《复变函数》考试复习总结
复变函数重要知识点总结
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
复变函数与积分变换复习重点
复变函数与积分变换复习重点复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ?≥=+??<=-??;4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
《复变函数》考试试题与答案各种总结.docx
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数复习(主要知识点)
• Ch6. 留数及应用
1.留数的定义及计算 2.利用留数定理计算复积分 3.利用 点的留数计算复积分 4. 利用留数计算实积分
部分实例
1. ez
|z|3
(
z
i)2
(
z
dz 1)
2. z |z|3(z1)12(z2)(z4)dz
3. I
dx
0 (4 x2)2
4.
I xsin xdx 0 x2 1
• Ch3. 复积分
1. 利用参数方程计算积分:
b
Cf(z)dzaf(z(t))z'(t)dt (C :zz(t),t:a b )
2. Cauchy积分定理、推广的Cauchy积分定理(复 合闭路定理)、Cauchy积分公式、高阶导数公 式
3. 利用原函数计算复积分 4. 调和函数及相关计算
部分实例
• Ch4. 幂级数
1.复数项级数的敛散性(绝对收敛、条件收敛) 2.幂级数收敛半径的计算 3.解析函数的Taylor展开 4. 三大定理
• Ch5. 洛朗级数与孤立奇点
1. 解析函数在圆环域内展开为洛朗级数 2.孤立奇点的定义、分类及判断
部分实例
1.
f(z)1在 1 |z 1 | 内 展 开 为 洛 朗 级 数 z(z 1 )
复数复数的表示复数的模辐角和辐角主值区域与曲线相关概念复变函数概念2复数的化简复数的四则运算2
主要知识点
• Ch1. 复数与复变函数
1. 复数、复数的表示、复数的模辐角和辐角主值、 区域与曲线相关概念、复变函数概念 2. 复数的化简、复数的四则运算、复数的乘方与 开方 Nhomakorabea 部分实例
1. ,求 z 2 2 3i 3 4i
复变函数总复习资料
总结词
导数与微分在解决实际问题中具有广泛的应 用。
详细描述
导数与微分的应用包括求函数的极值、判断 函数的单调性、求函数的拐点、近似计算等 。这些应用在物理学、工程学、经济学等领 域都有广泛的应用,如波动方程、热传导方 程、弹性力学等领域的研究都需要用到复变
函数的导数与微分。
04
复变函数的积分
积分的定义与性质
解析性是实变函数的导数的定义基础,因此解析性在实变函数中有 着广泛的应用。
在复变函数中的应用
解析性是复变函数的导数的定义基础,因此解析性在复变函数中有 着广泛的应用。
在物理中的应用
解析性在物理中也有着广泛的应用,例如在电磁学、光学等领域中, 解析性可以帮助我们更好地理解物理现象。
THANKS
感谢观看
总结词
复数与复变函数在物理、工程等领域有广泛应用。
详细描述
复数与复变函数在物理、工程等领域有广泛的应用。例如,在电路分析中,电压和电流可以用复数表示,方便计 算;在信号处理中,复数可以用于表示和处理信号;在量子力学中,波函数通常用复数表示。此外,许多数学问 题也可以通过复数和复变函数得
总结词
复变函数是定义在复数域上的函数,具有连续性、可微性等 性质。
详细描述
复变函数是定义在复数域上的函数,其定义与实数域上的函 数类似,但具有更丰富的性质。复变函数可以具有连续性、 可微性、解析性等性质,这些性质在研究复变函数的积分、 微分、级数等数学问题中具有重要作用。
复数与复变函数的应用
幂级数的概念与性质
定义
幂级数是无穷多个形如$a_n x^n$的项按照一定的顺 序排列的数列,其中$a_n$是常数,$x$是变量。
性质
收敛半径,幂级数的展开式,幂级数的加减乘除等。
复变函数-期末考试-复习总结提示
'( z0
)
0
,则
Re
s[
f
( z ),
z0
]
p(z0 ) Q '(z0 )
。
计算规则,Re s[
f
(z), z0 ]
1 lim
(m 1)! zz0
d m1 dz m 1
{( z
z0 )m
f
(z)} ,m
可以高于
级数
2ez
e.g.:
Re s
z4
,0 ?
