B P A P B P i∑=全概率公式:)|()()|()()()()|(j j ji i i A B P A P A B P A P B P B A P B A P i ∑==贝叶斯公式:例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质FbF(aba<≤=P-X)(b()()bFX()P=≤)2、离散型随机变量3、连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的联合分布函数⎰⎰∞-∞-=xydvdu v u f y x F ),(),( 4、连续型二维随机变量边缘分布函数与边缘密度函数边缘分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 边缘密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布+∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov 6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY==ρρ 若XY 相互独立则:0=XYρ即XY 不相关7、协方差和相关系数的性质 (1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8、常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<- 2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n 11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有:⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b X a P nk knk k -Φ--Φ≈-≤-≤-=≤≤∑∑==1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2统计量(1)样本平均值:∑==ni i X n X 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。

),min(21)1(n X X X X =为最小次序统计量;),max(21)(n n X X X X =为最大次序统计量。

3、三大抽样分布(1)2χ分布:设随机变量n X X X 21,相互独立,且都服从标准正态分布)1,0(N ,则随机变量222212n X X X ++=χ所服从的分布称为自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ (2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则随机变量:nY X T =所服从的分布称为自由度的n 的t 分布,记为)(~n t T 性质:①)2(,2)]([,0)]([>-==n n nn t D n t E ②222)(21)1,0()(lim σμπ--∞→==x n e N n t(3)F 分布:设随机变量)(~),(~2212n V n U χχ,且U 与V 独立,则随机变量2121),(n V n U n n F =所服从的分布称为自由度),(21n n 的F 分布,记为),(~21n n F F 性质:设),(~n m F X ,则),(~1m n F X1、参数估计(1) 定义:用),,(21n X X X ∧θ估计总体参数θ,称),,(21n X X X ∧θ为θ的估计量,相应的),,(21n X X X ∧θ为总体θ的估计值。

(2) 当总体是正态分布时,未知参数的矩估计值=未知参数的最大似然估计值 2、点估计中的矩估计法:(总体矩=样本矩) 离散型样本均值:∑===ni iX n X E X 11)( 连续型样本均值:dx x xf X E X ⎰+∞∞-==),()(θ离散型参数:∑==ni iXnX E 1221)(3、点估计中的最大似然估计最大似然估计法:n X X X ,,21取自X 的样本,设)]()()[,(~θθP X X P x f X i ==或则可得到概率密度:])()(),,([),(),,,(1121121∏∏∏=========ni i ni i n n ni i n P x X P x X X X X P x f x x x f θθθ 或基本步骤:①似然函数:])([),()(11∏∏===ni i ni i P x f L θθθ或②取对数:∑==ni i X f L 1),(ln ln θ③解方程:0ln ,,0ln 1=∂∂=∂∂kL L θθ 最后得:),,(,),,,(212111n k k n x x x x x x ∧∧∧∧==θθθθ。

相关文档
最新文档