方程决定的曲线如何分析?例如 Re(z2 ) 1
不等式决定的平面区域如何给出?
f (z) 4x2 4 y2 2 e x sin y 8xyi ie x cos y 5i 是否解析,导数如何计算
?用的是哪个定理?
已知 u( x, y) e y sin x 2x 1,找 v( x, y) 使 f (z) u( x, y) i·v( x, y) 成为解析
dz
z 1 z(z 3)
柯西积分定理转化为 2i
z3
z0
ez i
dz
z z 1 5
12
高阶导数公式,注意分子求导比较容易
1
dz
z 4 z sin z
函数有一个 2 级极点 z 0 和两个 1 级极点 z 和 z
证明化为 C z z0 dz 使用柯
西积分公式,注意 5 在路径围成的区域之外。
3z 2
dz 0
z 3 z(z 1)2
留数定理,一个一级极点,一个二级极点
z sin z
z 1 z6 dz 转化成留数,展开得到 c1
复变函数与积分变换复习重点
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数与积分变换期末考试复习知识点
复变函数与积分变换期末考试复习知识点复变函数与积分变换期末考试复习知识点复习要点一题型1、填空题(每题3分,共18分)2、单项选择题(每题3分,共21分)3、计算题(每题6分,共36分)4、解答题(4小题,共25分)二知识点第一章复数与复变函数1、会求复数的各种表示式(一般式、三角式、指数式)。
一般式:z=x+yi三角式:z=r(cosθ+isinθ)指数式:z=reiθ2、会求复数(各种表示式)的模、辐角、辐角主值。
3、掌握复数的四则运算、共轭运算、乘幂运算、方根运算。
4、理解区域、有界域、无界域、单连通域与多连通域等概念。
5、会用复变数的方程来表示常用曲线及用不等式表示区域。
6、理解复变函数的概念。
7、了解复变函数的极限与连续性的概念,会求常见的复变函数的极限。
例:1.1;1.2习题一:1.2(2)(3);1.3;1.5第二章解析函数1、理解可导与解析的联系与区别(在一点;在一个区域)。
对于点:解析→可导→连续对于区域:解析可导2、会判别常见函数的解析性,会求常见函数的奇点。
3、了解柯西黎曼方程。
4、掌握各类初等函数(指数函数、对数函数、幂函数、三角函数)的定义、性质。
例:1.4;2.1;3.1;3.2习题二:2.3(1)(2)(3);2.4;2.9(1)(2)(3);2.10;2.12(1)(3)第三章复变函数的积分1、熟悉复积分的概念及其基本性质。
2、了解复积分计算的一般方法。
3、会求常见的各类积分(包括不闭路径、闭路径)。
本章的主要方法如下,但要注意适用的积分形式。
(1)牛顿莱布尼茨公式。
(2)柯西积分定理。
(3)柯西积分公式。
(4)高阶导数公式。
(5)复合闭路定理。
注意:上述方法中的(3)(4)(5)可与第五章中的留数定理的应用结合起来复习。
例:1.1;2.1;2.2;3.1;4.1习题三:3.1(1);3.3;3.4;3.5;3.6;3.7第四章级数1、理解复数项级数的相关概念(收敛、发散、绝对收敛、条件收敛)。
复变函数与积分变换复习重点总结
复变函数与积分变换复习重点总结一、复变函数基本概念1.复数的定义与运算规则。
复数由实部和虚部构成,在复平面上表示为点,加减乘除等运算遵循分配律。
2.复平面及相关概念。
复平面是复数集合在直角坐标系上的表示,实部和虚部在坐标轴上的投影分别对应x轴和y轴,共轭复数、模、幅角等概念。
3.复变函数的定义与性质。
复变函数表示为z的其中一种函数,具有实变量函数的性质,例如连续性、可微性等。
二、整函数1.整函数的定义与性质。
整函数指复变函数在全复平面都解析,可以用无穷级数表示为幂级数形式。
2.全纯函数与调和函数。
全纯函数是整函数的一种特殊情况,对应于实变量函数的解析函数,调和函数满足拉普拉斯方程。
3.零点与奇点。
零点是整函数取值为0的点,奇点是整函数在一些点上无定义或有定义但不解析的点。
4.极限定理与唯一性定理。
解析函数具有一致性和唯一性,即零点有稠密性,且相同函数在相同域上必然一致。
三、留数定理1.留数的概念与计算方法。
留数是复变函数在奇点处的残余,可以通过留数公式计算得到,留数与曲线积分的关系。
2. 留数定理与积分公式。
留数定理为计算曲线闭合积分提供了便捷的方法,包括留数定理、Cauchy积分公式、Cauchy积分定理等。
3.洛朗展开与留数计算。
洛朗展开将复变函数表示为一部分主要项和无穷级数项的形式,通过计算主要项的留数可以快速得到积分结果。
四、解析函数与幂级数展开1.解析函数的定义与性质。
解析函数是在一些域上解析的复变函数,具有在其定义域上处处可微的特点,可以表示为幂级数形式。
2.幂级数展开与泰勒级数。
将解析函数表示为幂级数展开的形式,其中泰勒级数是幂级数的一种特殊情况,可以用于近似计算。
3.余项估计与收敛半径。
余项估计用于估计幂级数展开的误差范围,收敛半径表示幂级数展开的有效范围。
4.解析函数的四则运算与复合函数。
解析函数具有基本的四则运算和复合运算规则,可通过幂级数展开来计算。
五、积分变换1.积分变换的基本概念与性质。
复变函数期末考试复习重点
复变函数期末考试复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 两个复数相等当且仅当它们的实部和虚部分别相等. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctanyx之间的关系如下: 当0,x > arg arctan yz x=;(当z 落于一、四象限时,不变。
)当0,x = 0,arg 20,arg 2y z y z ππ⎧>=+⎪⎪⎨⎪<=-⎪⎩(z 为纯虚数,落于虚轴) 当0,arg arctan (0,0,arg arctan (yy z xx yy z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩第二象限)第四象限);4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
3.共轭复数:实部相同而虚部绝对值相等符号相反的两个复数称为共轭复数. z x iy =- 共轭复数的性质:教材P3(二) 复数的运算 1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+± 2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()1122111121212122122222222222222222x iy x iy z x iy z z x x y y y x y x i z x iy z z x iy x iy x y x y +-++-====+++-++。
复变函数复习考试提纲
• 复数的三角(指数)表示以及复数的几何意义
z = x + iy = r (cos θ + i sin θ) = reiθ θ = Argz = arg z + 2kπ, k = 0, ±1, ±2, . . .
y
y
z
r
.θ O
xx
• 复数辐角主值的取值范围:−π < θ0 ≤ π. 辐角主值的计算方法(采用在复平面作图的 办法确定辐角的取值)。
复变函数复习考试提纲
I 知识要点
第一章 复数及平面区域
• 必备知识:复数的定义,实部、虚部。共轭复数,复平面,复数对应的向量及其模,复 数的四则运算。
• 欧拉公式 由此可得 以及
eiθ = cos θ + i sin θ
cos θ
=
eiθ
+ e−iθ ,
sin θ = eiθ − e−iθ
2
2i
ei2kπ ≡ 1, k ∈ Z
• 留数基本定理 设 D 是由复围线 L 围成的区域,函数 f (z) 在 D¯ 上连续,f (z) 在 D
内除去有限个孤立奇点 z1, z2, . . . , zn 外处处解析,则
∮
∑n
f (z)dz = 2πi Res(f, zk)
L
k=1
如果积分路径内各孤立奇点的留数都能求出,则立即可求出 f (z) 的路径积分。
2
2i
第四章 复变函数的积分
• 由于复数是二元变量,关于复变函数的积分就成为平面曲线的曲线积分。
∫
∫
∫
∫
f (z)dz = [u(x, y) + iv(x, y)] d (x + iy) = [udx − vdy] + i [vdx + udy]
(完整word版)复变函数与积分变换重要知识点归纳
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数复习资料
复变函数期末复习一知识点1第一章主要掌握复数的四则运算,复数的代数形式、三角形式、指数形式及其运算。
2第二章主要掌握函数的解析性,会判断函数是否是解析函数,会求解析函数的导数。
3第三章掌握复变函数积分的计算,掌握柯西积分公式,掌握解析函数与调和级数的关系。
4第四章掌握复数项级数的有关性质,会把一个函数展开成泰勒级数。
5第五章掌握将函数展开为洛朗级数,掌握孤立奇点的分类及判断。
6第六章掌握留数的计算,掌握用留数计算积分,掌握利用留数计算三类实积分。
二例题选讲1求i3的值。
知识点:利用定义bLna be a=。
解i 3=3iLn e=)23(ln πk i i e+=3ln 2i k e +-π=)3ln sin 3ln (cos 2i e k +-π。
2设1||=z ,试证:1_____=++baz a z b 。
知识点:复数,复数的模,共轭复数之间的关系。
2__2__||||z z z z ==证明:由1||=z 得,1__=z z ,baz zz a z b b az a z b ++=++____________=baz zz a b ++)(_______=1)()(_______________=++=++b az zaz b b az z z a b 3求2sin Arc 的值。
知识点:初等函数的定义,函数值的计算,)1(sin 2z iz iLn z Arc -+-=,)1(cos 2z i z iLn z Arc -+-=解:)32(2sin i i iLn Arc ±-==iiLn )32(±-=i k i i ππ22)32[ln(++±-=)32ln(22±--i k ππ,,...2,1,0±±=k 4证明)|||(|2||||2221221221z z z z z z +=-++。
证明)|||(|2||||2221221221z z z z z z +=-++。
《复变函数》考试试题与答案各种总结
《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( )4.若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式.2. .cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 试证: ()(1)f z z z =-在割去线段0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1. 2101i n n π=⎧⎨≠⎩; 2. 1; 3. 2k π,()k z ∈; 4. z i =±; 5. 16. 整函数;7. ξ;8. 1(1)!n -; 9. 0; 10. ∞.三.计算题.1. 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑.2. 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-. 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰. 3. 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰.所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+. 4. 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a b i a b w z z a b a b a b -+-+==-=-=-+++++++++. 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b -=+++. 四. 证明题.1. 证明 设在D 内()f z C =. 令2222(),()f z u iv f z u v c =+=+=则.两边分别对,x y 求偏导数, 得 0(1)0(2)x x y y uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-. 代入 (2) 则上述方程组变为x x x x uu vv vu uv +=⎧⎨-=⎩. 消去x u 得, 22()0x u v v +=. 1) 若220u v +=, 则 ()0f z = 为常数.2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =. 所以12,u c v c ==. (12,c c 为常数).所以12()f z c ic =+为常数. 2. 证明()(1)f z z z =-的支点为0,1z =. 于是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支.由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π. 所以()(1)f z z z =-的幅角共增加2π. 由已知所取分支在支割线上岸取正值, 于是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π, 故2(1)22i f e i π-==.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续. ( )2. cos z 与sin z 在复平面内有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 内解析,则|f (z )|也在D 内解析. ( )10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f i z ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆内的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz .三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件是)(z f 在D 内解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(二)参考答案一. 判断题.1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×. 二. 填空题1.1,2π-, i ; 2. 3(1sin 2)i +-; 3. 2101i n n π=⎧⎨≠⎩; 4. 1; 5. 1m -.6. 2k i π,()k z ∈.7. 0;8. i ±;9. R ; 10. 0. 三. 计算题1. 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑. 2. 解 令i z re θ=. 则22(),(0,1)k if z z rek θπ+===.又因为在正实轴去正实值,所以0k =.所以4()if i eπ=.3. 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤.所以22222ii i iz dz de ei ππθθππ---===⎰⎰.4. 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0.四. 证明题.1. 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-. (12,c c 为实常数). 令12(,),(,)u x y c v x y c ==-. 则0x y y x u v u v ====. 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析. (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-.比较等式两边得 0x y y x u v u v ====. 从而在D 内,u v 均为常数,故()f z 在D 内为常数. 2. 即要证“任一 n 次方程 101100(0)nn n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”.证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<.()f z =.由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00n a z = 有相同个数的根. 而 00n a z = 在 z R < 内有一个 n 重根 0z =. 因此n 次方程在z R < 内有n 个根.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分)1. 设11)(2+=z z f ,则f (z )的定义域为___________.2. 函数e z 的周期为_________.3. 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________. 4. =+z z 22cos sin ___________.5. =-⎰=-1||00)(z z n z z dz_________.(n 为自然数) 6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =nzze . 三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1内根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
复变函数复习重点
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下: 当0,x > arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+” 5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x i y x i y z x i y x x y y y x y x i z x i y x i y x i y x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1)若(cos sin )i z z i z e θθθ=+=,则(cos sin )n nn in z z n i n z e θθθ=+=。
2013年二本复变函数期末考试复习要点
复变函数期末考试复习要点
一、 题型:选择题、填空题、判断题、计算题、证明题。
二、 复习重点:
1、复变函数的基本概念,如复数;复变函数的概念;解析函数的概念;初等解析函数如三角函数;
2、复变函数的连续、可导、解析之间关系;
3、复变函数解析的几个充要条件(充分或必要条件);
4、复积分的定义及计算;
5、解析函数的级数(幂级数)的求法。
三、典型例题:
1、计算积分||1(31)z dz z z =+⎰
; 2、计算积分22
||2(z+1)z dz z =⎰; 3、计算C
zdz ⎰,其中C 为:从点1到点i 的直线段; 4、利用留数定理计算2
011(cos z)dz π
+⎰的值; 5、计算C
|z|dz ⎰,其中C 为:从点-i 到点i 的直线段; 6、利用留数定理计算0sin z dz z +∞⎰
的值; 7、利用留数定理计算220112cos dz p z p π-+⎰的值;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(*1)
求方根公式(牢记!):
w=
n
z
=
n
i +2k
re n
( ) = n r
cos + i sin +2k n
+2 k n
(*2)
其中k = 0,1, 2, , n −1。 = arg z
例:(sin + i cos )10
5
5
可直接利用(*1)式求解
4 1+ i
可令 z=1+i,利用(*2)式求解
3.复函数
a. 一般情况下:w=f(z),直接将 z=x+iy 代换求解 但遇到特殊情况时:如课本 P12 例 1.13(3)可考虑: z= ei =r(cos +isin )代换。
b.对于 P12 例题 1.11 可理解为高中所学 的 平面上三点 (A,B,C)共线所满足的公式: (向量) OC=tOA+(1-t)OB=OB+tBA c.对于 P15 例题 1.14 中可直接转换成 X 和 Y 的表达式后判断 正负号来确定其图像。 d.判断函数 f(z)在区域 D 内是否连续可借助课本 P17 定义 1.8
4.解析函数,指数,对数,幂、三角双曲函 数的定义及表达式,能熟练计算,能熟练解 初等函数方程
a.在某个区域内可导与解析是等价的。但在某一点解析一定 可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k ) e.幂函数:底数为 e 时直接运算(一般转换成三角形式)
及
cos iy = 2
sin iy = e−y − e y 2i
= ch y
= i sh y
反三角中前三个最好自己记住,特别 Arctgz = − i Ln 1+ iz
2 1− iz
因为下一章求积分会用到 (arctan
z), =
1
z2 +1
(如第三章的习题
9)
5.复变函数的积分
a.注:只有当函数解析即满足柯西-黎曼公式时求积分才与路 径无关只与出没位置有关。(勿乱用)
n 0.
c.柯西积分公式和高阶导数公式及其应用于计算积分:
例如: zdz 与路径无关。而 zdz 与路径有关。
c
c
b.柯西-古萨基本定理:当函数 f(z)在以简单闭曲线 C 为边界
的有界区域 D 内解析且在闭区域上连续时: f (z) d z = 0 C 重要公式
d z 2 π i, n = 0,
| z − z0 |= r
(z −
z0 )n+1
=
0,
当底数不为 e 时,w= za = eaLnz (幂指数为 Ln 而非 ln)
ii , , ee ,ie+i
能够区分:
的计算。
f.三角函数和双曲函数:
只需记住:cos z = eiz + e−iz , sin z = eiz − e−iz .
2
2i
其他可自己试着去推导一下。
(2.15)
e−y + ey
复变函数小结
目录
复变函数小结...................................................................................................................................1 1. 幅角...........................................................................................................................................2 2. 求根..............................................................................................................................................2 3.复函数............................................................................................................................................ 3 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等 函数方程........................................................................................................................................... 3 5.复变函数的积分 ............................................................................................................................ 4 6.级数 ...............................................................................................................................................5 7.留数 ...............................................................................................................................................7
1. 幅角
(不赞成死记,学会分析)
-∏<arg z≤∏ Arg(z1z2)=Argz1+Argz2
Arg(z1/z2)=Argz1-Argz2
2. 求根
z e r 由 z= ei =r(cos +isin )得 n = in = n (cosn +isinn )
当 r=1 时,(cos +i sin )n =(cosn +isin n)